Equivariant Complex Cobordism
Outline:

- Review of Classical Cobordism
- Equivarian Cobordisme Pepresentability
- Computabions in Equivariant Cobordism
- Some Questions I have

Review of Classical 1 Cobordism

Def: two smooth n-manifolds μ_{1}, μ_{2} are cobordant it there is an (n+1)-manifold M with $\partial M=M_{1} \cup M_{2}$.
$\left[M^{n}\right]=$ cobordism class of n-man! folds.
$U_{1} X$ make this into a ring N_{k}.
$N_{*}(Y)$ cobordism classes of maps $M \longrightarrow Y$.
μ

Cobordism \Rightarrow Homology
$N_{*}(X, A):$ Cobordism clusses of maps

$$
\begin{aligned}
& (N, \partial N) \rightarrow(X, A) \sim(M, \partial \mu) \rightarrow(X, A) \\
& \text { it } \exists(\omega, \partial o w, \partial, \omega) \\
& \partial_{0} \omega=\cdots=\text { MLN } \\
& \partial_{0} \omega \cap \partial, \omega=\partial\left(\partial_{0} \omega\right)=\partial(\partial, \omega) \\
& \partial_{0} \omega \cup \partial, \omega=\partial w \text {. }
\end{aligned}
$$

Nobe: $N_{k}(x, A) \xrightarrow{\partial} W_{k-1}(A)$ is well-defined

$$
\rightarrow N_{k}(A) \rightarrow N_{k}(X) \rightarrow N_{k}(X, A) \rightarrow N_{k-1}(A) \rightarrow \ldots
$$

\rightarrow We have a Homology Therry.

The Representing Spatrom

Claim: $N_{*} \cong \pi_{*}(M O) \quad\left[M O\right.$ represents $\left.\begin{array}{c}\text { vioriented } \\ \text { Porism }\end{array}\right]$
$M^{k} \hookrightarrow \mathbb{R}^{q+k}$ w/ normal bundle U \& Thom-Space $T v$ Poutrgagin -Thor:

$$
S^{a+t} \rightarrow \underbrace{T v \rightarrow T O(q)}_{\text {covers the classifying map. }}
$$

Gives map $\quad N_{k} \rightarrow \pi_{k} \mu_{0}$

Conversely: $\quad f: s^{q+k} \longrightarrow T O(q)$,
make f transverse to the zero Section ot $\operatorname{TO}(q) \rightarrow B O(q)$.
$\Rightarrow \quad M=f^{-1}(B O(a))$ is a k-submanifold
(N(M) is pull buck of Classifying Map!)

Inverse of Pontigagin Thom Sout'd

$$
\begin{aligned}
& g \simeq f: S^{a+k} \longrightarrow T O(q) \\
& \text { via } \quad F: S^{a+k} \times I \rightarrow T O(q)
\end{aligned}
$$

$$
\begin{aligned}
& N=f^{-1}(B \circ(\varepsilon)) \\
& \mu=g^{-1}(B \circ(\varepsilon)) \\
& W=F^{-1}\left(B_{0}(n)\right)
\end{aligned}
$$

W is a cobardism, provided that we can make F transverse.
\Rightarrow Map $\quad T_{*} M O \rightarrow N_{*} \quad$ is well defined \& an inverse to Pontryngin -Thou.

$$
\Rightarrow \quad \pi_{0}\left(\mu_{0}\right) \cong N_{A} \quad(\text { as rigs }!)
$$

Remark: $\pi \cdot M O \cong \mathbb{Z} / 2 \pi\left[X_{n} \mid n 6 \mathbb{N}, n \geq 2, n \neq 2^{t}-1\right]$.

Equivariant Cobordism \& $M O_{G}$.

- Define $N_{*}{ }^{G}$ as before, but now with Smooth G-manifolds.

Equivariant Than Spectrom
Let U be a complete G-universe.
we have

$$
\pi(v): E O(|v|, v \oplus u) \rightarrow B O(|v|, u)
$$

$T O_{G}(v)$ is the Than Spuce of $\pi(v)$.

$$
V \subseteq W \Rightarrow B O(|v|, V \oplus u) \rightarrow B O(|w|, w \oplus u l)
$$

Pullbock is $\pi(V) \oplus \mathbb{1}_{w-V}$ w/thom Spuce

$$
\varepsilon^{w-v} T O_{G}(v) .
$$

* Strature maps $\sigma: \varepsilon^{w-v} T_{G}(v) \rightarrow T O_{G}(w)$.

Failure of Pepresentability
$M O_{G}$ does not represent N_{A}^{G}
we have the pontryayin-Thom map

$$
N_{r}{ }^{G} \rightarrow \pi_{*}^{G}\left(\mu O_{G}\right)
$$

Transversulity is the obstruction to defining an inverse.

Ex from the book: $G=\mathbb{Z} / 2, \quad M=*, N=R$, $G 今 R$ by $x \mapsto-x$.

f is not transverse to $Y=\{0\}$, \& you cant Separate them eavivaricutly.

A Fix (Washerman's Criteria)

The Previous example can be generalized:

$$
f: \mu \rightarrow N_{j} \quad \varphi \leq N_{J}
$$

reps in $v(Y)$ the anent in the turgent bundle of M :

Fix: whenever we hare a sobmunito $1 d \quad Y \leq N$, demand reps in $N(Y)$, mate sue fit it also appears in the action on M. (Washerman cells this condition "conlistat")
when Can we Define an inverse to the collapse Mar?

Reduce nontrivial representations en universe l bund los. Revalue M by Grixixed points, $U^{G} \cong \mathbb{R}^{\infty}$.

$$
E O\left(|v|, v \oplus \cdot \mu^{G}\right) \rightarrow B O\left(|v|, v \oplus u^{G}\right)
$$

Gives tog \&mog.
${ }^{m O_{G}}$ does represent N_{*}^{G}.

The inclusion $\mu^{G} \rightarrow \mathcal{U}$ induces mog $_{\mathrm{G}} \rightarrow M O_{G}$ the represents

$$
N_{a}^{G} \rightarrow M O_{G}
$$

Properties of $M O_{G}$

$$
\begin{aligned}
& \operatorname{MO}_{k}^{G}(x, A) \cong \operatorname{colim}_{V} N_{k+|v|}^{G}((x, A) \times(D(v), S(v))) \\
& \underbrace{\text { "Pontryy gin } 7 \text { hom" }}_{\text {Mancuraly adding reess. }} \text { I } \\
& \Rightarrow M O_{k}^{G} \cong \operatorname{colim}_{V} N_{k+1 v 1}^{G}(D(v), S(v)) \\
& {[(m, \partial \mu) \rightarrow(D(v), S(v))] \in \mu_{O_{k}}{ }^{G} \text {. }} \\
& {[(\mu \times D(w), \partial(\mu \times D(w))) \rightarrow(D(v \oplus w), s(v \oplus w))]}
\end{aligned}
$$

Classes of soch a manifold over the disk of a rep is called a stabbemitd Vistual dimension is $\operatorname{dim} M-\operatorname{dim} V$.

MO ${ }_{k}^{G}$ is thus cobordism clusses of stuble mflds of $\operatorname{dim} K$.

Euler Class
V a rep $w /$ no nontrivial sommands,

$$
\begin{aligned}
& {[\nless c D(v)]=x(V) \in M O_{-n}^{G},} \\
& n=|v| .
\end{aligned}
$$

- If V had a trivial summand then $* \hookrightarrow D(V)$ could be homo toped to $S(V)$, and so it would vanish in $N_{-n}^{G}(D(v), S(v))^{\text {. }}$
- Euler class is nontrivial (later)
* This is an element in $M O_{\alpha}^{G}$ that has no hope of appearing in N_{r}^{G}, which has nothing in negative dimension.

Periodicity of MOG

$$
-M O_{G}(v) \cong M O_{G}(\mid v l),
$$

So $\quad \varepsilon^{V} \mu O_{G} \simeq \varepsilon^{n} \mu O_{G}$, for $n=\mid V I$.
consider $\quad V \longrightarrow X$. This gives

$$
S^{V} \rightarrow T O_{G}\left(\mathbb{R}^{n}\right) \hookrightarrow M O_{G}\left(\mathbb{R}^{4}\right)_{\ni}
$$

or

$$
S^{v-n}=\varepsilon_{n} S^{v} \rightarrow \mu O_{G}:
$$

The save for $R^{n} \rightarrow \infty$ gives $S^{n-v} \rightarrow M O G$.
Thus, we obtain an eavivelence

$$
\begin{aligned}
& S^{V-n} \wedge M O_{G} \rightarrow M O_{G} \wedge M O_{G} \rightarrow M O_{G} . \\
\Rightarrow & M O_{k}^{G}(X) \cong M O_{G T U}^{G}(\varepsilon \vee X)
\end{aligned}
$$

Families \& Equivariont Colordism

Def: Let F be a family. An F-manifold is a smooth G-manifold such tut all isotropy groups are in 5 .
Cull $N_{*}^{G}[\delta]$ to be the group of closed mills with restricted isotropy,
for $F^{\prime} \subset F$, we can form $N_{*} G^{\prime}\left[\delta_{,} F^{\prime}\right]$. with M an f-manifold and ∂M an f^{\prime}-manifold.

$$
E S \quad \psi(F)
$$

$$
\begin{aligned}
& N_{*}^{G}[\delta] \cong N_{*}^{G}(E F)_{y} \\
& N_{*} G[F](X) \cong N_{*}^{G}(X X E F) . \\
& \operatorname{MO}_{*}^{G}[F]:=\operatorname{MO}_{*}^{G}(E F) .
\end{aligned}
$$

Noutriviality of Euler class

G compact Lie, V a rep who trivia summends

$$
\Rightarrow X(v) \neq 0 \quad \in M O_{-n}^{G}, n=\mid v l .
$$

"Pf": $A=A l$ culbsps $\quad B=A l l$ proper subgroups.

$$
\mathrm{MO}_{\Delta}^{G}\left(E_{A} E B\right)
$$

Take $p: M O_{*}^{G} \longrightarrow M O_{x}^{G}[A, B]$.
claim $\varphi(x(v))$ is invertible $\Rightarrow x(0) \neq 0$.
Recall the $x(v)=[\& D(v)] \in \mu 0_{\infty}^{G}$.

$$
\varphi(x(v))^{-1}=[D(v) \rightarrow *] \in M O_{*}^{G}[A, B],
$$

since $\quad \partial D(v)=S(v)$ has no fired points.

Spectral Seqerver \& Induction

$$
\cdots \rightarrow N_{k}^{G}\left[F^{\prime}\right] \rightarrow N_{k}^{G}[F] \Rightarrow N_{k}^{G}\left[F, F^{\prime}\right] \rightarrow N_{k-1}^{G}\left[F^{\prime}\right] \rightarrow \ldots
$$

Choose a filtration $F_{0} \subset F_{1} \subset \ldots$ of all subgroups whose union is the family of all Subgroups.

- Inductively understand $N_{3}^{G}\left[S_{0}\right]$ \& $N_{k}^{G}\left[f_{p,}, F_{p-1}\right]$.

Exact candle: $N_{\infty}^{G}\left[F_{p-1}\right] \longrightarrow N_{*}^{G}\left[\delta_{p}\right]$

$$
E_{p_{q}}^{\prime}=N_{q} G\left[F_{p,} F_{p-1}\right] \Rightarrow N_{\lambda}^{G}
$$

Page 1: N_{q}^{G} [$\left.\delta-p, F_{p-1}\right]$

$$
N_{*}^{G}\left[\{e \xi, \varnothing]=N_{b}^{G}[\{e \xi]\right.
$$

equivant Bordism of free closed G-manifolls
M / G is also a manifold of $\operatorname{dim} M-\operatorname{dim} G$, Clussifying unp $M / G \longrightarrow B G$ tut respates cobordism relation, so

$$
\begin{aligned}
N_{k}^{G}[\{e\}]= & N_{k-\operatorname{dim} G}(B G) . \\
& \neq \underset{\text { noveairarint }}{ }
\end{aligned}
$$

Goul: unterstend $N_{q}^{G}\left[F, F^{\prime}\right]$ by looking at "adjucent families" so $F=F^{\prime} U(H)$ swhere (H) is the convugny class of H.
(Preduce to a nonequivariant cuburdism ring)
$\mathrm{N}_{q}\left[F_{p}, F_{p-1}\right]$ cont .d
$F=F^{\prime} U(H), G$ finite.

Let $\mu^{(H)}$ be the subset of M w/ isotopy groups in H.
$\star \mu^{(H)} \subset \operatorname{int}(M)$, singe $\partial \mu$ is an F^{\prime}-manifold \& $\quad M^{(H)}=\bigcup_{k \in(I t)} M^{k}$ is a usia of dad melds.

Moreover M^{k} we ald disjoint \& in fact

$$
M^{(H)} \cong G X_{N H} M^{H} \text {. }
$$

Let N be a closed tubular neighborhood of $\mu^{(H)}$
$\Rightarrow(M, \partial M)$ is cobordant to ($N, \partial N$)
\& ($N, \partial N$) is determined by by free WH-manifold

$$
M^{H} \& N H \text {-bundle } V\left(M^{H}\right) \text {. }
$$

* decompose bundle by ire. representations in each fiber
(Q:wly dues this extend to the whole bundle?)
$\mathrm{NQ}_{q}\left[F_{p}, F_{p-1}\right]$ counted

Let $\left(V_{1}, \ldots V_{m}\right)$ be the irreducible resreseations of H.
$\Rightarrow v\left(\mu^{H}\right)=\oplus v_{i}\left(\mu^{H}\right)$, where

$$
v_{i}=\underset{k}{\oplus} V_{i}
$$

But v_{i} is determined by the free wH-bundle $\operatorname{Hom}_{G}\left(V_{i}, v_{i}\right)$ with fitters \mathbb{R}^{n}

The point: $[\mu] \in N_{\xi}^{G}\left[f, f^{\prime}\right]$ can be brought of as free WH-manifolds together $w /$ a seanence of wh-bondks $\alpha_{1} \ldots, \alpha_{m}$ over $\mu \quad \omega /$ Structure group $O\left(n_{i}\right)$
Use this to see tut

$$
N_{k}^{G}\left[J_{,} F^{\prime}\right] \cong \sum_{\substack{d i m \omega H t j+\\ \sum n_{i} d_{i}=k}} N_{j}\left(E W H X_{w H}\left(\prod_{i} B O\left(\mathbb{R}_{3}, n_{2}\right)\right)\right.
$$

Some QuesGions:
Global ge lams

1) $M U_{G}^{*}$ classifies equivariant eq. cobrigs
$F G L s$. Equivariant Complex orienthion \Rightarrow Equiveriat $F G$
\& livewise there is a conner-floyd isomorphism $\quad \widetilde{M U}_{G}^{*}(x) \otimes_{\text {MuGB }} K_{G}^{*} \rightarrow \tilde{K}_{C}^{*}(x)$.
Any Landweber exactuess theorm?
2) There is an S-cobortiscm theorem for G-manifolds classifying geometric cobortism (for manifolds satisfyring the "weath gap" lygathesis) Can ove ose this to prove an ewivariant "geromized Poincare" conjecture?
3) (G-trunsverslity revisited)
4) If we restrict to "norme cobodism, the obstunction to stuble G-transuaslity fur $\delta: M / \partial M \rightarrow T(V)$ over Y arises as a class in the coliles of $N_{\mu}^{G}\left(M, \partial M_{j} Y, V\right) \rightarrow M O_{\lambda}^{G}(\mu, \partial \mu ; \varphi, V)$

Does Every cluss in the cofiter arise this way?

Problems

1) $\mathbb{Z} / 3 \wedge S^{2}$ by rotation $f^{\prime}=\{e\}, H=\mathbb{T} / 3$

Show the $(\mu, \partial \mu)$ is cobordut to $(N, \partial N)$ with N a tubular neighborhood ot

$$
S^{2(H)}
$$

Via $S^{2} X I$ with smoothed corners.

* (Show this fact moe generally)

2) Why can we extend a decomposition of $\left.N(n)\right|_{p}$ into ier. representations to the entire base?
3) Show that

$$
M O_{k}^{G} \cong \operatorname{colim}_{V} N_{k+1 v_{1}}^{G}(D(v), S(v))
$$

USing Wasserman's Criteria as in
"G-transversulity Revisited" Prop 2.5
4) Show that $x(v)$ really has an inverse in $M_{8}^{G}[\& J B$
5) Isotropy separation thewis-Mny-sbeinberier gives a diagram

$$
\begin{aligned}
& \left(E \mathbb{Z} / P \wedge M U_{\mathbb{Z} / P}\right)^{\mathbb{T} / P} \rightarrow\left(M U_{\mathbb{Z} / P}\right)^{\mathbb{T} / P} \Phi^{\mathbb{T} / P} M U_{\mathbb{D} / p} \\
& \downarrow \text { Zee } \downarrow
\end{aligned}
$$

How does this imply that we hoe a pullback of rings

$$
\begin{gathered}
\left(M u_{I / P}\right) \star \rightarrow u_{\star}\left[u_{k}, u_{k}^{-1}, b_{k}^{(i)}\left[i 0_{0} k \in\left[/^{x}\right]\right.\right. \\
\vdots \\
M \\
M u_{\star}[[u]] /\left[[P]_{f} u\right) \rightarrow M u_{\star}[[u]] /[P]_{f} u\left[u^{-1}\right]
\end{gathered}
$$

https://www.maths.ed.ac.uk/~v1ranick/papers/costwan2.pdf

https://www.maths.ed.ac.uk/~v1ranick/papers/costwan2.pdf R

R

