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Abstract

Addressing many of the major outstanding questions in the fields of microbial evolution and

pathogenesis will require analyses of populations of microbial genomes. Although popula-

tion genomic studies provide the analytical resolution to investigate evolutionary and mech-

anistic processes at fine spatial and temporal scales—precisely the scales at which these

processes occur—microbial population genomic research is currently hindered by the prac-

ticalities of obtaining sufficient quantities of the relatively pure microbial genomic DNA nec-

essary for next-generation sequencing. Here we present swga2.0, an optimized and

parallelized pipeline to design selective whole genome amplification (SWGA) primer sets.

Unlike previous methods, swga2.0 incorporates active and machine learning methods to

evaluate the amplification efficacy of individual primers and primer sets. Additionally,

swga2.0 optimizes primer set search and evaluation strategies, including parallelization at

each stage of the pipeline, to dramatically decrease program runtime. Here we describe the

swga2.0 pipeline, including the empirical data used to identify primer and primer set char-

acteristics, that improve amplification performance. Additionally, we evaluate the novel

swga2.0 pipeline by designing primer sets that successfully amplify Prevotella melanino-

genica, an important component of the lung microbiome in cystic fibrosis patients, from sam-

ples dominated by human DNA.

Author summary

Population genomics enables the inference of evolutionary and ecological processes that

are critical to understanding and eventually controlling many infectious diseases. The

promise of microbial population genomics is tempered, however, by difficulties in isolat-

ing and preparing pathogens for next-generation sequencing. Here we present swga2.0,

an optimized pipeline that designs the selective whole genome amplification (SWGA)

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010137 April 17, 2023 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Dwivedi-Yu JA, Oppler ZJ, Mitchell MW,

Song YS, Brisson D (2023) A fast machine-

learning-guided primer design pipeline for selective

whole genome amplification. PLoS Comput Biol

19(4): e1010137. https://doi.org/10.1371/journal.

pcbi.1010137

Editor: Manja Marz, bioinformatics, GERMANY

Received: April 26, 2022

Accepted: March 23, 2023

Published: April 17, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1010137

Copyright: © 2023 Dwivedi-Yu et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The swga2.0

program and all dependencies can be downloaded

into a conda environment from https://anaconda.

org/janedwivedi/swga2. The source repository,

tutorials, and documentation can be found at

https://orcid.org/0000-0002-6947-0495
https://orcid.org/0000-0002-0734-9868
https://orcid.org/0000-0002-9493-7579
https://doi.org/10.1371/journal.pcbi.1010137
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010137&domain=pdf&date_stamp=2023-04-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010137&domain=pdf&date_stamp=2023-04-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010137&domain=pdf&date_stamp=2023-04-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010137&domain=pdf&date_stamp=2023-04-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010137&domain=pdf&date_stamp=2023-04-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010137&domain=pdf&date_stamp=2023-04-27
https://doi.org/10.1371/journal.pcbi.1010137
https://doi.org/10.1371/journal.pcbi.1010137
https://doi.org/10.1371/journal.pcbi.1010137
http://creativecommons.org/licenses/by/4.0/
https://anaconda.org/janedwivedi/swga2
https://anaconda.org/janedwivedi/swga2


primer sets needed to amplify and sequence microbial genomic DNA from complex bio-

logical specimens.

Introduction

The rapidly expanding field of population genomics is transforming our understanding of the

evolutionary forces shaping genomic diversity within and among species [1]. In microbial sys-

tems in particular, population genomic studies are increasingly feasible due to the minimal

cost of sequencing small genomes [2–5]. These studies can identify the origins of adaptive

traits, map range expansions and migration patterns, and clarify epidemiological processes. A

principal obstacle to sequencing specific microbial genomes from natural samples is isolating

the target microbial DNA from the DNA of contaminating organisms [6]. Although laboratory

culture is the standard practice, the overwhelming majority of microbes cannot be cultured,

and direct sequencing is problematic as the microbial genome constitutes only a minuscule

fraction of the total DNA [7–9]. Thus, a primary hindrance to collecting populations of micro-

bial genomes is the lack of innovative, cost-effective, and practical methods to collect sufficient

amounts of target microbial genomic DNA with limited contaminating DNA.

Several technologies have been developed and utilized to overcome this obstacle including

genome capture, single-cell sequencing, and selective whole genome amplification (SWGA)

[10–12]. Of these, SWGA is the most inexpensive, flexible, and shareable culture-free technol-

ogy [13]. SWGA takes advantage of the inherent differences in the frequencies of sequence

motifs (k-mers) among species in order to build primer sets that bind often in the target

genome but rarely in the contaminating genomes. These selective primer sets are used to selec-

tively amplify the target microbial genomes using F29 multi-displacement amplification tech-

nology [12, 14]. The F29 DNA polymerase amplifies DNA from primers with high

processivity (up to 70-kbp fragments) and is 100 times less error-prone than Taq, making it

the standard for genome amplification prior to sequencing [14–16]. By coupling F29 amplifi-

cation with selective priming, researchers can selectively amplify a target microbial genome,

thus separating the metaphorical baby (target microbial genomes) from the bathwater (off-tar-

get DNA from vectors, hosts, or other microbes). SWGA is a powerful and cost-effective tool

for researchers looking to generate genomic data for microbial systems. Effective SWGA pro-

tocols have resulted in next-generation sequencing (NGS)-ready samples that are enriched for

specific target microbial genomes and have been used to address biologically important ques-

tions in several microorganisms, includingMycobacterium tuberculosis,Wolbachia spp, Plas-
modium spp, Neisseria meningitidis, Coxiella burnetii,Wuchereria bancrofti, and Treponema
pallidum [12, 17–30].

The most recent SWGA development pipeline (swga1.0) improved on the concept and

existing tools available for SWGA primer selection [17]. Whereas the first SWGA tool used

only differential binding ratios of k-mers and melting temperature to build primer sets [12],

swga1.0 incorporated a larger a priori set of optimality criteria when selecting both individ-

ual primers (i.e., primer binding frequency, improved melting temperature, evenness) and

potential primer sets (i.e., evenness, primer binding site density on the target genome) [17].

Evaluation of the amplification and sequencing data from this study revealed that primer sets

that prioritized binding site density on the target genome, along with binding site evenness as

a secondary factor, yielded the most consistent amplification success.

The swga1.0 pipeline substantially improved the available SWGA development tools and

identified several potential enhancements for future studies [17]. First, swga1.0 uses only
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marginally-effective optimality criteria to evaluate individual primers and primer sets due to a

lack of empirical data of the characteristics that result in effective SWGA. While primer bind-

ing site density and evenness appear broadly important, the majority of primer sets chosen

using these criteria resulted in limited amplification success. Thus, additional primer charac-

teristics correlated with efficient selective amplification were not included in the primer selec-

tion process. Second, swga1.0 uses a computationally-expensive algorithm to search for

primer sets. swga1.0 evaluated 1–5 million primer sets, which is only a very limited propor-

tion of all potential primer sets, yet still required more time than is available for research proj-

ects. Evaluating primer sets could be vastly improved by an informed objective function and

by pruning unpromising search paths.

The computational time and experimental cost and effort needed to develop an effective

protocol to amplify a target microbial genome has hindered the broad adoption of SWGA for

microbial population genomic studies. Here we present the next generation pipeline for

SWGA protocol development, swga2.0, that improves the state-of-the-art methods in three

areas. First, active learning and machine learning are incorporated into the pipeline to predict

the effectiveness of primers and primer sets. Second, novel features including thermodynami-

cally-principled binding affinities are included in primer and primer set evaluation models.

Lastly, the computational efficiency of the primer set search algorithm is improved by multi-

processing and caching computationally expensive information. swga2.0 is a fast SWGA

optimization software that allows researchers to rapidly identify primer sets that are likely to

amplify a specific microbial genome from a complex, heterogeneous sample. We test the novel

pipeline by designing and evaluating primer sets to selectively amplify Prevotella melaninogen-
ica, an important pathogen in cystic fibrosis patients.

Methods

swga2.0 pipeline

The swga2.0 pipeline incorporates metrics on the efficacy of individual primers and a com-

putationally efficient, multiprocessing algorithm to identify sets of primers to selectively

amplify a target microbial genome from samples dominated by background DNA (https://

anaconda.org/janedwivedi/swga2). The swga2.0 pipeline consists of four major stages, illus-

trated in Fig 1: (1) cataloging DNA sequence motifs in the target genome and identifying the

locations of each motif in both the target genome and background DNA, (2) removing DNA

sequence motifs that are either too rare or too unevenly distributed in the target genome, are

too common in the background DNA, or have calculated melting temperatures that are out-

side the acceptable range, (3) predicting the amplification efficacy of the remaining primers

(see Amplification efficacy section below), and (4) searching and evaluating aggregations of

primers as candidate primer sets. A summary of similarities and differences between the

swga2.0 pipeline and prior published methods is presented in Table 1.

Stage 1 (k-mer preprocessing). swga2.0 first identifies all 6 bp to 12 bp k-mers in the

target genome that serve as candidate SWGA primers. The number and location of each k-mer

in the target genome and background DNA are computed using jellyfish [31]—a fast,

parallel k-mer counter—and stored in h5py files. This stage of the pipeline is parallelized and

does not need to be re-run when modifying parameters or generating new primer sets (Stage

4).

Stage 2 (Candidate primer filtering). The k-mer motifs in the h5py files are sorted

according to their binding frequency in the target genome and background DNA, the evenness

of their distribution in the target genome, their calculated melting temperatures, GC content,

homodimerization probability, and number of single and di-nucleotide repeats. These motif
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characteristics were used previously to identify candidate SWGA primers [17]. Briefly, binding

frequency is the number of exact matches of a primer in the genome normalized by the total

genome length; motifs that occur too rarely in the target genome (< min_fg_freq) or too

frequently in the background DNA (> max_bg_freq) are removed. Primers that bind

unevenly across the target genome (> max_gini), calculated using the Gini index of the dis-

tances between motifs are removed. The melting temperature of potential primers [32] must

be within min_tm (default 15˚C) and max_tm (default 45˚C) as established in [12]. Motifs

with GC content less than min_GC or greater than max_GC (default 0.375 and 0.625, respec-

tively), as well as motifs with three or more G/C in the last five base pairs of the 30-end, are

eliminated. Candidate primers that could self-dimerize, estimated as subsequences that have a

reverse complement (� default_max_self_dimer_bp, default = 4), are eliminated.

Finally, motifs with runs of single and di-nucleotide repeats are eliminated. The ratio of the

binding frequency in the target genome to that in the background DNA is computed for the

candidate primers that remain after the filtering steps above. The primers are sorted by the tar-

get-to-background ratio and the primers with the largest ratios are retained for downstream

evaluation (max_primers; default 500 primers). Multi-processed tasks use the user-speci-

fied number of CPUs (default = all).

Stage 3 (Primer efficacy filter). Decreasing the number of candidate primers reduces the

computational effort necessary to search and evaluate primer sets in Stage 4. Thus, the motifs

retained from Stage 2 are individually evaluated for their potential to bind and amplify the tar-

get genome, using the random forest regressor model trained on the experimental data

described in the Amplification efficacy section below. Briefly, this non-linear regression

model predicts amplification efficacy from experimentally-identified primer properties

Fig 1. Overview of the swga2.0 pipeline. The process is broken into four stages: 1) preprocessing of locations in the target and off-target genomes, 2)

filtering motifs in the target genome based on individual primer properties and frequencies in the genomes, 3) scoring the remaining primers for

amplification efficacy using a machine learning model, and 4) searching and evaluating aggregations of primers as candidate primer sets.

https://doi.org/10.1371/journal.pcbi.1010137.g001
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including thermodynamically-principled features that correlate with binding affinity. Candi-

date primers are selected according to the minimum predicted on-target amplification thresh-

old parameter (min_amp_pred, default = 5) in this regression model.

Stage 4 (Primer set search and evaluation). swga2.0 searches for and evaluates primer

sets using a machine-learning guided scoring function that incorporates a breadth first, greedy

approach. The number of desired primer sets (max_sets) are built in parallel, primer by

primer, by adding primers that cause the greatest increase in evaluation scores (see S1 Appen-

dix). Briefly, the first primer in each of the max_sets sets is chosen at random from the can-

didate primer list allowing for broad exploration of the search space (Fig 2). Primers that are

not expected to dimerize with any primer already in the set are added, one at a time, to each

set and the primer set is evaluated as: score = β0 + β1 freq_ratio + β2 mean_gap_ratio
+ β3 coverage_ratio + β4 on_gap_gini + β5 off_gap_gini where the score pre-

dicts the percent of target genome coverage at 1×. The features for this regression are described

in Table 2 and explained further in the section Primer set search and scoring function. New

Table 1. Differences between swga1.0 and swga2.0.

Feature swga1.0 swga2.0

All stages Time to complete (minutes)* 1176 93

Multiprocessing ✓

Incorporates forward strand ✓ ✓

Incorporates reverse strand ✓

Stage 1 (k-mer preprocessing) Time to complete (minutes)* 100 20

Process k-mers that exact-match the target ✓ ✓

Process all k-mers in the target ✓

Stage 2 (Candidate primer filtering) Time to complete (minutes)* 0.1 37.5

Filter by melting temp ✓ ✓

Filter by self-dimerization ✓ ✓

Filter by target binding count ✓ ✓

Filter by background binding count ✓ ✓

Filter by target Gini index ✓ ✓

Filter by target to background freq. binding ratio ✓ ✓

Stage 3 (Primer efficacy filtering) Time to complete (minutes)* NA 5

Filter by predicted amplification using a trained model ✓

Stage 4 (Primer set search and eval.) Time to complete (minutes)* 1076 31

Filters based on heterodimer formation ✓ ✓

Score sets using heuristic function ✓

Score sets using fitted regression model ✓

Uses min distance between binding sites in the background ✓

Uses max distance between binding sites on the target ✓

Uses min ratio (target:off) of mean binding site distances ✓

Uses max ratio (target:off) of binding site frequency ✓

Uses min ratio (target:off) of coverage approximation ✓

Uses min mean Gini index of target binding ✓

Uses max mean Gini index of background binding ✓

Branch-and-bound search based on heterodimer cliques ✓ ✓

Branch-and-bound based on predict set score ✓

*Primer sets designed to selectively amplify P. melaninogenica (H. sapiens background) were built on a MacBookPro14,1 (using all 4 threads: 2.5GHz Dual-Core Intel

Core i7, 2 threads per core; Memory 16GB 2133MHz LPDDR3).

https://doi.org/10.1371/journal.pcbi.1010137.t001
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candidate primers are added sequentially to primer sets and retained if the addition improves

the computed score. This process iterates until primer sets of a desired size are generated or

the maximum number of iterations is reached. The primer set search process also utilizes a

drop-out step where a set of size n reduces to the subset of size n − 1 with the highest computed

score. “Dropping” the weakest primer also provides the possibility of adding a primer that

would otherwise be excluded due to the risk of dimerizing with the dropped primer. The

drop-out step can be re-run multiple times and includes the option of temporarily withholding

frequently-used primers until after the drop-out layer.

Amplification efficacy

The amplification efficacy of individual primers (Stage 3) is predicted using a regression

model built from a series of rolling circle amplification (RCA) [14, 33] experiments in which

plasmids were amplified with individual primers. SWGA typically utilizes multiple primers,

each with multiple priming sites, making it challenging to isolate the impact of individual

Fig 2. Summary schematic of Stage 4 (Primer set search and evaluation) of the swga2.0 pipeline. Stage 4 begins with one randomly selected

primer for each primer set. Each primer set is built in parallel until the improvements in evaluation score no longer exceed a user-defined parameter (�)

or until the maximum number of iterations is reached. A drop-out iteration forces each of the highest-scoring primer sets of size n to reduce to the

subset of size n − 1 with the highest computed score.

https://doi.org/10.1371/journal.pcbi.1010137.g002

Table 2. Ridge regression variable descriptions and coefficient values for primer set evaluation.

Variable name Variable description Coef. Coef. value

intercept Intercept b̂0
−3.14 × 10−15

freq_ratio Ratio of the binding site rate in the on-target to off-target genome. b̂1
0.321

mean_gap_ratio Ratio of the mean distance between binding sites of the on-target to off-target genome, aggregating across strands. b̂2
−0.0368

coverage_ratio Ratio of the coverage approximation of the on-target to that of the off-target. b̂3
−0.0318

on_gap_gini Mean gini index of on-target binding site gap sizes, averaging across strands. b̂4
−0.0131

off_gap_gini Mean gini index of off-target binding site gap sizes, averaging across strands. b̂5
0.281

https://doi.org/10.1371/journal.pcbi.1010137.t002
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primers. Single-primer amplification reactions assess amplification efficacy of individual prim-

ers binding from plasmids with or without an exact-match binding site.

The model of primer amplification efficacy included the features delineated in Table 3 as

parameters. Some of these attributes include properties such as the number of base pair

repeats, melting temperature and G/C proportion, all of which are thought to impact the effi-

cacy of accurate primer binding and amplification in PCR and F29 reactions [34]. swga2.0
includes additional features that estimate the likelihood of the primer binding to the target

using a unified thermodynamic nearest-neighbor DNA model [35, 36]. Empirical thermody-

namic parameters (DG�T) are available for most primer exact-match and single-mismatch sce-

narios. Empirical thermodynamic data for terminal mismatches are not publicly available [35,

36] and were not captured in our predictive model. This thermodynamic nearest-neighbor

model was incorporated by computing DG�T values for each primer at each genome position—

a smoother metric for primer binding propensity than the number of exact match binding

sites. The DG�T values were binned within the range of −20 and 3, and the resulting histogram

normalized by genome length. The normalized DG�T frequency values are used as features in

the primer amplification efficacy regression model.

An active learning approach. Active learning, a type of iterative supervised machine

learning, was used to maximize information gain in three rounds of single primer amplifica-

tion experimentation. The previously published SWGA Perl script [12] was used to generate a

list of all primers with one exact-match binding site on one of the plasmids and no exact-

match binding site on the other plasmid (pcDNA3-EGFP and pLTR-RD114A from Addgene).

The first round of experimental amplification used 204 primers from this list that maximized

the variability in the 22 primer attributes in Table 3, excluding the thermodynamic binding

affinity features. A random forest regressor model was built using the target and off-target

amplification data from the first round of experimental amplifications as it had the best perfor-

mance of the tested models (linear, logistic, random forest, gradient boosting, and support vec-

tor machine). The optimal parameters according to a hyperparameter search were

n_estimators=1500, min_samples_split=10, min_samples_leaf=4,

max_depth=50, bootstrap=False.

The random forest regression model was used to predict the amplification efficacy of all

primers in the original list. The 96 primers predicted to have the greatest amplification efficacy

were chosen for the second round of experimental assessment. The experimental amplification

data from round 2 were used to update the random forest regression model. An additional 96

primers predicted to have the greatest amplification efficacy were chosen for a third round of

experimental evaluation. The final random forest regression model, built on the experimental

results from three rounds of single-primer amplification experiments, is included in the

swga2.0 primer design pipeline (Stage 3).

Primer set scoring function

Multiple analytical frameworks were explored to construct a primer set scoring function that

would accurately predict amplification efficacy and evenness from an individual primer set,

determined by the proportion of the target genome with at least 1× sequencing coverage. Mul-

tiple primer set scoring functions were trained on data from 46 sets of published SWGA and

sequencing data fromMycobacterium tuberculosis andHomo sapiens [17]. Model features

were selected from a set of variables thought to influence amplification of the target genome

(Gini index, nucleotide distance between target binding sites, entropy and generalized entropy

of the binding site distribution), amplification of background DNA (kurtosis, skewness, bimo-

dality, and variance among binding sites), and combinations of target to background
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Table 3. Feature importances based on the random forest regressor model.

Subset Description Feature Description Feature Importance (%) Subset Feature Importance (%)

G/C content features number/proportion of G’s 11.8/2.68 27.9

number/proportion of C’s 2.76/6.54

GC content 4.08

repeat features GG repeat number 7.30 19.2

longest G repeat 4.10

CC repeat number 2.37

longest C repeat 3.51

TT repeat number 0.458

longest T repeat 0.613

AA repeat number 0.333

longest A repeat 0.431

Binding affinity features 3 1.42 18.1

2.5 1.70

2 0.942

1.5 1.84

1 2.07

0.5 1.21

0 1.27

−0.5 0.778

−1 0.616

−1.5 0.532

−2 0.368

−2.5 0.413

−3 1.25

−3.5 0.633

−4 0.611

−4.5 0.105

−5 0.0120

−5.5 0.0143

−6 0.134

−7 0.0768

−8 0.259

−9 0.0799

−10 0.215

−12 0.531

−14 0.667

−16 0.199

−18 0.0802

molarity molarity 10.2 10.2

last 5 bases near 30-end GC-clamp 1.92 10.2

first base from 3’ end 1.08

second base from 3’ end 2.48

third base from 3’ end 1.32

fourth base from 3’ end 1.41

fifth base from 3’ end 1.96

A/T content features number/proportion of A’s 1.16/1.25 6.42

number/proportion of T’s 1.03/2.98

(Continued)
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amplification (the frequency of binding sites, average distance between binding sites on the

same strand, average distance between binding sites on the opposite strands). The best model

was selected using 10-fold cross-validation error among ridge regression candidate models.

Ridge regression, which uses regularization to reduce model variance, was favored in order to

reduce the risk of overfitting given the limited data.

Empirical evaluation of primer sets

Primer sets designed to amplify Prevotella melaninogenica from samples dominated by human

DNA were empirically tested to evaluate the efficacy of swga2.0. Six primer sets were created

using P. melaninogenica strain ATCC 25845 (GCF_000144405.1) as the target genome and the

human genome (GRCh38.p13) as the background DNA. The six primer sets were evaluated in

duplicate on purified P. melaninogenicaDNA (strain ATCC 25845), diluted to 1% in purified

human genomic DNA (Promega, female, catalog No. G1521). Briefly, the 1:99 target:back-

ground sample was digested with FspEI (New England Biolabs) according to the manufactur-

ers protocol (incubation at 37˚C for 90 minutes, 20 minute heat inactivation at 80˚C).

Although digestion has reduced mitochondrial DNA amplification or increased target amplifi-

cation in some prior studies [12, 20, 37], experiments amplifying non-digested DNA using two

of the Prevotella primer sets resulted in comparable amplification success with the digested

samples. The digested sample was purified using AmpureXP beads (Beckman Coulter) prior

to performing selective whole-genome amplification as previously described [18] with slight

modifications. Reactions were performed in a volume of 50 uL using 50 ng of digested DNA,

SWGA primers (total concentration of all primers together = 3.5mM), 1×F29 buffer (New

England Biolabs), 1 mM dNTPs, and 30 units F29 polymerase (New England Biolabs). Ampli-

fication conditions included a ramp-down from 35 to 31˚C (5 min at 35˚C, 10 min at 34˚C, 15

min at 33˚C, 20 min at 32˚C, 25 min at 31˚C), followed by a 16h amplification step at 30˚C.

The polymerase was then denatured for 15 min at 65˚C. Amplified samples were purified

using AmpureXP beads, prepared for Illumina sequencing [38], and sequenced on an Illumina

MiSeq (150 bp, paired end). The unamplified sample was also sequenced to assess changes in

sequencing coverage due to SWGA. Illumina-specific adapter and primer sequences were

removed from the reads using Cutadapt (Martin, 2011) and reads aligned to the target

genome using BWA mem (v0.7.1). Analysis of sequence coverage of the target genome was per-

formed using samtools (v1.9) [39].

Results

Primer amplification efficacy

Individual primers were evaluated in amplification experiments using plasmids that either did

or did not have exact-match binding sites. The active learning approach, in which data were

collected to train a random forest regression model that was then used to choose additional

primers, maximized the information gained from each of the three rounds of amplification

experiments. The goal of the first round of experiments was to maximize the exploration of the

Table 3. (Continued)

Subset Description Feature Description Feature Importance (%) Subset Feature Importance (%)

melting temperature melting temperature 6.33 6.33

sequence length sequence length 2.56 2.56

https://doi.org/10.1371/journal.pcbi.1010137.t003
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feature space across 22 primer characteristics (Table 3, excluding binding affinity features).

Only a few of the 204 tested primers resulted in strong amplification of the target plasmid and

weak amplification of the off-target plasmid (Fig 3; S1 Table).

The data collected from the first round of amplification experiments were used to build a

random forest regression model and predict the amplification potential of an additional 96

primers (S1 Table). Although a greater proportion of the primers utilized in the second experi-

mental round resulted in strong amplification of the target plasmid, the majority still per-

formed poorly (Fig 3), likely due to training the initial model with few high-performing

primers from the initial round which limited extrapolation to the high-amplification regime.

Training the random forest regression model with data from rounds 1 and 2 resulted in a

model that predicted primarily high-amplification primers.

The high variance in the amplification efficacy of primers selected by the final random for-

est model iteration makes accurate prediction of high-amplification primers difficult. Fortu-

nately, however, this model accurately predicts poor amplification (amplification scores < 10;

Fig 4). As the utility of this model is to exclude low-amplification primers from SWGA primer

sets, the swga2.0 pipeline uses the random forest regressor to filter low-amplification prim-

ers in Stage 3 (Primer efficacy filter). The random forest regressor excludes a high proportion

of low-performing primers and rarely excludes higher-performing primers as determined by

Fig 3. The accuracy of amplification efficacy predictions increased after three iterations of the active learning approach designed to identify

primer characteristics associated with effective priming. Amplification of the target plasmid was weak in the majority of the randomly selected

primers experimentally investigated in Round 1 (blue points represent the 204 primers evaluated). Target plasmid amplification was equally poor for

the primers selected for Round 2 experimentation (96 orange points) by the random forest regressor model trained on the data from Round 1. The

majority of primers selected for Round 3 experimentation (96 green points) by the updated random forest regressor model trained on the data from

Rounds 1 and 2 resulted in moderate and high amplification of the target plasmid. Points are adjusted along the x-axis so that they do not overlap.

https://doi.org/10.1371/journal.pcbi.1010137.g003
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testing the model predictions on out-of-sample data (Table 4). The minimum predicted ampli-

fication parameter (min_amp_pred, default threshold value = 5) can be modified to exclude

a greater proportion of poor-performing primers. Excluding greater numbers of poor-per-

forming primers will reduce the computational complexity of finding primer sets and reduce

the probability of experimentally evaluating poor primer sets.

Feature importance in the random forest regression model. Feature importance, com-

puted from the variance reduction at each split in each tree, identifies the impact of each vari-

able on primer performance predictions (Table 3). Features involving GC content are the most

important subset of features (27.9%) followed by binding affinities calculated from the

Fig 4. The final random forest regression model reliably predicts the amplification efficacy of individual primers. The amplification predicted for

Round 2 amplification was accurate only for low-performing primers (orange). Updating the model with Round 2 amplification data resulted in a

model that predicted highly effective primers (green). The amplification efficacy of the primers selected for Round 3 were highly variable despite similar

predictions. Nevertheless, the final random forest regression model did not select any poor performing primers. The model was not used to predict the

primers used in Round 1.

https://doi.org/10.1371/journal.pcbi.1010137.g004

Table 4. Poor performing primers are filtered out in Stage 3 of swga2.0. Higher threshold values in the random

forest regression model filter greater proportions of lower-amplification primers but few moderate or efficient primers.

Threshold parameter Total primers filtered High-amplification primers filtered

2 6.5% 0.04%

5 26.5% 1.6%

10 47.1% 3.8%

15 58.9% 4.4%

20 66.6% 5.4%

https://doi.org/10.1371/journal.pcbi.1010137.t004
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thermodynamic binding model (18.1%). The features involving GC-content and the thermo-

dynamic binding affinity features are in agreement, as expected, as these sets of features are

correlated. For example, primers with greater GC tend to have more negative DG�T values cal-

culated in the thermodynamic model [35].

Primer set search and scoring function

The optimal primer set scoring function selected uses five variables (freq_ratio,

mean_gap_ratio, coverage_ratio, on_gap_gini and off_gap_gini) within a

ridge regression framework (Table 2). The variables freq_ratio and mean_gap_ratio
are summary statistics previously found to correlate with SWGA success [17]. The

freq_ratio variable is a simple measure of binding site frequency between the on-target

and off-target genomes. The mean_gap_ratio variable measures the average distance in

base pairs between primer positions on both the forward and reverse strands where the com-

putation is indifferent to the strand on which a binding position lies. coverage_ratio is

computed by first identifying the number of binding sites on the opposite strand that are

within 70 kbp of an exact primer binding site (70 kbp is the maximum length of the synthe-

sized DNA by F29 [40]). Exponential amplification using F29 requires priming positions in

the opposite direction within 70 kbp of each other. The number of binding sites within 70 kbp

of each binding site on the opposite strand is then normalized by the total genome length as a

proxy for primer ‘coverage’. The coverage_ratio is the ratio of the coverage in the target

genome to the coverage in the background DNA, which is minimized in the ridge regression

model (negative regression coefficient value). Primer evenness is represented in the model for

each strand of the target and off-target genomes by on_gap_gini and off_gap_gini,

respectively, and is computed using the Gini index of distances between binding sites.

Computational costs are reduced more than ten-fold. The computational time needed

to build primer sets using swga2.0 is significantly lower than for the original swga1.0 pro-

gram (Table 1). Both programs use the same base framework to create files to store the catalog

of 6–12-mers found in the target and background genomes. In swga2.0, however, these files

are stored efficiently for future use and need not be re-created if additional primer sets are

desired. Using a 2013 MacBook Pro (2 GHz Intel Core i7 with 16 GB of memory;

max_sets = 5; max_primers = 200), the swga2.0 pipeline completes its primer set

design for P. melaninogenica andH. sapiens in 93 minutes, a process that requires more than

ten times as long using swga1.0 (Table 1). The increase in computational efficiency is the

result of multi-processing in many aspects of the pipeline and utilization of an efficient rather

than exhaustive search algorithm. Additionally, file formats like h5py allow for O(1) read

access to primer binding positions and data structures that cache primer set scores which elim-

inates unnecessary recalculations for future iterations. Lastly, swga2.0 uses an efficient

expression to calculate the exact Gini score and takes advantage of efficiencies in array compu-

tations in the Python library numpy.

Evaluation of primer sets to selectively amplify Prevotella melaninogenica
Prevotella melaninogenica is an important pathogen in cystic fibrosis patients that is difficult to

culture from human-derived samples [41, 42]. P. melaninogenica was chosen to evaluate the

improvements in the swga2.0 primer design pipeline as it was expected to be more challeng-

ing to selectively amplify for several reasons. For example, both the human genome and P. mela-
ninogenica have a GC-content of 41% while the GC-content in theM. tuberculosis genome is

65.6% [43, 44]. Due to the similarities between P. melaninogenica and the human genome, only

14 candidate primers passed the most restrictive filters in Stage 2 (min_fg_freq = 1/33,333;
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max_bg_freq = 1/500,000). By contrast, 114 primers passed the same set of filters forM.
tuberculosis (Table 5). The number and quality of primers retained in Stages 1–3 of the

swga2.0 pipeline is critical to building effective primer sets to selectively amplify a target

genome in Stage 4. We built three primer sets for P. melaninogenica from the 19 primers retained

using a less restrictive background DNA filter (Primer sets 1–3; min_fg_freq = 1/33,333 bp;

max_bg_freq = 1/333,333 bp) and three primer sets from the 48 primers retained using a

less restrictive target genome filter (Primer sets 4–6; min_fg_freq = 1/40,000 bp;

max_bg_freq = 1/500,000 bp; Table 5). The primer sets and their associated statistics are pre-

sented in S2 Table.

Although the sequence motif similarities between P. melaninogenica and the human

genome made primer set design more difficult, three of the six primer sets built by swga2.0
were highly effective at selectively amplifying P. melaninogenica from a sample dominated by

human DNA (99%) (S3 Table; https://doi.org/10.5061/dryad.3n5tb2rm2). By comparison,

40% of the primer sets designed to amplifyM. tuberculosis using the prior swga1.0 pipeline

performed much better than the unamplified controls [17]. High-throughput sequencing of

the amplification products from the three effective P. melaninogenica primer sets reached 1×
coverage across 25–64% the target genome with 50 Mbp sequencing effort (Fig 5). The most

effective primer set designed by swga1.0 in a prior study reached 1× coverage across only

27% of theM. tuberculosis with 50 Mbp sequencing effort [17]. Similarly, deeper sequencing of

the amplification products of the effective primer sets reached 10× coverage at 33–82% of the

the P. melaninogenica genome after 700 Mbp of sequencing effort, compared with just 0.2%

for the unamplified control (Fig 6). The most effectiveM. tuberculosis primers reached 10×
coverage at less than 30% of the target genome at similar sequencing effort [17].

Discussion

Analyses of populations of microbial genomes has the power to address many major outstand-

ing questions in evolution and pathogenesis. Obtaining populations of genome sequence data

has been aided by practical and cost-effective method advancements like Selective Whole

Genome Amplification (SWGA). However, developing and verifying an effective SWGA

primer set to selectively amplify a target genome from a heterogeneous sample has been both

computationally and experimentally challenging. Prior applications of SWGA required con-

siderable computational investment followed by experimental assessments of numerous

primer sets, of which only a few worked sufficiently well. The swga2.0 pipeline efficiently

identifies primer sets, of which half are highly effective. These improvements were achieved by

experimentally identifying characteristics of individual primers that result in effective amplifi-

cation and limit mispriming and by using efficient data structures and search algorithms to

Table 5. P. melaninogenica is a more difficult genome to design primers for than M. tuberculosis. Searching the two genomes with the same parameters during Stages 2

and 3 produces much larger lists of candidate primers forM. tuberculosis than for P. melaninogenica. Values are the number of candidate primers remaining after Stage 3

(parenthetical numbers are the candidate primers remaining after Stage 2).

Mean Target Frequency Mean Background Frequency Prevotella melaninogenica Mycobacterium tuberculosis
< 1/33.3 kbp > 1/500.0 kbp 14 (84) 114 (676)

< 1/33.3 kbp > 1/333.3 kbp 19 (143) 162 (884)

< 1/33.3 kbp > 1/300.0 kbp 22 (174) 169 (939)

< 1/40.0 kbp > 1/500.0 kbp 48 (217) 168 (920)

< 1/40.0 kbp > 1/333.3 kbp 93 (396) 250 (1238)

< 1/40.0 kbp > 1/300.0 kbp 103 (448) 260 (1308)

https://doi.org/10.1371/journal.pcbi.1010137.t005
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identify primer set characteristics that are correlated with strong and even amplification. The

resulting swga2.0 program reduces both the computational and experimental investment

necessary to design and subsequently utilize protocols to effectively transform a complex sam-

ple containing mostly DNA from nontarget species to a sample dominated by the genomic

DNA of the target species.

Computational identification of SWGA primer sets is a highly complex optimization prob-

lem involving scalability challenges and limited, noisy prior data. The previously published

swga1.0 program identified over five million candidate primers that needed to be filtered

into a reasonable working catalog prior to designing primer sets to selectively amplifyM.
tuberculosis. The computational effort needed to assess each primer set combination requires

data structures that efficiently store the information needed for evaluation without repeated

searches across multiple genomes for potential binding locations. Further, identifying search

and evaluation strategies to identify primer sets demands combinatorial optimization tech-

niques that could be aided through analyses of prior SWGA data. However, learning from

prior data has its own challenges due to both limited data availability and experimental noise

associated with short-read sequencing data. Despite these challenges, the swga2.0 program

Fig 5. Selective amplification of P. melanogenica using six swga2.0-designed primer sets (Prev01-Prev06) identified three primer sets (Prev03,

Prev06, and Prev04) that can amplify the target genome but not the background DNA. Red and yellow lines indicate the percent of the target

genome covered at 1× depth from sequencing each of the two replicate amplification experiments. The black dashed lines represent sequencing

coverage of the unamplified samples. While five of the six sets resulted in greater sequencing coverage of the target genome compared to unamplified

controls, two were only marginally better. By contrast, sequencing coverage of the amplicons from three of the sets was substantially better than the

coverage of the unamplified samples.

https://doi.org/10.1371/journal.pcbi.1010137.g005

PLOS COMPUTATIONAL BIOLOGY Selective whole genome amplification protocol design pipeline

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010137 April 17, 2023 14 / 20

https://doi.org/10.1371/journal.pcbi.1010137.g005
https://doi.org/10.1371/journal.pcbi.1010137


provides the necessary pipeline to rapidly identify primer sets that have a high probability of

selectively amplifying any target genome from any background DNA sample [45].

The swga2.0 program offers a number of improvements including dramatically reduced

computation time due to the implementation of parallelization, caching, branch-and-bound

searching, and efficient data storage formats (Table 1). Each of the four stages of the computa-

tional pipeline improves speed and accuracy. For example, the jellyfish program [31]

used in k-mer preprocessing (Stage 1) is much faster than the DSK program [46] used in

swga1.0; novel filters improve primer identification and prevent self-dimerization in filter-

ing candidate primers (Stage 2); a novel machine-learning model for scoring individual prim-

ers based on amplification efficacy, which includes thermodynamically-principled binding

affinities, improves primer efficacy estimation and reduces the candidate primer list (Stage 3);

and the implementation of branch-and-bound techniques with randomized starting locations,

drop-out techniques, and additional primer set evaluation functions learned from prior data

improve both speed and accuracy of primer set searches and evaluation (Stage 4). Most impor-

tantly, optimization is no longer done by hand or via exhaustive search [12, 17].

Amplification from 6 to 12 bp primers is prone to mispriming. The random forest model

presented here, built on iteratively collected experimental data, accurately identifies low-

Fig 6. Deeper sequencing of the three successful primer sets—Prev03, Prev06, and Prev04—confirms the efficient and even selective amplification

of P. melaninogenica. The solid colored lines indicate individual replicates and the green dashed line represents the pooled total. Each of the three

primer sets yield dramatic increases in sequencing depth compared to the unamplified samples (black dashed line). Each primer set reached 10×
coverage across 23–74% of the target genome, while the unamplified samples reached 10× coverage at<1% of the target genome, with 500 Mbp of

sequencing effort.

https://doi.org/10.1371/journal.pcbi.1010137.g006
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amplification primers with very few false positive identifications. Applying this filter to the

candidate primers from swga1.0 identifies more than 85% as having low-amplification

potential. Further, all of ten top-rated primer sets designed by swga1.0 are made exclusively

of primers with low-amplification potential. The random forest model is generalizable to all

SWGA projects as it identifies amplification efficacy from primer sequence properties such as

GC content and thermodynamically-principled binding affinities [35, 36]. Thus, we expect

that this model can be used to predict effective primers when using alternative polymerases

such as EquiPhi29 or Bst. However, empirical validation of the primer efficacy model using

alternative polymerases would be prudent. Regardless, this novel model allows researchers to

remove low-amplification primers from the primer set search and evaluation (Stage 4), result-

ing in a considerable reduction in computational time complexity and reducing the number of

experimentally-tested primer sets that perform poorly.

The primer sets designed by swga2.0 to selectively amplify P. melaninogenica from a

sample dominated by human DNA were highly successful. Out of the six primer sets tested,

three sets amplified the target genome significantly more than the negative controls. Similar to

the conclusion from prior primer set design algorithms [12, 17], the primer sets with lower

mean binding distance in the target genome (Prev03—1/4.1 kbp, Prev04—1/2.0 kbp, Prev06—

1/4.9 kbp) generally outperformed the other sets (Prev01—1/7.4 kbp, Prev02—1/5.0 kbp,

Prev05—1/2.8 kbp). However, all of the sets have similar mean binding distances suggesting

that other primer or set attributes that have not been identified likely account for much of the

observed variation in amplification success (S2 Table). Nevertheless, it is expected that approx-

imately half of all designed sets are likely to give strong and even selective amplification results

such that few sets need to be experimentally evaluated by researchers. Also similar to prior

results [20], protocols developed with swga2.0 are expected to retain the ability to investigate

within-host microbial diversity using SWGA enrichment [45], without introducing errors, as

the SWGA biochemistry remains identical (S4 Table). These advances reduce the up-front

cost of developing the SWGA primer sets necessary for population genomic studies.

The data and analyses from this and prior SWGA projects suggest the following as a general

primer identification and primer set design workflow for future projects:

• Stage 2 (Candidate primer filtering): Set the min_fg_freq parameter as high as possible,

and the mix_bg_freq parameter as low as possible but not below 3 × 106, while retaining

approximately 100 primers.

• Stage 3 (Primer efficacy filter): Set the min_amp_pred to 10 or higher to eliminate low-

efficiency primers. If too few candidate primers are retained (< 20), increase the number of

primers that pass Stage 2 filtration by reducing min_fg_freq as opposed to reducing the

min_amp_pred parameter value.

• Stage 4 (Primer set search and evaluation): Select 5–10 primer sets with the highest scores

for experimental evaluation. However, it is not recommended to choose the top 5–10 sets as

they often differ by only one or two primers. It is prudent to choose three of the top-scoring

sets and several others with high scores that share few primers with the top-scoring sets.

Experimentally amplify the target genome from a mixed sample (� 1% target DNA), bar-

code amplicons from each primer set separately, then pool and sequence at low depth to

assess performance. Sequence amplicons from high-performing sets to ensure quality and

evenness.

Best practices are likely to evolve as SWGA is used more frequently. To facilitate this, the

project source repository web page contains on a tutorial on the program’s operation and
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more extensive documentation on each parameter and module as well as a link to a user mail-

ing list (https://github.com/songlab-cal/swga2).

Dryad DOI

https://doi.org/10.5061/dryad.3n5tb2rm2.
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5. Pain A, Böhme U, Berry AE, Mungall K, Finn RD, Jackson AP, et al. The genome of the simian and

human malaria parasite Plasmodium knowlesi. Nature. 2008; 455:799–803. https://doi.org/10.1038/

nature07306 PMID: 18843368

6. Mardis ER. Next-Generation DNA Sequencing Methods. Annual Review of Genomics and Human

Genetics. 2008; 9(1):387–402. https://doi.org/10.1146/annurev.genom.9.081307.164359 PMID:

18576944

7. Schmeisser C, Steele H, Streit WR. Metagenomics, biotechnology with non-culturable microbes.

Applied Microbiology and Biotechnology. 2007; 75(5):955–962. https://doi.org/10.1007/s00253-007-

0945-5 PMID: 17396253

8. Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P. A Bioinformatician’s Guide to Metage-

nomics. Microbiology and Molecular Biology Reviews. 2008; 72(4):557. https://doi.org/10.1128/MMBR.

00009-08 PMID: 19052320

9. Eisen JA. Environmental Shotgun Sequencing: Its Potential and Challenges for Studying the Hidden

World of Microbes. PLOS Biology. 2007; 5(3):e82. https://doi.org/10.1371/journal.pbio.0050082 PMID:

17355177

10. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, et al. Target-enrichment strate-

gies for next-generation sequencing. Nature Methods. 2010; 7:111–118. https://doi.org/10.1038/

nmeth0610-479c PMID: 20111037

11. Blainey PC. The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiology

Reviews. 2013; 37(3):407–427. https://doi.org/10.1111/1574-6976.12015 PMID: 23298390

12. Leichty AR, Brisson D. Selective Whole Genome Amplification for Resequencing Target Microbial Spe-

cies from Complex Natural Samples. Genetics. 2014; 198(2):473–481. https://doi.org/10.1534/

genetics.114.165498 PMID: 25096321

13. Rutledge GG, Ariani CV. Finding the needle in the haystack. Nature Reviews Microbiology. 2017;

15:136. https://doi.org/10.1038/nrmicro.2017.7 PMID: 28190880

14. Dean FB, Nelson JR, Giesler TL, Lasken RS. Rapid Amplification of Plasmid and Phage DNA Using

Phi29 DNA Polymerase and Multiply-Primed Rolling Circle Amplification. 2001; 11(6):1095–1099.

15. Pinard R, de Winter A, Sarkis GJ, Gerstein MB, Tartaro KR, Plant RN, et al. Assessment of whole

genome amplification-induced bias through high-throughput, massively parallel whole genome

sequencing. BMC Genomics. 2006; 7(1):216. https://doi.org/10.1186/1471-2164-7-216 PMID:

16928277

16. Banér J, Mendel-Hartvig M, Nilsson M, Landegren U. Signal amplification of padlock probes by rolling

circle replication. Nucleic Acids Research. 1998; 26(22):5073–5078. https://doi.org/10.1093/nar/26.22.

5073 PMID: 9801302

17. Clarke EL, Sundararaman SA, Seifert SN, Bushman FD, Hahn BH, Brisson D. swga: a primer design

toolkit for selective whole genome amplification. Bioinformatics. 2017; 33(14):2071–2077. https://doi.

org/10.1093/bioinformatics/btx118 PMID: 28334194

18. Sundararaman SA, Plenderleith LJ, Liu W, Loy DE, Learn GH, Li Y, et al. Genomes of cryptic chimpan-

zee Plasmodium species reveal key evolutionary events leading to human malaria. Nature Communica-

tions. 2016; 7(7):11078. https://doi.org/10.1038/ncomms11078 PMID: 27002652

19. Guggisberg AM, Sundararaman SA, Lanaspa M, Moraleda C, González R, Mayor A, et al. Whole-
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