Motivation:
(1) Waldhausen's S. construction produces a Spectrum in a happier way than the Q-construction.
(2) There ore other interesting categories that we wout to consider the ore not exact.

Topology Example: Fix a Space X, and consider the category $R_{f}(x)$ of finite retruefive spaces over X, ie: (Y, X) is hamtopy cav bo u relative finite $C W$ Pair, with a refraction. $r: Y-x$ Sod ft roi=idx.

Remark: $X=*, R_{f}(x)$ is nothing but finite C ω-Complexes.

Coul\#1: Gemalite these examples into a spe of cahory suitable for k-flory shut robust enough to inclute the examples above.

Wald Howen Catyories,
Definition 1: Let C be a coteroy - ad $0 \in O_{j}(c)$ tut is initial \& ternine. Then O is a zero object and ξ is sund to he pointed.

Definition ζ is a catyory with cofibretions it it lus a subcatesory cob.
with monchusises deweld by an arow \mapsto such tuat the follawing poperties ore sutisfied:

1) Evory iso is a cofibration
2) $\forall A \in O b_{j}(\xi), O \nrightarrow A$ is a cof.b.
3): (cobase clanse)

exists gian $A \hookrightarrow B$ a co $\% h$ Monow, $C \mapsto B \cup_{A} C$ is a cof!h

Renrk: co 6 contuis all objeats of G by (1).

5: Codibrations. are moteled on inclucions of cw complexes.

Finl remrts: coprobects exists,

Def: Ar exact fonctor $F: \zeta \longrightarrow Z$ hetreen cetyories $w /$ cofibrutions psemes zerws, cobibations $\&$ pusharts.

Def: ζ a cat. wl cofisutions, sen

exsts dor all cofibrations $A \longmapsto B>$ and we wrik

$$
A \longmapsto B \longrightarrow B / A
$$

(cofibration sewerce).

Definition: A waldhawsen Catgory is a ctotory with cofil. G and another subcategory $w \xi$ with morncuisus $A \xrightarrow{\longrightarrow} B$ such fat 1: Eve iso is a real equivalence

2: If we have

Remark:

ten $A B \omega_{A} C \xrightarrow{\sim} B^{2} U_{A^{\prime}} C^{\prime}$ is a with earichace

Remark: Sometimes $\omega \boldsymbol{\zeta}$ is omitted and is fam to the all isomorphisms.

Example 1: Let ζ be an exact Cabyory. Take admissible nowounghisus (apposing in $A \hookrightarrow B \rightarrow C$) as cofibrittions and ${ }^{\omega} \xi=$ iso ξ.

This is a wald hewsen Calgary.
is to see this, embed $\zeta \hookrightarrow A$ and show tut cofibratious are closed under pushuct, ie:

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \quad \text { exact, } A \rightarrow D \text { or }
$$

map, ben the is a SES

$$
0 \rightarrow D \rightarrow B \sqcup_{A} D \xrightarrow{T} C \rightarrow C
$$

(project D to zero $\operatorname{skr}(B \rightarrow C)=A)$

Before giving more examples, I'd like to give a definition (so tut I can say something interesting.)

Definition: Let ζ be Waldhausen. Then $k_{0}(\zeta)$ is the free abelian gp gen. on $[A]$ for $[A] \operatorname{cob}(E)$, where

1) $A \leadsto B \Rightarrow[A]=[B]$
i) $A \longrightarrow B \rightarrow B / A \Rightarrow[B]=[A]+[B / A]$.

Example 2: $C h_{0}^{b}(\xi)$ for R a count. ring. degree wise mono $=\operatorname{cof}:{ }^{2}$. quasi-iso, iso, etc. = wealth earn

* (Thames an \& trolursh 1.11.z): R Nethrian

Gillet-Waldhaven: $K\left(P(R 1)=K\left(C h_{0}^{b} P(R)\right)\right.$

for pros for k_{0} is similar to case a-rguler an ". "in spirit." $K_{0}(P(R)) \hookrightarrow r_{0}\left(C h_{0}^{b}(\mu C R \backslash)\right)$)
ca lory

$$
\begin{gathered}
0 \rightarrow 0 \rightarrow 0 \rightarrow[(]) \rightarrow 0 \\
K_{0}\left(C h_{0}^{b} P(R)\right) \longrightarrow K_{0}(D(R)) \\
{\left[A_{n} \rightarrow A_{n-1} \rightarrow \ldots \rightarrow A_{i} \rightarrow 0\right] \mapsto \underbrace{\sum(-1)^{t}\left[A_{i}\right]}_{\text {ever curnatferistic. }}}
\end{gathered}
$$

- Not completely vaevous. Recall tut it X is fid. , i.e: $\exists Y \in R_{f}(x)$ with $Y \simeq$ finite c.w. convex, then $C .(\tilde{x}) \in\left(C_{0}^{b}[\pi, x]\right)$, and the map defined above is the wall finiteness obstruction.

Example 3: As above, Consider $R_{f}(X)$. Let Cofibrations be topolosial cofilimions in $R_{f}(\Lambda)$. weak cquivaluces (a ute: / weaken)
quasi -iso for a hawlosy theory howsfory emir (Bel X). Take homotery-eariv: \rightarrow finite C. ω. Complexes
Then $K_{0}\left(R_{f}(r)\right)^{-}$is such tut

$$
0=[D K]=\left[\delta^{\kappa-1}\right]+\left[\delta^{k}\right],
$$

so $\left[s^{k}\right]=(-1)^{k}\left[s^{0}\right]$,
induc tively, $K_{0}\left(R_{f}(*)\right)=\mathbb{Z}$ s and given a finite $C W$-couple, say π^{2},

so

$$
\begin{aligned}
{\left[\pi^{2}\right] } & =\left[s^{1} \cup s^{1}\right]+\left[s^{2}\right] \\
& \left.=\left[s^{0}\right]-2 s^{0}\right]+\left[s^{0}\right]=-1 \cdot\left[s^{0}\right]
\end{aligned}
$$

Gives map: $K_{0}\left(R_{f}(A)\right) \xrightarrow{\sim}$ 卫. reduced Fe lar churucterist ic.

A very Similar argument shows Et $k_{0}\left(R_{f}(x)\right)=\mathbb{T}$ for all X, by taking $\tilde{x}(y / x)$.

Higher k-Theory
The iden: Constroct a cabyoy of dexth n-filtations of a space by filtertions:

$$
0=A_{0} \longrightarrow A_{1} \longrightarrow A_{2} \longrightarrow \cdots>A_{n} .
$$

Aulosous to

$$
\left\{\begin{array}{l}
\text { Iuclecting } \\
\text { bild } \\
\text { cw-comple }
\end{array}\right.
$$

For a Simplicial set se reed fare maps,

$$
S_{n} \xi \rightarrow S_{n-1} \xi_{y}
$$

corresponding to $[n-1] \rightarrow[n]$. Thee should be $n+1$ ove $o t$ them, whth is bo omit A_{j} and de $\quad A_{j-1} \longrightarrow A_{j} \longrightarrow A_{j+1}$.
But,ue can't omit Aos sike ve crat $f: 1$ Erations to stert at O. Instad, onit Ao, and replive the serence with

$$
0=A_{1} / A_{1} \rightarrow A_{2} / A_{1} \rightarrow \ldots \leftrightarrow A_{n} / A_{1}
$$

But And Ai is only defined up to cavonial iso. How do ve whe it fundorial?

Guat a fore map $S_{n} \xi \rightarrow S_{k} \xi$ s so ve will oltinlely aed 6 mode fundorinal choias br all $A_{j} / A_{i} \quad(1 \leq i<j \leq n)$.

Herce, $\operatorname{Ob}(\operatorname{Sun} \varphi)$ will the

$$
v=A_{0} \gg \ldots \ln _{n}
$$

witu cloices of aroteds A_{j} / A_{i}. In ofer worbs:

$A_{i j}=A_{j} / A_{i}>$

$$
A_{i j}>A_{i k} \rightarrow A_{j k}
$$

is a cofibrtron sane.
Pemurk: we could tebe objecks at $\operatorname{Sn} E$ bo he as above. Then, Senting this to n-step gillurtions hus an inerse opertron by "filling in" He dingoum w/ Cluices of sbacrotrabs, lemm 1.1.3 waldhursen-

We can think of tris in awoter wey flat can lelp.

Def: ξ a cat. $\operatorname{ar}(\xi)$ tunc objets norphisms $A \rightarrow B \quad \&$ norphisus

$$
\begin{aligned}
\left(A^{\prime} \rightarrow B\right) & \rightarrow\left(A^{\prime} \rightarrow B^{\prime}\right) \\
& \rightarrow B \\
& \downarrow^{\prime} \\
A^{\prime} & \mathbb{B}^{\prime}
\end{aligned}
$$

Des: b a cat. wl cofibutions. ten let $S_{n} \xi$ be the categoy of funetors

$$
A: \operatorname{ar}[n] \longrightarrow \xi \quad s(i \longrightarrow j) \mapsto A_{i j} \quad \partial
$$

1) $A_{i \rightarrow i}=0 \quad \forall i$
2) for comparate unti, te asphsim $A_{i \rightarrow j}>A_{i \rightarrow \mu} \cdot 5$ codil?. 3) for $; \rightarrow j$ and $j \rightarrow k$,

$$
A_{i} \rightarrow J \longrightarrow A_{i} \rightarrow k \rightarrow A_{j} \rightarrow k
$$

I won't pursve this forflers but unranciing the definitions gives the sme tuing.
(3) is fle amalong to second iso:

$$
\left.\left(A_{k} / A_{i}\right)\right)\left(A_{j} / A_{i}\right) \cong t_{k} / A_{j} \text {. }
$$

So $\xi=0$
$S, \xi=\xi$

Important Example: $\left.S_{z}\right\}$.
let

this is the data of

$$
A_{01} \longrightarrow A_{02} \longrightarrow A_{02}
$$

(Sine morphismens core based, we know ft other suhmotiats, i.e: O are respected.)
$\left.S_{2}\right\}$ is a Waldhawsen Category:

$$
\begin{array}{lll}
A_{1} \rightarrow A_{2} \rightarrow A_{12} \\
\downarrow_{1} & \downarrow \\
A_{1}^{\prime} \rightarrow A_{2}^{\prime} \rightarrow A_{12}^{\prime}
\end{array}
$$

well equiv it all vertical maps are. Cofibration if $A_{1} \rightarrow A_{1}^{\prime}, A_{12} \rightarrow A_{12}^{\prime}$ are, and $A_{1}{ }^{\prime} U_{A_{1}} A_{2} \rightarrow A_{2}^{\prime}$ are.
tan $2: S_{n} \rightarrow S_{n-1}$, is now Sunchorial
degoeleng mups are ans $\operatorname{mos} \sigma: S_{n} \varepsilon \rightarrow S_{n+1} \xi$

Corregrionding to uniare nordeceesery up $[n+1] \rightarrow[n]$ \& conporsitions ofthon.
S. 6 is ten simplicial ohject in ξ,

$$
\begin{aligned}
S: \zeta: s^{o r} & \rightarrow \text { Cat } \\
{[r] } & \rightarrow S_{n} \varepsilon .
\end{aligned}
$$

Teresere, NS. $\frac{G}{}$ will be a bi-sinplicill set

Def: : A bisimplicial set is a fouter

$$
\begin{aligned}
f ; & \Delta^{i d} x \Delta^{0 r} \longrightarrow \zeta \\
([n],[m]) \longmapsto & f_{n m}
\end{aligned}
$$

The ar severl wayg to the the geoctric ralibation-

1) $\forall, m \in \mathbb{N}) \quad R_{m}:=\mid$ Fom \mid
(z)" " $" 1 f_{m}$.)
(3) $X_{n}=\left|A_{n n}\right|$.

Sorprisingy, all a howororhic, we se B) be curse it's rive

Now, N.S. $C: \Delta^{\Delta p} \times \Delta^{\text {DP }} \longrightarrow$ Set

$$
\begin{array}{ll}
& \left([n]_{1}[m]\right) \rightarrow N_{n} S_{m} \xi . \\
\text { seb. }
\end{array}
$$

If ξ was wald haven, fen Sn b also gets wealh eavivalros, amvely, an orow $A \rightarrow A^{\prime}, A_{i j} \rightarrow A_{i j}^{\prime}$ should se in ξ for all $i \leqslant j$.

Ie cositrations reave st $A_{0} \rightarrow A_{0}^{\prime}$
 is a cosithation in $S_{2} \xi_{\text {: }}$:

Des: Define be k-thesry spuce

$$
K(\xi):=\Omega|\omega S . \xi|
$$

$\&$ the algesmic K-groups by

$$
\pi_{n}(\xi):=\pi n(K(\xi))
$$

osten sibly:

$$
K_{i}: \text { Cwald }^{\rightarrow} \rightarrow \text { Bisimplicill sets. }
$$

Acfurilly, the furctor is befter.
(1) Coprodect gives $k(\zeta)$ structure of an H-spuae (2) A speefoum via delooping

$$
" k_{0}=K_{0} ", \pi_{0}(\Omega \omega S . \xi)=\pi_{1}(\omega \delta \xi)=k_{0}(\xi) .
$$

The geometric realization ot the bisimplicial set can also be considered as be realization of Simplicial space

$$
[u] \longmapsto N \cdot \omega S_{n} b .
$$

Sine $S_{0} \omega \%$ is trivial category, so it has only ore point. But then 1N.WS.G 1 is connected.

Now, note tet $|N . \omega \operatorname{Sn} \zeta| x \Delta^{n}$ are gated alow foe maps, $s 0$ in the $n=1$ case, he lune a map

$$
\begin{aligned}
& \left|N . w S_{1} \varphi\right| x \Delta^{\prime} \\
& |N, w \zeta| x \Delta^{\prime}
\end{aligned}
$$

Why So: $0 \longmapsto O \longrightarrow 0 \longrightarrow 0$
Collapses $0>\Delta$. to a point, $\quad \begin{aligned} & \text { reduced } \\ & \text { couspers }\end{aligned}$ and do $d^{d_{1}}$ collapse to a point $N_{0} \omega \mathscr{b} \times \Delta^{\prime}$. $\left\{\begin{array}{l}\text { reuspersion }\end{array}\right.$ five mass

Altogetter: $\tilde{\varepsilon}|N . \omega \xi| \longrightarrow|N . w S . \xi|$.

Ten, belking adjoint mus

$$
\left|N_{.}\left(\omega \varphi_{0}\right)\right| \rightarrow \Omega|\omega . S . \xi| .
$$

(hogives kenma 8.4.1, weibel remark 8.3.2)
Hene, enty objeet in b corresponts to un elaut in $\pi|\omega S$.$| .$

* Key point: If thy can he joined by a path in N.wb (are vertily equiv.) thy correspond to the sure elenat of a, lwS. हैl, i.e:

$$
\pi_{1}(|\omega S . \xi|) \text { and } \mu_{0}(\xi)
$$

have be save generatore.
Now, $\quad \pi_{0}\left|N_{0} S_{2 \omega}\right|$ are ecwivelence chueses of exact sequences, and recll tut rebtions in $a_{1}\left(\mid \omega S_{0}\right)$ cone from

$$
\partial_{1}(x)=\partial_{2}(x)+\partial_{0}(x) \text { for } x \in \pi_{0}\left(1 \mu_{0} s_{2} \omega \xi\right)
$$

of course, for an excet serame $A_{1} \longmapsto A_{2} \rightarrow A_{3}$, this is exaely k_{0} 最:

$$
\begin{aligned}
& A_{2}=A_{1}+A_{3} \quad \zeta=\mu \omega L L_{2} \\
& {[n] \mapsto \mid \omega \quad S_{n} \text { split } \quad \begin{array}{lll}
\text { " } & \stackrel{?}{=} & k_{h}(\text { Poob })
\end{array}} \\
& S_{2}^{\text {solit } 6}
\end{aligned}
$$

