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The modifiable areal unit problem (MAUP) is a cause of statistical and visual bias when aggregating data ac-
cording to spatial units, particularly when spatial units may be changed arbitrarily. The MAUP is a concern 
in vector-borne disease research when entomological metrics gathered from point-level sampling data are 
related to epidemiological data aggregated to administrative units like counties or ZIP Codes. Here, we as-
sess the statistical impact of the MAUP when calculating correlations between randomly aggregated cases 
of anaplasmosis in New York State during 2017 and a geostatistical layer of an entomological risk index for 
Anaplasma phagocytophilum in blacklegged ticks (Ixodes scapularis Say, Acari: Ixodidae) collected during the 
fall of 2017. Correlations were also calculated using various administrative boundaries for comparison. We also 
demonstrate the impact of the MAUP on data visualization using choropleth maps and offer pycnophylactic 
interpolation as an alternative. Polygon simulations indicate that increasing the number of polygons decreases 
correlation coefficients and their variability. Correlation coefficients calculated using ZIP Code tabulation area 
and Census tract polygons were beyond 4 standard deviations from the mean of the simulated correlation 
coefficients. These results indicate that using smaller polygons may not best incorporate the geographical con-
text of the tick-borne disease system, despite the tendency of researchers to strive for more granular spatial 
data and associations.
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Introduction

The modifiable areal unit problem (MAUP) is a source of bias that 
arises when data are aggregated into areal units, whereby changing 
the boundaries of the areal unit may produce different results in 
analysis or visualization (Buzzelli 2020). First named in 1979, 
the MAUP is considered a special case of the ecological fallacy; a 

problem in statistical inference where relationships estimated from 
group-level data differ from relationships estimated from individual-
level data (Robinson 1950, Openshaw and Taylor 1979, Openshaw 
1984, Kousser 2001). The first papers to explore the ecological fal-
lacy give examples that can also be categorized as examples of the 
MAUP (Gehlke and Biehl 1934, Robinson 1950). Specifically, these 
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papers highlight how correlation coefficients vary when different 
areal Census units are used for aggregation, however, the potential 
for bias from the MAUP is not limited to the analysis of Census data. 
The field of geography and its subdisciplines are generally concerned 
with the MAUP, including spatial epidemiology (Nakaya 2000, Swift 
et al. 2014), human geography (Sémécurbe et al. 2016, Nielsen and 
Hennerdal 2017), physical geography (Dark and Bram 2007), and 
ecology (Moat et al. 2018, Ju et al. 2021).

The study of tick-borne diseases (TBDs) often falls under the 
scope of spatial epidemiology, ecology, and/or geography, and 
may be sensitive to bias from the MAUP (Kitron 1998, Jackson 
et al. 2006, Eisen et al. 2010, Wilson 2010). Both TBD cases and 
vector-related data are routinely aggregated to administrative areal 
units for convenience (Jackson et al. 2006) either for visualiza-
tion, analysis, or both. Common areal units used for aggregation 
in the published literature include ZIP Codes/ZIP Code Tabulation 
Areas (ZCTAs) (Eisen et al. 2006, O’Connor et al. 2021, Russell 
et al. 2021), towns (Diuk-Wasser et al. 2014, Walter et al. 2016, 
Fernández-Ruiz et al. 2023), counties (Eisen and Eisen 2008, Porter 
et al. 2019, Tran et al. 2020, 2021), and states (Rosenberg et al. 
2018). Aggregating point-level TBD case data to areal units can be a 
useful public health tool to display and communicate risk for TBD 
infection. However, it should not discourage individual protective 
measures for TBD prevention based on the boundaries in a choro-
pleth map, as the boundaries may not accurately reflect risk of TBD 
infection. Similarly, the risk of acquiring a TBD may be estimated by 
calculating ecological metrics that incorporate pathogen prevalence 
and density of a tick population, often referred to as entomological 
risk index (ERI) (Mather et al. 1996). Other studies may assess en-
tomological risk by examining either pathogen prevalence or tick 
density (Eisen et al. 2006, Khatchikian et al. 2012, Tran et al. 2020, 
2021). Like case counts and aggregations, ERI, and other metrics can 
also be used for visualization and analysis, again introducing bias 
from the MAUP (Eisen et al. 2006, Russell et al. 2021, Prusinski et 
al. 2023). When ecological metrics are compared to observed cases 
of a TBD at matching areal units or nearby locations, bias from the 
MAUP extends to the results of the observed relationship between 
the 2 variables.

The impact of the MAUP on bivariate (Openshaw and Taylor 
1979) and multivariate statistics (Fotheringham and Wong 1991, 
Amrhein 1995) is generally understood, yet, analysis of the impact 
of the MAUP in geographic sub-fields remains important. Studies 
in the published literature examining the impact of the MAUP on 
health data are plentiful (Nakaya 2000, Cockings and Martin 2005, 
Schuurman et al. 2007, Swift et al. 2008, Parenteau and Sawada 
2011, Burden and Steel 2016, Roquette et al. 2018, Lee et al. 2020), 
however, few TBD studies directly mention bias from the MAUP as 
a concern (Jackson et al. 2006, Tran and Waller 2015). The TBD 
risk system presents a unique case where the MAUP should be taken 
into consideration, as risk for acquiring a TBD exists at the inter-
section of the spatiality of human behaviors and host–tick ecology. 
The blacklegged tick (Ixodes scapularis Say, Acari: Ixodidae) is 
the tick vector responsible for the spread of multiple pathogens 
in New York State (NYS) within the United States (Prusinski et 
al. 2014, Tokarz et al. 2017, Wroblewski et al. 2017, Yuan et al. 
2020, Keesing et al. 2021), and its spatial distribution is partially 
owed to the movement of vertebrate hosts, including white-tailed 
deer (Odocoileus virginianus Zimmerman, Artiodactyla: Cervidae) 
(Watts et al. 2018). The movement potential of vertebrate hosts is 
often described by forest patch metrics including connectivity, patch 
area, and wildlife–urban interface that may be used to assess the 
risk of acquiring a TBD (Brownstein, Skelly, et al. 2005, McClure 

and Diuk-Wasser 2018, VanAcker et al. 2019, Diuk-Wasser et al. 
2021). Meanwhile, the process of human–tick interaction addition-
ally incorporates human behavioral traits which may be related to 
geographic location. Examples of spatially varying human behav-
ioral traits include concern about contracting Lyme disease (Kim et 
al. 2020), understanding proper methods to prevent Lyme disease 
infection (Gould et al. 2008), and clinical provider knowledge (Hill 
and Holmes 2015).

Geographers tend to agree that the MAUP is not “fixable” but 
can be coped with (Buzzelli 2020). One such method to cope with the 
MAUP is to select areal units that best represent the natural system 
the investigator wishes to assess (Jackson et al. 2006), though the in-
tersection of ecology and human behavior makes properly selecting 
areal units difficult. Many studies will incorporate spatial features 
relevant to tick ecology (Brownstein, Skelly, et al. 2005, McClure 
and Diuk-Wasser 2018, VanAcker et al. 2019, Diuk-Wasser et al. 
2021), yet, this method does not necessarily represent the process 
by which humans interact with infected I. scapularis (McClure and 
Diuk-Wasser 2018). It follows that the selection of areal units for ag-
gregation should incorporate both systems related to TBD risk: the 
dynamics of the spatial distribution of ticks, associated pathogens, 
and human behaviors related to risk of acquiring TBDs, however, 
areal units that properly incorporate both sets of processes may not 
exist. To our knowledge, Jackson et al. (2006) is the only study to 
purposefully assess how selecting areal units that best match the 
TBD system can impact statistical output. Jackson et al. (2006) 
examined the impact of different selected spatial units on the ex-
planatory power of a multivariate model relating the incidence of 
Lyme disease to land-cover metrics including percent forest and her-
baceous cover, and an edge metric quantifying forest and herbaceous 
adjacency. Polygons were aggregated as either 10-km2 grid cells, 
36-km2 grid cells, or were delineated according to major roadways 
as an attempt to better approach the natural process of vertebrate 
host movement related to forest patch connectivity. Their results in-
dicated that different polygon aggregation schemes exhibited similar 
rate ratios for all independent variables in their multivariate model. 
However, their results indicated that using major roads as polygon 
delineations increased the explanatory power of their models, po-
tentially pointing to the importance of selecting polygons that best 
approximate the natural system in question.

The analysis conducted by Jackson et al. (2006) provided evi-
dence that the MAUP is a concern when analyzing TBD data but 
did not directly examine the MAUP from the broader geographic 
contexts of place and scale. Place can be defined as a meaningful 
segment of geographical space, and can apply to both social spaces 
and physical landscapes (Cresswell 2008). The place may also be 
described under the context of “sense of place,” where individuals 
are aware of the significant impact places have on them (Tuan 1990). 
In this way, the place becomes an important consideration when 
selecting areal units, as administrative units (ZIP Codes/ZCTAs, 
towns, counties, and states) may or may not reflect a sense of place 
specific to knowledge, attitudes, or behaviors surrounding TBDs or 
the landscapes relevant to tick ecology. Similarly, the spatial scale 
should receive special consideration when selecting areal units, as 
different units reflect different processes in TBD and tick ecology 
systems. For example, peridomestic exposure to ticks primarily 
occurs at local scales, while the impact of climate and climate change 
operates at large geographic scales (Diuk-Wasser et al. 2021).

Place and scale can be reasonably approximated by 2 biases 
arising from the MAUP termed “the scale effect” and “the zone ef-
fect.” These effects may result in changes to statistical output as the 
size or shape of polygons are changed, respectively (Buzzelli 2020). 
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These biases have been analyzed since the conceptualization of the 
MAUP (Openshaw and Taylor 1979). Openshaw and Taylor (1979) 
first addressed these unique biases by repeatedly simulating sets 
of polygons of varying sizes and testing the correlation between 2 
variables under these aggregations. Here, we employ a similar tech-
nique by assessing the impact of the scale and zone effects of the 
MAUP on correlation statistics for anaplasmosis, a TBD locally en-
demic and considered reportable under public health law in NYS 
(O’Connor et al. 2021, Russell et al. 2021). Anaplasmosis is caused 
by the bacterium Anaplasma phagocytophilum (Rickettsiales: 
Anaplasmataceae) (Bakken et al. 1994), particularly the Ap-ha gen-
otype (Massung et al. 2002, 2005), and is transmitted to humans via 
the bite of an infected I. scapularis tick (Chen et al. 1994). We also 
demonstrate the impact the MAUP has on visualizing anaplasmosis 
risk using previously reported, and publicly available case data 
aggregated to county polygons (New York State Department 
of Health 2017). Specifically, we demonstrate the shortcomings 
of choropleth maps and instead offer the alternative of using a 
pycnophylactic interpolation (Tobler 1979). To our knowledge, our 
study is the first to consider the MAUP’s impact of visualizing risk 
and directly assess the impact of the scale and zoning on correlation 
statistics between cases of a TBD and entomological risk measures 
derived from field-collected tick specimens.

Methods

Anaplasmosis Case Criteria and Geocoding
Anaplasmosis is a reportable disease under the New York State 
Sanitary Code (10NYCRR 2.10, 2.14). Cases of anaplasmosis 
occurring in 2017 were gathered from the New York State 
Department of Health Communicable Disease Electronic 
Surveillance System (CDESS). Cases were selected for inclusion if 
they were considered “confirmed” or “probable” by the Council of 
State and Territorial Epidemiologists (2008) case definition (Council 
of State and Territorial Epidemiologists 2008). The use of con-
firmed and probable case definitions for anaplasmosis case selec-
tion criteria has been described previously (O’Connor et al. 2021). 
Variables assessed from anaplasmosis case records were limited to 
the address and geographic coordinates of residence. In the event 
that a case record was missing geographic coordinates for residence, 
address information was geocoded in ArcMap v. 10.8 (ESRI 2019) 
using the pre-installed military grid reference system lookup table. 
Cases of anaplasmosis within the 5 boroughs of New York City were 
excluded from the analysis.

Tick Sampling and Pathogen Testing
Host-seeking ticks were sampled during October and November of 
2017 via standardized flagging surveys conducted on publicly acces-
sible forested lands as described previously (Prusinski et al. 2014). 
Briefly, sampling sites were selected according to the presence of hab-
itat suitable for adult and nymphal I. scapularis, particularly sites 
with northern hardwood trees, leaf-litter, and low-lying vegetation. 
All sampling sites were located on publicly owned land. The GPS co-
ordinates of each collection site location were recorded at the initial 
site visit. Field-collected ticks were immediately placed in 99.5% eth-
anol and stored on cold packs in an insulated cooler until returned 
to the laboratory. Specimens were stored at 4°C until sorted by de-
velopmental stage on a chill table (Model 1431, BioQuip, Gardena, 
CA). Ticks were then identified under a dissecting microscope (Model 
SMZ1000, Nikon, Tokyo, Japan) to species using a dichotomous key 
(Keirans and Clifford 1978, Keirans et al. 1996), and I. scapularis 

were placed into 1.5 ml Eppendorf tubes containing 99.5% ethanol 
and stored at −20°C until nucleic acid extraction.

A maximum of 50 individual adult I. scapularis per collection 
site underwent automated total genomic DNA extraction via Qiagen 
QIAcube HT using the QIAamp 96 kit (Qiagen USA, Germantown, 
MD) according to manufacturer protocols. Extracted DNA was 
then tested for the presence of (target gene) A. phagocytophilum 
(msp2), Babesia microti (Piroplasmida: Babesiidae) (18s rDNA), 
B. burgdorferi (16S rDNA), and B. miyamotoi (Spirochaetales: 
Spirochaetaceae) (16S rDNA) using a quadplex real-time PCR 
assay as previously described (Piedmonte et al. 2018). All samples 
testing positive for A. phagocytophilum by quadplex PCR were 
further tested using a custom Taqman® SNP genotyping PCR 
assay to differentiate between the Ap-ha and Ap-V1 variants of A. 
phagocytophilum as originally described by Krakowetz et al. (2014), 
and with modifications described previously (Prusinski et al. 2023).

Entomological Risk Index Calculation and 
Geostatistical Modeling
We estimated the risk of exposure to Ap-ha A. phagocytophilum by 
calculating an entomologic risk index (ERI) for each site sampled 
(Mather et al. 1996, Prusinski et al. 2023), as the product of tick den-
sity (number of adult I. scapularis collected per m2) and the propor-
tion of I. scapularis testing positive for Ap-ha A. phagocytophilum. 
If a sampling site was visited multiple times during the autumn of 
2017, the corresponding ERI values were averaged. All calculations 
were performed with R v 4.1.0.

An ordinary kriging geostatistical model was built to interpo-
late site-level ERI values to achieve a continuous surface of ERI 
across NYS for use in statistical analysis. The ordinary kriging 
interpolation method is used to make general ERI predictions 
without incorporating other predictive variables (Matheron 
1971, Cressie 1986). Variogram models were built with the 
“automap” package in R (Hiemstra et al. 2009). Ordinary kriging 
interpolations were then performed with the “gstat” package in 
R (Pebesma 2004).

Cartography, Data Visualization, and Map 
Comparisons
We compared the differences in visual representation of anaplasmosis 
incidence between choropleth maps and smoothed pycnophylactic 
interpolation. Pycnophylactic interpolation generates a continuous 
surface from attributes aggregated to polygons for the purpose of 
smoothing abrupt changes in attribute value at polygon boundaries 
(Tobler 1979). Pycnophylactic interpolation was performed using 
the “predicts” package in R (Hijmans 2023) and anaplasmosis in-
cidence was gathered from publicly available data (New York State 
Department of Health 2017). All maps and charts shown were 
created with the “tmap” and “ggplot2” R packages, respectively 
(Wickham 2016, Tennekes 2018).

Polygon Simulation
Voronoi polygons were randomly simulated for reaggregation using 
2 procedures. The first procedure randomly generated uniformly dis-
tributed spatial points using the “sp” package in R (Pebesma and 
Bivand 2005, Bivand et al. 2013). These sample points were then fed 
into the “voronoi” function in the “dismo” package in R to generate 
the Voronoi tessellations (Hijmans et al. 2021). The second proce-
dure used a population-weighted sampling scheme to generate spa-
tial points. The formula for population-weighted sampling is shown 
in Equation 1.
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P(x) =
pi∑n

i = 1 pi (1)

where pi is the population within 30-arc-second grid cell i and 
P(x) is the probability of placing a spatial point grid cell i. Grid cells 
were selected without replacement. Probabilities for weighted sam-
pling were calculated from the Gridded Population of the World, 
Version 4 (GPWv4): Population Count, Revision 11 dataset at 
30-arc-second resolution (Center For International Earth Science 
Information Network-CIESIN-Columbia University 2018). Sample 
points generated with this procedure were then used to generate 
Voronoi tessellations under the same process as the randomly 
selected sample points. Polygons generated from this scheme will 
henceforth be referred to as “population-weighted” polygons. Each 
procedure of generating Voronoi polygons was repeated from 30 to 
3,000 polygons, 10 times each, creating polygons with similar av-
erage sizes to commonly used administrative units. Administrative 
units included: NYS counties, congressional districts, upper and 
lower state legislative districts, county subdivisions, ZCTAs, and 
NYS Department of Environmental Conservation wildlife manage-
ment areas (WMAs). In all, 29,710 sets of polygons were generated 
for the random sampling and population-weighted sampling 
procedures, for a total of 59,420 sets of polygons.

After each set of Voronoi polygons was created, the total number 
of reported anaplasmosis cases within the generated polygons was 
calculated with the “sf” package in R (Pebesma 2018). Population-
at-risk within each generated Voronoi polygon was calculated 
by extracting the GPWv4 dataset within each polygon using the 
“exactextractr” package in R (Baston 2022). The “exactextractr” 
package functions by summing the raster value within each cell 
that falls within the overlaid polygons. This method corrects for 
polygon edges that intersect raster cells by totaling only the por-
tion of the cell within the polygon. The total number of reported 
anaplasmosis cases within each polygon was then divided by the 
resulting population-at-risk to generate anaplasmosis incidence per 
100,000 individuals. In addition, the predicted values of Ap-ha ERI 
from ordinary kriging were averaged across the Voronoi polygons 
with each new simulated set.

Statistical Analysis
Spearman’s ρ correlation between anaplasmosis incidence and ordi-
nary kriged Ap-ha ERI was assessed for each set of polygons for a 
total of 59,420 correlation coefficients. Correlation coefficients were 
compared to those generated from commonly used administrative 
units. P-values generated from Spearman’s ρ were adjusted via the 
Bonferroni–Holm adjustment due to concerns of multiple testing 
(Holm 1979).

Linear models were used to assess the impact of the scale effect 
by comparing the relationship between the number of polygons used 
for aggregation and to resulting correlation coefficients. The zone 
effect was assessed by calculating the variance of ρ values within the 
same number of simulated polygons. Linear models were used to 
compare the resulting variance to the number of polygons simulated 
to determine if the zone effect varies across polygon scales.

Results

Anaplasmosis Cases
A total of 1,112 confirmed and probable cases of anaplasmosis 
were gathered from CDESS. Of the 1,112 cases, 1,072 (96.40%) 
contained coordinate information and 39 (3.51%) were success-
fully geocoded to coordinates. One case (0.09%) did not contain 

coordinate information or address information for geocoding and 
was excluded from further analysis. A map containing the point-
locations of anaplasmosis cases randomly jittered ± 0.05°C lat-
itude and longitude is shown in Fig. 1. A previous analysis of 
these data aggregated to ZCTAs indicated these data are spatially 
autocorrelated (Russell et al. 2021). Figure 2 provides examples of 
the MAUP on choropleth maps of anaplasmosis incidence. A choro-
pleth map of anaplasmosis incidence aggregated to NYS counties is 
shown alongside a pycnophylactic interpolation (Fig. 3).

Tick Sampling, Pathogen Testing and Geostatistical 
Modeling
The results of host-seeking adult I. scapularis sampling and PCR 
testing are shown in Table 1. Entomological risk index of Ap-ha 
aggregated to site-level is shown in Fig. 4. Moran’s I (I = 0.2207, 
P < 0.0001) and variogram modeling indicated that site-level ERI 
was spatially autocorrelated (Supplementary Figs. S1 and S2). 
Ordinary kriging predictions of Ap-ha ERI obtained from variogram 
models are shown in Fig. 5.

Polygon Simulation and Statistical Analysis
Anaplasmosis incidence and ordinary kriged Ap-ha ERI were suc-
cessfully reaggregated to 59,420 unique sets of randomly generated 
Voronoi polygons. Anaplasmosis incidence and ordinary kriged 
Ap-ha ERI were statistically significantly correlated in 29,694 
(99.95%) sets of randomly generated polygons and 6,414 (21.59%) 
sets of polygons generated using the population-weighted sampling 
method. Correlation coefficients obtained using ordinary kriged 
Ap-ha ERI ranged from 0.204 to 0.780 using randomly generated 
polygons and from −0.180 to 0.614 for polygons generated using 
population-weighted sampling. Correlation coefficients calculated 
from simulated polygon aggregations and true polygon border 
aggregations are shown in Fig. 6.

Linear regression models built using randomly generated 
polygons indicate a negative relationship between the number of 
polygons used for aggregation and the resulting correlation coef-
ficient (β = −4.754 × 10−5, P < 0.0001). Linear models built using 
polygons generated using the population-weighted sampling 
scheme also indicated a negative relationship between the number 
of polygons used and correlation coefficients (β = −3.076 × 10−5, 
P < .0001). Results of the regression models used to estimate the im-
pact of the scale effect are shown in Table 2.

Linear regression models assessing the relationship between the 
variance of correlation coefficients and the number of polygons 
generated from random sampling indicated a negative slope 
(β  = −5.902 × 10−7, P < 0.0001). The relationship between the 
variance of correlation coefficients and the number of polygons 
generated from population-weighted sampling was also negative 
(β  = −1.710 × 10−6, P < 0.0001). Results of the regression models 
used to estimate the impact of the zone effect are shown in Table 3.

Discussion

Our study is the first to use repeated polygon simulation to assess the 
impact of the MAUP on visualizing TBD risk and associative statis-
tics between cases of TBD and entomological risk indices. Our results 
demonstrate that special attention should be given to the selection 
of areal units as they pertain to spatial scale and/or epidemiological 
and ecological phenomenon. This result is demonstrated visually in 
Fig. 2, as the scale used by choropleth risk maps can misrepresent the 
locally specific risk of acquiring a TBD. Specifically, Fig. 2 shows that 
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using the same underlying data for creating a choropleth map can ar-
bitrarily change the areas deemed as “risky.” Additionally, choropleth 
risk maps using large administrative units can fail to approximate 
the underlying system causing changes in risk. Figure 3 demonstrates 
a reduction in the frequency of anaplasmosis cases demarcated at 
the boundary of the Adirondack Park. The Adirondack Park is a 
nearly 1 million hectare land area with elevations ranging from 30 
to 1,600 m containing mixed deciduous–coniferous forest (Glennon 
and Porter 2005). ERI has generally been low from targeted drag 
and flag surveys within the Adirondack Park, categorizing this area 
as low risk for acquiring a TBD (Khatchikian et al. 2012). The dif-
ference in ecology in the Adirondack Park and its historically low 
ERI should necessitate incorporating this boundary for risk visual-
ization. However, the use of county-level data aggregation prevails 
out of simplicity. Figure 3 brings forth the use of pycnophylactic in-
terpolation as a feasible alternative to address this issue. Despite only 
having access to county-level data, the pycnophylactic interpolation 
depicted in Fig. 3 demonstrates that the smoothing can potentially 
account for changes brought on by features other than the adminis-
trative polygons used in a choropleth map. The pycnophylactic in-
terpolation results in a gradual decrease in TBD risk from outside 
the Adirondack Park to within the park, whereas the county-level 
choropleth map indicates an instantaneous demarcation of risk only 
at county boundaries.

Apart from visualizing risk, much of TBD research aims to as-
sess the associations between TBD incidence and entomological risk 
factors over varying spatial scales (Diuk-Wasser et al. 2021), where 
results are often attributed to different etiological pathways or phe-
nomenon across these scales. As described by Diuk-Wasser et al. 
(2021), such pathways include: B. burgdorferi genetics, interaction 
with the wildlife–urban interface, peridomestic exposure, and travel-
related exposure. However, it is important to note that changes 

in point estimates from statistical tests will inherently vary when 
switching between scales, regardless of the change in disease etiology 
or ecological process. The phenomenon of changing statistical point 
estimates due to the scale and zone effects of the MAUP illuminate 
the potential for improper TBD risk assessments and etiologies over 
varying spatial scales.

The use of polygon simulation to assess the MAUP’s impact on 
statistical metrics is not novel and the distribution of correlation 
coefficients using the randomly generated polygons corroborates 
previous research (Openshaw and Taylor 1979). Particularly, corre-
lation coefficients and their variance are higher when fewer random 
polygons are used, demonstrating the impact of the scale effect (Fig. 
6). This result was originally described by Clark and Avery (1976), 
and can be further understood when examining the variance of the 
kriged Ap-ha ERI and the logged variance of anaplasmosis cases, 
population at risk, and incidence per 100,000 (Fig. 7). Among the 
polygons generated by random sampling, the variance of kriged 
Ap-ha ERI exhibits minimal change as the number of polygons 
change, while the logged variance of incidence per 100,000 
decreases with the number of polygons. The reduction in variance 
when using fewer polygons is caused by a smoothing effect, and 
results in increasing correlation coefficients (Clark and Avery 1976, 
Fotheringham and Wong 1991). Openshaw and Taylor (1979) found 
the same effect when aggregations using more polygons had lower 
correlation coefficients. Similarly, Fotheringham and Wong (1991) 
noted that regression slope parameters decreased with increasing ag-
gregation under multivariate regression.

Correlation coefficients calculated from population-weighted 
polygons indicate a decreased likelihood of statistically significant 
correlation relative to the randomly generated polygons. The rela-
tive difference in correlation coefficients between the random and 
population-weighted polygons can be attributed to the variance 

Fig. 1. Cases of anaplasmosis in New York State (2017), jittered ± 0.05°C latitude and longitude.
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and covariance of incidence and kriged ERI between the different 
schemes. Specifically, the variance of anaplasmosis incidence is 
lower in population-weighted polygons than in randomly generated 
polygons, while the variance of kriged ERI is higher in population-
weighted polygons than in randomly generated polygons. The 
reduced variance of incidence can be attributed to the population 
of polygons generated using the population-weighting scheme. 
As more polygons are generated in areas with higher popula-
tion densities, the distribution of polygon populations becomes 
homogenous. Furthermore, increasing the number of polygons 
in major metropolitan areas where there are few or zero cases 
of anaplasmosis in NYS may also decrease the variance of case 
counts, but our results do not demonstrate this (Fig. 7). Meanwhile, 
variances of kriged ERI using population-weighted polygons are 
much higher than those from randomly generated polygons. This 
result is likely due to increasing the number of polygons (i.e., 
pseudoreplication) in high-density areas with both high and low 
values for ERI (Figs. 2 and 5). Kriged ERI values were generated 
using ordinary kriging at the scale of NYS, resulting in smoothed 
predicted ERI values that fail to incorporate ecotones. As a result, 
a higher number of polygons are created in the highly dense, south-
eastern part of NYS. These polygons are then improperly assigned 
high ERI values. At the same time, a higher number of polygons are 
created in other highly dense urban areas in the central and western 
parts of NYS, which have low ERI values. Overall, an increase in 

the variance of kriged ERI and a decrease in anaplasmosis inci-
dence in the population-weighted polygons results in a reduction 
of covariance between these variables, ultimately reducing the cor-
relation coefficients (Fig. 6).

The distribution of correlation coefficients in our study agrees with 
previous research, particularly because the nature of the data used 
in this study is not unique. Global and local spatially autocorrelated 
count data are a common occurrence in many disciplines, as are 
spatially continuous risk measures. The informative nature of our 
findings lies in how correlation coefficients generated from simu-
lated polygons relate to those calculated from polygons commonly 
used by public health agencies and academic researchers. When 
examining TBD case data, agencies and researchers may select spa-
tial units based on case data availability. Two commonly chosen areal 
units are counties and ZIP Code/ZCTAs. The correlation coefficients 
generated from county polygons appear to be within one standard 
deviation from the mean correlation coefficients using simulated 
polygons (Fig. 6). Meanwhile, the correlation coefficients generated 
from ZCTAs are greater than 4 standard deviations from the mean 
correlation coefficients using simulated polygons. The differences 
in correlation coefficients between the simulated polygons and true 
border polygons demonstrate the statistical impact of the MAUP’s 
scale and zone effects and provide evidence for the importance of 
considering spatial scale and place as they relate to the phenomenon 
being examined.

Fig. 2. Choropleth maps of anaplasmosis incidence using different polygons for aggregation.
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When the spatial scale of an analysis in a TBD study decreases, 
the phenomenon being considered should also change. For example, 
studies occurring over large geographic areas often examine climate 
change or theoretical species distributions of tick vectors (Brownstein 
et al. 2003, Brownstein, Holford, et al. 2005, Jung Kjær et al. 
2019). Meanwhile, studies at the smallest scales investigate more 
individual-specific phenomena, for example, peridomestic exposure 

(Moon et al. 2019, Keesing et al. 2022). It follows that as the scale 
decreases, place as a consideration for TBD risk may also decrease, 
as individuals may consider their individual risk situation as unique 
and not associated with a space beyond their home. This situation is 
analogous to the ecological fallacy, where individuals may feel that 
risk levels specific to a group do not apply to them. Furthermore, 
it is likely that as polygons become smaller, their boundaries must 

Fig. 3. A choropleth map of anaplasmosis incidence aggregated to NYS county level (top). A pycnophylactic interpolation of anaplasmosis incidence aggregated 
to NYS county level (bottom). Jittered anaplasmosis cases are overlaid to demonstrate risk distribution. The border of the Adirondack Park is overlaid to 
demonstrate a boundary that better represents risk.

Table 1. Adult Ixodes scapularis sampling and Anaplasma phagocytophilum genotyping results in New York State (2017)

n %

Site visits 220 -
Specimens collected 9,822 –
Specimens tested 4,246 43.23%

(+) A. phagocytophilum 305 7.18%
Specimens genotyped

(+) Ap-ha 227 74.43%
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become more accurate to capture both the place and the system 
under investigation. For example, ZCTAs are used by the United 
States Census Bureau and are representations of ZIP Codes, which 
were created to incorporate logistics for mail delivery (Grubesic and 
Matisziw 2006). Although delineations based on mailing logistics 

will incorporate place in some respects, ZIP Codes and ZCTAs 
differ from other Census Bureau delineations in that they were not 
designed with place in mind. Failing to incorporate place introduces 
challenges in epidemiological data analysis, as these ZIP codes and 
ZCTAs may not represent meaningful space related to disease risk 

Fig. 4. Ap-ha entomological risk index aggregated to sampling sites.

Fig. 5. Ap-ha entomological risk index values generated using ordinary kriging interpolation.
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(Grubesic and Matisziw 2006). However, our results also demon-
strate that Census tracts may similarly fail to capture place for TBD 
risk. Furthermore, larger polygons (counties, congressional districts, 
state legislative districts, and WMAs) generally have higher correla-
tion coefficients than smaller polygons (county subdivisions, ZCTAs, 

and Census tracts). Part of the decrease in correlation coefficients is 
expected due to the known impacts of the scale effect on the MAUP, 
however, it can be noted that correlation coefficients decrease faster 
using non-simulated polygons than they do with the randomly 
generated simulated polygons. As all simulated polygons have zero 

Fig. 6. Spearman’s ρ correlation coefficients between kriged Ap-ha entomological risk index and anaplasmosis incidence using random and population-weighted 
sampling schemes. Administrative border polygons are included for reference and are listed by increasing number of polygons in the legend. The center/blue 
line is a locally estimated scatterplot smoothing (LOESS) line of the correlation coefficients, and red lines above and below are LOESS lines one standard 
deviation above and below the mean correlation coefficient for each number of simulated polygons (30–3,000).

Table 2. Regression models assessing the impact of the number of polygons simulated on the correlation coefficient

Polygon generation βa P

Random
Intercept 0.48540 <0.0001
Number of polygons −0.00475 <0.0001

Population-weighted
Intercept 0.10200 <0.0001
Number of polygons −0.00308 <0.0001

aNumber of polygons divided by 100 to increase interpretability. A change in 100 polygons used for aggregation changes the correlation coefficient according 
to the beta values shown.

Table 3. Regression models assessing the impact of the number of polygons simulated on the variance of the correlation coefficient

Polygon generation βa P

Random
Intercept 0.00138 <0.0001
Number of polygons −0.00006 <0.0001

Population-weighted
Intercept 0.00373 <0.0001
Number of polygons −0.00017 <0.0001

aNumber of polygons divided by 100 to increase interpretability. A change in 100 polygons used for aggregation changes the correlation coefficient according 
to the beta values shown.

D
ow

nloaded from
 https://academ

ic.oup.com
/jm

e/article/61/2/331/7503857 by U
niversity of Pennsylvania user on 07 M

ay 2024



340 Journal of Medical Entomology, 2024, Vol. 61, No. 2

representation of place, it follows that the impact of place could 
cause a sharper decrease in correlation coefficients.

The zone effect is another MAUP bias that pertains to statistical 
output and the concept of place. Here, we measured the impact of the 
zone effect statistical output as we changed the borders of polygons 
while keeping their average size the same. Figure 6 demonstrates that 

the zone effect results in a higher variation in correlation coefficients 
among simulated polygons at higher levels of aggregation. The zone 
effect can be assessed under the context of place by comparing the 
placeless, simulated polygons to irregularly shaped polygons used by 
political entities (Figs. 2 and 6), though this relationship is difficult 
to disentangle from the impact of the scale effect. Figure 6 indicates 

Fig. 7. Between-polygon variances of variables reaggregated to simulated polygons. Variance of cases, population at risk, and incidence are depicted on the log 
scale. The center/blue line indicates a LOESS line of the variances. Red lines above and below indicate a LOESS line one standard deviation above and below the 
mean of the simulated variance for each number of simulated polygons (30–3,000).
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that correlation coefficients from ZCTAs and Census tracts are more 
than 4 standard deviations below the mean of simulated correlation 
coefficients, while larger polygons are above the mean.

Given that small administrative units may be poor measures of 
place for TBDs, it should be considered why these areal units are 
used by TBD researchers. One possible explanation is the quest for 
“more accurate” spatial analysis. Tobler’s first law of geography 
states: “everything is related to everything else, but near things are 
more related than distant things” (Tobler 1970). Following this heu-
ristic under the context of TBD epidemiology, i.e., where exposure 
to an infected tick is required to contract a TBD, researchers may be 
confronted with the notion of using the smallest feasible areal unit 
for analysis. As previously mentioned, this procedure may sacrifice 
the operationalization of place in favor of pinpointing the closest en-
vironment surrounding a case of a TBD. Importantly, this procedure 
may prevent polygons from capturing travel-related risk that larger 
polygons may otherwise capture, i.e., as areal units decrease, risky 
areas like public parks will be treated as separate from cases linked 
to home addresses. In addition, arbitrarily decreasing the scale of 
areal units can be classified as pseudoreplication, as increasing the 
number of units artificially creates new observations for use in sta-
tistical testing, increases the variance of observations, and creates 
small, spatially autocorrelated units.

Our study is not without limitations, primarily attributable to 
data quality and availability. The geographic location of anaplasmosis 
cases is linked to home address, thus, the position where a case ac-
quired A. phagocytophilum is unknown. This presents a potential 
for bias where individuals living in population-dense areas may have 
traveled to rural areas and acquired A. phagocytophilum, despite 
their geographic location being linked to their home address. Such 
a situation would improperly display geographic risk and alter the 
results of statistical testing. Additionally, our study only assessed 
one TBD over a single year. Ideally, the impact of the MAUP can 
be assessed specifically for unique TBDs, as ecologies may differ be-
tween diseases. Further, cases of anaplasmosis in NYS are clustered 
(Fig. 1, Supplementary Fig. 2; Russell et al. 2021), increasing the im-
pact of spatial autocorrelation on MAUP bias. Meanwhile, cases of 
Lyme disease in NYS are endemic statewide, and a study using Lyme 
disease case data may be informative (New York State Department 
of Health 2017). Despite these limitations, our results empha-
size findings specific to cartographic visualization of TBD risk and 
analyses using associative statistics. In the context of data visualiza-
tion, when using large areal units in choropleth maps, we recommend 
that a pycnophylactic interpolation may better display the spatially-
continuous nature of TBD risk, and may even indirectly incorporate 
part of the TBD system not included in the areal unit selection. For 
statistical analysis, we recommend that TBD researchers and public 
health agencies should be cautious and aim to properly incorporate 
place when selecting areal units. Though ZCTAs provide an obvious 
example of areal units that fail to incorporate place for TBDs, de-
termining which units emphasize place is less obvious and often 
context-dependent. Considering the potential for pseudoreplication, 
we also emphasize that researchers should first consider using larger 
areal units in spatial research before selecting polygons of decreasing 
size. Though many larger areal units will not best approximate in-
dividual risk in the TBD system, they should be preferred to smaller 
areal units as they may better incorporate regional-specific place 
and TBD risk. These results also demonstrate that TBD research 
operating across scales should be mindful of the impact of change 
scale and reaggregation which may unintentionally alter statistical 
estimates. The careful selection of analysis units should reduce bias 
from the MAUP and will allow researchers and officials to better 

disseminate information about risks and associations within TBD 
ecology and epidemiology.
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