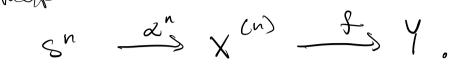
ν.

merp



In other works, we have a map

$$C_{n+1}(Y) \longrightarrow TT_n(Y)$$

by extending linearly

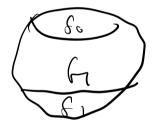
an assignment to $O(f) \in C^{nt}(X) \pi_n \varphi^{2}$.

n-cellof X.) Y x^{Cu)} 2) O(f) is a <u>cocycle</u> sie S(f) = 0.Hurewicz Theorem (omit the poort) 58: $\pi_{h+2}(X_{n+2}, X_{n+1}) \xrightarrow{\varphi} H_{n+2}(X_{n+2}, X_{n+1})$ The tri (Xm tri) The tri (Xm

$$\frac{(\operatorname{Frowl} \# 1: f_{0}, f_{1}: X_{n} \rightarrow Y \quad w) \quad f_{0} | X_{n-1} \simeq f_{1}|}{\operatorname{Then} \alpha \quad \operatorname{Choice} \quad o \in \operatorname{homology} \quad vs \quad X_{n}}$$

$$\frac{d G C^{\mu}(X, T_{n}Y) \quad w}{d S d} = \Theta(f_{1}) - \Theta(f_{1})$$

Write
$$S^{n} = \Im(D^{n} \times I)$$
 for an n-cell e_{i}^{n}
 $e_{i}: (D^{n}, S^{n-1}) \rightarrow (X_{n}, X_{n-1})$ be character.



fouguf, oeinxI

Wart:
$$\forall$$
 Sd \in Ch $(X, \pi n P)$ song
 mpg & how tory G_1 , $\exists f_1: X^{(n)} \rightarrow P$
 $w/G(f_2)i) = G_1(X^{(n-1)})$
 $d \in C^u(X, \pi n Y)$ $w/Sd = \Theta(f_2) - \Theta(f_1)$

 $\overline{}$

Now apply to have bey
$$G_1: (X + G) \mapsto G(X)$$

from alter to itsef.
let $S: X^{(r)} \rightarrow Y$ be such the $Of = Sd$.
 $g = G(-1)$ (we got this map)
Then
 $g d = O(fS - O(g))$.
 $= O(g^1) = O$
 $\Rightarrow g^1 extends$ to X^{n+1} .

Instant applications:
$$(X, A)$$

dim $(X|A) = n$, $Y(n-1)$ -converted.
Any map $A \rightarrow Y$ extends since
 $H^{i+1}(X, A, T, Y) = 0$. H^{i} .

- -- -

Given
$$f: X^{(1)} \rightarrow Y$$
, extending
 f to $X^{(1)} = X \iff asking$ it
 a four tion
 $F: ft: X \rightarrow TT: Y$ is a grave
homomorphism
 $f: X^{(1)} \rightarrow Y^{(1)}$ is a mode of generators
to genetions.

Griven a homomorphismi
e: TT i X
$$\rightarrow$$
 TT Y, one there conditions
to ensure that I fix \rightarrow Y reliving this
homomorphism? Yes
if Thi (Y) =0 + ixl, then we
can write a me
f: X^{CS} \rightarrow Y & then all
shednethouse Diver in $p^{n+1}(X, T, Y) = 0$

$$\hat{\Psi}$$
 with.

Such Spaces are called
$$K(G_1, I)$$
-Spaces,
where $G_1 = \forall_1 Y$
 $[X_1, K(G_1, I)] \xrightarrow{T_1} Hom(\forall_1 X_1, G_1)$
 $\subseteq Hom(H_1 X_1, G_1)$
 $\prod_{\substack{i \in I \\ i \in I}} H^i(X_1, G_1)$.
 $i \in I \\ i \in I$

(we need more work) $[X, K(G, N] \cong H'(X, G).$ $e_X : K(Z_3) = S', K(Z/2) = RP^{00}$ K(G,W) = QTN(Y) = G, T1(Y) = OV i 7N. Similar work shows: $[\lambda, k(G, n)] \cong H^n(\lambda, G).$

Characteristic Classes For wany geometric applications we need a "permetrized version" of the obstruction cocycle.

Suppose that we have

F-JE-JX a fiber budle (fiberion) (F Simple!) Q: An obstruction cocycle for sections S:X->E? Yes.

Thus Given S: X > & Jacellular cochain O(S): CitIX-SE that vousibles iff sextends to Xit. O(85 is a coyce & its cohomolosy class Vanishes (2) Slyrine xtands 60 メ うトレ BE TRE=O for pair ous besut depend on choice of section, So Or (R): Carl X -> TI, F is wel defined.

start
$$w/$$

 $\psi: (D^{rrl}, S^{i}) \longrightarrow (\chi^{stl}, \chi^{s})$
 $\underbrace{\mathcal{G}_{0}^{-se}}_{V} \underbrace{\mathcal{G}_{0}^{s}}_{V} \underbrace{\mathcal{G}_{$

Nobe:
$$\varrho|_{s^{i}}$$
 is not homotopic in χ^{iH} defined
by $g_{t} = \varrho|_{(1-t)s^{i}}$

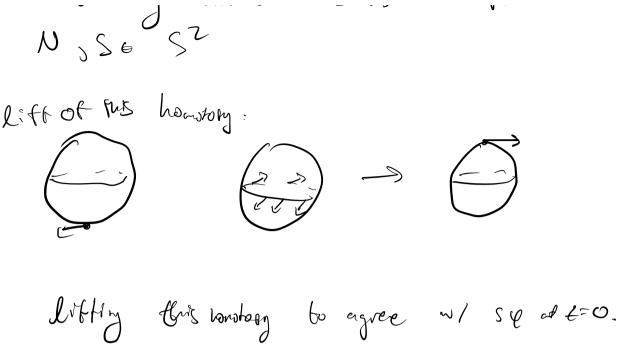
Lift this howstopy w/
$$\tilde{g}_0$$
.
We get a lift to a nonstopy
 $\tilde{g}_0 \sim \tilde{g}_1 = S^2 \longrightarrow \pi^2 \tilde{s}^* \tilde{s} = F.$

 $\Theta(\varphi) = \widehat{\varphi}, \quad \Theta(\varphi) \in \Theta(\varphi)$

Suppose we have a nonvanishing verbox
firend on
$$S^2$$
, i.e.:
Section $S:S^2 \rightarrow 7S^2$.
 $v \rightarrow v$ defines section

$$s : S^2 \longrightarrow U S^2.$$

While
$$X=S^2 = e^{\circ} \cup e^2$$
. Define a section
 $e^{\circ} \rightarrow us^2$ (pick a uit bruget vert of supple)
 $= X^{(i)} \rightarrow us^2$.
 $Se:(D^2, S') \rightarrow us^2$.
A homotopy of $\partial S' \rightarrow \pi$ in ∂^2 is
a homotopy between constat Loops Q



milkiplies generator of 7,5' by two at t=1, $\Rightarrow \quad O(S) \neq 0 \Rightarrow$

$$\begin{array}{ccc} & & & & \\ & &$$

w, obstrek orienth/lity.

$$\Rightarrow O_{n-n+1}V_{n} \in G H^{h-h+1}(X_{s}\pi_{h-k}V_{k}R^{n})$$

Defive WN-KM:= On-KHVKE (possibly reducing and 2)

· · ·