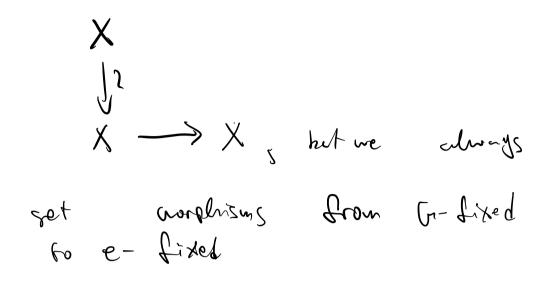
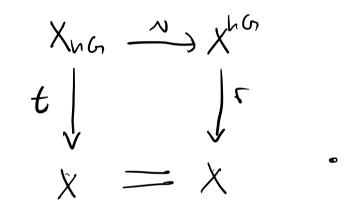
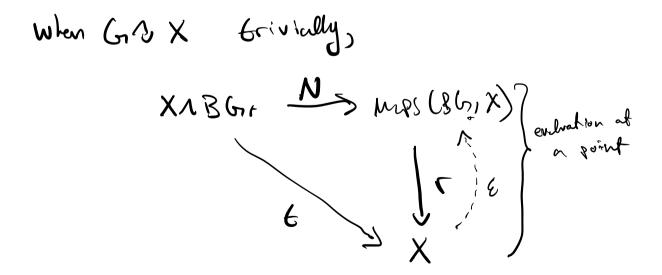
Perico of Take Construction

Point - Set model Summary: EG, -> S° -> FG $\varphi: F(S^{\circ}, F) \rightarrow F(F_{h+}, X)$ $X \land EG_{+} \longrightarrow X \longrightarrow F(EG_{+}X) \land EG$ ENIZ LE LENI $F(EG_{t},X) \wedge EG_{t} \rightarrow F(EG_{t},X) \rightarrow F(EG_{t},X) \wedge EG$ G-Fixed : 12 XuG moron XLG -> XCG Observation: Thurses Tower! -) Taking e-fixed points sives







Outline
(Mothew-Clauren)
Greneral Theorem L is an Boxfield
local: 24:00 further of spectra such that

$$\exists = further$$

 $\underline{P}: S_{+} \rightarrow LSP$ with
 $\underline{T}: S_{2}^{\infty} \simeq L$,
then: $L \times th \cong * + h - objets \times ellep.$
Steps: $D \perp X th \cong *$
The transfer $\Xi_{+}^{\infty} Bh \longrightarrow \Xi_{+}^{\infty} *$

The transfer
$$\Xi_{+}^{\circ} B(r \rightarrow) \Xi_{+}^{\circ} *$$

ordenits a section after applying Z
Z) Preduce to the case where $Gr = Cp$ (Kuhn)
3) (Kahn-Priddy '78): The transfer
 $\Xi_{+}^{\circ} B Cp \rightarrow \Xi_{+}^{\circ} * admits$
or section after applying S° ⁽¹⁾
4) If $\exists \ \Xi S_{*} \rightarrow LSP \ \exists$

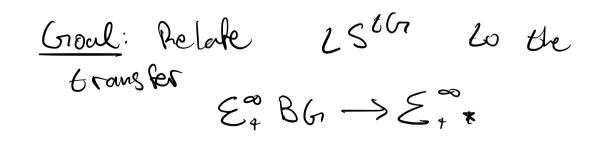
E Z ~ L

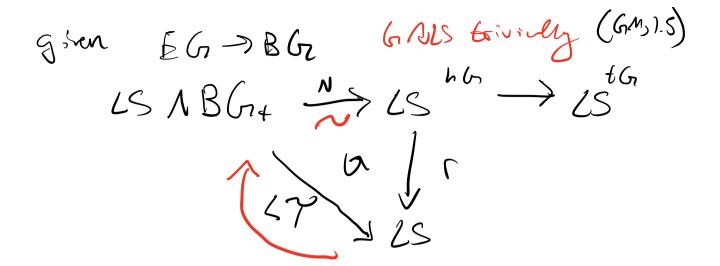
=> Result

Setting 2= L7(n) , we have I, which is the Bousfield-Kuhn functor. (LT(N) X doesn't derend on a sectrom, just De underlying serve.

1.3 (GM] Pia commercing spectron w/ trivial G -action, Man R-module => RtG is a siz spetrum & MtG is an R-module. Diasonl mak

SIE will suffice to show the LSECT = *

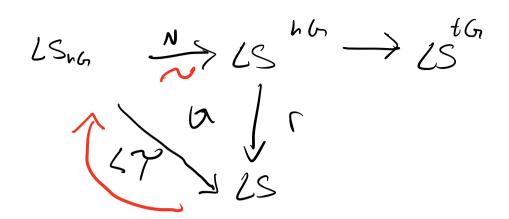




- riss choice of basepoint" in BG+. $\chi^{LG} = Maps(BG_+, 2s) \longrightarrow LS$.
- For rebract, section given by
 c: Bh, -> S°,
 Marps(B6+, 2S)
 Marps(B6+, 2S)
 transfer "Sums" over the Siber in
 XAS -> XABG+, > fectors through x¹⁶.
 IS N is an eavirone
 S Y has a section:

where
$$h' = h \checkmark$$

oftenvitre $AFSS$
 $H^{2}(k', R^{-2}(*)) \Rightarrow R^{0}(k')$
 $H^{2}(k', R^{-2}(*)) \Rightarrow R^{0}(*)$
 $H^{2}(k', R^{-1}(*)) \Rightarrow R^{0}(*)$
 $H^{2}(k', R^{-1}(*)) \Rightarrow R^{0}(*)$
 $H^{2}(k', R^{-1}(*)) \Rightarrow R^{0}(*)$
 $H^{2}(k', R^{-1}(*)) \Rightarrow R^{0}(*)$



unit hecuse

$$rNX \in ToLS = LS(*) = \Lambda$$
.

This follows from two Lemmas:

1)
$$G_7/H \longrightarrow E_{\star}(X^{tH})$$
 defines a
Muchy functor.
May-Muchure ('82) Show that it
 $E_{\star}(X^{tH}) = 0 \forall H = G_1 \text{ of prime}$
power order, then $E_{\star}(X^{tG}) = 0.$

$$= 5 \ t_G R \quad is so well.$$

$$FS:$$

$$hlein's Clusterization of the norm.$$

$$let NGn, NG' : YnG \rightarrow Y^{hL} he netal transformations \Rightarrow$$

$$NG(E^{\infty}G_{1+}) \approx NG'(E^{\infty}G_{1+})$$

$$NG(E^{\infty}G_{1+}) \approx NG'(E^{\infty}G_{1+})$$

$$out we.$$

$$then \exists ! w. e f(4) : Y_{hG} \rightarrow Y_{hG} \Rightarrow$$

$$Y_{hG} \xrightarrow{N_{h}(1)} y^{hG}$$

$$S(1) \xrightarrow{V} NG'(1)$$

$$Y_{hG} \approx (Y_{h} n)_{hQ} \xrightarrow{N_{h}(1)} y^{hG}$$

$$Y_{hG} = (Y_{h} n)_{hQ} \xrightarrow{N_{h}(1)} (Y^{h} n)_{hQ} \xrightarrow{N_{h}(1)} (Y^{h} n)_{-2} y^{hG}$$

Check on
$$Y = E \circ_{G_{1}}^{\circ}$$

Sime $E \circ_{G_{1}}^{\circ} G_{1} = V E \circ_{K+1}^{\circ}$
 $N_{h} (E \circ_{G_{1}}^{\circ}) = N_{h} (E \circ_{G_{1}})_{ha}$ is
an eavin.
 $(E \circ_{G_{1}})^{h} \stackrel{h}{\longrightarrow} \stackrel{N_{h}}{\longrightarrow} (E \circ_{G_{1}})_{(E} \circ_{G_{1}})_{hk} = E \circ_{A}$
 $\Rightarrow N_{A} (E \circ_{G_{1}})^{h} \stackrel{h}{\longrightarrow})$ is on emblence.
 $\Rightarrow N_{A} (E \circ_{G_{1}})^{h} \stackrel{h}{\longrightarrow})$ is on emblence.
 $\Rightarrow N_{A} (E \circ_{G_{1}})^{h} \stackrel{h}{\longrightarrow})$ is on emblence.
 $\Rightarrow N_{A} (E \circ_{G_{1}})^{h} \stackrel{h}{\longrightarrow})$ is on emblence.
 $\Rightarrow N_{A} (E \circ_{G_{1}})^{h} \stackrel{h}{\longrightarrow})$ is on emblence.
 $\Rightarrow N_{A} (E \circ_{G_{1}})^{h} \stackrel{h}{\longrightarrow} N_{h} (E)_{h} \alpha ,$
 $cosib (N') \simeq R^{t} G_{1}$
 $N_{h} (A)$ is an E_{x} isomorphism
 $\Rightarrow N_{h} (A)_{h} \alpha$ is too (motocours, but time)
 $\Rightarrow R^{tQ}$ is E_{x} -ecyclic,

$$\frac{Conclusion}{LX^{th}} \cong 0 \quad \forall \quad X \in \operatorname{Fin}(\mathfrak{h}, \mathfrak{Sp}).$$

$$\widehat{T}$$

$$\mathcal{E}_{\mathsf{f}}^{\mathsf{B}}C_{\mathsf{P}} \longrightarrow \mathcal{E}_{\mathsf{f}}^{\mathsf{o}} = \operatorname{admit} a$$

$$\operatorname{Section} \quad \forall \operatorname{P} \quad \operatorname{after} \operatorname{opplying} L.$$

$$\operatorname{Thm} \operatorname{Kahn} - \operatorname{Priddy} : \quad (Q \otimes C_{\mathsf{P}} \longrightarrow \mathcal{E}_{\mathsf{f}}^{\mathsf{o}} \times \operatorname{admit})$$

$$\operatorname{a Section}.$$

$$(\operatorname{uuture Claren})$$

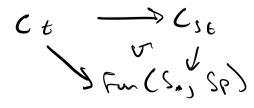
$$\operatorname{Main thm}^{\mathsf{I}} \quad \operatorname{If} \quad \exists \quad \exists \quad \exists \quad \exists \quad \mathsf{S}_{\mathsf{e}} \longrightarrow \mathcal{L} \operatorname{Sp} \quad \exists \quad \exists \quad \exists \quad \mathsf{s}_{\mathsf{e}} : \mathcal{S}_{\mathsf{e}} \longrightarrow \mathcal{L} \operatorname{Sp} \quad \exists \quad \exists \quad \exists \quad \mathsf{s}_{\mathsf{e}} : \mathcal{S}_{\mathsf{e}} \longrightarrow \mathcal{L} \operatorname{Sp} \quad \exists \quad \exists \quad \exists \quad \mathsf{s}_{\mathsf{e}} : \mathcal{S}_{\mathsf{e}} \longrightarrow \mathcal{L} \operatorname{Sp} \quad \exists \quad \forall \quad \mathsf{s}_{\mathsf{e}} : \mathcal{S}_{\mathsf{e}} \longrightarrow \mathcal{L} \operatorname{Sp} \quad \exists \quad \forall \quad \mathsf{s}_{\mathsf{e}} : \mathcal{S}_{\mathsf{e}} \longrightarrow \mathcal{L} \operatorname{Sp} \quad \exists \quad \forall \quad \mathsf{s}_{\mathsf{e}} : \mathcal{S}_{\mathsf{e}} \longrightarrow \mathcal{L} \operatorname{Sp} \quad \exists \quad \forall \quad \mathsf{s}_{\mathsf{e}} : \mathcal{S}_{\mathsf{e}} \longrightarrow \mathcal{L} \operatorname{Sp} \quad \exists \quad \forall \quad \mathsf{s}_{\mathsf{e}} : \mathcal{S}_{\mathsf{e}} \longrightarrow \mathcal{L} \operatorname{Sp} \quad \exists \quad \forall \quad \mathsf{s}_{\mathsf{e}} : \mathcal{S}_{\mathsf{e}} \longrightarrow \mathcal{L} \operatorname{Sp} \quad \exists \quad \forall \quad \mathsf{s}_{\mathsf{e}} : \mathcal{S}_{\mathsf{e}} \longrightarrow \mathcal{L} \operatorname{Sp} \quad \exists \quad \forall \quad \mathsf{s}_{\mathsf{e}} : \mathcal{S}_{\mathsf{e}} \longrightarrow \mathcal{L} \operatorname{Sp} \quad \exists \quad \forall \quad \mathsf{s}_{\mathsf{e}} : \mathcal{S}_{\mathsf{e}} \longrightarrow \mathcal{L} \operatorname{Sp} \quad \exists \quad \forall \quad \mathsf{s}_{\mathsf{e}} : \mathcal{S}_{\mathsf{e}} \longrightarrow \mathcal{Sp} : \mathcal{Sp} \quad \exists \quad \forall \quad \mathsf{s}_{\mathsf{e}} : \mathcal{Sp} \in \mathcal{Sp} \in \mathcal{Sp} \in \mathcal{Sp} : \mathsf{sp} \in \mathcal{Sp} \in \mathcal{Sp} : \mathsf{sp} \in \mathcal{Sp} : \mathsf{sp} : \mathsf{sp} : \mathcal{Sp} \in \mathcal{Sp} : \mathsf{sp} : \mathsf{s$$

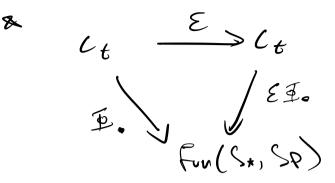
Fuct #1: In (X) is T(n)-local [F, J. (2)]=0 & FE Corri. In (X) periodic ssure F=Ent for some space A of type 2ntl. [F, In(Z)] = NO (Maps (A, Du(Z))=0 S;Vip Mars (A) \$ (2) = \$ AV (2) = * Sine ANB will have typ 21, so 1 ANV: EdANB -> ANB is nilpotent.

Fult #2: In general, for any map EdB > B EdB > B Ev (-2° E) = N' Maps (Bx) = collim (maps (Asx) -> maps (EAIX) ->...) uben & is finite of type Ny $\overline{\partial}_{N}(\underline{-2^{\infty}E}) \simeq MetPS(B, 2_{T(N}(X)))$ Feet # 3. Does not depend on the choice of me

$$(N_{S}) \longrightarrow (V_{S} v_{S})$$

 $N_{S} = E^{S6} V \xrightarrow{E(S-1)} E^{(S-1)} V \xrightarrow{v} V$





SWE can combine all of the : DD C'_{5} where C'_{2} where C'_{2} where $C'_{1} \rightarrow C_{2} \rightarrow C_{3} \rightarrow \cdots$ $C_{m-1} \rightarrow C_{m}$ is $(v_{5}v_{5}v_{5} \rightarrow (Ev_{5} \geq Cv_{m}))$ obtain $\underline{F}: c' \rightarrow For(S_{m,5} \leq Sp)$

$$C' = Sp_{2n}^{fin}$$

S we have

$$\overline{E} : (SP_{\geq n})^{\circ P} \longrightarrow From (S_{+}, SP)$$
(iden: \overline{E} on \overline{E} inite Spectrum of type n_{j}
(choose \overline{K}_{j} when $\overline{E} \overset{\kappa}{E} = \overline{E}^{\circ \circ} V$
 V is a \overline{E} inite space type n_{j}
 N_{n} Self - m_{j}
 $\overline{E} = \overline{E}^{k} \circ \overline{E}_{j}$

Kun extend!

$$F:(Sp^{fin})^{\circ p} \longrightarrow Fun(S_{+}, S_{e})$$
 is
the right kun extension of $E \rightarrow \exists_{E}$,
 $\exists: S_{+} \longrightarrow Sp := F(b)$,
 $\exists(X) = \lim_{E \to S} \Xi_{E}(X)$

$$\widehat{F}\left(\Gamma^{\infty}_{X}X\right) = \lim_{E} \widehat{F}_{E}\left(-\Gamma^{\infty}_{X}X\right) + \frac{1}{2} \sum_{i=1}^{N} \max\left(\widehat{F}_{i}Z_{i}T_{i}X_{i}X\right) + \frac{1}{2} \sum_{i=1}^{N} \max\left(\widehat{F}_{i}Z_{i}T_{i}X_{i}X_{i}X\right) + \frac{1}{2} \sum_{i=1}^{N} \sum_{i=1}^{N}$$

$$ST_{p} \xrightarrow{T} ST_{p}$$

$$cline(X_{p} \xrightarrow{F} \sum_{i=1}^{2^{n}} y_{p} \xrightarrow{T} \sum_{i=1}^{2^{n}} y_{i} \xrightarrow{T} \sum_{i=1}^{2^{n}} (X_{p}) \begin{bmatrix} x_{i} \\ y_{p} \end{bmatrix} \begin{bmatrix} y_{i} \\ y_{i} \end{bmatrix} \end{bmatrix} \begin{bmatrix} y_{i} \\ y_{i} \end{bmatrix} \begin{bmatrix} y_{i} \\ y_{i} \end{bmatrix} \begin{bmatrix} y_{i} \\ y_{i} \end{bmatrix} \end{bmatrix} \begin{bmatrix} y_{i} \\ y_{i} \end{bmatrix} \begin{bmatrix} y_{i} \\ y_{i} \end{bmatrix} \begin{bmatrix} y_{i} \\ y_{i} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} y_{i} \\ y_{i} \end{bmatrix} \end{bmatrix} \begin{bmatrix} y_{i} \\ y_{i} \end{bmatrix} \end{bmatrix} \begin{bmatrix} y_{i}$$

$$\frac{T(M) - Nanishing & X^{tG}}{P(M)} \xrightarrow{T(M)} - Nanishing & X^{tG}} \xrightarrow{P(M)} P(M)$$

$$Main result: L_T(M) X^{tG} \xrightarrow{P(M)} \\ & Sor all X \in For(B(T, SP))$$

$$\frac{Motivation:}{Originally: Kwh R ('O4)} \xrightarrow{Proved this} \\ & to show that Greadwillie hower splits \\ & to show that Greadwillie hower splits \\ & F(M) & T(M) & locally. \\ & F: Sp \rightarrow Sp \\ & Pn F(X) & locally. \\ & F(X) \xrightarrow{P} F(X) & D_d F(X) = fib(P_d(X) \rightarrow P_d) \\ & J & J \\ & F(X) \xrightarrow{P} F(X) & D_d F(X) = (AJFX)NEd \\ & F(X) \xrightarrow{P} F(X) & F(X) \xrightarrow{P} (AJFX)NEd \\ & homobagy calimits \\ & D_d F(X) = (C_d A X^M) \\ & hed \\ & F(X) = (C_d A X^M) \\ & hed \\ & F(X) = (C_d A X^M) \\ & Hed \\ & Hed$$

$$\begin{array}{c} \exists \ \mathsf{Pollbock} \\ \mathsf{P}_d \ \mathsf{F}(\mathsf{x}) \longrightarrow \mathsf{J}_d \ \mathsf{F}(\mathsf{x})^{\mathsf{h} \ \mathsf{E} \mathsf{d}} \\ & \downarrow \\ & \downarrow \\ \mathsf{P}_{\mathsf{d}^{-1}} \ \mathsf{F}(\mathsf{x}) \longrightarrow \mathsf{f}_{\mathsf{E} \mathsf{d}} \left(\mathsf{A} \ \mathsf{d} \ \mathsf{F}(\mathsf{x}) \right) \end{array}$$

Lycus Pd FCXD = TT Lycus Dc FCX

 $D_n(X) \simeq (C_n \wedge X^n) \in n$ Cn Xⁿ NI Tobias "Z-Segul Spuces"