Goal: Compute $\pi_{*}(M U)$.
Recall that MU is complex oriented, so there is a universal $\max \quad \varphi: L \longrightarrow \pi_{*} M U$.

UTS: φ is an isomorphism.

Me thad:
2) $L \underbrace{\rightarrow \pi_{\infty}(\mu u) \rightarrow}_{\text {ration eariv }} H_{\star}(\mu u)\}$ Today
3) Now $\pi_{r}(\mu u)$ is fig abelian group. It will suffice to see

$$
L \longrightarrow \pi_{*}(\mu u)
$$

is a an iso after p-adic completion at all primes (Adams Spectral Sequence.)

Recollections From Tony pt．II Let E be a complex oriented spectrum．
－Mu（1）is the desuspension of the Them space for the twwlologice burble $\quad \mathcal{L} \longrightarrow 4 p^{\infty}$ ，but this is howntry cavivilat to $\varepsilon^{-1} \& P^{\infty}$
－Them iso：

$$
\begin{aligned}
& E^{*}(\mu u(1)) \cong E^{*-1}\left(థ P^{00}\right) \\
& \text { "ごt. } E_{0}[(t)] \subseteq E_{n}[(t)] \\
& \simeq E_{1}\left(\alpha p^{0}\right)
\end{aligned}
$$

Homology of $\mathrm{Mu}:$ Prelude

There is n non-degenerte puiring in AHSS

$$
\begin{aligned}
H^{*}\left(\Varangle P^{n}, E_{*}\right) & \Rightarrow E^{*}\left(\Varangle p^{n}\right) \\
x & \Rightarrow E_{c_{k}}\left(\Varangle P^{n}\right)
\end{aligned}
$$

$\Rightarrow E_{*}\left(a p^{\infty}\right)$ is a free E_{*}-moluhe on β o, $\beta_{1} \ldots$ dual to $1, t, t^{2}, \ldots$
(Since page 2 collapses wi zero differatives)
Thom - Is omorphism implies mare goenenly:

$$
\begin{gathered}
E_{*}(M U(n))=\operatorname{Sgmn}^{n}\left(E_{+} \mu \mu(1)\right) \\
E_{\rightarrow}(\mu C e) \cong \operatorname{colim} E+M \mu(n) \cong \operatorname{colim}\left(E_{i+i+1} E_{1+1}^{12}\left(E_{1}\right) \rightarrow E_{r+i+1}\left(x_{i+1}\right)\right) \\
\left(\operatorname{Map}\left(H_{0} \text { colim } \mu u(n), E\right) \cong \operatorname{Halim} \operatorname{Map}(\mu u(n), E)\right.
\end{gathered}
$$

+ Milnor exuet secwence

More on $E_{*}(\mu u)$
what is

$$
E_{*}(\mu u(n)) \rightarrow E_{*}(\mu u(n+1)) ?
$$

$M U(u) \simeq M U(0) \wedge M(n) \hookrightarrow M U(1) \wedge \mu C(n) \rightarrow M U(n+1)$
for $n=0: M U(0) \longrightarrow M u(1)$ indoas our choice of bo.

In general

Lorie Prop 4.7 (or BU computation) \Rightarrow

$$
E_{x}(\mu U)=E_{k}\left[\beta_{1}, \beta_{2}, \ldots\right]
$$

Recollections From Elijah 1:

$$
H_{*} M U=\mathbb{Z}\left[\beta_{1}, \ldots .\right]
$$

Recall that over R

$$
\begin{aligned}
& g(x)=x+b_{1} x^{2}+b_{2} x^{3}+\ldots \\
& g\left(g^{-1}(x)+g^{-1}(y)\right) \text { is a } F G L
\end{aligned}
$$

over $\mathbb{Z}\left[b_{1}, b_{2} \ldots\right]$
\Rightarrow Churackintic map $\varphi: L \longrightarrow \mathbb{R}\left[b_{1}, \ldots\right]$ is a rational isomorphism (Lorie Lecture 2 : Prop \#10)

How To Conclude

We have $L \xrightarrow{\psi} \pi_{*} M U \xrightarrow{H} H * M U=\mathbb{Z}\left[\beta_{1}, \ldots\right]$ corresponds to a $F G L$. If tut law is $\quad g\left(g^{-1}(x)+g^{-1}(y)\right)$ with

$$
g(x)=x+\beta_{1} x^{2}+\beta_{2} x^{3}+\cdots
$$

$\Rightarrow H \circ \psi$ is a rational isomorphism.
$\Rightarrow \psi$ is a rational isomorphism.
*Our your now is to identify the FGL determined by How.

FGLS On E*Mu
Let E be any complex oriented colomology.
$M U \Lambda E$ has two complex oriations. One from MU, sand ae from E. \&

$$
\begin{aligned}
& \pi \cdot(\mu u \wedge E)=E_{\star \mu u}=\pi_{\infty} E\left[b_{1} \ldots .\right] \\
& i_{-} e^{-} \quad \gamma_{E_{s}} \tau_{\mu и} \in \overparen{\mu u \wedge E}^{\left.\mathbb{\mu}^{\infty}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow\left(\pi_{\infty} E\right)\left[\beta_{1}, \ldots\right][[P E]] & \simeq(\mu u \wedge E)^{\infty}\left(\propto P^{\infty}\right) \\
& \simeq \pi_{*} \in\left[\beta_{1}, \ldots,\right]\left[\left[\tau_{\mu u}\right]\right] .
\end{aligned}
$$

$$
\Rightarrow \tau_{m u}=\sum_{i \geq 1} a_{i} \tau_{E}^{i+1}
$$

for $a_{i} \in \pi \star E\left[\beta_{1}, \ldots\right]$
(Luria 7.4) $a_{i}=\beta_{i}$, $\Psi_{m \mu}=p_{E}+b_{1} \xi_{E}^{2}+\cdots$

Recall: Complex Orientation $\Rightarrow F G L$

$$
\begin{aligned}
& \pi_{1}, \pi_{2}: 4 p^{\infty} \times 4 p^{\infty} \longrightarrow 4 p^{\infty}, \\
& m: \mathbb{C} p^{\infty} \times \subset P^{\infty} \longrightarrow \Phi p^{\infty} \text { (classify } f, \otimes f \text {) } \\
& m^{*}\left(\psi_{E}\right)=f_{E}\left(\pi_{1}^{*} p_{E}, \pi_{2}^{* *}\right) \\
& m *\left(\tau_{\text {au }}\right)=f_{\mu u}\left(\pi_{1}^{*} \tau_{\mu u}, \pi_{2}^{*} \tau_{\mu u}\right) .
\end{aligned}
$$

Substituting $\tau_{\text {mu }}=\sum_{i \geq 1} \beta_{i} \tau_{E}^{i+1}$

$$
\begin{aligned}
& =g\left(\tau_{E}\right) \\
f_{u u}(x, y) & =g \circ f_{E}\left(g^{-1} x, g^{-1} y\right)
\end{aligned}
$$

when $E=H \mathbb{Z}_{J}$

$$
f \text { nu }(x, y)=g\left(g^{-1} x+y^{-1} y\right)!
$$

Finale

$$
\Rightarrow L \longrightarrow \pi_{\infty} M u \rightarrow \pi_{\pi}(\mu u \wedge H \mathbb{Z})
$$

is the map $\varphi: L \rightarrow \mathbb{Z}\left[\beta_{1}, \ldots\right]$ classifying the $F G L$

$$
g\left(g^{-1} x+g^{-1} y\right)
$$

and is hence a rational isomorphism

Addendum (Just in Case):
Hurewicz map:

$$
L \longrightarrow \pi_{\star}\left(M_{u} \wedge \$\right) \longrightarrow \pi *(u u \wedge H \mathbb{Z})
$$

corresponds to FGL from Mu, fun

$$
L \underset{f_{H \mathbb{}}}{\longrightarrow \pi_{\kappa}(\$ \wedge H \mathbb{I}) \rightarrow \pi_{\mu}}(\mu u \wedge H \mathbb{Z})
$$

