Equivariant Complex Cobordism

Outline:

- Review of Classical Cobordism
- Equivariant Cobordism & Pepresentability
- Computations in Equivariant Cobordism

- Some Questions I have

$$\frac{Cobor dism \Longrightarrow Homology}{N_{k}} (X, A) : Cobor dism classes of maps
$$(N, \partial D) \longrightarrow (X, A) \sim (M, \partial M) \longrightarrow (X, A)$$

$$i \in \exists (W, \partial, W, \partial_1 W)$$

$$\partial_0 W = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial_1 W)$$

$$(M, \partial_1 W) = -MUN \qquad (M, \partial$$$$

Conversely:
$$f: S^{q+k} \longrightarrow To(q)$$
,
wave f bransverse to the zero section
of $TO(q) \longrightarrow BO(q)$.
 $\Rightarrow M = f^{-1}(BO(q))$ is a K-submanifold
of S^{a+k}
 $(N(M))$ is pullback of classifying Map!)

Inverse of Pontigagin Thom Cart'd

=) Map
$$T = MO \longrightarrow N \neq is$$
 well defined
 \Rightarrow an inverse to Pointry up in -Thom.
=) $T_*(MO) \cong N \neq (as sings!)$

Remark: Tr MO ≅ Z/2Z (Xn | n 6/N, nZZ sn ≠ 2[€]-1].

Equivariante Cobardism & MOG.

We have the Pontrycy in - Thom map
$$N_{r}^{G_{1}} \longrightarrow T_{r}^{G_{1}} (MO_{G_{1}})$$
.

Transversulity is the obstruction to defining
an inverse.
Ex from the book:
$$G_1 = Z/Z_2$$
 $M = *$, $N = R_3$
 $G_1 \otimes R_1$ by $X \mapsto -X_1$
 $f : \bullet \longrightarrow \bullet \bullet$

A Fix (Wasserman's Criteria)

When Can We Defire an inverse to the Collapse Map?

Refue nonbrivial representations on universal buddles.
Theoline Meby Gradient points,
$$\mathcal{U}_{T} \cong \mathbb{R}^{\infty}$$
.
EO(IVI, V $\oplus \mathcal{U}^{(T)}$) \longrightarrow BO(IVI, V $\oplus \mathcal{U}^{(T)}$).

The inclusion
$$\mathcal{M}^{G} \rightarrow \mathcal{M}$$
 induces
 $\mathcal{M}_{G} \longrightarrow \mathcal{M}_{G} \longrightarrow \mathcal{M}_{G}$.

Proper ties of MOG

Euler Class

$$V \approx rep w/ no nonfrivial sommands,
 $[* \implies D(v)] = X(V) \in MO_{-n}$,
 $n = |v|$.$$

Periodicity of Mon

-
$$MO_{G}(v) \cong MO_{G}(v)$$

$$OT \qquad S^{V-n} = \mathcal{E}_{n} \overset{O}{S^{V}} \xrightarrow{MO_{G}},$$

The same for
$$\mathbb{R}^n \to \mathbb{R}^n$$
 gives $S^{n-v} \to MO_G$.
Thus, we obtain an environmence
 $S^{v-n} \land MO_G \to MO_G \land MO_G \to MO_G$.

$$\Rightarrow MO_{\mu}^{G}(X) \cong MO_{\mu\nu}^{G}(\chi)$$

Families & Equivariant Colordism

Defi Let 5 be a family. An 5-manifold
is a smooth Gr-manifold such that all isotropy
groups are in 5.
Cull
$$N_{\star}^{Gr} [S]$$
 to be the group of closed withs
with restricted isotropy.
For $E' \subset F$, we can form $N_{\star}^{G} [S] F']$.
with M an E -manifold and $2M$ an E' -manifold.
 $E = P(E)$
M $\Rightarrow M$ is an E -manifold | M an E -u $\in M$
 J
 $E = M_{\star}^{G} (EF)$,
 $N_{\star}^{G} [S] \cong N_{\star}^{G} (EF)$,
 $N_{\star}^{G} [S] \cong N_{\star}^{G} (EF)$,
 $M_{\bullet}^{G} [S] := MO_{\star}^{G} (EF)$.

Grampact Lie, Varce who trivid summends

$$\Rightarrow \chi(V) \neq 0 \in MO_{-n}^{G}$$
, $h = |V|$.

"PG" A = AII subspace B = AII proper signoups. $MO_A^G (EA, EB)$ $Take p: MO_A^G <math>\longrightarrow MO_A^G (EA, B]$. claim $q(\chi(v))$ is invertible $\Rightarrow \chi(v) \neq 0$. Reall that $\chi(v) = E \approx (\Rightarrow D(v)] \in MO_A^G$. $p(\chi(v))^{-1} = ED(v) \rightarrow *] \in MO_A^G(A, B]$, since D(v) = S(v) has no fixed points.

Spectrul Sequere & Induction

 $\dots \rightarrow \mathcal{N}_{k}^{G}[S] \rightarrow \mathcal{N}_{$

- Choose a Silbration Fo GF, C... of all Subgroups whose union is the family of all Subgroups.
- Inductively understand No.6 [50] & No.6 [50, 50-].

$$E'_{PM} = N_{q}^{G} [F_{P}, F_{P},] \implies N_{a}^{G}$$

Ng (FP, FP-1] cont.d

Let (Vi, Vm) be the irreducible representions 06 H. 5 V(MH) = @V;(MH), where $v_{i} = \bigoplus_{j} \bigvee_{j}$

Some Questions; Global St ling is MUG classifies equivariant cq. cob rigs FGLS. Equivariant Complex orienthion > Equivariant FGL & libere is a conner-floyd isomorphism MUG (X) & MUG HG -> KE(X) Any Landweber exactness theorem? 2) There is an S-cobordisch theorem for Gr-manifolds classifying geometric cobordism (for manifolds satisfying the "weat ger" hyperthesis) Can over use this to prove an emivariant "generlized Roincaré" (onjecture? 3) It we restrict to "norme" cobordism, $\int ?$ the obstruction to stube 6-transversility for S: M/JM ->T(V) over y arises as a class in the costiles of $N_{\mathcal{A}}(M_{\mathcal{A}} \partial M_{\mathcal{A}} \vee \vee) \longrightarrow \mathcal{MO}_{\mathcal{A}}(M_{\mathcal{A}} \partial M_{\mathcal{A}} \vee \vee)$ Does Every class in the cofficer arise this way?

Problems
D Z/3 A S² by rothin
$$f' = 5e^{2}$$
, $H = Z/3$.
Show that (M, DM) is coloridate to (USDN)
with N a tubular neighborhood of
S² (H)
Nice S² X I with show the d corners.
* (Show this fielt more generally)
2) Why Can we extend a decomposition of
N(N)[p into in representations to the eather base?
3) Show that
MO^G_K = colimy N^G_{ENM} (D(V), S(V))
Using Wasserman's Criteria as in
"Ga-transversality Revisited" Prop 2.5
4) Show that X(V) really has an

$$(E \mathbb{Z}/P \wedge MU_{\mathbb{Z}/P})^{\mathbb{Z}/P} \longrightarrow (MU_{\mathbb{Z}/P})^{\mathbb{Z}/P} \longrightarrow \mathbb{Z}/P \longrightarrow MU_{\mathbb{Z}/P}$$

$$(E \mathbb{Z}/P \wedge F(E \mathbb{Z}/P_{+})^{\mathbb{Z}/P})^{\mathbb{Z}/P} \longrightarrow F(E \mathbb{Z}/P_{+})^{\mathbb{Z}/P} \longrightarrow F(E \mathbb{Z}/P_{+})^{\mathbb{Z}/P} \longrightarrow MU_{\mathbb{Z}/P}$$

https://www.maths.ed.ac.uk/~v1ranick/papers/costwan2.pdf

https://www.maths.ed.ac.uk/~v1ranick/papers/costwan2.pdf R

R