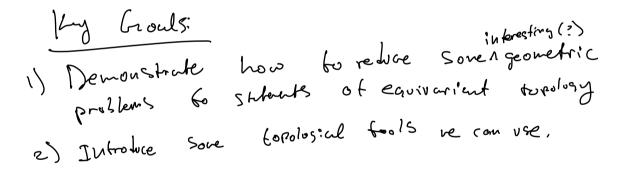
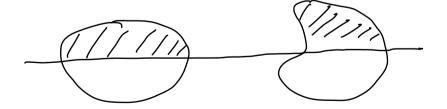
Equivariant topology concerns itself with Topolosical spaces posessing symmetries, and continuous maps that respect them.





A Muss is a positive finite hoved versure $A \subset IR^2 Compares une versure Zero (4(IRE) = finite alle$

Strakesy:

Employ be Borsuk-Ulam theorem:

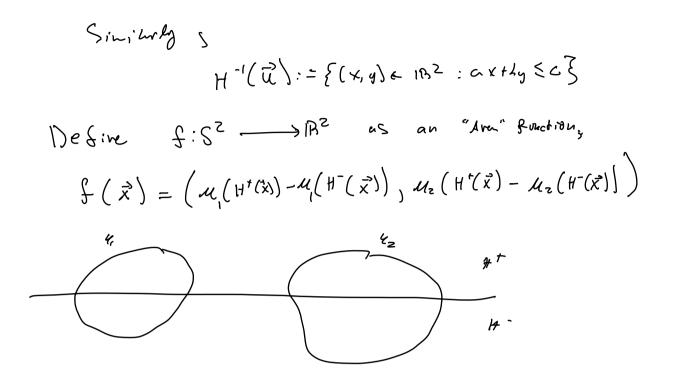
$$Z \quad \forall \quad cont. \quad rup \quad f: S^2 \longrightarrow \beta^2$$

 $\exists \quad some \quad x \in S^2 \Rightarrow \quad f(x) = f(-x).$

Equivariant Version: Every cout. mp

$$f: S^2 \longrightarrow R^2$$
 when $f(-x) = -f(x)$
when $q(x) := f(x) - f(-x)$.
Here $\mathbb{Z}/_2 \cap S^2$ antipology & \mathbb{B}^2 (-1)(x,y) = (-x, -y).

How: Topolosize
$$\Lambda$$
 axthy=c is a line if
a sb but sinulteneously 0.
Sale so fut (a)b,c) $\in S^2$
Conside "Left - Spece" defermind by lik:
 \forall (a,b,c) $\in S^2$, define
 $h^+(\vec{u}) := \hat{\epsilon}(x,y) \in [A^2 | ax + by \ge c]$
Note for us the $h^+((o, p, 1)) = R^2$, $h^+((o, o, -1)) = R$



Notice 6t H⁺(-a,-b,-c) = {(X,y) \in 1R²} ax+by2c]=H(a,bc) =) f(cR) = - f(R). (Borsuk-Ulam.) Let's generalize this. The configuration spee-best we set up. Skep d: Form a configuration spee X of all possible genetric arrangements (X = S², ormed lines) Skep 2: find a whend best spee Y (Y=R², or bad pairs of does)

Skep 4: A solution space
$$Z \subset Y$$

((0,0) $\in \mathbb{R}^2$)

_

 \sim

~

_

Q.: Griven 3 masses
$$u_{1}, u_{2}, 3$$
 and z hyperplaces,
what is the minimal dimension d such est
we can gramme an eavipartition?
 $f:(S^d \times S^d) \longrightarrow (IR^2)^3 = IR^12$
 $f:(S^d \times S^d) \longrightarrow (IR^2)^3 = IR^12$
 $f:(H_1, H_2) = (M;(H_1, H_2) - \frac{1}{4}M;(R^4))^3 = EbzR_3^2$

We need a not robot approach to sole
harder problems.
The idea is to reache an embrand
and
$$g: X \longrightarrow G Y$$
 with a
Section
 $Sg: X/G \longrightarrow (X \times Y)/G : EXI \longrightarrow [X, F(X)]$
whee $X \times Y$ gets diagonal action G
and the $X \times Y$ gets diagonal action G
bundle to $p:(X \times Y)/G \longrightarrow X/G$ immediated
bundle to $p:(X \times Y)/G \longrightarrow X/G$ immediated
 $act Breely on X is then this is $\int g(X, y) = G(X, y) = G(X, y) = G(X, XY)$
 $i.e: peplee construction with$
i.e: peplee construction with
in bot well structure with
 $i.e: peplee Construction with$
 $i.e: peplee Construction with$
 $i.e: peplee Construction $X \times G Y$
 $K = X \times X \longrightarrow EG X_G(X \times Y)$
 $K = G X_G X \longrightarrow X/G$$$

Why is this eacher? Well in our case Y:= RN and (I/2)^k acts liturely. Here D: (X×RN)/G > X/G is actually a vector bundle and re Can apped to the theory of Chameler: thic classes to show honexistence of <u>chameler</u> is fic classes.

Huy Theorem: D: E DB a U.D. of remla n a den; thing a nonvounduing section. Then onen Stiefel-Whitney Class who (p) & Hⁿ(B, Z/2) is brivial. Ou computability: The Ky computated facts Used to prove take theorems is the fact fut Used to prove take theorems a dimensionly. & (T/2)^K is abelian, reps are 1 dimensionly. & The decomposes accordrows. Whitney some horman bets por calculate wh

Can also generlize We Borsok- Vlam theorem in Slightly different way: the $\[mathcal{K}\]$

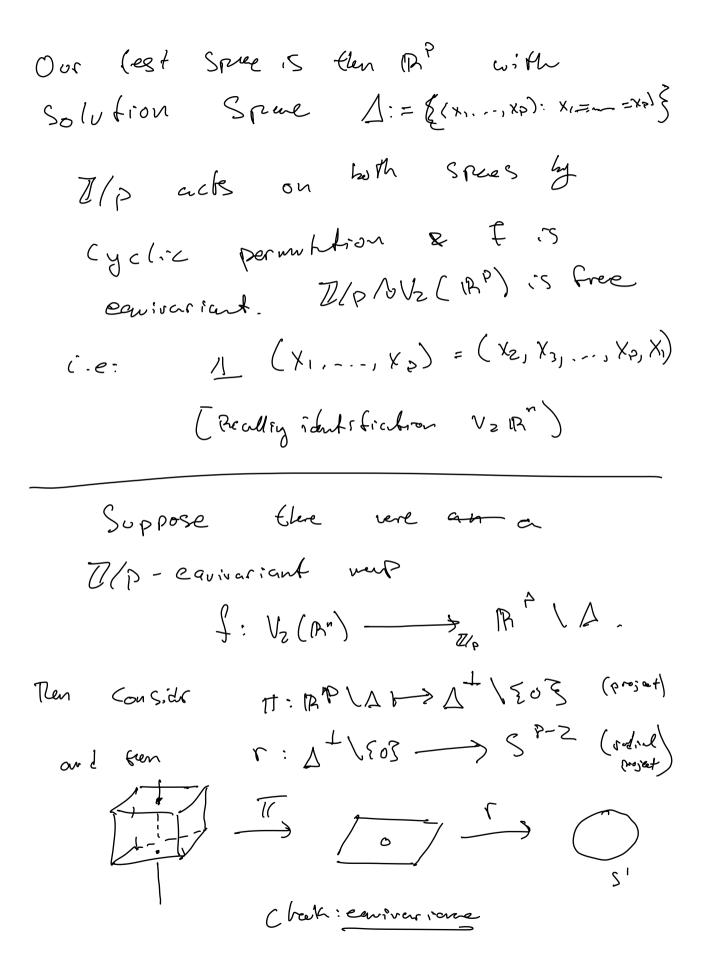
To solve this we will need
"index thory" which will be a more of "Encomplexity"
OPTIONAL Discussion
Deb: let G be a finit snowly
IGNINI and ne No.
A G-Some X is an EnG
Some it it satisfies
1: X is a free G-some
2: X is a finit CW (or simple ind)
complex
3: X is (h-1)-conneled
(
$$\pi$$
:(X)=1 for isn-1).
Million Should Get there exist vsig
topological join iteration
 $X * Y := (X \times I \times Y)/n$
 $(X, ory,) ~ (X Or Y =) J
 $(X, ory,) ~ (X Or Y =) J$.
Exi S¹ = $\pi^2 * \pi^2$
S² = $0$$

Now , we can
$$\frac{de fine}{de fine}$$
:
ind_G (X):= $\{min(N_{\circ}): \exists f: X \rightarrow)_{G} \exists f: X \rightarrow \}_{G}$

Sosous Confisention spree can be identified 4. Mr Nz (Rⁿ).

Our test map is

$$F(X_{1},...,X_{n}) = (f(X_{1}),...,f(X_{p}))$$



So
$$\varrho = ro \pi o f : V_2(\mathbb{R}^n) \longrightarrow S^{n-2}$$

But $V_2(\mathbb{R}^n)$ is known to be
 $(n-3) - converted).$
 $\int f f'_{kr} bondle \qquad |\mathbb{R}P^{n_1} \longrightarrow V_2|\mathbb{R}^h \rightarrow S^{n-1}$
 $V'_{i} \mathbb{R}^{n_1} \qquad |\mathbb{L}ES|$

fix a frene e_1, e_2, e_3 , then J another freme e_1, e_2, e_3 (after applying orthogonel transformation.) whe $f(\overline{e_1}) = f(\overline{e_2}) = f(\overline{e_3}).$ ~