Equivariant topology cóncerns itself with
Topolosical spaes posessing symmetries, and contimous maps that respeef then.

Objectes: Top. Spues wriaction by a 8 rovp G.
Morplusus. Cont. unes $f: X \rightarrow Y$ such ot

$$
f(g \cdot x)=g \cdot f(x)
$$

i.e: $\circlearrowleft \leftrightarrows \sim$ torolosinlly
$\longrightarrow \longleftrightarrow$ equiveriantly with a/2 uation given hy refbection.

Ky Gouls:

1) Demonstrate how fo redure sove ingerestime (? problems to sthents of equivariant topology
2) Introluce sove topolusial fools ve can use.
(2D) Ham Sandwich Theorem: Given 2 mossec μ_{1}, u_{2} on \mathbb{R}^{2} plove, the exists a line equiputing than.

A Muss is a positive finit bord weasue whe byperpluse luve reusure zero

$$
u\left(\mathbb{R}^{2}\right)=\int_{m^{2}} x_{1} x_{1} d_{u}
$$

PRmk: Like equipurtigy 1 conss is iferredile value theorem.

Stratesy:

Employ the Borsuk-Ulam sheorom:
$=\quad \forall$ cont. $\operatorname{mup} f: S^{2} \rightarrow \beta^{2}$
\exists Sove $x \in S^{2} \rightarrow f(x)=f(-x)$.

Equlvariant version; Every cout. mp
$f: S^{2} \rightarrow \mathbb{R}^{2}$ wher $f(-x)=-f(x)$
hes a zaro [Eavinhat vin $g(x):=f(x)-f(-x)]$.
Hee $\mathbb{Z} / 2 \geqslant S^{2}$ antipodely $\& \mathbb{B}^{2} \quad(-1)(x, y)=(-x,-y)$.
How: Topolosize Srue ofleims $\Lambda \quad a x+h y=c$ is a line if a, b not sinultemensly 0 .
Sale so fut $(a, b, c) \in s^{2}$
Considr "milf-spue" determind by lik:
$\forall(a, b, c) \in S_{s}^{2}$ de fine

$$
h^{+}(\vec{u}):=\left\{(x, y) \in \mathbb{R}^{2}\{a x+b y \geq c\}\right.
$$

wote fat we whe $h^{+}((0,0,1))=\mathbb{R}^{2}, h^{+}((0,0,-1))=\varnothing$ "lines at infinity"

Simiurly s

$$
H^{-1}(\vec{u}):=\left\{(x, y) \in B^{2}: a x+h y \leqslant c\right\}
$$

Defive $f: S^{2} \longrightarrow \mathbb{R}^{2}$ as an "Aran" Runction;

$$
f(\vec{x})=\left(\mu_{1}\left(H^{+}(\vec{x})\right)-\mu_{1}\left(H^{-}(\vec{x})\right), \mu_{2}\left(H^{+}(\vec{x})-\mu_{2}\left(H^{-}(\vec{x})\right)\right)\right.
$$

Notice Et

$$
\begin{aligned}
& H^{+}(-a,-b,-c)=\left\{(x, y) \in \mathbb{B}^{2} \mid a x+b y \geq c\right\}=H^{-}(a, b, c) \\
\Rightarrow & f(\vec{x})=-f(\vec{x}) . \quad(\text { (Borsuk }-U l a m .)
\end{aligned}
$$

Let's generalize this.
The configuration spee-fest ans setup. Step 1: Form a configintion spae X of all possible geonetric arrangarats ($X=S^{2}$, orined lives)

Skep 2: find a mainal beet soue Y ($Y=R^{2}$, or baed pairs of treens)

Step 3: It both X,Y ture "obviovi"symetiies gien by an action G, whe an eaviminint $\operatorname{mof} f: X \rightarrow Y$

Step 4: A solution spee $z<\psi$

$$
\left((0,0) \in \mathbb{R}^{2}\right)
$$

Slepe: Show fut an equivuriont unp
$\delta: X \longrightarrow Y / Z$ is impossis $\frac{b}{C}$
(Borsuk-Ulam.) mild generdizutions of ham-sandwich tgpe theorems. For example:

Q: Given 3 masses $u_{1}, u_{2}, 3$ and 2 hyparplives, whit is be minimal dinersion d sud tot be can guombe an equipartifion?
(117)

$$
\begin{aligned}
& \text { Guormte an equipartifion } \\
& f=\left(S^{d} \times S^{d}\right) \longrightarrow\left(\operatorname{HR}^{2}\right)^{3}=\mathbb{R}^{12} \\
& f\left(H_{1}, H_{2}\right)=\left(\mu_{j}\left(H_{1} \cap H_{2}\right)-\frac{l}{4} \mu_{j}\left(\mathbb{R}^{1}\right)\right)_{\beta \in\{1,-\}^{2}}^{j=\{1,2 \beta\}^{2}}
\end{aligned}
$$

Q Q_{2} : when can we guarembee tut the plues ore orthosonl? Add a function $g:\left(S^{d} \times s^{d}\right) \longrightarrow \mathbb{R}$ $(a, b) \mapsto\langle a, b\rangle$ etc.

We need a poe robist approuch fo solve hardor probitans.

The iden is to repbee an ewiveringt aup $f: X \longrightarrow G Y$ with a
section

$$
S_{f}: X / G \longrightarrow(X \times y) / G:[x] \mapsto[x, f(x)]
$$

Remark: If G does not $\} \mu(\nu, \varphi)$ act greely on X_{g} then this is $\}\left\{\begin{array}{l}\left.i{ }^{2}, j\right] \in(x, y) \\ \sigma_{s}\end{array}\right.$ not well, lefired, but be can incind defire $\left.G_{x} \subset G_{y}\right\}$

$$
\begin{aligned}
& E_{G} X_{G} X \longrightarrow E G X_{a}(X \times Y)
\end{aligned}
$$

i.e: Replae construction with "homstopially equimbut situation."

Why is this easier?
well in our case $\quad Y:=\mathbb{R}^{N}$ and $(\mathbb{Z} / 2)^{K}$ acts likely. Hence

$$
P:\left(X \times \mathbb{B}^{n}\right) / G \longrightarrow X / G
$$

is actually a vector bundle and re
can appeal to the theory of chrmeteristic classes to show nonexistere of chracteris tic classes.

* Rerun: this herpans a lot cine in Geoutric configurations you and UP with \mathbb{R}^{N} as a test spue sita he are concerned with lengths, ames, angle, ede.

Ley Theovern:
$D: E \rightarrow B$ a v.b. of rama n admitting a nonvamishing section. Than o $n^{\text {th }}$ stiefel-whitrey class $w_{n}(p) \in H^{n}(B, \mathbb{Z} / 2)$ is trivial.
On computhility: the ky compuntral fats vire to prove base theorems is the fret fut $(\mathbb{T} / 2)^{k}$ is abelian, reps ore 1 dinmencrionl, $\&$
 you calculate w_{n}

Resulte: Given m ursses, hyperplanes, cet $\Delta(d, h)$ be the minial diversion soch fit we c an suarantee an kavirartition.
Thm: $\left(\begin{array}{l}\text { Levitiska, } \\ Z \text { ivaljevic, } \\ \text { Urerica }\end{array}\right): \Delta\left(h, m=z^{a} f r\right) \leqslant 2^{n+q-1}+r$ vey few explicity known shave results.

We can also generlize the Borsug-Ulam theorem in a shightly dirferent way:

To solve this we will reed
"index tho ry", which will be a rusure of "G-conpleris"
OPTIONAL DISCuSSion
Def: let G be a finite group, $|G|>1 \quad$ and $\quad u \in \mathbb{N}_{0}$.
$\Delta \quad G$-Spue X is an $E_{n} G$ Sene if it satisfies

1: X is a free G-spree
2: X is a finite ow (or singhricl) complex
3: x is $(h-1)$-connate

$$
(\pi i(x)=\pi \text { for } i \leq n-1) \text {. }
$$

Minor showed fut thee exist using topulogial join itertiey

$$
\begin{aligned}
& x * y:=(x \times I \times \psi) / \sim \\
& \left.\quad\left(x, 0, y_{1}\right) \sim\left(x, 0, y_{2}\right)\right) \\
& \left.\quad\left(x_{2},\right), y\right) \sim\left(x_{2}, 1, y\right) .
\end{aligned}
$$

ex: $\quad S^{1}=\mathbb{Z}^{2} * \mathbb{Z}^{2}$

$$
S^{2}=
$$

$\mathbb{Z} / 2 \cos ^{n} \tilde{n}^{n}$ is is $E_{n} \pi / 2$
clussine:
Thm: K a finite simpticial complecy fut a furk sroup G actes frods on, If X is an $(n-1)$-connated on $\exists \quad f: k \rightarrow X$.
In purticulur, $\rightarrow f: X \rightarrow Y$ for ay EnG Sques X, Y,

Generalized Borsulh-Ulam theorem
No G-ewivariant un
Thm 2: No G-eavivariant up
fron an EuG spue to En-1 G sace.
$G=\mathbb{Z} / 2$ wans suis is Borsuk-ulam us wele!

Now, he can define:

$$
\begin{aligned}
& \text {, he cam dedine: } \\
& \operatorname{ind}_{G}(x):=\left\{\min \left(N_{0}\right): \exists f: X \rightarrow G_{n} E_{n}\right\}
\end{aligned}
$$

promertires:

1) (nonbtoniscity) if $\operatorname{lx} \rightarrow a y \Rightarrow \operatorname{ind}_{G}(x) \leq \operatorname{ind}_{C_{n}}(y)$
2) $\operatorname{rad} G_{1}\left(E_{n} G\right)=n$
3) X is $(n-1)$-connated $\rightarrow \operatorname{ind}_{G}(x) \geq n$

Bold's Theorem: Let G he a
finite nontrivial group. It X is an u-conrated G-spae, ($\omega /$ simplicinel)
y is a fee singlicial/colluber
complex with $\operatorname{dim} Y \leq K$, sen flee
i's no G-equivariant map
from $X \rightarrow Y$
$\Gamma \delta$: ind $G(x) \geq n+1 \quad$ while
\therefore ind $G(Y) \leqslant n$. Ry monotonicity,
this is impossible,

Theorem: let P be an odd prime, $n \in \mathbb{N}, p<k$, let A_{1}, \ldots, A_{p} the vertices of a regular poly gin with D-sides on a great c irk of S^{n-1}. pen \forall continuous

$$
f: s^{n-1} \longrightarrow \text { in, } \exists \quad p \in S O(n) .
$$

Such tut $f\left(\rho\left(A_{1}\right)\right)=f\left(\rho\left(A_{2}\right)\right)=\ldots=f\left(\rho\left(A_{p}\right)\right)$.

Pf Sketch: lat X_{1}, \ldots, x_{p} he such poise. Then the tuple is determined by X_{1}, X_{2} alone, a likewise an pastors w ans le $2 \pi / p$ determine another x_{3}, \ldots, x_{p}.

So, ours Configuntion Spue can be identified with $V_{2}\left(\mathbb{R}^{n}\right)$.

Our test map is

$$
F\left(x_{1} \ldots, x_{n}\right):=\left(f\left(x_{1}\right), \ldots, f\left(x_{p}\right)\right)
$$

Oor (est Spree is then \mathbb{R}^{P} with
Solution Spue $\left.\Delta:=\left\{\left(x_{1}, \ldots, x_{p}\right): x_{1}=\ldots=x_{p}\right)\right\}$
T/p acts on both spaes by Cyclic permutution \& F is equivarimat. $\mathbb{Z} / p \mathrm{~N}_{2}\left(\mathbb{R}^{p}\right)$ is free i.e: $\quad \wedge\left(x_{1}, \ldots, x_{2}\right)=\left(x_{2}, x_{3}, \ldots, x_{p}, x_{1}\right)$
(Recalliy identiticition $V_{2} \mathbb{R}^{n}$)

Suppose there vere a π / P - eavivariant neup

$$
f: V_{2}\left(\mathbb{R}^{n}\right) \longrightarrow \mathbb{Z}_{p} \mathbb{R}^{\hat{A}} \downarrow A .
$$

Then Considr $\mathbb{H}: \mathbb{R}^{P} \backslash \Delta \longmapsto \Delta^{\perp} \backslash\{0\}$ (projat) and fren $r: \Delta^{\perp} \backslash\{0\} \longrightarrow S^{p-2}\binom{$ odidel }{ cojat }

Clak: equiveriane

So $\varphi=F 0 \pi \circ f: V_{2}\left(\mathbb{R}^{n}\right) \longrightarrow S^{p-2}$
But $V_{2}\left(\operatorname{Ra}^{n}\right)$ is known to be

$$
(n-3)-\text { convealed })
$$

F fiber bundle

$$
\begin{array}{rl}
\operatorname{IR}^{\prime \prime} P^{n-1} \rightarrow V_{2} & \mathbb{R}^{h} \rightarrow S^{n-1} \\
V_{1}^{\prime \prime} \mathbb{R}^{n-1} & l E S
\end{array}
$$

\& $\quad \operatorname{dim}\left(S^{p-2}\right)=P-2<n-2$.
Action off $\mathbb{a} / p^{Q} S^{p-2}$ is free (reed orive here)
Dold's thoem = couprdictiton

Beartitul application:
Thm (kakutani): a freere $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a solution to lanster's probkm for ${ }^{-}(2,1)$. $>$ c.c: $f: s^{2} \rightarrow \mathbb{R}$;

$$
\exists \rho \in \operatorname{soc} 3) \Rightarrow f\left(\rho\left(e_{1}\right)\right)=f\left(\rho\left(e_{2}\right)\right)=f\left(\rho\left(e_{3}\right)\right)
$$

Corollary: Every convex conret, bovengh y icherion in \mathbb{R}^{3} can be inscribed in a cubre
$P \delta:$ Consider $\delta: S^{2} \rightarrow \mathbb{R}$ whe $\forall N E S^{2}$, $f(v)$ is the wdith of k in direction of V.
ce:
 it's okny it 2 -penes agre $\left(\begin{array}{l}\text { flot } \\ \text { ohj }\end{array}\right.$

or

$f \times$ a freve e_{1}, e_{2}, e_{3}, frem \exists anothor freme $\tilde{e}_{1}, \tilde{e}_{2}, \tilde{e}_{3}$ (affer aprlying orthosoul transfortion.) ure

$$
f\left(\overline{e_{1}}\right)=f\left(\overline{e_{2}}\right)=f\left(\overline{e_{3}}\right) .
$$

