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We use a novel satellite time series of size-partitioned phytoplankton biomass to

construct and analyze classical and novel seasonality metrics. Biomass is computed

from SeaWiFS ocean color data using retrievals of the particle size distribution with the

KSM09 algorithm and existing allometric relationships to convert volume to carbon. The

phenological metrics include the peak blooming date, bloom strength, shape of the

seasonal cycle, and reproducibility of the seasonal cycle. We compare the seasonal

cycle of total biomass with that of three classical size classes (pico-, nano-, and

micro-phytoplankton), which are correlated with phytoplankton functional types (PFTs).

The spatial distribution of phenological metrics based on the new biomass and PFT data

is qualitatively realistic, and is strongly correlated with bottom-up drivers such as sea

surface temperature, mixed layer depth, winds, and photosynthetic available radiation.

We find that low-biomass regions and non-blooming seasons are dominated by small

phytoplankton sizes while high-biomass regions and blooming seasons are dominated

by large phytoplankton. The biomass peak date doesn’t change much across PFTs,

but the blooming period is more prominent for large PFTs. Small PFTs act as a more

constant biomass background, with smoother (less pronounced) seasonal cycles. We

find significant differences between seasonality metrics in the SeaWiFS data and the

latest generation of IPCC AR5 Earth System models (CMIP5). Models in the CMIP5

archive do not capture the pronounced mid-latitude and frontal PFT patterns found in the

satellite data. In models, phytoplankton biomass peaks later at high latitudes and earlier

at low latitudes. The models exhibit a higher reproducibility of the biomass seasonal

cycle and larger phenological differences between PFTs than observed. Models fail to

capture secondary peaks at mid and high latitudes. Continuous improvement of satellite

algorithms that retrieve phytoplankton groups is necessary to advance the modelization

of phytoplankton in Earth System Models.

Keywords: phenology, phytoplankton carbon, size classes, particle size distribution, ocean color remote sensing,

model intercomparison

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org/Marine_Science/editorialboard
http://www.frontiersin.org/Marine_Science/editorialboard
http://www.frontiersin.org/Marine_Science/editorialboard
http://www.frontiersin.org/Marine_Science/editorialboard
http://dx.doi.org/10.3389/fmars.2016.00039
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2016.00039&domain=pdf&date_stamp=2016-03-30
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:annanusca@gmail.com
http://dx.doi.org/10.3389/fmars.2016.00039
http://journal.frontiersin.org/article/10.3389/fmars.2016.00039/abstract
http://loop.frontiersin.org/people/282573/overview


Cabré et al. Seasonal Succession of PFTs

INTRODUCTION

The study of the phytoplankton seasonal cycle (phenology)
is relevant to understanding the functioning of the marine
ecosystem. Phenology is also a sensitive indicator of climate
change (e.g., Henson et al., 2013). The majority of satellite
phenological studies to date have used satellite chlorophyll (Chl)
as a tracer of phytoplankton. These studies focused on the North
Atlantic (e.g., Siegel et al., 2002; Levy et al., 2005; Ueyama and
Monger, 2005; Henson et al., 2006; Platt et al., 2009, 2010; Vargas
et al., 2009), subtropical gyre (McClain et al., 2004; Signorini
and McClain, 2012; Signorini et al., 2015), Pacific (Thomas et al.,
2012), California Current System (Henson and Thomas, 2007),
or Southern Ocean (Thomalla et al., 2011; Carranza and Gille,
2015), while only a handful of studies have looked at global
spatial patterns (Wilson and Coles, 2005; Racault et al., 2012;
Sapiano et al., 2012; Cole et al., 2015). A variety of methods
essentially based on the analysis of the chlorophyll annual cycle
have been developed to detect the evolution of phytoplankton
blooms from satellite data. Commonly used phenological indices
include timing of bloom onset, bloom decay, bloom maximum,
bloom termination, bloom duration, and bloom amplitude.

The timing of phytoplankton blooming depends on many
physical, chemical, and biological factors such as light exposure,
mixing, availability of nutrients, respiration and predation
(grazing) rates. Different hypotheses have been put forth to
explain the onset of blooms in the North Atlantic. According to
the ‘critical depth hypothesis’ (Sverdrup, 1953) revisited by many
other authors since then (e.g., Siegel et al., 2002; Fischer et al.,
2014), the spring onset of blooms coincides with the shallowing
of the mixed layer to a critical depth where phytoplankton
growth overcomes phytoplankton mortality integrated over the
euphotic layer. Alternatively, the critical turbulence hypothesis
states that blooms may start when mixed layers are still very
deep, if the rate of near surface turbulent mixing has decreased
sufficiently to allow phytoplankton to accumulate in the euphotic
zone (Taylor and Ferrari, 2011). In this case, the bloom initiation
is found to be associated with the onset of positive net heat
fluxes (e.g., net warming of the ocean). Brody and Lozier (2014)
predict satellite-derived Chl blooms to occur slightly earlier
when negative heat fluxes start weakening and shift the mixing
mechanism from convection to wind-driven. Another hypothesis
is that winter deepening of the MLD triggers blooms by diluting
the concentration of grazers and hence reducing the top-down
pressure on phytoplankton (Behrenfeld, 2010, Behrenfeld, 2014).

However, Chl seasonality is not enough to understand
ecosystem structure, as Chl might reflect physiological changes
unrelated to biomass (Behrenfeld et al., 2005). The next
logical step is to study carbon-based phytoplankton functional
types (PFTs) in order to understand the seasonal succession
of species groups with specific biogeochemical roles. One
of the primary characteristics that defines the structure of
the PFTs is size, which can be considered a master trait
(Vidussi et al., 2001; Le Quere et al., 2005; Finkel et al.,
2010). For example, large phytoplankton grow preferentially in
environments with plentiful nutrients (Malone, 1980; Goldman,
1993) and outcompete other phytoplankton groups in blooming

conditions (Falkowski et al., 2004). Different theories have been
proposed as to why this is the case. Some large species have
a higher maximum growth rate, which make them better in
rapidly changing nutrient regimes (e.g., Litchman et al., 2015).
Small phytoplankton are usually eaten by small grazers, while
larger phytoplankton are eaten by slower-growing metazoan
grazers (Irigoien et al., 2005). Moreover, grazing is usually more
aggressive and immediate on small species, while lower and more
delayed in larger species, allowing the large species to dominate
during blooming conditions (e.g., Litchman et al., 2015). Finally,
large phytoplankton can store nutrients in their vacuoles, and
this provides a competitive advantage under fluctuating nutrient
regimes (Litchman et al., 2009). These factors usually result in
models in the large phytoplankton being the “opportunistic”
species which dominates in both regions and seasons with high
total biomass, while the small phytoplankton are the “gleaner”
or “lower R∗” species which dominate in regions and seasons
with low biomass such as low nutrient, permanently stratified
regimes (Tilman, 1982; Dutkiewicz et al., 2009). We use PFTs and
phytopankton size classes (PSCs) interchangeably throughout the
paper, while acknowledging that they are not the same.

Various novel ocean color algorithms for PFT retrieval have
been developed recently (IOCCG, 2014) and many are currently
participating in an international PFT Intercomparison Project
(Hirata et al., 2012). These PFT algorithms fall into several
categories depending on their theoretical basis: absorption-
based (e.g., Ciotti and Bricaud, 2006; Mouw and Yoder, 2010;
Bricaud et al., 2012), abundance-based (e.g., Devred et al.,
2006; Uitz et al., 2006; Brewin et al., 2010; Hirata et al.,
2011), reflectance-based (Alvain et al., 2005, 2008, 2012),
and backscattering-based algorithms (Kostadinov et al., 2009,
2010, 2015). While significant differences exist among these
algorithms, to first order all agree that large cells dominate
in high-chlorophyll waters, while small cells dominate in
oligotrophic waters, also in agreement with in situ findings (e.g.,
DuRand et al., 2001; Steinberg et al., 2001; Dandonneau et al.,
2004).

Most research groups looking into PFTs have focused on
refining the method and validating the satellite-derived results
with in situ data, but some have also investigated PFTs
seasonality. For example, Mouw et al. (2012) found that seasonal
blooms are associated with an increase in microphytoplankton
over most of the ocean. The same conclusions were reached
by Alvain et al. (2005, 2008) at high latitudes, by Bricaud
et al. (2012) and Hirata et al. (2011) in the North Atlantic,
and by Kostadinov et al. (2010) in four selected locations
in the Northern Hemisphere. Uitz et al. (2010) found that
microphytoplankton are most responsive to sporadic changes,
while picophytoplankton are favored by constant environmental
conditions.

Kostadinov et al. (2009), hereafter KSM09, is unique among
the current suite of algorithms in that it uses the magnitude
and spectral slope of the backscattering coefficient to retrieve the
parameters of an assumed power-law particle size distribution
(PSD). Kostadinov et al. (2010) used the KSM09 algorithm
to define three classical size classes/PFTs based on biovolume
fractions—pico-, nano- and microphytoplankton. Kostadinov
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et al. (2015), hereafter TK15, improves upon this approach by
re-casting the PFTs in terms of carbon biomass. Here we use
this novel algorithm to retrieve total and size-partitioned carbon
biomass over the 13-year time series provided by the Sea Wide
Field-of-view Sensor (SeaWiFS) and calculate a set of updated
phenological indices. We analyze previously studied phenology
indices such as the date of maximum biomass (Siegel et al., 2002;
Levy et al., 2005) and the reproducibility of the seasonal cycle
(e.g., Thomalla et al., 2011) and we add a new set of indices to
highlight the differences among PFTs related to the overall shape
of the seasonal cycle. These new indices include ameasurement of
the duration and skewness of the bloom shape and are described
in detail in Methods. It is important to note that the TK15 carbon
biomass estimation is largely independent of the commonly used
Chl.

We also compare our satellite-derived PFT results on seasonal
succession to the output of Earth System models. The most
recent generation of Earth System Models, the Coupled Model
Intercomparison Project or CMIP5 (Taylor et al., 2012) includes
7 models with at least two PFTs. PFTs are differentiated by
nutrient requirements and differences in the values of coefficients
that govern the biological parameterizations, provided by
laboratory studies and field observations. Cabré et al. (2015)
studied the climatology differences between PFTs across CMIP5
models and concluded that diatoms prefer high latitudes
and upwelling systems while small phytoplankton thrive in
oligotrophic gyres, as expected. There is no comprehensive
study to date comparing differences in the seasonality of
PFTs across CMIP5 models. However, Hashioka et al. (2013)
studied the succession of PFTs in the MAREMIP project
which includes a subgroup of CMIP5 models and concluded
that no clear and unique mechanism arises for all the
models.

METHODS AND DATA SOURCES

Materials
We use the backscattering-based algorithm described in
Kostadinov et al. (2015) to retrieve PFTs. Kostadinov et al. (2015)
define three classical (Sieburth et al., 1978; Finkel et al., 2010)
size-based PFTs—picoplankton (0.5–2 µm cellular diameter),
nanoplankton (2–20 µm), and microplankton (20–50 µm). We
use these PFT definitions here.

Monthly and 8-day mapped (i.e., equidistant cylindrical
projection) SeaWiFS remote-sensing reflectance (Rrs(λ), sr

−1)
imagery was obtained from NASA’s Ocean Biology Processing
Group (OBPG) at http://oceancolor.gsfc.nasa.gov/ for the
wavelengths of 412, 443, 490, 510, and 555 nm. These Rrs(λ)maps
were used as inputs to the Loisel and Stramski (2000) algorithm in
order to retrieve the spectrally resolved backscattering coefficient
(m−1) at these wavelengths, which in turn was used as input
to the KSM09 algorithm. We also obtained from OBPG the
8-day and monthly SeaWiFS chlorophyll-a concentration (Chl)
and the monthly photosynthetic available radiation (PAR). Chl is
expressed in mg m−3 throughout the paper. PAR is expressed in
Einstein m−2 day−1.

We obtained the full monthly time series for MLD from the
reanalysis dataset NCEP/GODAS NOAA/OAR/ESRL Physical
Science Division (http://www.esrl.noaa.gov/psd/). The MLD was
calculated using the methodology of Levitus (1982) which
defines the mixed layer as being the depth at which there
is a change in density of 0.125 kg m−3 with respect to the
surface. Specific details regarding this dataset can be found
in Xue et al. (2011). When dealing with averaged monthly
seasonal cycles (climatologies), we use MLD from the compiled
database Ifremer (French Research Institute for Exploration of
the Sea), which computed the seasonal cycle of MLD from
in-situ measurements of temperature and salinity made at
sea obtained from oceanographic data centers (http://www.
ifremer.fr/cerweb/deboyer/mld/home.php). The definition used
in this case is the depth at which density increases from
10 m density by 0.03 kg m−3 (de Boyer Montégut et al.,
2004).

We use monthly sea surface temperatures (SST) from the
Advanced Very High Resolution Radiometer (AVHRR) by
NOAA, downloaded from the NASA Physical Oceanography
Distributed Active Archive Center (PO.DAAC) at http://podaac.
jpl.nasa.gov/AVHRR-Pathfinder. We use monthly wind speed
from the Cross-Calibrated Multi-Platform (CCMP) Ocean
Surface Wind Vector Analyses (Atlas et al., 2011), downloaded
from PO.DAAC at http://podaac.jpl.nasa.gov/Cross-Calibrated_
Multi-Platform_OceanSurfaceWindVectorAnalyses.

We use the nitrate averaged monthly seasonal cycle from
the World Ocean Atlas 2013 (https://www.nodc.noaa.gov/
OC5/woa13/). The dataset HadISST (Hadley Centre Sea
Ice and Sea Surface Temperature data set from the Hadley
Centre Meteorological Office) provides ice coverage in
spatially gridded monthly maps (described in detail in
Rayner et al., 2003). This product is derived from gridded
in situ observations with data-sparse regions filled using
reduced space optimal interpolation (Kaplan et al., 1997). This
product was used to define ice-covered biomes in Section
Biomes Definition.

We derived phenological parameters in a group of
Earth System simulations from the recent Coupled Model
Intercomparison Project CMIP5 (Taylor et al., 2012) that
incorporate ocean ecosystem representation with at least
two phytoplankton group. We chose 7 models based on the
availability of the variables phytoplankton and diatom biomass
(“phyc” and “phydiat”). The models used are CESM1-BGC,
GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H-CC, GISS-E2-
R-CC, HadGEM2-ES, and IPSL-CM5A-MR. CMIP5 model
output was downloaded from http://pcmdi9.llnl.gov/esgf-
web-fe/. Model output is used for the SeaWiFS time span
(1998–2010). Years 1998–2005 are based on the historical
CMIP5 scenario forced by observed atmospheric changes (both
anthropogenic and natural). Years 2006–2010 are based on
the RCP8.5 emission scenario (Riahi et al., 2011). Table S1
provides details and references for the models. All model output
was resampled to a 1◦ grid. All the phenological calculations
are applied in each model separately, and later averaged
to obtain a multi-model average in which we weight each
model equally.
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Phenological Indices
In order to characterize seasonality in global maps, we use the
following indices:

a) The date of maximum biomass (e.g., Siegel et al., 2002;
Levy et al., 2005) is calculated as the date when the averaged
seasonal cycle is maximum. A centered boxcar filter of 31 days
is applied to achieve a usable comparison between monthly
and 8-day data.

b) The reproducibility of the seasonal cycle (e.g., Thomalla
et al., 2011) is the temporal correlation between the complete
time series (detrended) and the repeated climatology for
biomass in log10 space. Alternatively, the coefficient of
variation (standard deviation divided by the mean) also
informs us about interannual variability (e.g., Gnanadesikan
et al., 2011).

c) The blooming strength is the logarithmic increase in the
averaged seasonal cycle from the minimum to the maximum
(LOG10(MAX)-LOG10(MIN)). It shows the increase in
orders of magnitude between the minimum and the
maximum biomass in the averaged seasonal cycle, and is
related to the percent change frommin to max in linear space.

d) The bloom duration is calculated in the averaged seasonal
cycle as the time spent above 40% of the seasonal amplitude in
biomass concentration, i.e., above the value min + 0.4∗(max-
min) where min and max are the minimum and maximum
values of the averaged seasonal cycle (in linear space). The
seasonal cycle is previously interpolated linearly in time to
1-day resolution and then smoothed with a 30-day running
mean to reduce noise and ensure that 8-day data and monthly
satellite data provide similar results.

e) The skewness of the seasonal cycle around the peak is
estimated as the difference between the bloom duration from
the 40% threshold to the peak and the duration from the
peak back to the same threshold. This novel phenological
index is designed to detect differences in duration between
the blooming onset and decay. Differences in the shape of the
seasonal cycle were also studied with phase plots, where one
seasonal cycle is plotted against another one (for example, to
compare different PFTs) to determine if these are coupled or
uncoupled.

We tested whether the above indices change with the temporal
resolution of the satellite data (8-day vs. monthly). This tests the
validity of using monthly data, the typical minimal resolution at
which CMIP5 model output is saved.

Biomes Definition
The division of the ocean in ecologically-meaningful biomes
has been studied for a long time (e.g., Sverdrup et al., 1942;
Barber, 1988; Longhurst et al., 1995; Longhurst, 1998; Hooker
et al., 2000; Hardman-Mountford et al., 2008; Reygondeau et al.,
2013; Fay and McKinley, 2014). Here we propose our own biome
separation based on physical criteria, Chl level, size composition,
and geographic constraints, inspired by definitions employed by
Sarmiento et al. (2004), Marinov et al. (2013), and Cabré et al.
(2015). Our definitions for the biome separation are detailed in
Table 1, and Figure 1A shows the resulting biomes. Our biome

FIGURE 1 | (A) Spatial distribution of the biomes defined in this paper. Biome

definitions and properties are shown in Table 1. The subtropical Front and

subAntarctic Front in the Southern Ocean are shown in black. (B) Maps of PFT

seasonal dominance based on satellite biomass dataset. Three different

regions arise depending on the dominating phytoplankton group (in absolute

terms): (1) zones where pico- dominate over nano- and micro-phytoplankton

throughout all year long (in red), (2) zones where nano- and micro- dominate

over pico-phytoplankton throughout all year long (in blue), and (3) zones where

both groups of phytoplankton dominate at some moment in the year (in green).

definitions (Table 1) include reproducibility of the seasonal cycle
(Thomalla et al., 2011) as part of the definition of subtropical
gyres and use information on PFT seasonal dominance (Section
General Patterns in Phytoplankton Size Classes) to separate the
seasonally stratified subtropics from the permanently stratified
subtropics. We further use the correlations between SST (or
MLD) and biomass to separate the northern subpolar biome
(light limited) from the seasonally stratified northern subtropics
(nutrient limited), with low correlations in between defining the
transition biome.

We use frontal structures to divide the Southern Ocean. The
major fronts used here are the subtropical front (STF) and
the subAntarctic front (SAF), as defined by Orsi et al. (1995)
and downloaded from http://gcmd.nasa.gov/records/AADC_
southern_ocean_fronts.html. We distinguish a region south of
the seasonally stratified subtropical band but North of the SAF,
which we divide further into a high biomass biome (in dark
green in Figure 1A) and a low biomass biome (in brown in
Figure 1A) and which we denote by SO-SA-highbio and SO-
SA-lowbio, respectively (SA stands for SubAntarctic). Note that
our SA region is similar to the Sallée et al. (2015) “Subantarctic”
region (defined based on seasonality of Chl). South of the SAF we
distinguish a subpolar region which mostly follows the meanders
of the ACCwhichwe denote as SO-ACC, as well as a regionwhere
the annual averaged ice fraction is larger than 0.5 denoted as SO-
ice. Throughout the paper, the spatial averages over biomes take
into account the unequal pixel and domain sizes.
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TABLE 1 | Definition and characteristics of the biomes used in this paper, illustrated in Figure 1A.

Name Definition Characteristics

North-ice • Annual averaged ice coverage fraction > 0.5

• Latitude > 0◦
• Light-limited region

• Late summer bloom

• Nano+Micro phytoplankton always dominate over pico

North-subpolar • Temporal correlation biomass and SST > 0.1

(Figure 3C)

• Annual averaged ice coverage fraction < 0.5

• Latitude > 35◦N

• Light-limited region (correlation biomass and MLD < 0, correlation biomass and

SST > 0, correlation biomass and PAR > 0, correlation biomass and wind < 0)

• Late summer bloom (fall bloom in Pacific basin)

• Sharp increase in biomass during blooming, slow decay after; might show

secondary bloom

• Nano+Micro phytoplankton always dominate over pico

Seasonally stratified

subtropics (NH)

• Temporal correlation biomass and SST < 0.1

(Figure 3C)

• Temporal correlation biomass and MLD > 0.1

(Figure 3A)

• Varying dominating PFT group (Figure 1B)

• Latitude > 25◦N

• Nutrient-limited region (correlation biomass and MLD >0, correlation biomass

and SST < 0, correlation biomass and PAR < 0, correlation biomass and

wind > 0)

• Spring bloom

• High reproducibility of the seasonal cycle

• A single short peak in biomass, slow increase and sharp decrease

• Nano+Micro dominate during blooming periods, pico dominates during

low-biomass periods

• Strong seasonal cycle

Transition • Between North subpolar and Northern

Subtropics

• 35◦N < Latitude < 55◦N

• Light and nutrient co-limited (weak correlation between biomass and each of

MLD, SST, PAR, and winds)

• Early summer (late spring) bloom and secondary bloom in late fall

• Nano+Micro phytoplankton always dominate over pico

Subtropics • [Chl] < 0.11 mg/m3

• Pico-phytoplankton dominated (Figure 1B)

• [Phyto] < 40 mg/m3

• Biomass seasonal reproducibility < 0.3

(Figure 9)

• In the southern Pacific, located northward of

Subtropical Front

• Nutrient-limited region

• Weak seasonal cycle

• Low reproducibility of the seasonal cycle

• Pico phytoplankton always dominates over nano+micro

Tropical Pacific • [Chl] > 0.11 mg/m3

• 20◦S< Latitude < 16◦N

• 160◦E < Longitude < 70◦W

• In Pacific

• Strong positive correlation between biomass and ENSO index

• Nano+Micro dominate during blooming periods, pico dominates during

low-biomass periods

Tropical Atlantic • [Chl] > 0.11 mg/m3

• 12◦S < Lat < 20◦N

• 70◦W < Longitude < 20◦N

• In Atlantic

• Nano+Micro dominate during blooming periods, pico dominates during

low-biomass periods

Indian • Temporal correlation biomass and SST < 0

(Figure 3C) in the Indian Ocean and different

than subtropics

• Nano+Micro dominate during blooming periods, pico dominates during

low-biomass periods

• High reproducibility of the seasonal cycle

Seasonally stratified

subtropics (SH)

• Temporal correlation biomass and MLD > 0

(Figure 3A) not intercepting with

SO-SA-highbio or subtropics

• Nutrient-limited region (correlation biomass and MLD >0, correlation biomass

and SST < 0, correlation biomass and PAR < 0, correlation biomass and wind >

0)

• High reproducibility of the seasonal cycle (except from Pacific basin)

• A single short peak in biomass in spring, slow increase and sharp decrease

• Nano+Micro dominate during blooming periods, pico dominates during

low-biomass periods

• Strong seasonal cycle

SO-SA-highbio • [Phyto] > 40 mg/m3

• North of SAF and south of 30◦S

• Light-limited region (correlation biomass and MLD negative, correlation

biomass and SST positive, correlation biomass and PAR positive, correlation

biomass and wind negative)

• Primary late spring peak, secondary fall peak

• Nano+Micro phytoplankton always dominate over pico

• It includes the subtropical-subpolar boundary around 40◦S

• This biome does not extend into the Pacific basin due to permanently low

biomass in the Pacific (permanently shallow MLD)

(Continued)
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TABLE 1 | Continued

Name Definition Characteristics

SO-SA-lowbio • [Phyto] < 40 mg/m3

• North of SAF not intercepting with seas. strat.

subtropics SH

• Light-limited region

• Early summer bloom

• Nano+Micro dominate during blooming periods, pico dominates during

low-biomass periods

SO-ACC • South of SAF and north of SO-ice • Light-limited region

• Early summer bloom

• Nano+Micro dominate during blooming periods, pico dominates during

low-biomass periods

SO-ice • Annually averaged ice coverage fraction > 0.5

• Latitude < 0◦
• Light-limited region

• Late summer bloom

• Nano+Micro dominate during blooming periods, pico dominates during

low-biomass periods

The characteristics are summarized here, and explained in more detail through Section Drivers and Size Dependence in the Seasonal Cycle of Mid and High-Latitude Biomes for a

subset of four mid and high latitude biomes (north subpolar, transition, northern seas. strat. subtropics, and SO-SA-highbio). Data used to define and analyze biomes is described in

sections Materials and Biomes Definition.

Our resulting biome divisions are qualitatively similar to the
ones by Oliver and Irwin (2008), which based their classification
on a clustering algorithm without prior knowledge of the total
number of regions. Our division is also qualitatively similar to
the classification of Hardman-Mountford et al. (2008), which
was solely based on multivariate statistics and classification
techniques using the chlorophyll seasonal cycle.

RESULTS

General Patterns in Phytoplankton Size
Classes
Observational phytoplankton literature often looks at how much
of the total biomass at a given location can be ascribed to one
phytoplankton group vs. another. Our satellite dataset allows
us to analyze PFT biomass—total biomass relationships by
averaging our PFT biomass and total biomass data over each
of our ecological biomes. In Figure 2A, we show that (a) for
a given PFT group, data points representing different biomes
fall on the same line and (b) biomes with a higher biomass
are dominated by larger sizes. Pico- lines have a smaller slope
than micro- lines, indicating that with increasing total biomass
micro-phytoplankton are responsible for a larger fraction of
the total biomass. This difference in slopes also means that
large phytoplankton exhibit a larger range of biomass variability
spatially than smaller phytoplankton. Oligotrophic regions with
limited supply of nutrients and low total biomass, such as the
subtropics, are dominated by pico-phytoplankton. Regions with
plentiful nutrients and high biomass, such as the upwelling and
high-latitude biomes, are dominated by large (nano- and micro-)
phytoplankton, in agreement with in-situ and satellite data (see
Introduction).

Additionally, points representing different months of the
year also fall on the same PFT-specific lines (Figure 2B),
demonstrating that this relationship also holds temporally across
seasons. The proportion of small phytoplankton decreases
during seasons with large biomass, therefore the time series of
phytoplankton biomass and picophytoplankton percentage are

inversely correlated everywhere, according to satellite biomass
data (Figure 2C). High latitudes are dominated all year round
by large phytoplankton (micro- and nano-) while low latitudes
are dominated by picophytoplankton (Figure 1B). Mid-latitudes
(such as the seasonally stratified subtropical biome) and
upwelling regions have varying dominant size groups through
the year (Figure 1B). Further exploration shows that during the
blooming period in winter and spring the nano- (and micro-)
dominate, while in summer (minimal total biomass) the pico-
phytoplanktkon dominate, such that the area of pico-dominance
(in red) shifts poleward seasonally in the warmer hemisphere and
equatorward in the colder hemisphere.

We observe the same main patterns as Marañón (2015)
North Atlantic data, such as increasing dominance of
nanophytoplankton at large carbon biomass, followed by
micro- and pico- (Figures S1A,B). Our results are surprisingly
similar to their data if we take into account that the underlying
KSM09 algorithm that is used to compute the TK15 biomass
from backscattering is theoretical and doesn’t use any empirical
fitting. Agawin et al. (2000) compiled in-situ PFT data in
units of chlorophyll from different regions representing all
major oceans and interior seas under a wide range of nutrient
conditions, and plotted pico- chlorophyll vs. the sum of nano-
and microphytoplankton chlorophyll (Figure S1C). Our biomass
data is qualitatively consistent with their results as well, as shown
in Figure S1D. Again, as total phytoplankton Chl increases, the
proportion of large sizes increases.

Assuming that this is a universal law of nature (as suggested
by previous observational papers, e.g., Marañón, 2015) that
extends also to the poorly sampled high latitudes, we would
expect model PFTs to also follow these lines and expectations.
The CMIP5 model diatom and small phytoplankton slopes
are shown for comparison in colors in Figure 2B. Since the
definition of diatoms (and equivalent approximate size) varies
widely across models, we normalized each data point by the
respective globally averaged PFT biomass in order to allow
inter-model comparison and model-satellite data comparison
(e.g., we divided the biomass of each PFT group in each pixel

Frontiers in Marine Science | www.frontiersin.org 6 March 2016 | Volume 3 | Article 39

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Cabré et al. Seasonal Succession of PFTs

FIGURE 2 | PFT biomass vs. total biomass in data and models. (A) Pico-, nano-, and micro- biomass vs. total phytoplankton biomass in the TK15 satellite

dataset across biomes. Each color symbol represents the biomass spatially averaged in a given biome (as labeled), and temporally averaged over the complete

monthly SeaWiFS time series. Black solid lines show the linear regression across the biomes for the three labeled PFT groups. (B) Each black dot shows a

biome-averaged month from the complete SeaWiFS data series (1998–2010) in the TK15 dataset and for each PFT as labeled. All data points are normalized by

dividing by the globally averaged PFT biomass. Colors show the same for the CMIP5 multi-model averaged diatom (green) and small phytoplankton biomass (red).

Southern Ocean biomes are not shown in the multi-model average due to high dispersion but are shown in Figure S2. (C) Temporal monthly correlation between total

phytoplankton biomass and fraction of pico-phytoplankton in TK15 data. (D) Temporal monthly correlation between total phytoplankton biomass and fraction of small

phytoplankton in the CMIP5 multi-model average.

by the global spatially averaged biomass of each PFT). In general,
the modeled average small phytoplankton behavior resembles the
TK15 pico- behavior (green points) and the modeled average
diatom behavior resembles the TK15 micro- behavior (red
points), as expected (Figure 2B).

Significant variability with respect to the universal line (per
PFT group) is seen, however, across CMIP5 models (Figure
S2). Specifically, a significant deviation from the universal line
is seen in the SO biomes in some CMIP5 models. Figure S2
shows that model diatom concentration is too high during winter
months (i.e., at low total biomass concentrations) or conversely
small phytoplankton concentration is too low in the SO in
most models. This bias in models is also seen when temporally
correlating phytoplankton biomass and small phytoplankton
fraction. Figure 2D shows the multi-model averaged temporal
correlation, which is negative but much weaker than in data.
When looking at individual model correlations, we see that the
models GFDL-ESM2G and GFDL-ESM2M exhibit a strongly
negative temporal correlation (Figure S3), which agrees with
our TK15 data and observational expectations. However, some
models exhibit positive correlations in the Southern Ocean and
high-latitude northern Pacific (CESM1-BGC and HadGEM2-
ES), in the tropical areas (IPSL-CM5A-MR) or in different

patches across the oceans (GISS-E2-H-CC, GISS-E2-R-CC). A
positive correlation runs against expectations, since it implies
a fractional increase of small phytoplankton (relative to larger
phytoplankton) during high-biomass growing seasons.

Drivers of Seasonality in Phytoplankton
Carbon Biomass
Separation into Light and Nutrient Regimes
The mixed layer depth (MLD) is one of the most important
drivers for phytoplankton blooms as it controls the entrainment
of nutrients, the availability of light in the euphotic layer, the
rate of turbulent mixing, and the concentration of grazers, as
described in the Introduction. While the trigger mechanism for
blooms is still under debate, the scientific community agrees
that the blooming ends due to nutrient depletion and increased
grazing pressure.

Here, we show that biomass growth is consistent with a regime
of light limitation at high latitudes (provided sufficient nutrients),
such that a biomass bloom can be achieved by either decreasing
the MLD or increasing the incoming phytosynthetically available
radiation (PAR) (for example by melting ice). This is shown in
Figure 3 for the satellite biomass data, where the light limited
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FIGURE 3 | Temporal monthly correlation between the decimal logarithm of phytoplankton biomass and mixed layer depth (MLD), photosynthetically

available radiation (PAR) and sea surface temperature (SST) during the SeaWiFS period (1998–2010) in TK15 data and observed fields (A–C) and in the

CMIP5 multi-model mean (D–F). All the correlations are applied in each model separately with model-specific fields, and later averaged to obtain a multi-model

average in which we weight each model equally. In (E), only four of the seven models were used (CESM1-BGC, GFDL-ESM2G, GFDL-ESM2M, and IPSL-CM5A-MR)

due to output availability. All time series used were linearly detrended to avoid correlations associated with decadal or climate change trends. Non-significant

correlations are shown as white.

biomes show negative correlations between seasonal MLD and
biomass (Figure 3A), and positive correlations between seasonal
PAR and biomass (Figure 3B), such that phytoplankton growth
coincides with an increase of light availability. These patterns
were also observed by Wilson and Coles (2005) and Henson
et al. (2009) when correlating seasonal MLD and Chl, and were
reported by Barton et al. (2015) when correlating MLD and
in in-situ phytoplankton time series. As stratification is mostly
controlled by surface temperature, low sea surface temperatures
(SST) usually correspond to deep MLD and high SST to shallow
MLD. Then, correlations between SST and biomass are also
useful indicators of light and nutrient regimes as seen in
Figure 3C (see also Wilson and Coles, 2005; Barton et al., 2015).

At mid-latitudes in both hemispheres (30–45◦), light is
available throughout the year so the growth of biomass is usually
nutrient limited, leading to correlations with MLD, SST, and PAR
of the opposite sign as compared to more poleward latitudes
(Figures 3A–C). In the transition regimes between the mid and
high latitudes, there is a combination of the two mechanisms
(light vs. nutrient limitation), where a bloom may have either
subtropical or subpolar characteristics, and the correlations
in Figure 3 are not significant (as also seen in Henson et al.,
2009 using Chl instead of biomass in the North Atlantic). Low
latitude oligotrophic gyres have less of a seasonal cycle, are
permanently stratified, and have plenty of light all year round.
Hence, the blooms occur during occasional nutrient entrainment
events, coinciding with anomalous upwelling or wind mixing.
This low seasonality translates into low correlations in
Figures 3A–C.

The correlation patterns between wind speed and biomass
(Figure S4) are similar to the correlation patterns between

MLD and biomass, as stronger winds increase the influx of
nutrients probably by deepening the MLD at mid latitudes
(positive correlation) and decrease the availability of light
necessary for phytoplankton growth at high latitudes (negative
correlation). Similar patterns were also observed by Barton
et al. (2015), with in-situ measurements of phytoplankton.
Correlations between wind speed and satellite-derived Chl
anomalies show qualitatively the same results (Kahru et al., 2010).
Indeed, we have verified that wind speed and SST are negatively
correlated in most of the oceans (as also shown in Kahru et al.,
2010), while wind speed and MLD are positively correlated.

Similar correlations and regime changes are seen across
CMIP5 models in Figures 3D–F, although models tend to show
weaker correlations at mid and high latitudes compared to the
data. Additionally, the positive correlation between biomass and
PAR at high-latitudes is much more pronounced in models than
in data and the strong negative correlation shown in data at
mid-latitudes is not represented in models (compare Figure 3B
with Figure 3E), suggesting that phytoplankton are more
strongly limited by surface light PAR in models. The negative
correlation between PAR and biomass observed in the northern
seasonally stratified subtropical biome (discussed in more detail
in Section Drivers and Size Dependence in the Seasonal Cycle
of Mid and High-Latitude Biomes) is coincidental, as light
peaks in summer and biomass peaks in winter (coinciding with
maximum entrance of nutrients), with a lag of approximately
6 months (anti-correlation). However, models predict a later
phytoplankton peak (in spring) compared to data (in winter) in
this region. This bias in themodeled peak date removes inmodels
the observed negative temporal correlation between PAR and
biomass.
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It is important to notice that correlations in the seasonal
cycle between biomass and physical drivers do not prove strictly
causality but rather qualitatively inform about seasonal regimes.
We separately performed analogous correlations between
anomalies (seasonal cycle removed) in biomass and anomalies
in physical indices but these are very weak, suggesting that the
processes are more complicated interannually (as shown for
example in Lozier et al., 2011) and/or not instantaneous.

Bloom Timing
At high latitudes, the phytoplankton peak date propagates
poleward, which is most evident in the North Atlantic
(Figure 4A). In the NH light-limited high latitudes, the
northward propagation is well explained by progressive
shallowing of MLD as spring unfolds (Levy et al., 2005).
Nutrients are already available during fall at high latitudes
(Levy et al., 2005) but the blooming only happens in the spring
after the MLD starts shallowing and light availability increases.
In the subtropical gyres, nutrients become available around
winter. This instantaneously initiates the blooming as light
is already sufficient in this biome. Hence, the blooming peak
date is in winter in the subtropics and gradually propagates
poleward, with higher latitude peaks in spring and summer. The
poleward progression of the Chl bloom has been widely studied,
particularly for the North Atlantic (Dutkiewicz et al., 2001; Siegel
et al., 2002; Levy et al., 2005; Henson et al., 2009; Racault et al.,
2012). We find phytoplankton biomass to peak at similar times
as Chl (compare Figures 4A,B).

The same general blooming peak progression applies to the
rest of the oceans as already shown for Chl by Racault et al.
(2012). However, the data shows clear asymmetries between the
North Atlantic and Pacific basins. In the North Pacific, the peak
occurs later (Figure 4A) and shows larger interannual variability
(see lower interannual variation in the peaking date in the North
Atlantic in Figure S5A), as also seen by Racault et al. (2012) and
Cole et al. (2015).

The patchy and somewhat banded blooming structure in
the Southern Ocean (Figure 4A) is related to frontal structures.
The blooming peak occurs during early summer (December) in
the SO-ACC biome (between the Subantarctic Front and the
sea ice biome), and later in summer (January-February) in the
southernmost sea-ice regime.

The multi-model averaged total phytoplankton biomass peaks
later than the satellite-derived phytoplankton at mid latitudes
(Figures 4C,D), for example in the northern seasonally stratified
subtropical biome (Figure 1A). The reason for this discrepancy
can be attributed to a delayed deepening of the MLD in models
as seen in Figure S5B. On the contrary, the modeled biomass
peaks earlier at high latitudes (north and south of 45◦N and
45◦S), for example in the subpolar biome. Differences in high
latitudes have not yet been attributed to discrepancies in a specific
forcing factor. Models show diatoms blooming earlier than small
phytoplankton in most regions (not shown), while the data show
similar peaking times for all sizes, which is discussed in more
detail in Section Drivers and Size Dependence in the Seasonal
Cycle of Mid and High-Latitude Biomes.

Drivers and Size Dependence in the
Seasonal Cycle of Mid and High-Latitude
Biomes
We focus here on four biomes that exhibit clear seasonality
and are located at mid and high latitudes. These are the north
subpolar, transition, northern seasonally stratified subtropics,
and Southern Ocean Subantarctic high biomass (SO-SA-highbio)
biomes and are described in Section Biomes Definition, Table 1,
and illustrated in Figure 1A.

We show the seasonal evolution of a series of common
bottom-up drivers (MLD, PAR, SST, winds, nitrate) for each
biome in Figures 5A, 6A, 8A and Figure S8A. As seen in these
figures and discussed in detail in Section Drivers of Seasonality in
Phytoplankton Carbon Biomass, the MLD achieves its maximum
during the hemispheric late winter at mid and high latitudes.
The MLD gradually decreases in the spring and remains shallow
until it rapidly deepens during the following winter. Wind speed
usually peaks in the middle of the winter and is at its minimum
in the middle of the summer. The supply of nutrients to the
euphotic layer increases a few days after the deepening of MLD.
Light (PAR) peaks in late spring (June in the NH) and SST peaks
later in the summer. Top-down factors, such as grazing, will also
control the intensity, shape, and timing of the bloom (e.g., Siegel
et al., 2002; Behrenfeld, 2010) but are not illustrated in this study.

In the Atlantic and the Pacific north of 30◦N the following
three regions with high phytoplankton seasonality clearly
emerge: (a) the subpolar regime N of about 50◦N, with a single
(June-July) light-limited biomass peak, (b) a transitional regime
roughly between 45 and 50◦N characterized by light-nutrient
co-limited phytoplankton with two annual biomass peaks, (c)
the seasonally varying northern subtropical regime from 30 to
∼45◦N, with nitrogen limited phytoplankton characterized by a
single annual peak in winter or early spring.

Northern Subpolar Biome
In line with Sverdrup’s critical depth theory, deep wintertime
mixing in the Northern Subpolar biome ensures light limitation
and very little production and zooplankton population in winter.
Gradual increase in PAR and shallowing of MLD increases the
light availability in the mixed layer in the spring. The release of
light limitation, coupled with a slow recovery of zooplankton
(or large zooplankton that do not respond fast enough to
growing phytoplankton populations) allows a late spring or early
summer phytoplankton bloom of phytoplankton (Figures 5A,B).
Phytoplankton slowly decline throughout the summer and fall
as they gradually deplete nutrients and are eaten by grazers and
achieve minimal levels during the following winter. A closer
inspection of the results shows significant differences between
the Atlantic and the Pacific basins. In the North Atlantic, we
recognize an early summer bloom, which coincides with an
increase in surface light PAR, and a weaker late fall bloom, which
coincides with a decrease in light and increase in nitrate (Figures
S6A,B). On the other hand, the North Pacific shows a single
flat bloom that lasts from late spring to late summer (Figure
S7B). We note also that biomass-physical driver correlations in
Figure 3 are generally weaker in the subpolar North Pacific, in
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FIGURE 4 | Blooming Peak date. Peak date in the climatological seasonal cycle for (A) TK15 8-day phytoplankton, (B) 8-day chlorophyll, (C) monthly CMIP5

multi-model averaged phytoplankton (top color bar), and (D) difference between CMIP5 models (C) and data (A) (in days), where red means data leads and blue

means models lead (bottom color bar).

agreement with a higher interannual variability in the peak date
(Figure S5A). Possible explanations for differences across these
basins are detailed in the Discussion. CMIP5 models show that
phytoplankton also peak around late spring in the north subpolar
biome, although slightly earlier than observed (Figure 4D and
Figure S9).

The fraction of observed large PFTs increases during the
spring bloom as total biomass increases (Figure 5B), as expected
from in-situ observations and discussed in Section General
Patterns in Phytoplankton Size Classes and Figure 2B. The
large species (micro and nano) grow slightly earlier than pico-
phytoplankton in the spring bloom (Figures 5C,D), which
suggests that large sizes are more responsive to changes in
nutrients and light or less responsive to top-down control.
However, a closer look across basins reveals that the distinctive
succession of species during the spring bloom in the biome
average is driven by phytoplankton in the Pacific basin.

The seasonal succession of species in models is similar to
observations (on average) during the spring bloom, as most
CMIP5modeled diatoms bloom earlier by about a month (Figure
S9) than small phytoplankton, with the exception of the model
CESM1-BGC. However, the seasonal cycles of diatoms and small
phytoplankton are more clearly differentiated—uncoupled—in
models compared to data. This becomes apparent in comparing
the large-small phytoplankton phase plots in SeaWiFS and the
individual CMIP5 models (see Figure S9).

Although Chl and carbon biomass have a similar seasonal
cycle and are strongly coupled, Chl starts increasing and peaks
earlier (by about a month) than carbon phytoplankton biomass
during the spring bloom. Behrenfeld et al. (2005) finds similar

seasonal differences between Chl and a satellite derived carbon
biomass (different from our product) over the equivalent biome
and interprets them as an initial cell pigmentation (Chl) followed
by increase in growth and biomass.

Northern Transition Biome
The growth of phytoplankton in the transition zone is limited
by both light as in the subpolar biome and nutrients as in the
northern seas. strat. subtropics (Figures 6A,B), in agreement
with findings by Henson et al. (2009). This biome is located in the
transition between positive MLD-biomass correlation (nutrient-
limited) and negativeMLD-biomass correlation (light-limited)—
Figure 3A. Biomass is at its minimum when either MLD or
PAR are at their minimum (Figures 6A,B). This suggests a
clear alternation of light and nutrient limited conditions: light
limitation in winter, growth in spring, nutrient limitation in the
summer, and growth in the fall. The bimodal peak structure
was previously noted in Chl satellite data by Sapiano et al.
(2012). Figure 7 shows the geographical shift from one single
winter bloom (northern seas. strat. sub. biome) to two blooms
(transition biome) across a transect in the North Atlantic at
40◦W.

The largest (primary) bloom occurs during spring (May),
coincident with an increase in light availability and plentiful
nutrients that trigger a rapid response in large PFTs growth and
a slightly slower response in small PFTs (Figures 6C,D) as in
the subpolar biome. All the PFTs peak at similar times. Biomass
declines as summer progresses and MLD shallows, which limits
nutrients and increases the pressure from grazers (Figure 6B).
The secondary bloom occurs during the fall and is dominated
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FIGURE 5 | Seasonal cycle of bottom-up drivers (A) and different PFT (B) in the northern subpolar biome, (C) seasonal cycle of micro- and nano-

phytoplankton (summed) plotted against pico-phytoplankton, (D) Normalized (0–1, labels not shown) seasonal cycle for micro- and nano-

phytoplankton together (green), pico-phytoplankton (red), and residual (micro- plus nano- minus pico- in black, y-labels apply only to the residual).

The seasonal cycles are normalized by subtracting the minimum value and dividing by the maximum value in (D). The 8-day data in (B–D) is smoothed with a top-hat

filter of 31 days.

by large phytoplankton (Figure 6B). At this time, there is still
enough light to facilitate phytoplankton growth and MLD begins
to deepen, bringing more nutrients back into the region. As
in the subpolar biome, Chl grows slightly earlier than total
phytoplankton biomass (Figure 6B).

The seasonal cycles of diatoms and small phytoplankton
are more strongly uncoupled in CMIP5 models than in data
(Figure S9) as already seen in the subpolar biome. The seasonal
succession is similar to the one in the subpolar biome, where
diatoms grow earlier than small phytoplankton. Finally, CMIP5
models fail to capture the secondary peak.

Northern Seasonally Stratified Subtropical Biome
The growth of phytoplankton is essentially limited by nutrients in
this biome (strong bands of positive MLD-biomass correlation in
Figure 3A and negative SST-biomass correlation in Figure 3C);
therefore, phytoplankton peak in late winter (February and
March) when nutrients increase following a deepening of the
MLD (Figures 8A,B). Conversely, MLD is at its minimum in
the late summer months, when biomass is at its minimum

(Figures 8A,B). These are regions with a single annual biomass
peak (as shown in Figure 7B in Sapiano et al., 2012). Chl
follows carbon very tightly in this biome (Figure 8B), more
so than in the subpolar and transition biomes. We find that
phytoplankton bloom later in most CMIP5 models than in
observations (Figure 4D and Figure S9) and we hypothesize that
this is due to a consistently later deepening of theMLD inmodels,
as indicated by Figure S5B.

In this biome, the Atlantic and Pacific basins show similar
seasonal responses. The Atlantic section of the seasonally-
stratified subtropics coincides with the “mid-latitude” biome
defined in Levy et al. (2005) and described as a nutrient-limited
region, in accordance with our results. The Pacific part of this

biome includes the Transition Zone Chlorophyll Front (TZCF)
identified as a maximum in the meridional gradient of Chl as
well as the 18◦C isotherm and shown to migrate from 30–35◦N

in winter to 40–45◦N in summer (Bograd et al., 2004).
The northern seasonally stratified subtropics are relatively

dominated by nano- (and micro)-phytoplankton during
the bloom months, and by pico-phytoplankton during the
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FIGURE 6 | Same as in Figure 5 for the transition biome in the Northern Hemisphere.

FIGURE 7 | Averaged seasonal cycle (climatology) of TK15

phytoplankton concentration in a transect across the North Atlantic at

40◦W, at different northern hemisphere latitudes as labeled.

low-biomass summer months (Figure 8B), as expected from
in-situ observations and shown in Figure 2B. However,
pico-phytoplankton increase earlier than large phytoplankton
during the bloom (Figures 8C,D). Phase plots showing diatoms

vs. small phytoplankton throughout the year were analyzed
across CMIP5 models (Figure S9). The seasonal cycles of diatoms
and small phytoplankton are more uncoupled in 6 out of 7
models compared to observations (compare first panel in Figure
S9 with the rest of panels), as was also the case in the previous
biomes. Two of the models (GISS-E2-R-CC and IPSL-CM5A-
MR) show that small phytoplankton grow earlier than diatoms
(anti-clock wise phase plots) as observed, while four models show
that diatoms grow earlier than small phytoplankton (clock-wise
phase plots).

Southern Ocean Subantarctic High Biomass

(SO-SA-highbio) Biome
The phytoplankton seasonality of SO-SA-highbio biome is very
similar to the one in the northern subpolar biome (once corrected
from the 6-month phase difference between the SH and NH),
which suggests that the growth of phytoplankton is explained
by similar mechanisms in the northern subpolar biome and in
the SO-SA-highbio biome. Indeed, strongly positive SST-biomass
correlations and strongly negative MLD-biomass correlations in
SO-SA-highbio point to a strong light limitation in this region
(Figures 3A,C) as in the northern subpolar biome; we note that
these correlations are either insignificant or of opposite sign
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FIGURE 8 | Same as in Figure 5 for the northern subtropical biome.

in the rest of the SO. Hence, blooming occurs in the spring
(November) as the MLD shallows and light both at the surface
and in the mixed layer average increases (Figure 4A, Figures
S8A,B). Biomass blooming is preceded by an increase in Chl
(Figure S8B) as in the northern subpolar biome (Figure 5B). We
find that phytoplankton biomass decays slowly after the peak and
blooms again in late fall (April-May, Figure S8B).

This biome stands out as a region with dominance of nano-
and micro- over pico- throughout the year (blue in Figure 1B),
as expected in regions with high biomass (Figure 2A). Note that
the dominance of pico and nano+micro alternates throughout
the year in the rest of SO biomes probably due to strong
iron limitation, contrary to similar biomes in the NH. As in
the northern transitional and subpolar biomes, the fraction of
observed large PFTs increases during the spring bloom and
even more during the secondary bloom (Figure S8B). The
CMIP5 models misrepresent the SO-SA-highbio biome with
two blooms and less Fe-limited than the rest of the SO.
Models show a single peak (Figure S9D), and fewer phenological
differences across basins (e.g., compare Figures 4A,C) compared
to observations. Finally, the seasonal cycles of diatoms and small
phytoplankton are more clearly differentiated—uncoupled—in
models compared to data in the SO-SA-highbio, as in the other

discussed biomes, although most models agree in that the growth
of diatoms occurs earlier than small phytoplankton.

Reproducibility, Strength, and Skewness of
the Seasonal Cycle
The year to year reproducibility of the mean seasonal cycle is
studied following the description of Thomalla et al. (2011) and
described in Section Phenological Indices. The low latitudes show
a low reproducibility of the seasonal cycle because (a) the seasonal
cycle is nearly flat, and (b) phytoplankton growth depends
on occasional/episodic nutrient supply events not related to
the main seasonal cycle (Figure 9). At mid and high latitudes,
the seasonal cycle is usually more reproducible. In this case,
a low correlation indicates a high interannual (rather than
seasonal) variability in blooming magnitude or peaking date,
or the presence of more complicated patterns such as multiple
blooming peaks, which might vary their relative intensity and
timing interannually, and hence reduce the reproducibility
(Figure 9).

The seasonal cycle is highly reproducible year to year in two
subtropical bands around 35–40◦N and 35–40◦S (Figure 9A)
that approximately coincide with the seas. strat. subtropical
biomes (illustrated in Figure 1A). These bands match the
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FIGURE 9 | Reproducibility of the seasonal cycle (Monthly temporal correlation between the complete SeaWiFS time series phytoplankton linearly

detrended in log10 space and the repeated climatology) in (A) data and (B) models.

patterns observed by Yoder and Kennelly (2003), Doney et al.
(2003), Vantrepotte and Melin (2009), Sapiano et al. (2012),
and Thomas et al. (2012). When the seasonal cycle contributes
strongly to the total variance, the seasonal cycle tends to be
stable from year to year; this translates into low interannual
variability (not shown). The biomes located poleward of the
high-seasonality bands show less reproducibility of the seasonal
cycle (Figure 9A), or conversely more interannual variability.
In the North Atlantic, the variability in the transition region is
associated with NAO phases (Henson et al., 2009).

The reproducibility of the seasonal cycle is much
higher in CMIP5 models (Figure 9B) compared to data
(Figure 9A), probably due to a simplification of physical and
biogeochemical drivers of phytoplankton growth coupled with
an underestimation of natural variability in physical drivers. The
failure to capture secondary blooms in models also facilitates
a higher reproducibility of the seasonal cycle. Henson et al.
(2009) observed the same model-to-data bias when comparing
the seasonality of satellite-derived Chl to an older version of the
GFDL model.

In Figure 10we characterize the strength of the annual peak as
the linear difference in logarithmic space between the maximum
and the minimum biomass in the seasonal cycle (related to
the percent increase). The mid latitude seasonally stratified
subtropics (Figure 1A) stand out as one of the regions with
the highest strength in the seasonal cycle (Figure 10A), which
coincides with areas with high reproducibility in Figure 9A and
areas with a single bloom in Sapiano et al. (2012). In the North
Atlantic, Ueyama and Monger (2005) show a zone with high
relative bloom magnitude (defined as the bloom magnitude
divided by the non-bloom-period magnitude) that coincides
with our observed North Atlantic band. The strength of the
seasonal cycle increases gradually poleward in CMIP5 models
(Figure 10D), which differs from the more noticeable bands just
described in observations (Figure 10A).

Everywhere in the ocean, the blooming is stronger—larger
logarithmic increase in biomass from the minimum to the
maximum annual biomass—for large compared to small sizes
(compare Figures 10B,C). This can be explained by the rapid
response of diatoms to sporadic changes in growth factors such
as winter storms and wind-driven pulses of nutrients (Fogg,

1991), but also to other factors explained in the Introduction.
On the other hand, small phytoplankton are more favored by
constant background conditions, which translates into a less
strong seasonal cycle in Figure 10C for pico-phytoplankton.
Most CMIP5 models capture also a stronger seasonal cycle
in diatoms (Figure 10E) compared to small phytoplankton
(Figure 10F).

An emergent characteristic that separates light-limited from
nutrient-limited regions is the “skewness” of the seasonal cycle.
We illustrate this novel phenological indicator in Figure 11.
Phytoplankton in light-limited biomes (especially clear in the
northern subpolar and SO-SA-highbio) start to bloom suddenly
and decay to minimum values slowly (blue in Figure 11A),
while in nutrient-limited biomes (e.g., northern seas. strat.
subtropics) they decay suddenly (red in Figure 11A). This
transition in seasonal skewness is also seen around 45◦N in
a 40◦W transect across the North Atlantic (Figure 7). The
skewness of the seasonal cycle in CMIP5 models is similar to
observations, although the transition from the subpolar biome
to the northern seas. strat. subtropical biome (clearly seen in
observations) is less sharp in models and positioned more
equatorward.

DISCUSSION

Much previous research has been done looking at the seasonality
of chlorophyll. Here instead we focus on the seasonality in total
biomass and biomass size groups over the 1998–2010 SeaWiFS
period.

Biomes and seasons with high phytoplankton biomass show
an increase in the fraction of large PFTs, in agreement with
in-situ and laboratory studies and current understanding of
ecosystem dynamics (Figure 2, Figures S1–S3). This results in
stronger blooms associated with larger species (Figure 10B).
Areas with large seasonal variability in physical drivers exhibit
high seasonality in phytoplankton (high latitudes, Figure 9)
and are dominated by large phytoplankton, while areas with
low seasonal variability in drivers (low latitudes) exhibit
low seasonality in phytoplankton and small-phytoplankton
persistence. The modeled CMIP5 diatoms behave similarly to
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FIGURE 10 | Seasonality strength. Strength of the seasonal cycle [LOG10(MAX biomass)-LOG10(MIN biomass)] across data (A–C) and CMIP5 multi-model

average (D–F) as labeled.

FIGURE 11 | The skewness of the seasonal cycle around the peak, calculated as the difference (in days) between the time needed to increase the

biomass from a 40% threshold to the peak biomass and the time needed to decrease the biomass from its peak value back to the same threshold, in

(A) TK15 and (B) CMIP5 multi-model average phytoplankton. Red areas indicate a slow increase and a sharp decrease in biomass (e.g., see the northern

subtropics), while blue areas indicate a sharp increase and slow decrease (e.g., see the northern subpolar biome). The maps were spatially smoothed with a Gaussian

filter with a standard deviation of 2◦.

the observedmicro- and nano-phytoplankton, while themodeled
small phytoplankton behave similarly to the observed pico-
phytoplankton. This resemblance between models and data is
remarkable given the differences in definition between satellite
PFTs used here and the groups defined by the different CMIP5
groups. An important deviation from observations that needs
further study was found in a subgroup of models, where an
increased fraction of small phytoplankton was found during
bloom conditions in some regions.

At high latitudes, light is the main limiting factor and the
initiation of the bloom is believed to be rapid once the light
limitation on growth is relieved in the spring by shallowing
MLDs. Phytoplankton biomass decays slowly after the peak,
as shown by the novel skewness indicator in Figure 11A. The
slow phytoplankton decay after the peak could be due to the

persistence of nutrients that keep the biomass high until light
becomes limiting in late fall. The slow decay could also be due
to increased dilution of grazers (decreased zooplankton pressure)
when MLD starts deepening again after the summer. There are,
however, differences between basins. While the North Atlantic
shows a main spring bloom and a weak late fall bloom, the North
Pacific shows a single flat bloom that lasts from late spring to late
summer (Figures S7A,B). In the North Atlantic, the initiation of
the chlorophyll spring bloom has been associated to an increase
in insolation (Racault et al., 2012) or to reduced turbulent
mixing in the surface (Cole et al., 2015). These studies agree
that in contrast bloom initiation cannot be clearly associated to a
singular driver in the North Pacific. The North Pacific has overall
lower wintertime MLDs because of its fresher surface waters
and more stratified watercolumn; it also has less seasonality
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in MLDs compared to the North Atlantic. This suggest that
the North Pacific suffers less from light limitation than the
North Atlantic. Another possible explanation for the different
phytoplankton behavior in the North Pacific would be that the
persistently shallower MLD in the North Pacific (particularly in
the eastern side of the basin) allows primary production and the
grazer population to be sustained through winter, such that the
spring bloom can be reduced by grazers as soon as it starts (as
summarized in Cole et al., 2015). Iron limitation also plays a
role in the North Pacific HNLC (high nutrient low chlorophyll)
region, such that the bloom only starts when sufficient iron is
available. The larger interannual variability in the North Pacific
bloom timing compared to the Atlantic (as seen from Figure S5A)
could be linked to strong variability in climate indices such as
ENSO or Pacific Decadal Oscillation as summarized by Cole et al.
(2015).

The fraction of large PFTs increases during the spring biomass
peak and increases even more during the secondary fall peak at
high latitudes (as shown in Figures 5B, 6B and Figures S6–S8).
Thus, small PFTs show a less prominent secondary peak with
respect to the spring peak when compared to large PFTs. While
we do not have grazer observations, the bottom-up controls and
PFT biomass patterns we see agree with the theoretical picture
proposed by Sommer (1996) in the North Atlantic. According to
Sommer (1996), bottom-up controls (increased light in our case)
trigger the Atlantic early summer bloom after a winter period
with no phytoplankton or grazers. This spring bloom is followed
by a rise in zooplankton that contributes to the decline of
phytoplankton. Later on in subsequent blooms, selective grazing
on small phytoplankton leads to a greater fractional dominance
of larger species when compared to the primary bloom. This
means that selective grazing does not affect the spring bloom
(which is thought to be controlled mainly by bottom-up drivers)
but prevents small phytoplankton to bloom during the fall in
the North Atlantic. Hence, the growth of large and small sizes
is simultaneous in the North Atlantic subpolar biome during the
spring bloom (Figures S6C,D). A selectively stronger grazing on
small phytoplankton active from the start of the blooming period
might explain why pico-phytoplankton increase later and decline
earlier than micro-phytoplankton in the Pacific biome (Figures
S7C,D).

In the Southern Ocean, the SO-SA-highbio includes the
subtropical-subpolar boundary (shown in Figure 1A) between
the warm and salty thermocline waters of the subtropical
gyres and the colder, fresher subpolar regime. This frontal
structure, located around 40–45◦S in the Atlantic, Indian and
W Pacific, corresponds roughly to the zero surface wind stress
curl, and thus marks the transition between the nitrogen-
limited downwelling subtropics and the iron and light co-limited
upwelling subpolar gyre. Previous modeling work has suggested
that lateral Ekman advection bringing high nitrate from the
subpolar regions northward acts to concentrate maximum ocean
primary production there (Marinov et al., 2013) as seen across the
CMIP5 models (Cabré et al., 2015). Sallée et al. (2015) suggested
that high productivity is due to relatively high Fe utilization
downstream of major western boundary currents flowing on the
Northern edge of the ACC, as this region contains the largest

number of continental sources of Fe in the Southern Ocean (e.g.,
tip of South America, Falkland Islands, South Africa, Tasmania,
New Zealand). Sallée et al. (2015) argued that the lack of Fe
limitation allows for the presence of a bottom-up controlled
spring bloom (associated with rapid light improvement caused
by a reduction in surface-layer turbulence) and a top-down
controlled fall bloom (controlled by a decreased prey-grazer
encounter when the mixed layer de-stratifies) in the Subantarctic
zone, consistent with our findings (Figure S8). South of the
Subantarctic Front, the macro-nutrient rich, iron and light co-
limited ACC regime (SO-ACC) follows the meanders of the ACC
and is an HNLC regime. The seasonal cycle of this regime is
characterized by a single large annual biomass peak in models
but is incompletely represented in data because of lack of satellite
coverage.

At lower latitudes, nutrients are limiting and the bloom
is associated with the winter entrainment of nutrients when
MLD is deepest. The bloom decays suddenly once nutrients are
exhausted and grazing increases (red in Figure 11A). Hence,
the skewness of the seasonal cycle emerges as a useful index
to separate light-limited (sharp increase and slow decay) from
nutrient-limited regimes (slow increase and sharp decay). In our
satellite data the northern seas. strat. subtropics biome—limited
by nutrients—broadly stands out as a highly seasonally variable
region (Figure 9A); this high variability is primarily driven by
changes in wind patterns. During the winter and early spring,
stronger vertical mixing (more upward Ekman pumping, deeper
MLDs) enhances the supply of nutrient while PAR is relatively
adequate; these conditions enhance phytoplankton growth and
push the Chl fronts equatorward. Conversely, an increase in
surface heat flux into the ocean results in stronger stratification
during the summer (May to August), which reduces vertical
nutrient flux and pushes the fronts poleward. In the northern
seasonally-stratified subtropical biome the pico- bloom earlier
than micro-, suggesting a different combination of bottom-up
and top-down controls compared to the more northern biomes
(Figure 8).

The reproducibility of the seasonal cycle year by year is
much higher in models, such that blooming periods are more
predictable compared to satellite data (Figure 9). This is probably
due to over-simplification of processes and a lower response
to various climate oscillations, as well as a relatively coarse
(nominally 1◦) resolution, which does not allow a proper
representation of coastal processes and some frontal dynamics
in models. The simplification in models can also be observed
in global patterns, as all the models display a smooth latitudinal
propagation of the studied phytoplankton phenological indices,
while the satellite-derived data display pronounced patterns
such as the mid-latitude bands around 40◦S and 40◦N (e.g.,
Figures 9, 10). Diatoms start growing and peak earlier than
small phytoplankton at all latitudes (not just in subpolar and
transition biomes) in most CMIP5 models. Moreover, the
temporal succession of species is clearer in the models compared
to satellite biomass observations: the seasonal cycles of large
and small phytoplankton are less coupled—i.e., they develop
more independently with respect to each other—in models
(compare SeaWiFS panel and individual models in Figure S9).
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This difference might be partly due to the definition of diatoms
across CMIP5 models, which does not precisely correspond to
the group nano+micro in our observational dataset. The degree
of this PFT uncoupling varies also across models, and little work
has so far explored this topic. Hashioka et al. (2013) studied
succession in a subgroup of CMIP5 models and concluded that
the succession of modeled PFT species during the bloom depends
strongly on the choice of parameters for the modeled bottom-
up and top-down equations such that no clear and unique
mechanism arises across all the models.

Some of the problems in models might be fixed by
modeling the distribution of traits (e.g., nutrient affinity)
instead of phytoplankton functional types. Emerging trade-based
modeling frameworks include selecting traits randomly from
high dimensional trait space (Follows et al., 2007), game theory
approaches (Litchman et al., 2009) and allowing flexible or
optimal allocation strategies of cell internal resources in response
to changes in the environment (e.g., Klausmeier et al., 2004;
Smith et al., 2011; Clark et al., 2013; Pahlow and Oschlies,
2013; Smith et al., 2015). Depending on the spatial or temporal
evolution of the environment, an organism might have to choose
to invest in competitive abilities vs. defense against predation
(Yoshida et al., 2003), or in nutrient vs. light uptake to optimize
physiological acclimation (Smith et al., 2015). Investment into
light harvesting vs. nutrient uptake vs. predation defense varies
in the real ocean seasonally. A flexible modeling approach is
encouraging as it might fix some of the issues we found in
CMIP5 models—where traits are currently fixed rather than
flexible (e.g., the half saturation coefficients for nutrient uptake
are constants). Such CMIP5 model issues include the absence of
secondary blooms in the mid-latitude transition biomes and the
unrealistic dominance of small phytoplankton during blooms in
the light and Fe co-limited Southern Ocean and North Pacific
HNLC regions in some models (Figure S3). Models tend to not
represent well observed seasonal indices in the HNLC regions.
We suggest that CMIP5 models do not represent HNLCs well
due to a simplification of processes, such as an incomplete or
inflexible seasonal switching between top down and bottom up
controls, or between light and Fe limitation of phytoplankton.

The discrepancy between models and data is partially a
consequence of oversimplified biological bottom-up drivers and
zooplankton grazing in models, but also a consequence of
possible biases in the satellite-derived data. The algorithm to
retrieve the underlying PSDs is purely theoretical (does not have
an empirical constraint), and the biomass retrieval is subject to a
series of assumptions that can accumulate to a large quantifiable
and non-quantifiable uncertainty budget (Kostadinov et al.,
2015). However, an empirical correction to the TK15 data is
planned to address the apparent underestimates in the gyres and
some overestimates in eutrophic areas (observed in Kostadinov
et al., 2015). Thus, we caution against interpreting satellite data—
model differences as only due to model error, i.e., satellite data
should not be treated as the absolute truth. Innovative ocean
color products such as the PFT-partitioned carbon biomass
used here are very hard to validate due to the extreme lack of
corresponding in-situ data. In spite of these limitations, we have

previously shown that our satellite product exhibits a reasonable

fidelity and compares favorably with other approaches, especially
in terms of fractional biomass (Kostadinov et al., 2015).
An ongoing study compares phytoplankton phenology across
10 satellite-based algorithms, including our current algorithm
(Kostadinov et al., in prep.). Satellite ocean color observations
are an invaluable tool for deeper understanding of the global
marine ecosystem, since they provide a synoptic view of
phytoplankton biomass distribution at a spatial resolution much
higher than the current generation of Earth System models.
Future hyperspectral missions such as the planned NASA PACE
mission will increase the number of degrees of freedom available
for ocean color observations and should enable simultaneous
and improved retrieval of various phytoplankton groups at the
global scale. Continuous improvement of optical algorithms, as
well as intensified collection of in-situ organic carbon pools for
algorithm validation are needed to help clarify the coupling
between seasonal cycles of different PFTs and confirm the
emerging satellite patterns. Future studies should also focus
on the difference between chlorophyll and biomass succession,
as these could improve our understanding of physiological
responses such as photoacclimation, a topic we have not
addressed here.
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