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1 Introduction

There is a functorial way to turn a category C into a topological space BC , called
the classifying space of C . The classifying space is formed as the geometric real-
ization of the nerve of C , which is a simplicial set that encodes all the objects and
morphisms and compositions in C . The idea of the classifying space is that we form
a bunch of n-simplices, one for each string of n-composable morphisms, and then
glue them together based on how the morphisms compose in C . These constructions
are connected to a lot of powerful tools in homotopy theory and algebraic topology
more generally; simplicial sets and their realizations show up in things like singular
homology, principal G-bundles, model categories, K-theory, and∞-category theory.

If our category comes with some “extra topological structure,” then we want the
classifying space construction to keep track of this information somehow. For us,
this extra structure will take the form of being internal to the category of topologi-
cal spaces (although Subsection 3.2 discusses how we can relate this to an enriched
structure), and we call such categories topological categories. To keep track of the
topologies on the objects and morphisms, we now need the nerve of C to be a sim-
plicial space, rather than just a simplicial set. With the theory of simplicial spaces
in hand, we can explore the theory of classifying spaces of topological categories. In
particular, we shall consider the question What conditions on two topological cate-
gories induces a homotopy equivalence on their classifying spaces? To approach this
question, we will explore the notions of Reedy fibrant and Reedy cofibrant simplicial
spaces, as well as topological analogues of Quillen’s Theorems A and B. We con-
clude with some interesting examples which show up in algebraic topology, including
topological groups and the two-sided bar construction.
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Outline

Section 2 covers the basics of classifying spaces of categories. We begin by briefly re-
viewing simplicial sets in Subsection 2.1, and then we move on to simplicial spaces in
Subsection 2.2. We introduce realization functors in Subsection 2.3 and then define
classifying spaces. In the remainder of Section 2, we state and prove Quillen’s Theo-
rems A and B and conclude with some common examples including classifying spaces
of groups (Subsection 2.5.2), the two-sided bar construction (Subsection 2.5.3), and
translation categories (Subsection 2.5.5).

In Section 3, we introduce the idea of a topological category and explore the sub-
tleties of their classifying spaces. We discuss the Reedy model structure on simplicial
spaces and how that interacts with nerves of topological categories in Subsection 3.4.
Finally, we state and prove versions of Theorems A and B for topological categories
(Subsection 3.5) and detail some illustrative examples, including the Čech complex Disclaimer: The-

orem B is still in
progressof a map of topological spaces (Example 3.6.3), classifying spaces of topological

groups (Example 3.6.1), and framed flow categories (Example 3.6.4).
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2 Classifying Spaces

Classifying spaces give us a functorial way to go from the land of categories to the
land of spaces, using the machinery of simplicial sets. The outcome of this journey
is summarized in the following table:

Cat =⇒ Top

Categories Spaces

Functors Continuous maps

Natural transformations Homotopies

Adjunctions Homotopy equivalences

To understand the classifying space construction, we first need to understand
simplicial sets and simplicial spaces (Subsection 2.2) and how to geometrically realize
them (Subsection 2.3). The classifying space of a category C is the realization of
a special simplicial set, called the nerve of C , which basically encodes composable
morphisms. After introducing classifying spaces, we then state and prove Quillen’s
Theorem A (Theorem 2.14) and Theorem B (Theorem 2.16). Finally, we get to
see this machinery in action through several examples, including the classifying
space of a group (Subsection 2.5.2) and the two-sided simplicial bar construction
(Subsection 2.5.3).

Our exposition on simplicial sets/spaces follows [Rie08] and [Dug08], and we
invite the reader to visit these resources for further discussion of the concepts we
present. For classifying spaces specifically, our primary resources are [Wei13, §IV]
and [Qui73, §I].

2.1 A refresher on simplicial sets

A simplicial set is a functor X : ∆op → Set, where ∆ is the simplex category whose
objects are finite, non-empty ordinals

[n] = {0, 1, . . . , n}

and whose morphisms are order-preserving maps. As is standard, we write Xn for
the set X[n], and call its elements n-simplicies. The simplicial sets form a category,
sSet, which is just the functor category Set∆

op
. Specifically, a mapX → Y between

simplicial sets is a natural transformation, and it consists of maps Xn → Yn that
commute with the morphisms of ∆op. In fact, it suffices to show that these maps
between n-simplices commute with a smaller selection of maps, called the face and
degeneracy maps, which we will introduce presently.
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In the category ∆, for each n ≥ 0, there are n+1 injective coface maps di : [n−
1]→ [n], where the superscript indicates which object is not contained in the image.
Similarly, there are n+1 surjective codegeneracy maps sj : [n+1]→ [n], where now
the superscript indicates which object in the image is mapped onto twice. Explicitly,

di(k) =

{
k k < i;

k + 1 k ≥ i,
and sj(k) =

{
k k ≤ j;

k − 1 k > j,

for 0 ≤ i, j ≤ n. It is straightforward (albeit a bit tedious) to verify that these
morphisms satisfy the following cosimplicial relations:

didj = djdi−1 i < j, (2.1)

sisj = sjsi+1 i ≤ j, (2.2)

sidj =


id i = j, j + 1,

djsi−1 i < j,
dj−1si i > j + 1.

(2.3)

These maps generate all of the morphisms in ∆. In fact, any morphism f : [n]→
[m] in ∆ can be expressed uniquely as a composite

f = dik . . . di1sj1 . . . sjk′

for 0 ≤ i1 < · · · < ik ≤ m and 0 ≤ j1 < · · · < jk′ ≤ n such that n + k − k′ = m.
To see this, note that an order-preserving function f : [n] → [m] is determined by
its image in [m] and those elements of [n] on which f does not increase. Take
i1, . . . , ik ∈ [m] in unique increasing order to be those elements not in the image
of f and j1, . . . , jk′ ∈ [n] (again in unique increasing order) to be the elements on
which f does not increase. A quick verification proves the equality in the display
above.

Now, the opposite category ∆op has corresponding face maps di and degeneracy
maps sj . If X is a simplicial set, we have

di := Xdi : Xn → Xn−1 and sj := Xsj : Xn → Xn+1,

for 0 ≤ i, j ≤ n. Every morphism in ∆op can similarly be expressed as a composition
of face and degeneracy maps. These maps satisfy the dual relations to those given
above, namely

djdi = di−1dj j < i, (2.4)

sjsi = si+1sj j ≤ i, (2.5)

djsi =


id i = j, j + 1,

si−1dj i < j,
sidj−1 i > j + 1.

(2.6)

These relations are called the simplicial relations.

5



Remark 2.1. To specify a simplicial set, it is enough to provide sets of n-simplicesXn

for n ≥ 0, face maps di : Xn → Xn−1, and degeneracy maps sj : Xn → Xn+1 which
satisfy the simplicial relations. This gives us a second “definition” of a simplicial
set, which is often easier to use in practice.

Example 2.2 (The standard n-simplex). The simplicial set called the standard n-
simplex is the functor represented by [n] ∈ ∆. Letting y : ∆ ↪→ sSet denote the
Yoneda embedding, the standard n-simplex is just the image of [n]. That is,

∆n := y[n] = ∆(−, [n]),

so ∆n
k = ∆([k], [n]) by definition. The face and degeneracy maps are given by

pre-composition in ∆ by di and sj , so

di : ∆
n
k → ∆n

k−1 sj : ∆
n
k → ∆n

k+1

([k]
f−→ [n]) 7→ ([k − 1]

di−→ [k]
f−→ [n]) ([k]

f−→ [n]) 7→ ([k + 1]
sj−→ [k]

f−→ [n]).

Non-degenerate k-simplices correspond to the injective maps [k] → [n] in ∆;
there is a unique non-degenerate n-simplex in ∆n corresponding to the identity on
[n]. There are many degenerate simplicies in this data as well: for instance, ∆0

contains one element in each ∆0
k, the zero function [k] → [0], which is degenerate

for k > 0.

This example ∆n plays a key role in sSet. Since the Yoneda embedding is full
and faithful, the maps f : ∆n → ∆m of simplicial sets are in bijection with the maps
f : [n] → [m] in ∆. The maps fk : ∆

n
k → ∆m

k are given by post-composition by f .
The Yoneda Lemma implies that simplicial maps ∆n → X correspond bijectively to
the n-simplices in X, which is to say

sSet(∆n, X) ∼= Xn.

An n-simplex x ∈ X can thus be regarded as a map x : ∆n → X that sends the
unique non-degenerate n-simplex in ∆n to x. Lower-dimensional simplicies in X
can be seen as a composition of maps in ∆n, post-composed by x.

This perspective helps us actually “visualize” the n-simplices of a simplicial
set. Given an n-simplex x ∈ Xn, we can visualize it as an n-dimensional tetrahe-
dron whose n+ 1 vertices are ordered by 0, 1, . . . , n and whose faces are labeled by
simplices of the appropriate dimension. The image di(x) of x under the ith face
map is the (n − 1)-simplex that does not include the ith vertex of x. Each of the
(n + 1)-simplices s0(x), s1(x), . . . , sn(x) represent the same simplex geometrically,
each with a different degeneracy; the image sj(x) is the simplex such that collapsing
the edge between the jth and (j − 1)th vertices to a single point gives the n-simplex
x. Accordingly, a simplex is called degenerate if it is the image of some sj , and is
non-degenerate otherwise. Unlike in a simplicial complex, we allow simplices to be
degenerate.
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Example 2.3 (Total singular complex). Perhaps unsurpisingly, one standard ex-
ample of a simplicial set is related to the topological notion of a simplex. Letting
|∆n| denote the standard n-simplex1 in Top,

|∆n| =

{
(x0, . . . , xn) ∈ Rn+1

∣∣∣∣∣
n∑

i=0

xi = 1, xi ≥ 0

}
⊆ Rn+1,

there is a natural covariant functor ∆→ Top given by [n] 7→ |∆n|. A map f : [n]→
[m] induces a map f∗ : |∆n| → |∆m| given by (x0, . . . , xn) 7→ (y0, . . . , yn) where

yi =

{
0 f−1(i) = ∅;∑

j∈f−1(i) xi otherwise.

Thus the ith coface map inserts a 0 in the ith coordinate and the jth codegeneracy
map adds the xj and xj+1 coordinates. Geometrically, the former inserts |∆n−1| as
the ith face of |∆n| and the latter projects |∆n+1| onto the topological n-simplex
orthogonal to its jth face.

Given a topological space Y , the total singular complex (or singular set) is the
simplicial set SY given by [n] 7→ Top(|∆n|, Y ). Elements of SYn are the singular
n-simplices of Y familiar to algebraic topologists. The face and degeneracy maps
are given by pre-composition by di and sj . You can use this functor S to define the
singular homology of Y .

Example 2.4. A crucial example of a simplicial set for our purposes is the nerve
of a category. Given a (small) category C , its nerve is the simplicial set NC whose
0-simplicies the objects of C and whose n-simplicies are strings of n composable
morphisms

c0
f1−→ c1 → · · · → ci−1

fi−→ ci
fi+1−−−→ ci+1 → . . .

fn−→ cn

for n ≥ 1. The face map di : NCn → NCn−1 returns the string of n− 1 composable
arrows

c0
f1−→ c1 → · · · → ci−1

fi+1◦fi−−−−→ ci+1 → . . .
fn−→ cn.

In the cases that i = 0, n, we instead omit that ith arrow. At level n = 1, we have
only two face maps d0, d1 : NC1 → NC0 which act like the source and target maps,
respectively.

1Using the notation |∆n| for the topological simplex might be confusing at first, since this object
is more commonly denoted by ∆n or ∆n. Our choice will hopefully be justified after we define the
geometric realization (Definition 2.9), as we will then see that

|∆n| = |∆n|.

The expression on the left side of the equality is the geometric realization of the standard n-simplex
as a simplicial set, and the expression on the right is the topological n-simplex.

7



The degeneracy map si : NCn → NCn+1 returns the string of n+ 1 composable
arrows

c0
f1−→ c1 → · · · → ci−1

fi−→ ci
idci−−→ ci

fi+1−−−→ ci+1 → . . .
fn−→ cn.

The assignment C → NC defines a functorN : Cat→ sSet, since a functor F : C →
D induces a natural transformation NF : NC → ND by applying F to everything
in sight.

Example 2.5. We can regard the objects of ∆ as categories themselves, more
specifically as posets, so [n] is the category with n+1 objects and morphisms i→ j
whenever i ≤ j. What is the nerve of [n]? After some contemplation, we see that a
string of k-composable morphisms in ∆n is the same thing as a morphism [k]→ [n]
in ∆. That is,

(N [n])k = ∆([k], [n])

so N [n] is the standard n-simplex ∆n.

Example 2.6. If G is a group, we can think of it as a category with one object ∗
and a morphism ∗ g−→ ∗ for every g ∈ G. The zeroth level of the nerve is just a point,
NG0 = ∗. For n ≥ 1, a string of n-composable morphisms is a word of length n in
G. Given such a word, g1g2 · · · gn the ith face map multiplies gi · gi+1 = (gigi+1) (or
drops gi if i = 0, n) and the jth degeneracy map inserts the identity e at the jth
spot.

The definitions and examples we have introduced here barely scratch the sur-
face of the theory of simplicial sets. For example, simplicial sets (Kan complexes,
specifically) provide a model for (∞, 1)-categories and so have lots of interesting
connections to higher algebra. For more exposition on simplicial sets, we point
the reader to [Rie08] or [Fri11]. The textbook [GJ99] also provides an extensive
treatment of more advanced simplicial homotopy theory.

2.2 Simplicial spaces

As a generalization of simplicial sets, we can talk about simplicial objects in a cat-
egory C as functors X : ∆op → C , which themselves assemble into a category sC .
Our topic of interest is the category sTop of simplicial spaces, i.e. the category of
simplicial objects in Top. (Here of course we assume Top is some convenient cat-
egory of spaces, such as compactly generated weak Hausdorff spaces.) A simplicial
space is just like a simplicial set, except now there are topologies involved and we
ask everything to be continuous.

Definition 2.7. A simplicial space is a functor X : ∆op → Top, which can be
specified by the data of

• spaces of n-simplices Xn for n ≥ 0;
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• for each n ≥ 1, continuous face maps di : Xn → Xn−1 for i = 0, . . . , n;

• for each n ≥ 0, continuous degeneracy maps sj : Xn → Xn+1 for j = 0, . . . , n,

such that the di and sj satisfy the simplicial relations (2.4), (2.5), (2.6). A map of
simplicial spaces X → Y is a continuous natural transformation, that is, a natural
transformation whose components are all continuous. Simplicial spaces and maps
between them assemble into a category sTop.

We can get a simplicial set from a simplicial space by just forgetting the topology,
i.e. by post-composing with the forgetful functor U : Top→ Set. Recall that U has
both a left and a right adjoint, which give a set the discrete and indiscrete topology,
respectively. These adjunctions descend to the level of simplicial objects, and thus
give us a way to go back and forth between simplicial sets and simplicial spaces.

Many examples of simplicial spaces are interesting because of the information
recorded in their geometric realization (Definition 2.9). For this reason, we will
postpone most of the examples until after we’ve defined realization. But we will
conclude this subsection with one important example: the simplicial replacement of
a diagram.

Example 2.8. We can think of a simplicial space as just a diagram in Top, whose
indexing category is the small category ∆op. But say we have another diagram,
D : I → Top, for some other small indexing category I. We can turn D into a
simplicial space in a sensible way, using simplicial replacement. Let srep(D) be the
simplicial space whose nth level is

srep(D)n =
∐

i0←i1←···←in

D(in),

where i0 ← i1 ← · · · ← in is a chain of n morphisms in the indexing category I.
So, for example, srep(D)0 is just the coproduct of all the spaces in the image of
D in Top. The face and degeneracy maps are very similar to those of the nerve
of a category. Let D(in) be a summand of srep(D)n corresponding to a chain
i0 ← i1 ← · · · ← in. The jth degeneracy map srep(D)n → srep(D)n+1 just moves
D(in) to the identical summand D(in) in srep(D)n+1 which corresponds to inserting
the identity on ij into the chain. The face maps srep(D)n → srep(D)n−1 are a bit
more complicated. If we look at the jth face map, for 0 ≤ j < n, then we just
send D(in) to itself D(in), but we think of it as living in srep(D)n−1 by composing
ij−1 ← ij ← ij+1 to the single arrow ij−1 ← ij+1. If j = n, then we send D(in) to
D(in−1) by applying D to the map in → in−1 in I.

As a concrete example of this machinery, if D is just the constant diagram at
a point ∗, then srep(D) is the nerve of the indexing category I. Note that in this
case srep(D) is a discrete simplicial space, i.e. a simplicial set.
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2.3 Realization functors

Some of the most important constructions for simplicial spaces (or sets) are the
realization functors, which let us turn simplicial spaces into actual spaces. We can
think of forming the geometric realization of X as a simplicial complex where we
associate each n-simplex in Xn to a topological n-simplex and glue things together
according to the data in X.

Definition 2.9. The geometric realization of a simplicial space (or set) X is the
colimit

|X| = colim

 ∐
f : [n]→[m]

Xm × |∆n|
f∗
⇒
f∗

∐
[n]

Xn × |∆n|


in Top. The map f∗ : Xm × |∆n| → Xm × |∆m| includes faces by (x1, . . . , xn) 7→
(y1, . . . , ym) for

yi =

{
0 f−1(i) = ∅∑

j∈f−1(i) xj otherwise.

The map f∗ : Xm × |∆n| → Xn × |∆n| collapses degeneracies via the simplicial
structure Xf : Xm → Xn.

In practice, it is often useful to use a more concrete description of the geometric
realization, which is given by ∐

n≥0
Xn × |∆n|/ ∼

where (x, sjy) ∼ (sjx, y) and (x, diy) ∼ (dix, y). The d
i inserts a 0 in the ith coordi-

nate and the sj adds the xj and xj+1 coordinates. Geometrically, the former inserts
|∆n−1| as the ith face of |∆n| and the latter projects |∆n+1| onto the topological n-
simplex orthogonal to its jth face. So the first relation ensures that the degeneracies
are “glued in” in a compatible way, and the second relation does the same for the
faces.

Remark 2.10. The geometric realization of a simplicial set is always a CW complex,
since Xn × ∆n is just a disjoint union of simplicies, but the geometric realization
of a simplicial space may not be. For example, if A is any space which is not a
CW complex, then the constant simplicial space Xn = A (where all the face and
degeneracy maps are identities) realizes to A itself.

If we only glue in faces, and do not collapse degeneracies, we get a much bigger
and more complicated space known as the fat realization.

Definition 2.11. The fat realization of X is the colimit

||X|| := colim

 ∐
f : [n]↪→[m]

Xm × |∆n|
f∗
⇒
f∗

∐
[n]

Xn × |∆n|
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in Top, where now the coproduct runs over all injections f : [n] ↪→ [m].

One of the benefits of working with the fat realization is that it preserves lev-
elwise equivalence. That is, if we have a map of simplicial spaces X → Y such
that each component Xn → Yn is a homotopy equivalence, then ||X|| ≃ ||Y || (cf.
[Dug08, Remark 3.6]). Unfortunately, this is not necessarily true for the regular
geometric realization, since we need the additional assumption that X and Y are
Reedy cofibrant (see Subsection 3.4.1).

We saw that the nerve gives us a way to turn categories into simplicial sets, and
now by post-composing with |−|, we can turn categories into spaces.

Definition 2.12. The classifying space of a category as the realization of its nerve,
BC := |NC |.

We would hope that the functor B might inherit some of the properties of the
nerve, such as being fully faithful and commuting with products. Unfortunately,
geometric realization makes things a little bit more complicated, since it does not
have all the same nice properties as N . The first thing to say is that although B is
faithful, it is not full in general (cf. [Qui73, §1]). The second thing is that we can
only guarantee that |−| commutes with limits in a convenient category of spaces
(e.g. CGWH spaces). The approach we will take, following that of [Seg68] is to
work entirely in a convenient category, in which we do indeed have

B(C ×D) ∼= BC ×BD .

As remarked in [Seg68], the display above holds even in the (inconvenient) category
of all spaces if one of BC or BD is compact (which holds, for instance, if C or D is
a finite category). Applying this to D = [1] and noting that B[1] ∼= I, we have the
following consequence.

Proposition 2.1. Let F,G : C → D be functors with a natural transformation
η : F → G. Then the induced maps BF,BG : BC → BD are homotopic via Bη.
Thus, equivalent categories have homotopy equivalent classifying spaces.

In the next section, we will discuss Quillen’s Theorems A and B which give other
sufficient conditions for a functor to induce an equivalence. But before we do so,
we’ll make a brief digression into bisimplicial sets since we will need them to prove
these theorems.

We have defined simplicial sets and simplicial spaces as functors from ∆op into
Set or Top, respectively, but there’s nothing stopping us from replacing these target
categories with some other perfectly nice category C . Functors ∆op → C are called
simplicial objects of C (e.g. simplicial groups or simplicial categories, although we
note this latter term may also have other meanings) and the functor category of
simplicial objects in C is denoted sC . Now, what if C is already a category of
simplicial objects, such as sSet or sTop? Then the objects of sC are functors
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∆op → Fun(∆op,C ), which (by the tensor-hom adjunction) are the same things as
functors ∆op ×∆op → C . These objects are called bisimplicial objects in C . We
will particularly care about bisimplicial sets, which are simplicial objects in sSet, or
equivalently, functors Z : ∆op ×∆op → Set. Note that a bisimplicial set has “built
in” simplicial sets if we fix one of the indices:

Zp,∗ : ∆
op → Top for p ≥ 0 and Z∗,q : ∆

op → Top for q ≥ 0

[q] 7→ Zp,q [p] 7→ Zp,q.

These are called the left and right simplicial sets of Z∗,∗, respectively. We also have
the diagonal of Z, which is the simplicial set diag(Z) : [n] 7→ Zp,p.

How do we “geometrically realize” a bisimplicial set and get an actual topological
space? There are a few different ways we might think to do this, but they turn
out to all be homeomorphic. We can’t apply the geometric realization functor
|−| : sSet → Top from Definition 2.9 directly to Z∗,∗, but we can apply it to Zp,∗
and Z∗,q for each k, n ≥ 0. We can then assemble these spaces into two new2

simplicial spaces: [p] 7→ |Zp,∗| and [q] 7→ |Z∗,q|. It turns out that (see [Qui73, §1] for
a proof)

|[p] 7→ |Zp,∗|| ∼= |diag(Z)| ∼= |[q] 7→ |Z∗,q||.

Intuitively, this says that we can turn Z∗,∗ into a topological space by realizing it
twice, and it doesn’t matter whether we go left then right, or vice versa; moreover
all the information about this space is recorded in the diagonal. We will denote the
resulting space by |Z|, trusting the reader to know that we don’t mean to literally
apply |−| to the bisimplicial set Z∗,∗. The most important result for our purposes
is the following (see, e.g. [Wei13, Theorem 3.6.1]):

Theorem 2.13. Let f∗,∗ : Z∗,∗ → Z ′∗,∗ be a map of bisimplicial sets. Then

(i) if each map fp,∗ : Zp,∗ → Z ′p,∗ of left simplicial spaces is an equivalence, then
so is the induced map |Z| → |Z ′|;

(ii) if Z ′p,q = NCp for some category C (note Z ′ is constant in the second factor)
and f−1(c, ∗)→ f−1(c′, ∗) is an equivalence for every c→ c′ in C , then each

|f−1(c, ∗)| → |Z| → BC

is a homotopy fiber sequence.

2.4 Quillen’s Theorems

Theorems A and B were proved by Quillen in [Qui73, §I] as part of his highly influ-
ential work on higher algebraic K-theory. Although these two theorems constitute

2If anyone has a good name for these, I’d love to know.
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just a tiny portion of Quillen’s amazing contribution to algebraic topology, they
have proven to be extremely useful in studying the homotopy groups of categories.

By functoriality of B : Cat→ Top, we can determine when certain functors will
realize to equivalences. For instance, any adjoint functor realizes to an equivalence,
with the relevant homotopies coming from the co/unit of the adjunction. More
generally, any functor which admits lax inverse3 will turn into an equivalence under
B. Quillen’s Theorem A gives another sufficient condition for a functor to realize
to an equivalence, namely if all the “fibers” are contractible. Theorem B says that
even if the fibers are not contractible, we may still be able to use them to model the
homotopy fiber.

2.4.1 Theorem A

Theorem A will detect whether a functor F : C → D is a homotopy equivalence
(meaning BF is) by looking at the classifying spaces of the comma categories d↓F
for d ∈ ObD . The objects of d ↓ F are pairs (c, g : d → Fc) ∈ ObC × HomD .
A morphism between (c, g) and (c′, g′) in d ↓ F is a map f : c → c′ such that the
following triangle commutes in D :

d

Fc Fc′

g g′

Ff

.

For example, if F is the identity on C , then d↓F is just the undercategory of d ∈ C0.

Theorem 2.14 (Quillen’s Theorem A). If d↓F is contractible for every d ∈ ObD ,
then F induces an equivalence BF : BC → BD .

Remark 2.15. There is also a dual statement of this theorem using F ↓d instead.

Proof of Theorem A. To prove Theorem A, we use the bisimplicial set Z∗,∗ whose
(p, q)-bisimplices are diagrams

(dp → · · · → d0 → F (c0), c0 → · · · → cq).

The ith face map in the p-direction (or q-direction) omits di (or ci) by composing the
two relevant arrows. The utility of this bisimplicial set is actually pretty amazing,
as we shall soon see.

3Let F : C → D be a functor. We say G : D → C is a lax inverse for F if there are natural
transformations connecting GF to idC and FG to idD . Unlike adjunctions, there is no requirement
on the direction of the natural transformations and they are not required to satisfy any further
identities.
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As a first question, we can investigate the realization of this bisimplicial set.
From what we said earlier, it suffices to think about the geometric realization of the
diagonal,

Zp,p = (dp → · · · → d0 → F (c0), c0 → · · · → cp).

The clever observation is that this diagonal is actually the nerve of a category, which
Quillen denotes S (f). This objects of this category are triples (d, f : d → F (c), c)
where d ∈ ObD , c ∈ ObC , and f ∈ D(d, F (c)). A morphism from (d, f, c) to
(d′, f ′, c′) is a pair of morphisms u : d′ → d and v : c→ c′ which make the following
square commute:

d d′

F (c) F (c′)

f f ′

u

Fv

For example, if F is the identity then S (F ) is the twisted arrow category. A p-
simplex in NS (F ) is a commutative diagram of p squares:

d0 d1 . . . dp

F (c0) F (c1) . . . F (cp)

f0 f1

u1 u2

fp

up

Fv1 Fv2 Fvp

but since this diagram is commutative, we can forget the data of all the fi for i ̸= 0
and define them instead using composition. That is, the data of the diagram is ex-

actly equivalent to a tuple (dp
up−→ . . .

u1−→→ d0
f0−→ F (c0), c0

v1−→ . . .
vp−→ F (cp)). And

the face and degeneracy maps do the right thing, but that is pretty straightforward
to check once you’re comfortable with all the machinery.

The idea is to map Z∗,∗ to both NC and ND and show these maps realize to
equivalences using Theorem 2.13. If we project in the q-direction, forgetting the
diagram dp → · · · → d0 → F (c0), this gives us a map Zp,q → NCq, which we can
assemble into a map of bisimplicial sets (where we think of NC as a bisimplicial set
which is constant in the first factor). This induces a map BS (F ) ∼= |Z| → BC .
We’d like to show this map is actually a homotopy equivalence, which we will do
with Theorem 2.13(ii).4 The fiber of Zp,q → NCq over c ∈ C is just the collection
of sequences dp → · · · → d0 → F (c) in D , i.e. the pth level of N(D ↓F (c)). Since
the category D ↓F (c) has an final object, its classifying space is contractible, and
so we can apply Theorem 2.13(ii) to see that |Z| → BC is in fact an equivalence.

Now we need to connect |Z| to BD , and the argument is very similar, except now
we project from Zp,q → N(Dop)p by sending (d0 → · · · → dp → F (c0), c0 → · · · →
cq) to just d0 → · · · → dp. This induces a map BS (F ) ∼= |Z| → B(Dop) ∼= BD ,
which we would like to show is an equivalence. Now we will use Theorem 2.13(ii)

4The theorem is stated for Z′
p,q = NCp but we can equally well assume Z′

p,q = NCq.
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and our assumption that all the d↓F are contractible. In particular, the fiber over
d is the the nerve of the category d ↓ F , which we’ve assumed to be contractible.
Thus, applying Theorem 2.13(ii), we can conclude the map BS (F ) → BD is also
an equivalence.

We’ve shown this works for arbitrary F , and in particular it works for F = idD ,
which gives us the commutative diagram

C S (F ) Dop

D S (idD) Dop

F

∼ ∼

∼ ∼

where the functor S (F )→ S (idD) sends a triple (d, f : d→ F (c), c) to (d, f, F (c)).
Thus F induces an equivalence on classifying spaces, as desired.

2.4.2 Theorem B

Theorem B gives us a sufficient condition to describe the homotopy fiber ofBF : BC →
BD as a classifying space, which then lets us study BF in terms of homotopy groups.
To state Theorem B, we need to recall what homotopy pullback squares are. Recall
that a pullback square

W Y

X Z

f

g

of spaces is a homotopy pullback (or homotopy Cartesian) if W is a model for the
homotopy limit X ×h

Z Y , meaning there is an equivalence from W to

X ×h
Z Y = {(x, y, α) ∈ X × Y × ZI | g(x) = α(0), f(y) = α(1)}

(or some other model for the homotopy pullback). This holds, for instance, if either
of the maps out of W are fibrations. We say commutative square of categories is a
homotopy pullback if the corresponding square of their classifying spaces is.

For any choice of basepoint in Z, the homotopy pullback X ×h
Z Y sits naturally

in a fibration sequence
ΩZ → X ×h

Z Y → X × Y.

By the long exact sequence of a fibration (and remembering πk(ΩZ) = πk+1(Z)),
this gives us a Mayer-Vietoris sequence of homotopy groups,

· · · → πk+1(Z)→ πk(X ×h
Z Y )→ πk(X)⊕ πk(Y )→ πk(Z)→ . . .

which tells us that taking homotopy pullbacks preserves pointwise-weakly equivalent
diagrams.
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Theorem 2.16 (Theorem B). Let F : C → D be a functor and suppose that for
every morphism d → d′ in D , the induced functor d′ ↓ F → d ↓ F is a homotopy
equivalence. Then the pullback square

d↓F C

d↓D D

F ′ F

is a homotopy pullback.

Here, the horizontal arrows are given by projection onto the first coordinate and
the vertical arrow F ′ sends (c, g : d→ Fc) to just g : d→ Fc. Thus for any choice of
d ∈ D and c ∈ F−1(d) in the fiber, we can apply the Mayer-Vietoris sequence and
use contractibility of B(d↓D) to get

· · · → πk+1(D , d)→ πk(d↓F, (c, idd))→ πk(C , c)→ πk(D , d)→ . . . .

Of course, by the homotopy group of a category we really mean the homotopy group
of its classifying space. The display above says that B(d↓F ) is actually a model for
the homotopy fiber of F .

The proof of Theorem B uses a lot of the same ideas as the proof of Theorem
A. In particular, we use the same bisimplicial space Z∗,∗ and again have that the
projection Zp,q → NCq is an equivalence. We can also consider the projection
Zp,q → N(Dop)p and apply Theorem 1.24(ii) (using our assumption that the induced
functors d′ ↓F → d↓F are equivalences), which gives us a homotopy fiber sequence

B(d↓F )→ BS (F )→ BDop.

For Theorem A, we assumed d↓F was contractible, but we may not have that here.
However, this does tell us that

d↓F S (F )

{d} Dop

is a homotopy pullback square. This fits into a larger diagram

d↓F S (F ) C

d↓D S (idD) D

{d} Dop

I

∼

II F

∼ III

∼

∼
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as square I+III. Note that I+II is exactly the diagram we care about for Theorem
B. Now we use the special 2-out-of-3 property for homotopy pullbacks: Because
I+III and III are homotopy pullbacks, I must also be. Then because I and II are
homotopy pullbacks, so is I+II, as desired.

As with Theorem A, there is a dual version of Theorem B for F ↓d. In [Qui73,
§1] (or see [Wei13, §IV.3.7.3ish]), Quillen discusses some variations of Theorems A
and B using co/fibered functors F : C → D (which are in one-to-one correspondence
with covariant/contravariant functors D → Cat).

Remark 2.17. In [WD89, §6], Dwyer-Kan-Smith generalize Quillen Theorem B to
“Theorems Bn” where the category F ↓ d is replaced with a category F ↓ nd whose
objects are pairs (c,D) where D is a zig-zag of length n connecting Fc and d,

D = Fc = dn · · · → d2 ← d1 → d.

Their theorem [WD89, Theorem 6.2] states that if a functor F : C → D has property
Bn (every map d→ d′ induces an equivalence F ↓nd→ F ↓nd′) then F ↓nd models
the homotopy fiber of f .

2.5 Some Examples

In this section, we will work through several examples (many taken from [Wei13,
§IV.3]). These are presented in no particular order and in general should be able to
be read independently of one another.

2.5.1 Standard n-simplex

Let us return to the poset category [n], whose objects are the set 0, 1, . . . , n. Recall
from Example 2.5 that N [n] = ∆n. So we know B[n] = |∆n|, where the right side
is the realization of the simplicial set ∆n. As the notation suggests, we expect this
space to be the topological n-simplex. To get an idea of how this works, first note
that the non-degenerate elements of N [n]k are in bijection with size-k subsets of
[n]. Using the concrete description, we see that we get one topological k-simplex for
each collection of k elements, and the relation ∼ tells us to glue the faces together
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in precisely the right way. For example, when n = 3:

2.5.2 Classifying space of a group

Let G be a well-based topological group, i.e. a topological group such that the
inclusion of the identity is a cofibration. We can think of G as a category with
one object ∗ and a morphism ∗ g−→ ∗ for every g ∈ G; this is an example of an
internal topological category (since the source, target, and identity maps are trivially
continuous and composition is continuous by assumption). The zeroth level of the
nerve is just a point, NG0 = ∗. For n ≥ 1, a string of n-composable morphisms is a
word of length n in G, i.e. NGn = Gn. Given such a word, g1g2 · · · gn the ith face
map multiplies gi · gi+1 = (gigi+1) (or drops gi if i = 0, n) and the jth degeneracy
map inserts the identity e at the jth spot.

The resulting classifying space BG is important for a number of reasons, one
of which is closely related to bundle theory. In particular, this classifying space
machinery provides a (functorial!) model for the base space of the universal principal
G-bundle EG→ BG. That is, every principal G-bundle over X arises as a pullback
of some map f : X → BG. From bundle theory, we know some specific examples of
BG; for instance, if G is a discrete group, then BG is an Eilenberg-Mac Lane space
K(G, 1) (this follows from the long exact sequence for a fibration). Note that if G
is discrete, then NG is a simplicial set and so BG is actually a CW complex (cf.
Remark 2.10).

Let’s see a sub-example of this with the simplest non-trivial group possible,
G = Z/2. From bundle theory, we expect BG = RP∞ — this space is already quite
complicated, even for such a small group! As a category, Z/2 looks like

∗

σ
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where σ is the non-identity element of Z/2. This implies that the nerve of Z/2
only has one non-degenerate simplex at each level n, corresponding to the n-fold
composition of σ. Thus the classifying space BZ/2 has one n-simplex in it for every
n ≥ 0. The conscientious reader can check that the gluing relations in the geometric
realization (along with the fact that σ2 = id) gives BZ/2 the same CW description
as RP∞, with one cell in each dimension n ≥ 0.

2.5.3 Two-sided bar construction

We can also model the nerve of a category using the incredibly (perhaps even un-
reasonably) helpful two-sided simplicial bar construction.

Definition 2.18. Let I be our (small) indexing diagram (discrete for now) and let
F : I → Top and G : Iop → Top be two functors, i.e. I-shaped diagrams in Top.
The two-sided simplicial bar construction is the simplicial space with nth level

Bn(F, I,G) :=
∐

i0←i1←···←in

F (i0)×G(in).

Most of the face and degeneracy maps come from the nerve NI, with the exception
of d0 and dn. Specifically, sj : Bn(F, I,G) → Bn+1(F, I,G) just inserts the identity
ij → ij and dj : Bn(F, I,G) → Bn−1(F, I,G) composes ij−1 → ij → ij+1 for 0 <
j < n (so the values of F and G are unchanged in these cases); d0 maps F (i0) to
F (i1) via the map F (i0 → i1) and similarly dn maps G(in) to G(in−1) via the map
G(in−1 → in). The two-sided bar construction B(F, I,G) is the realization of this
simplicial space.

Note that if F = ∗ = G are trivial functors then B(∗, I, ∗) = BI is just the
classifying space of I. We can think of B(F, I,G) like BI “weighted” or “fattened
up” by the spaces picked out by F and G. A crucial property of the two-sided
simplicial bar construction is that if F and G are both pointwise cofibrant, then
B∗(F,C , G) is Reedy cofibrant (cf. [Dug08, Proposition 11.6]). We will discuss
Reedy cofibrancy in more detail in Subsection 3.4.1, but the important consequence
in this context is the following:

Proposition 2.2. Suppose there are weak natural equivalences F → F ′ and G →
G′ between pointwise cofibrant diagrams. Then the induced map B(F, I,G) →
B(F ′, I, G′) is a weak equivalence.
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In the case that F = ∗ is the trivial diagram, then the two-sided bar simplicial
construction turns the I-shaped diagram G into the simplicial replacement we saw
in Example 2.8. One remarkable property of the simplicial replacement of G is
that it is a Reedy cofibrant simplicial space, regardless of whether G is pointwise
cofibrant (cf. [Dug08, Remark 4.9]). By Theorem 3.14, this means the homotopy
type of the the realization does not change when we replace G with a pointwise
equivalent diagram. This ties in nicely with the fact that the realization of the
simplicial replacement of G is a model for its homotopy colimit,

B(∗, I, G) ≃ hocolimG.

The Reedy cofibrancy of simplicial replacement also encodes the fact that the ho-
motopy colimit preserves pointwise weak equivalences between diagrams. We will
return to Reedy cofibrancy, simplicial replacement, and homotopy colimits for a
specific example in Example 3.16.

But we can actually use the two-sided bar construction to also model the total
space EG of the universal principal G-bundle. Recall that EG is characterized by
the property of being a contractible free G-space, and then BG is the orbit space
EG/G. To use the two-sided bar construction, we think of G as a functor (more
appropriately, a left G-module) G → Top which sends the unique object ∗ to the
space G (forgetting the group structure) and every morphism g ∈ G gets sent to
multiplication on the left by g. It turns out that G acts freely on the right of
B(∗, G,G), and when we quotient out by this action we get precisely B(∗, G, ∗) =
BG. Showing B(∗, G,G) is contractible takes a bit more work, but is proved e.g. in
[May75, §7]. This means that B(∗, G,G)→ B(∗, G, ∗) is a (the) universal principal
G-bundle where the projection map is induced by πG : G → ∗; we will see these
ideas return at the end of the next example.

2.5.4 Čech complex of a map

Let f : X → Y be a map of topological spaces. The Čech complex of f is the
simplicial space C(f) : ∆op → Top whose space of n-simplicies is the n-iterated
pullback

C(f)n = X ×Y · · · ×Y X

with n+ 1 factors. Given an element (x0, . . . , xn) ∈ C(f)n, the ith face map omits
xi and the jth degeneracy map repeats xj . Note that if (x0, . . . , xn) is an element
of C(f)n, then each xi has the same image in Y under f , so this induces a map
|C(f)| → Y . It turns out that if f has a section, then this map is a homotopy
equivalence. (One way to prove this statement is to use augmented simplicial sets
and source/sink-like contracting homotopies. See [Dug08, §3.10] for more details.)

If X and Y are discrete, we can actually view C(f) as the nerve of a certain
category. In the non-discrete case, this will be the nerve of a topological category,
which we will discuss further in Section 3. Let C (f) be the category with one object
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for each element of X and a unique morphism x0 → x1 if and only if f(x0) = f(x1).
The nth level of the nerve is exactly C(f)n since

(X ×Y X)×X (X ×Y X) ∼= X ×Y X ×Y X,

and so BC (f) = |C(f)|.
We can also model EG → BG using this Čech complex machinery. One useful

thing that this approach does for us, as opposed to the two-sided bar construction,
is it builds EG as the classifying space of a category. This is also taken up in [Seg68,
§3], although we note he does not discuss this in the language of Čech complexes.

Let πG : G→ ∗ be the projection map, and think of G as a G-space via the group
operation. Then if we form the Čech complex of πG this also has a G action (the
diagonal one). Alternatively, we can think of the Čech complex as the nerve of the
category C (πG), with objects G and morphisms G×G. This category is sometimes
denoted Ĝ or G and called the chaotic category associated to the group G. The
realization |C(πG)| = BC (πG) turns out to be a contractible (because πG has a
section) free (because G acts freely on itself) G-space and hence models EG. It is
worth noting that nothing really new is going on here: in this case we can interpret
C(πG)n as just Bn(∗, G,G).

For example, when G = Z/2, we can build EZ/2 using the Čech complex of
πZ/2 : Z/2 → ∗. Since this map has a section, we know EZ/2 will be equivalent to
the base space ∗, i.e. contractible. The category C (πZ/2) looks like

∗ ∗
f

g

since both points have the same image under the projection. The nerve of this
category has two non-degenerate simplices at each level, corresponding to alternating
f and g (either starting with f or starting with g). Since fg and gf are both the
identity, the gluing relations in the geometric realization imply that BC (πZ/2) =
EZ/2 has the same CW description as S∞, with two cells in each dimension.

2.5.5 Translation categories

If X is a G-set for some group G, we define its translation category X to have object
set X and homsets X(x, x′) = {g ∈ G | g · x = x′}. This category is built to encode
the action of G on X, as demonstrated by the following proposition.
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Proposition 2.3. The classifying space B(X) is homotopy equivalent to
∐

BGx

where the coproduct is taken over representatives [x] ∈ X/G.

To prove this, we first observe that a G-set X decomposes as a disjoint union
of its orbits, each of which can be written as G/Gx for some x in the orbit. Thus
after choosing coset representatives (which doesn’t affect the homotopy type, since
if [x] = [y] then Gx is conjugate to Gy), we can write X =

∐
[x]∈X/GG/Gx. This

identification carries over to the translation categories, so it suffices to prove that
B(G/H) ≃ BH for H ≤ G, where G/H is the translation category for the transitive
action of G on G/H and H is the usual one-object category. Consider the inclusion
i : H → G/H where the single object maps to the identity coset eH and each
morphism h ∈ H maps to itself. We claim this functor defines an equivalence
of categories. Unfortunately its tricky to give a well-defined functor in the other
direction, so instead we’ll show that this inclusion is essentially surjective and fully
faithful. For the first point, we simply note that eH ∼= gH for each coset (via
multiplication by g or g−1). For fully faithful, we note that H(∗, ∗) ∼= H and
G/H(eH, eH) ∼= H naturally, so we’re done.

Remark 2.19. We can define π0 of a category to be the set of objects modulo the
equivalence relation generated by the morphisms. So if we look at X, we see that
π0(X) = X/G. More generally, we can define translation categories for functors
X : I → Set where I is any small category. The objects are pairs (i, x) for i ∈ Ob I
and x ∈ X(i), and a morphism (i, x) → (i′, x′) is a map f : i → i′ such that Xf
maps x to x′. By the description of π0, we see that π0(X) = colimI X.

As another example, we could consider G as an H-set for H ≤ G, again acting
by left multiplication. Now our object set is G and the morphisms from g1 to g2
are the h ∈ H such that hg1 = g2, so there is at most one morphism (depending on
whether g2g

−1
1 ∈ H or not). Now the proposition tells us that B(G) is equivalent

to a coproduct over [g] ∈ G/H of stabilizers. But every g ∈ G has trivial stabilizer
in H, hence B(G) ≃ G/H.

If we write i : H → G for the inclusion of the associated categories, then we can
see that ∗↓ i = G:

Ob(i↓∗) = {(∗, g : ∗ → ∗) ∈ H ×HomG} ∼= G,

Hom(i↓∗) = {h ∈ H | hg1 = g2} = {h ∈ H | h = g2g
−1
1 }.

Note that for any g ∈ G, the induced automorphism of ∗↓ i given by pre-composing
multiplication-by-g (aka multiplying on the right) is an equivalence (in fact, an
isomorphism). Thus we can apply Theorem B to conclude that the homotopy fiber
of BH → BG is B(∗ ↓ i) = B(G) ≃ G/H. Note that the fiber of i, which by
definition is the subcategory of H which gets mapped to ∗ e−→ ∗, is just the trivial
subcategory and hence contractible. The homotopy fiber is somehow giving us the
“right” information here.

A specific example that falls under both of these umbrellas is G acting on itself,
where the objects are G and there is exactly one morphism g1 → g2 (the element
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g2g
−1
1 ). Using either two methods outlined above (thinking about B(G/e) or B(∗↓

idG)), we see that B(G) ≃ B(∗) = ∗. Since G acts freely on itself, B(G) is also
a free G-space and hence a model for the universal cover EG. This gives us yet
another way to build EG, but once again this is actually the same model we’ve
seen before: the category G is the same as the category C (πG) = G we saw in the
previous example.

2.5.6 Subdivision categories

The subdivision category of C is like “C shifted by a degree,” where now the objects
are morphisms and the morphisms are “morphisms between morphisms” in the form
of commutative squares. The author personally prefers the name twisted arrow
category because it lines up more closely with arrow category.

Definition 2.20. Given a small category C , the twisted arrow category (or subdi-
vision category) of C , denoted tw(C ), the category whose objects are morphisms
of C , written vertically, and whose morphisms are commutative squares. That is, a
morphism from a→ b to c→ d is given by

a c

b d

For example, the twisted arrow category of the poset category [n] has objects
(i, j) for every 0 ≤ i ≤ j ≤ n, and a morphism (i→ j) ⇆ (i′ → j′) whenever i ≥ i′

and j ≤ j′.
Remarkably, twisting the category in this way does not affect the classifying

space, as BC and Btw(C ) are actually homeomorphic. To see this, we use an
operation on simplicial spaces known as Segal’s edgewise subdivision.

The category ∆ has a (non-symmetric) monoidal structure via the join ⋆. Given
linearly ordered sets I, J , their join I ⋆ J is the set I ⨿J with the original orderings
on I and J , along with the additional condition that i < j for all i ∈ I, j ∈ J . For
example, we can think of [n] ⋆ [m] as

0 < 1 < · · · < n < 0 < 1 < · · · < m,

where the overline is merely meant to distinguish between the elements of [n] and
those of [m]. Now, let ε : ∆→∆ be given by op ⋆ id, so ε([n]) = [n]op⋆[n] ∼= [2n+1],
where [n]op is meant to indicate [n] with reversed ordering. Hence we can think of
ε([n]) as

n < n− 1 < · · · < 1 < 0 < 0 < 1 < · · · < n− 1 < n.

Definition 2.21. Given a simplicial set X, the edgewise subdivision of X is the
simplicial set sd(X) = X ◦ ε, with each component sd(X)n ∼= X2n+1. The vertices
of sd(X) are the edges of X, and an edge of sd(X) from a → b to c → d can be
viewed as a commutative diagram,
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a c

b d

.

The edgewise subdivision is thus a functor sd: sSet→ sSet specified by sd(X)n =
X2n+1 and the structure maps sd(di) = dn−i ◦ dn+1+i : sd(X)n → sd(X)n−1 and
sd(sj) = sn−j ◦ sn+1+j : sd(X)n → sd(X)n+1.

For the caseX = ∆k, the edgewise subdivision divides ∆k into 2k non-degenerate
k-simplicies. We can visualize this as literally subdividing the topological simplicies
in the realization, as is illustrated below for k = 1, 2, 3.

A collection of vertices {vi0,j0 , . . . , vik+1,jk+1
} determines a simplex when i0 ≥ · · · ≥

ik+1 and j0 ≤ · · · ≤ jk+1 (and each of the numbers 0, . . . , k appears at least once).
In the case when X = NC is the nerve of some category, the definition of the

edgewise subdivision strongly resembles the twisted arrow construction. The two
notions are linked together by the following observation:

Proposition 2.4. If C is a small category, then sd(NC ) ∼= N tw(C ).

Proof. We see that sd(NC )0 ∼= NC1 = HomC = Ob tw(C ) = N tw(C )0. Similarly,

sd(NC )1 ∼= NC3 = {· → · → · → ·} =


· ·

· ·

 = N tw(C )1

and so on. It suffices to show that N tw(C )n ∼= NC2n+1. An element of NC2n+1

looks like a diagram of 2n+ 1 composable morphisms between 2n objects of C

0 1 . . . n− 1 n

0 1 . . . n− 1 n
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but, composing arrows, this is the same as the diagram

0 1 . . . n− 1 n

0 1 . . . n− 1 n

which is just an element of N tw(C )n. A quick inspection shows that this corre-
spondence is compatible with the face and degeneracy maps as well.

Now, the key result to use is one proved in [Seg73, Appendix 1], although he
says it is “more or less due to Quillen.”

Theorem 2.22. For any X ∈ sTop, there is a homeomorphism |X| ∼= |sd(X)|.

Applying this to the twisted arrow category, we see that BC ∼= B tw(C ). There
are various other ways we can manipulate the data of C to get a new category— for
example, the opposite category C op, the over/under categories of an object c ∈ C ,
and so on— and we can ask how these changes affect the resulting classifying space.
In the case of C op, it is perhaps unsurprising that BC ∼= BC op, since geometric
realization does not really care about the direction of the arrows. As for the over
(or under) category of c ∈ C , its classifying space will consist of the collection of
n-simplices which all have c×∆0 as a vertex. In particular, the classifying space of
an over (or under) category will be contractible, since it has an initial (or terminal)
object (see Remark 3.12).
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3 Topological Categories

If our category C comes with some topology in some sense, then we would want
its classifying space to keep track of this information. For our purposes, the idea
of a category “coming with a topology” will take the form of categories internal to
Top. In this context, the nerve NC will be a simplicial space, and we can still talk
about the classifying space BC as the realization of this simplicial space as we saw
in Subsection 2.3. We will refer to such categories as topological categories, although
it is worth noting this term is slightly overloaded in the literature. For instance,
being internal to Top is distinct from being enriched5 over Top, and the former is
a stronger condition in this context as we shall discuss in Subsection 3.2.

3.1 What is a topological category?

The idea of an internal topological category is that both the objects and morphisms
come with a topology, and we ask the categorical structure to respect this topology.

Definition 3.1. A small category C is a topological category (in the sense of being
internal to Top) if it has a space of objects C0 and a space of morphisms C1 with
four continuous structure maps:

C0

C1

idom cod , C1 ×C0 C1 C1
◦ .

• The domain map dom: (f : X → Y ) 7→ X,

• The codomain map cod: (f : X → Y ) 7→ Y ,

• The identity map i : X 7→ idX ,

• The composition map ◦ sends a pair of morphisms (f, g) to their composite
g ◦ f = gf . Here ◦ is defined on the pullback of C1 ×C0 C1:

C1 ×C0 C1 C1

C1 C0

π2

π1 cod

dom

.

These maps must satisfy a variety of compatibility conditions, expressed as diagrams
in Top:

5It is also worth mentioning that both of these notions are distinct from topologically concrete
categories (as in [rAHS04, §VI.21]).
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C0 C1

C0

i

coddom ,

C1 C1 ×C0 C1 C1

C0 C1 C0

cod ◦

π1 π2

dom

cod dom

.

These two diagrams specify the domain and codomain of the identity map i and the
composition map ◦, respectively. The following two diagrams assert that composi-
tion is unital (with identity i) and associative:

C0 ×C0 C1 C1 ×C0 C1 C1 ×C0 C0

C1 C1 C1

π2

i×id

◦ π1

id×i

C1 ×C0 C1 ×C0 C1 C1 ×C0 C1

C1 ×C0 C1 C1

id×◦

◦×id

◦

◦

.

Of course, any small category is a topological category under the discrete topol-
ogy, but there is often more than one way to do it. Many familiar notions from
category theory have internal counterparts, such as functors and natural transfor-
mations.

Definition 3.2. A continuous functor is a map F : C → D between two topological
categories that consists of two continuous maps,

F0 : C0 → D0 and F1 : C1 → D1,

which are compatible with the four structure maps. That is, such that the following
diagrams commute:

C1 ×C0 C1 D1 ×D0 D1

C1 D1

◦C

F1×F1

◦D

F1

C1 C0 C1

D1 D0 D1

F1

cod

dom

F0

i

F1

cod

dom

i

.

We then assemble the category Cat(Top) whose objects are topological cate-
gories and whose morphisms are continuous functors.

Definition 3.3. A continuous natural transformation η : F → G between a pair of
continuous functors F,G : C ⇒ D consists of a continuous map η : C0 → D1 such
that the following diagrams commute in Top:
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C0 D1

D0

η

F
dom

C0 D1

D0

η

G
cod .

That is, the map η assigns every X ∈ C0 a morphism ηX : FX → GX. The
naturality condition on η requires that the following diagram also commutes:

C1 D1 ×D0 D1

D1 ×D0 D1 D1

(η◦cod,F )

(G, η◦dom)

◦

◦

.

Note that the commutativity of this diagram implies the usual naturality condition.
That is, if f : X → Y ∈ C1, the diagram above maps

f (Gf, ηX)

(ηY , Ff) ηY ◦ Ff = Gf ◦ ηX

which is precisely the desired condition.

Remark 3.4. It is equivalent to require that η is a continuous functor

η : C × [1]→ D

such that η(−, 0) = F and η(−, 1) = G. Here [1] is the poset category 0→ 1.
To see one direction, first suppose we have such a functor, so we get two maps

η0 : C0 × {0, 1} → D0 and η1 : C1 × {id0,→, id1} → D1. We can define the natural
transformation η by taking η : C0 → D1 to be η(c) = η1(idc,→); this is continuous
because η1 and the identity map i are both continuous. We need to check the
relevant diagrams commute. First, we need to see that η(c) maps Fc to Gc. This
follows from compatibility of the functor with dom and cod (the left half of the
second diagram in the definition). In particular, if f : c→ c′ in C , then functoriality
implies

(f,→) (c, 0)

η1(f,→) dom(η1(f →)) = Fc

dom

η1 η0

dom

and

(f,→) (c′, 1)

η1(f,→) cod(η1(f →)) = Gc′

cod

η1 η0

cod

.

We also need to check the naturality square, in particular that η(c′)◦Ff = Gf ◦η(c).
This follows from two applications of the diagram which encodes compatibility of
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the functor with composition (the first diagram in the definition). Specifically, we
have commutative diagrams

(f, id1)× (idc,→) η1(f, id1)× η1(idc,→) = (Gf, η(c))

(f ◦ idc, id1 ◦ →) = (f,→) η1(f,→) = Gf ◦ η(c)

η1×η1

◦C×[1] ◦D

η1

and

(idc′ ,→)× (f, id0) η1(idc′ ,→)× η1(f, id0) = (η(c′), Ff)

(idc′ ◦f,→ ◦ id0) = (f,→) η1(f,→) = η(c′) ◦ Ff

η1×η1

◦C×[1] ◦D

η1

which shows η(c′) ◦ Ff = η1(f,→) = Gf ◦ η(c). The reverse implication follows
from a similar unwinding of diagrams.

Definition 3.5. A continuous equivalence of categories internal to Top consists
of two continuous functors F : C ⇆ D :G together with two continuous natural
isomorphisms η : idC → GF and ϵ : FG→ idD .

3.2 Comparing to topologically enriched categories

There is another common way to talk about a category coming with topological
structure, which is topologically enriched categories.

Definition 3.6. A category C is topologically enriched if it has a set of objects
ObC and for each pair of objects c, d ∈ C , there is a space of morphisms Hom(c, d).
We also require certain continuous structure maps:

• For each trio c, c′, d ∈ ObC , composition Hom(c, c′)×Hom(c′, d)→ Hom(c, d)
must be continuous.

• For each object c ∈ ObC , there is a continuous map ∗c : ∗ → Hom(c, c) which
picks out the identity of c.

Moreover, these maps must satisfy the following compatibility diagrams:

C (a, b)× C (b, c)× C (c, d)

C (a, c)× C (c, d) C (a, d) C (a, b)× C (b, d)

◦×id id×◦

◦ ◦
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This diagram says that composition is associative, and the next one says it is unital.

C (a, a)× C (a, b) C (a, b) C (a, b)× C (b, b)

∗ × C (a, b) C (a, b)× ∗

◦ ◦

∗a×id
proj2 proj1

id×∗b

A topologically enriched functor F : C → D between topologically enriched cate-
gories is just a functor such that Fc,c′ : Hom(c, c′)→ Hom(Fc, Fc′) is continuous for
each pair of objects c, c′ ∈ C . The category of topologically enriched categories and
their functors is denoted by CatTop.

There are also topologically enriched versions of natural transformations, equiv-
alences of categories, and so on. The idea is always just to ask that the maps respect
the topological structure on the homspaces.

Remark 3.7. Both internalization and enrichment can be defined more generally.
For internal categories, the ambient category is required to be finitely complete6 (cf.
[ML71, §XII.1]). For enriched categories, the ambient category must be monoidal.
For an arbitrary ambient category V , categories internal to V may not be compara-
ble to categories enriched in V . That is, it is not true in general that being internal
is a stronger condition than being enriched, or vice versa. However, in the special
case of Top, we can say something to this effect.

If we compare the definition (internal) topological categories (Definition 3.1) to
that of topologically enriched categories, we can see that there are many similarities.
In particular, we might guess that a topologically enriched category consists of the
same data as a topological category with a discrete object space. We can make this
comparison more precise via a forgetful-cofree adjunction.

Definition 3.8. Let U : Cat(Top) → CatTop send a topological category C to
the enriched category UC whose object set is the underlying set of C0, and whose
homspaces are

UC (c, c′) = C1(c, c
′) ⊆ C1,

where C1(c, c
′) = cod−1(c) ∩ dom−1(c′) for each pair of objects c, c′ ∈ C . Composi-

tion on the homspaces in UC is given by restriction of the composition in C , and

∗c : ∗ → {c}
i−→ C1 for each c ∈ C . The diagrams for a topological category ensure

that the diagrams for a topologically enriched category commute. The forgetful
functor U sends a functor between topological categories to itself, now as a functor
of topologically enriched categories.

Now we define the “co-free” (i.e. right-adjoint) functor F : CatTop → Cat(Top).
We assume all our categories are small.

6A finitely complete category has all finite products, pullbacks, and a terminal object.
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Definition 3.9. Let C be a topologically enriched category, and define FC to be the
topological category with (discrete) object space FC0 = ObC and morphism space
FC1 =

∐
c,c′∈C Hom(c, c′). This ensures composition ◦ =

∐
c,d,d′ ◦ is continuous, and

the domain and codomain maps will be open since dom−1(c) =
∐

c′ Hom(c, c′) and
cod−1(d′) =

∐
cHom(c, c′) are both open in FC1. As for the identity, we can define

it on objects by c → ∗ ∗c−→ Hom(c, c), which will be continuous since the domain is
discrete. Again, the diagrams from the topologically enriched definition ensure that
the necessary diagrams in the internal definition commute. A topologically enriched
functor f : C → D maps to a continuous functor Ff : FC → FD with f0 equal to
f on objects (now viewed as a map of discrete spaces) and f1 =

∐
c,c′∈C fc,c′ .

Proposition 3.1. Let C be an (internal) topological category and let D be a topolog-
ically enriched category. Then there is an adjunction U ⊣ F , so there is a bijection

CatTop(UC ,D) ∼= Cat(Top)(C , FD).

Proof. We need to show there are continuous natural transformations η : FU ⇒
idCat(Top) and ε : UF ⇒ idCatTop

which satisfy the triangle identities. A quick
check verifies that UF = id, so ε = id works.

Note that FU does not change the underlying set of objects or morphisms of
a topological category, but just the topologies on them. Specifically, FUC0 is the
discrete space (C0)disc and FUC1 is

∐
c,c′∈C Hom(c, c′) where each Hom(c, c′) also

has its original topology as a subspace of C1. So we can define η by just taking a
component ηC : FUC → C to send each object and morphism to itself. We know
ηC is continuous on objects since the domain is discrete, and it is continuous on
morphisms because the topology on FUC1 is a refinement of the one on C1. A quick
check verifies that η commutes with the structure maps and satisfies the triangle
identities.

Among other things, we can use this adjunction to think of nerves of enriched
categories as simplicial spaces, rather than just simplicial sets. We note that we
would get the same construction of an enriched nerve using the simplicial bar con-
struction instead (see [Rie09, §3.1]), which can also be used to form enriched nerves
more generally.

3.3 Classifying spaces

The classifying space of C is the geometric realization of the nerve of C , or in
mathematical notation BC = |NC |.

To form the nerve of a topological category, we need to think of the collection
of n composable morphisms instead as a space instead of just a set. To this end, we
form the nth level of the nerve inductively as the iterated pullback with n factors,

NCn = C1 ×C0 C1 ×C0 · · · ×C0 C1,
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where each C1 ×C0 C1 is the limit of C1
cod−−→ C0

dom←−− C1. As in the simplicial set
version of the nerve, NC0 = ObC . A continuous functor C → D induces a map
NC → ND , and one can verify that we indeed get a functor N : Cat(Top)→ sTop.

Composing the nerve and the geometric realization, we get the classifying space
of a topological category. Segal’s work in [Seg68] verifies that the classifying space
map B : Cat(Top)→ Top retains its functorial properties, meaning that a contin-
uous functor F : C → D induces a continuous map BF : BC → BD , and moreover
equivalent topological categories have homotopy equivalent classifying spaces. The
latter fact is a consequence of the following theorem:

Theorem 3.10 ([Seg68]). Let F,G : C → D be continuous functors with a continu-
ous natural transformation η : F → G. Then the induced maps BF,BG : BC → BD
are homotopic.

Remark 3.11. We say a functor F : C → D has a lax inverse if there is a func-
tor F ′ : D → C such that both FF ′ and F ′F have natural transformations to the
relevant identity functors. There are no conditions imposed on the interactions of
these natural transformations, so this notion is a strictly weaker than that of an
adjunction, although adjoint pairs and equivalences of categories are examples of
lax inverses. A corollary of the theorem above is that any functor which admits a
lax inverse will realize to a homotopy equivalence.

Remark 3.12. Note that this theorem implies that if C has an initial (or terminal)
object, then the classifying space BC is contractible, induced by the continuous nat-
ural transformation between idC and the constant functor on the initial (or terminal)
object.

3.4 The Reedy model structure

There is a model structure on simplicial spaces, called the Reedy model structure,
which is inherited from giving∆ the structure of a Reedy category. For the purposes
of these notes, we will focus on how this model structure affects nerves of topological
categories, specifically, and we will largely ignore the model category theory (for
instance, we will not define what a model category is). The reader is invited to
see [Dug08, §13-14] and [RV14] for a discussion of Reedy categories and the Reedy
model structure in a broader context.

3.4.1 Reedy cofibrancy

We might hope that a levelwise equivalence of simplicial spaces realizes to an equiv-
alence of spaces, but unfortunately this is not always the case. That is, we can
have a map of simplicial spaces X → Y such that each component Xn → Yn is a
homotopy equivalence, but |X| and |Y | are not homotopy equivalent. This is es-
sentially because colimits generally fail to preserve equivalences, as we will see later
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in Example 3.16. One way to fix this issue is to use something like the homotopy
colimit, called the fat realization of X (see [Dug08, Remark 3.6]), ||X||, which is
essentially the geometric realization without collapsing the degeneracies. Another
approach is to require certain maps in X to be cofibrations; this is known as Reedy
cofibrancy.

Definition 3.13. A simplicial space X is Reedy cofibrant (or proper) if every latch-
ing map LnX ↪→ Xn is a cofibration, where

LnX =
n−1⋃
i=0

si(Xn−1)

is the nth latching object.

We can think of LnX ⊆ Xn as the set of degenerate n-simplices, which gives a
natural inclusion LnX ↪→ Xn (this is the nth latching map in the definition above).
One sufficient condition for being Reedy cofibrant is that every degeneracy map
sj : Xn → Xn+1 is a cofibration (this condition is sometimes called being good).
It turns out that this restriction gives us the kind of homotopy invariance that we
want.

Theorem 3.14. Let f : X → Y be a map of Reedy cofibrant simplicial spaces. If
fn : Xn → Yn is a homotopy equivalence for all n, then |f | : |X| → |Y | is a homotopy
equivalence.

Our statement of this result follows [May72, Chapter 11] and [Seg74, Appendix
A], although the reader familiar with model categories may be interested in the
approach of [RV14] (see their Corollary 10.6 for a statement of the theorem above).

Remark 3.15. Sometimes the notion of being Reedy cofibrant or good requires the
relevant maps to be closed cofibrations, but for sufficiently nice spaces (e.g. Haus-
dorff) every cofibration is a closed inclusion, so it suffices to just ask for cofibrations.

Recall from Example 2.8 that we can replace any diagram D : I → Top with a
simplicial space srep(D). For nice enough diagrams (e.g. diagrams which land in
CW complexes), the simplicial replacement is Reedy cofibrant. So an equivalence
between two nice diagrams D and D′ will induce an equivalence on their simplicial
replacements, and the theorem above implies |srep(D)| ≃ |srep(D′)|.

In fact, this result is true for any two equivalent diagrams D,D′ : I → Top. This
is because the realization of srep(D) is a model for the homotopy colimit of a diagram
D : I → Top, written hocolimD, which is like the colimit of D “up to homotopy.”
If taking a colimit is like gluing spaces together, then taking the homotopy colimit is
like gluing spaces together with extra wiggle room. For more on homotopy co/limits,
see [Dug08, §1.4–5] or [Hir14]. One nice property of homotopy colimits is that they
preserve weak equivalences, which is not true in general for colimits.
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Example 3.16. Consider the indexing category I = • ← • → • and let D be the
diagram ∗N ← Sn−1 → ∗S . (Both ∗N and ∗S are the trivial space, but we give
them different names so we can tell them apart in our computation.) The colimit
of D is just a point, but we will show that the homotopy colimit7 is the suspension
S(Sn−1) ∼= Sn, which is not contractible, i.e. the colimit and homotopy colimit are
not equivalent!

Let’s compute the homotopy colimit of D using the simplicial replacement. Since
there are no interesting ways to compose two or more morphisms, srep(D)n contains
only degenerate simplices for n ≥ 2. This means we only need to think about levels 0
and 1 to compute the homotopy colimit, since all the higher levels will be collapsed
in the realization. The non-degenerate simplices in srep(D)0 are ∗N , Sn−1, and
∗S , and the non-degenerate simplices in srep(D)1 are Sn−1

N and Sn−1
S , which are

associated to the maps Sn−1 → ∗N and Sn−1 → ∗S , respectively. Then we can
write

|srep(D)| = (∗N ⨿ Sn−1 ⨿ ∗S)×∆0
∐

(Sn−1
N ⨿ Sn−1

S )×∆1/ ∼

where Sn−1 ×∆1 is glued to ∗N ×∆0 and Sn−1 ×∆0 via

(x, 1) ∼ (∗N , ∗) and (x, 0) ∼ (x, ∗)

for x ∈ Sn−1
N ; similarly, Sn−1

S is glued to ∗S ×∆0 and Sn−1 ×∆0 by

(x, 0) ∼ (∗S , ∗) and (x, 1) ∼ (x, ∗)

for x ∈ Sn−1
S . This describes |srep(D)| as the suspension of Sn−1, and hence

|srep(D)| ∼= Sn−1.

Now let’s see an example of how the homotopy colimit preserves equivalences. Take
D′ to be the diagram Dn ← Sn−1 → Dn. We have equivalences Dn → ∗ which give

7For this special indexing diagram, the homotopy colimit is usually called the homotopy pushout.
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us the following diagram:

Sn−1 Dn

Dn ?

Sn−1 ∗

∗ ?

≃

≃ ≃?

If we take the colimit, then the top ? becomes Sn but the bottom ? becomes ∗,
which are not equivalent. However, if we take the homotopy colimit instead, then
we will get an induced equivalence.

An interesting observation is that, in this case, colimD′ ≃ hocolimD′; this is because
the inclusion Sn−1 → Dn is a cofibration. In general, if enough of the maps in the
diagram are cofibrations, then the usual colimit models the homotopy colimit (cf.
[Hir14, §10.2]).

In the context of classifying spaces, we can reformulate Reedy cofibrancy of
NC in terms of the identity i : C0 → C1, following [Rob02], since the degenerate
simplicies all come from i.

Definition 3.17. A topological category is well-pointed if the inclusion i : C0 ↪→ C1

makes (C1,C0) an NDR-pair over C0, where C1 is considered as a space over C0 via
both the domain and codomain maps (and C0 is a space over itself via the identity).
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This means there are maps

C1 I × C0

C0

u

dom
proj2

C1 × I C1

C0

h

dom

so that

(i) C0 = u−1({0} × C0),

(ii) h0 = idC1 and h|C0×I = projC0
,

(iii) h1(x) ∈ C0 for x ∈ u−1[0, 1)

as maps over C0, and there are also similarly defined maps when we replace dom
with cod.

The idea is that (C1,C0) is an NDR pair in such a way that the relevant homo-
topies do not move C0 when viewed as the subspace of domains (or codomains). In
particular, i : C0 → C1 must be a (closed) cofibration.

Proposition 3.2. The nerve of a well-pointed category is good.

Proof. The key fact to use is that NDR pairs over a space are preserved under
pullback; in particular, if X → C0 is any space over C0, then the fact that (C1,C0)
is NDR over C0 implies that (C1×C0 X,C0×C0 X) is NDR over C0. Moreover, since
we assumed (C1,C0) is NDR over C0 in two ways, for C1 as a space over C0 via
dom: C1 → C0 and cod: C1 → C0, we can consider the limit over

Y C0 C1 C0 Xdom cod

for any spaces Y,X over C0 and conclude that the pair (Y ×C0 C1 ×C0 X,Y ×C0

C1 ×C0 X) is NDR over C0. Now, applying this to the degeneracy maps

NnC ≃ NjC ×C0 C0 ×C0 Nn−jC
sj−→ NjC ×C0 C1 ×C0 Nn−jC ≃ Nn+1C

which insert an identity, we get that sj : NnC → Nn+1C are cofibrations for all
j = 0, . . . , n.

Remark 3.18. If C is an internal category arising from an enriched category as in
Subsection 3.2, then we know C0 is discrete and C1 =

∐
c,c′∈C Hom(c, c′). Assuming

each c ∈ C has no non-trivial automorphisms, the inclusion of the summands i(C0) =∐
c∈C Hom(c, c) into C1 is a closed cofibration. Hence the nerve of such a category

is Reedy cofibrant.
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In light of Theorem 3.14, we can ask whether there is something weaker than
an equivalence of categories which would induce an equivalence of classifying spaces
of well-pointed categories. For instance, given a levelwise equivalence C0 ≃ D0 and
C1 ≃ D1, do we get BC ≃ BD? In order to get a levelwise equivalence of nerves, we
need this to come from a continuous functor F : C → D which induces a levelwise
equivalence NF : NC → ND . This is true if

NnC C1

Nn−1C C0

dom

cod

and

NnD D1

Nn−1D D0

dom

cod

are homotopy pullbacks8 for all n ≥ 2, since the homotopy invariance of pullbacks
will then imply NnF : NnC

∼−→ NnD for all n ≥ 0. (We could also swap the role
of the domain and codomain maps if preferred.) Thus we see that it is sufficient in
some cases to merely require that F : C → D is a levelwise equivalence in order to
conclude BF : BC ≃ BD .

Remark 3.19. The strict pullbacks NnC , NnD are homotopy pullbacks if either the
domain (source) or codomain (target) map is a fibration in both C and D . This is
true, for example, if C and D have discrete object space.

Remark 3.20. In many cases, the levelwise equivalences C0 ≃ D0 and C1 ≃ D1

coming from F : C → D will likely be witnessed by a lax inverse G : D → C , in
which case Remark 3.11 tells us we get an equivalence of classifying spaces. The
discussion above is meant to explore the situation where there may not exist such a
G.

3.4.2 Reedy fibrancy

The dual notion to Reedy cofibrant is appropriately the named condition of Reedy
fibrancy. The machinery of Reedy co/fibrancy works for more general Reedy cat-
egories, but we will focus specifically on ∆op (which is the prototypical example
of a Reedy category). Reedy fibrancy is also related to the construction of homo-
topy limits, the dual notion to homotopy colimits we discussed in Example 3.16 (see
[Dug08, §5] for details).

Definition 3.21. A simplicial space X is Reedy fibrant if the matching maps Xn →
MnX are fibrations, where MnX is the nth matching object

MnX := lim
[n]→[j]
j<n

X

8Technically, we mean NCn
cod−−→ C0 to be NCn

◦−→ C1
cod−−→ C0 where ◦ denotes the composition

of the n morphisms from NCn. We omit this finer detail for the sake of simplicity.
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The definition of the matching object can appear a bit unwieldy at first, so it may
often be easier to deal with another, more concrete description discussed in [RV14,
Examples 3.14 and 3.22]. In particular, the elements of MnX can be described
as maps ∂∆n → X, where ∂∆n is the simplicial set generated by ∆n without its
unique non-degenerate n-simplex, and the matching map Xn → MnX is the one
which sends a n-simplex to its boundary. Another way to say this is that MnX is
the n-simplices of the (n− 1)-coskeleton9 of X.

Example 3.22. Recall that ∆n is the simplicial set with ∆n
k = ∆([k], [n]). The kth

matching object Mk∆
n consists of maps ∂∆k → ∆n. But every map ∂∆k → ∆n

has a unique filler ∆k → ∆n determined by ∂∆k
k−1 → ∆n

k−1, and hence Mk∆
n can

be identified with ∆n
k . So in this case the matching map is just the identity, so ∆n

is Reedy fibrant. We will see in ?? that this connects to the fact that ∆n = N [n].

We have introduced Reedy fibrancy of simplicial spaces so that we can discuss a
remarkable result from [WD95]. Recall that every simplicial space X has an under-
lying simplicial set Xδ, where we’ve given everything the discrete topology, and we
have a continuous map of simplicial spaces Xδ → X. It turns out that sometimes
the topology on X doesn’t really matter after realization: [WD95, Proposition 4.6]
tells us that this map realizes to a weak equivalence when X has nice enough prop-
erties. We note that their result is stated for based simplicial spaces but the proof
translates basically verbatim to unbased simplicial spaces.

Theorem 3.23. Suppose X is a Reedy fibrant and Reedy cofibrant simplicial space.
Then |Xδ| → |X| is a weak equivalence.

The proof of this result uses the bisimplicial space Z∗,∗ = S∗(X∗) (where S∗ is
the total singular complex from Example 2.3) so Zk,∗ = Sk(X∗) and Z∗,n = S∗(Xn).
The advantage of using this bisimplicial space is that it gives us a way to translate
between Xδ and X, because S0(X∗) = Xδ and |S∗(Xn)| is weakly equivalent to Xn

for each n ≥ 0. We then have

|Xδ| = |S0(X∗)|
(1)−−→ |[k] 7→ |Sk(X∗)|| ∼= |diag(S∗(X∗))| ∼= |[n] 7→ |S∗(Xn)||

(2)−−→ |X|.

The fact that (1) and (2) are weak equivalences follows from Reedy fibrancy and
cofibrancy of X∗, respectively.

Using this theorem, we can investigate when the topology on the category does
not affect the resulting classifying space, at least up to weak equivalence. That is,
if we let C δ denote the “discretized” version of C , we can ask when BC and B(C δ)
are equivalent. Because N(C δ) is the same as the simplicial set underlying NC , we
can make use of Theorem 3.23. Specifically, if the nerve NC is Reedy cofibrant and
Reedy fibrant, then Theorem 3.23 tells us that the map B(C δ) → B(C ) is a weak

9The k-coskeleton of a simplical space X has the same m-simplicies as X for m ≤ k and produces
a simplex of degree m > k whenever there is a compatible family of m-faces.
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equivalence. This motivates us to characterize Reedy fibrancy of the nerve in terms
of properties of C .

The first thing to notice is that the matching maps turn out to be identities for
n ≥ 3. In particular, the nth matching object

MnNC = lim
[n]→[k]
k<n

NC

is precisely C1 ×C0 · · · ×C0 C1 = NCn for n ≥ 3. (This is because the nerve is
2-coskeletal, see [Rie14, Example 1.2.10].) For n ≤ 2, we can make the conditions
explicit:

• When n = 0, the matching object is the terminal object, so we are just asking if
NC0 = C0 is fibrant (and all spaces are fibrant in the classical model structure).

• When n = 1, recall that ∂∆1 = ∆0⨿∆0, so an element (∂∆1 → NC ) ∈M1NC
picks out two 0-simplices of NC . That is, we can identify M1NC with C0×C0,
and the matching map sends a morphism f ∈ C1 to (dom(f), cod(f)). So in
order for NC to be Reedy fibrant, we need this map to be a fibration.

• For n = 2, we are looking at (∂∆2 → NC ) ∈M2NC which picks out a triangle
of morphisms

c1

c0 c2

gf

h

where the triangle does not necessarily commute. We asking for the inclusion
of commuting triangles into all triangles to be a fibration onto its image. Note
that if N2C → M2NC is a fibration, then ◦ : N2C → C1 must be as well
since we can post-compose with the projection M2NC → C1 onto the third
coordinate, and this map admits a section which factors through N2C .

If these conditions hold for a well-pointed category (see Definition 3.17), so NC
is Reedy fibrant and Reedy cofibrant, then the continuous functor C δ → C induces
a weak equivalence on classifying spaces. Reedy fibrancy of nerves is a somewhat
rare property, since Reedy cofibrancy is a reasonable (and desirable) property but
BC typically has more complicated topology than BC δ.

Remark 3.24. Note that a necessary condition for C to have a Reedy fibrant and
cofibrant nerve is that the structure maps (dom, cod) : C1 → C0×C0 and ◦ : C1×C0

C1 → C1 are fibrations and i : C0 → C1 is a cofibration.

3.5 Generalizing Quillen’s Theorems for Topological Categories

Quillen’s Theorems A and B (Subsection 2.4) for ordinary categories are extremely
useful, since they tell us when taking classifying spaces preserves homotopy fibers,
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in some sense. In the setting of topological categories the situation is somewhat
more complicated, primarily because our nerves are now simplicial spaces instead
of simplicial sets (and spaces are generally more delicate than sets). However, after
some careful thought, we can find suitable reformulations within this topological
context. Our exposition of Theorem A follows [Rob02], and we use a similar method
of proof for Theorem B. A more general version of Theorem B also appears in Disclaimer: this

part has not been
written up yet.[Mey85]. We assume all our categories are well pointed so the nerves are Reedy

cofibrant.

3.5.1 Topological Quillen Theorem A

If we want to generalize Quillen’s Theorem A (Theorem 2.14) to topological cate-
gories, a good first strategy is to try and mimic as much of the original proof as
possible, and observe what goes wrong. Recall that the original proof used a bisim-
plicial set Z∗,∗ whose (p, q)-simplices look like (dp → . . . d0 → F (c0), c0 → · · · → cq),
and the diagonal of this bisimplicial set is the nerve of a category S (F ). In the
topological setting, we can form S (F ) as a topological category by forming it as a
pullback

S (F ) C

twD D

F

cod

That is, the object space is D1 ×D0 C0 and morphism space N2D ×D0 ×C1. This
category has the same objects and morphisms as the old S (F ) from Theorem A,
just with a topology. We again have a diagram

C S (F ) Dop

D S (idD) = twD Dop

F

∼ ∼

.

We need to show that the top horizontal arrows are equivalences. Let’s start with
the right one. In the original proof, we noticed that the map NnS (F ) → NnD
which sends (d0 → · · · → dn → F (c0), c0 → · · · → cn) 7→ d0 → · · · → dn is really a
map ∐

d0→···→dn

d↓F →
∐

d0→···→dn

∗.

Then, by the assumption that all the d ↓ F were contractible, we have a levelwise
equivalence of simplicial sets and therefore we get an equivalence after realization.

Now, the trouble for topological categories is we can no longer identify NnD with∐
d0→···→dn

∗. However, upon careful reflection, we can come up with an analogous
argument which works for topological categories. The key observation is that the
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collection of “fibers” d ↓ F now has a topology, coming from the topology of the
objects D0. (This can be visualized like a “fiber bundle” living over D0). We can
formalize this idea as a topological category D0 ↓F which is defined as a pullback
over a kind of “tangent” category.

Definition 3.25. Define TD as the pullback

TD ar(D)

D0 D

dom

i

,

where D0 in the diagram is the category with object space D0 and only identity
morphisms (so BD0

∼= D0). More explicitly, objects of TD are morphisms d0 → d
in D and morphisms are commuting triangles

d0 d

d′

.

This can be thought of as the collection of based “path spaces” over all basepoints
unioned over the object space D0. If D is discrete, then this is just a disjoint union.
We will form D0 ↓ F as a the part of TD where the targets of the morphisms all
land in the image of F .

Definition 3.26. Let F : C → D be a continuous functor between topological
categories. The category D0 ↓F is the pullback

D0 ↓F C

D0 D

F

i

.

The objects are morphisms d→ F (c) and the morphisms are commuting triangles

d F (c0)

F (c1)

F (f)

where f : c0 → c1 in C .

Note that when D is discrete, D0 ↓ F is the disjoint union of the fibers d ↓ F .
In the discrete case, we asked for each of these fibers to be contractible, which is
like asking for D0 ↓ F to be equivalent to D0. However, we need something a bit
stronger: we need D0 ↓ F to contract down to D0 without moving the basepoints
D0. This condition can be summarized as a certain map being shrinkable.
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Definition 3.27. A map p : X → Y in Top is shrinkable if it admits a section
s : Y → X so that sp : X → X is homotopic to the identity in the category Top/Y
(this is sometimes called being fiberwise homotopic to the identity).

For topological Theorem A, D0 ↓F will play the role of d↓F , and shrinkability of
D0 ↓F → D0 (where we mean the map is shrinkable after taking classifying spaces)
replaces contractibility of the fiber d ↓ F . In particular, D0 ↓ F → D0 must be a
homotopy equivalence but in such a way that the “base space” of objects D0 is not
disturbed. Of course if D0 is discrete, then it is enough to ask for each fiber to be
contractible without any extra conditions.

Note that NnS (F ) = NnD ×D0 D0 ↓ F and so if D0 ↓ F → D0 is shrinkable
then so is NnD ×D D0 ↓F → NnD ×D0 D0 (since pullbacks of shrinkable maps are
shrinkable), and so in particular this map is a homotopy equivalence. But this is
exactly the map S (F )→ Dop, and thus we have shown this map is an equivalence.

Now for the functor S (F ) → C which projects (c, d → Fc) to c. Running a
similar sort of argument, we see that we need the map B(D ↓ F (C0)) → C0 to be
shrinkable, where D ↓ F (C0) is a topological category (also defined as a pullback)
whose objects look like d→ F (c0) and whose morphisms are triangles

d F (c0)

d′

.

This map is always shrinkable because the projection functor D ↓F (C0) → C0 has
a lax inverse which sends each c0 ∈ C to the terminal morphism F (c0) = F (c0).

Theorem 3.28. Let F : C → D be a continuous functor between well-pointed topo-
logical categories. If D0 ↓F → D0 is shrinkable, then F : C → D is an equivalence.

3.5.2 Topological Quillen Theorem B

This part is still in progress! Check back later

3.6 Some More Examples

To close out this note, we will look at some examples of topological categories and
their classifying spaces, highlighting where/how the results of the previous section
may be applied.

3.6.1 Topological groups

Let G be a well-based topological group, i.e. a topological group such that the
inclusion of the identity is a cofibration. We saw in Example 2.6 that we can think
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of G as the one object category whose morphisms are the group G itself, which
now has a topology. This is an example of a topological category, since the domain,
codomain, and identity maps are trivially continuous and composition is continuous
by assumption.

Our discussion in Subsection 3.4.1 says that if we have two groups G and H
and a continuous functor between their associated categories which is a levelwise
equivalence, then we get a homotopy equivalence on their classifying spaces (since
the groups are well-based, we can apply Proposition 3.2). In particular, note that
the data of such a functor is exactly the data of a continuous group homomorphism
G→ H which is also an equivalence.

This is related to the reduction of structure groups in bundle theory (as hinted
at in Subsection 2.5.2). In particular, the statement that G ≃ H is equivalent to
saying that every G-bundle can have its structure group reduced to H. For example,
the Gram-Schmidt algorithm gives an equivalence from GLn(R) to O(n), and so we
know that BGLn(R) ≃ BO(n), and hence every real (rank n) vector bundle can
have its structure group reduced from GLn(R) to O(n). The same story can also be
told for GLn(C) and U(n).

It is important to note the differences between BG where we take the topology
of G into account, and B(Gδ) where we forget the topology on G. For example, we
know B(Gδ) is a K(Gδ, 1) whereas BG has the property that πi(BG) = πi−1(G)
(since ΩBG ≃ G). So for instance BR is contractible, since R is, but BRδ is not.
Typically BG and BGδ are not homotopy equivalent, and in light of Theorem 3.23
(noting that our topological groups are most often well-based), this means their
nerves are usually not Reedy fibrant.

3.6.2 Simplicial two-sided bar construction and O-graphs

We saw in Subsection 2.5.3 that we can use the two-sided bar construction to model
the classifying space of a (non-topological) category. Moreover, given a functor
G : C → Top which is weakly contractible (meaning there is a weak equivalence
G→ ∗), then hocolimG ≃ B(∗,C , G) ≃ B(∗,C , ∗) = BC .

It would be helpful to have similar bar-construction models for enriched/topological
categories. For enriched categories, we can bump up our definition of the two-sided
simplicial bar construction to keep track of the extra topological structure by setting

Bn(F,C , G) :=
∐

(ObC )n+1

F (i0)× C (i0, i1)× · · · × C (in−1, in)×G(in).

Now B(∗,C , ∗) really is the classifying space of the topologically enriched category
C . In particular, we can use this enriched two-sided bar construction to model the
classifying space of a topological group. The space B(∗, I, G) is an example of a
so-called “weighted homotopy colimit” of G (see [RV14, Part II.]).
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If C is actually internal, rather than just enriched, then we can define a bar
construction using the language of O-graphs (see [Mey85]). In the specific context
of Top, O is a space which acts as our space of objects, O = C0.

Definition 3.29. A C0-graph is a space C1 together with maps s, t : C1 → C0.

We’ve written the definition above to suggestively indicate that topological cat-
egory C with object space C0 is a monoid in the category of C0-graphs. The idea is
that we want

Bn(F,C , G) = F ×C0 Nn(C )×C0 G,

so in particular when F = ∗ = G, we get B(∗,C , ∗) = BC . But what does it mean
to take a pullback over C0 with functors F,G? It turns out that functors are not
the right data to consider anymore, but instead we want to use something called
left and right C0-graphs over C1. Rather than going into the formal definitions (see
[Mey85, §1] for those), we’ll outline the basic idea.

Rather than just the data of a functor F , what we need now is a space F (C0)
along with a map F (C0) → C0 and a “right action of C1 over C0” in the form of a
map F (C0)×C0 C1 → F (C0) (which satisfies various compatibility conditions). This
action map is what gives us the face map d0 in the bar construction. Similarly, for G,
we need a space G(C0) with a map G(C0)→ C0 and a “left action” C1×C0 G(C0)→
G(C0). It then makes sense to talk about a simplicial space B∗(F (C0),C , G(C0))
with

Bn(F (C0),C , G(C0)) = F (C0)×C0 Nn(C )×C0 G(C0),

and call its realization a two-sided bar construction.

3.6.3 The Čech complex revisited

Recall from Subsection 2.5.4 that we can form a simplicial space C(f) from a map
f : X → Y of topological spaces by defining

C(f)n = X ×Y · · · ×Y X

with (n + 1)-factors. The ith face map omits the xi from a tuple (x0, . . . , xn) and
the jth degeneracy map repeats xj . We saw in this example that if we think of C(f)
as just a simplicial space, then it is actually the nerve of a category C (f). However,
because we have forgotten the topology, the classifying space of C (f) misses some
important topological information.

But we can fix this issue with the new machinery we’ve developed. Specifically,
we now think of C (f) as an internal topological category, with object space X and
morphism space X ×Y X, where there is a unique morphism x0 → x1 if and only if
(x0, x1) ∈ X ×Y X. For the sake of notation, we will encode the morphism x0 → x1
as the tuple (x0, x1). The source and target maps are projections, the identity is the
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diagonal map x 7→ (x, x), and composition is given by (x0, x1) ◦ (x1, x2) 7→ (x0, x2).
The nth level of the nerve is exactly C(f)n since

(X ×Y X)×X (X ×Y X) ∼= X ×Y X ×Y X.

Now, if we have a square

X Y

X ′ Y ′

≃

f

≃

f ′

we might ask under what conditions we have BC (f) ≃ BC (f ′). From Subsec-
tion 2.5.4, we know that if both f and f ′ admit sections, then BC (f) ≃ Y and
BC (f ′) ≃ Y ′, so the desired conclusion holds. Our discussion from Subsection 3.4.1
shows something more general: if f and f ′ are fibrations, then we get induced equiv-
alences between the pullbacks X ×Y X

≃−→ X ′ ×Y ′ X ′ (because the strict pullback
models the homotopy pullback in this case), and hence we have levelwise equiva-
lences of Čech complexes. Thus BC (f) ≃ BC (f ′) if the Čech complexes are Reedy
cofibrant, which (per Definition 3.17) involves a fiberwise NDR pair condition on
the “parameterized diagonal” map X → X ×Y X.

3.6.4 Framed flow categories

One interesting example of topological categories is related to the relatively new
area of Floer homotopy theory. The idea of Floer homotopy theory is to try and
associate a (stable) homotopy type to geometric information coming from a version
of Floer homology. Many of the main ideas were introduced by R. Cohen, J. Jones,
and G. Segal in the 1990s [CJS95a], and since then there have been many exciting
developments in this field, in particular by R. Lipshitz and S. Sarkar in their work
in Khovanov homology [LS14] and most recently by M. Abouzaid and A. Blumberg
in their solution to the Arnold Conjecture in characteristic p [AB21]. An important
concept in this work is that of a (framed) flow category, whose realization is meant
to model a corresponding chain complex from Floer homology. There are several
variants of the idea of a flow category in the literature, and sometimes the same
definition will appear under a different name, or different definitions will appear
under the same name. Rather than giving a precise definition, we will just highlight
some of the common themes, pointing the reader to the references we have cited
for specific details (see, in particular, the compact smooth categories/Morse-Smale
categories in [Coh19, Definition 6] or the equivariant flow categories in [AB21, §2.1]
or the flow categories in [LS14, §3.2]).

“Definition” 3.14. A flow category is a topological category C with a discrete
space of objects and whose homspaces are compact, smooth, framed manifolds with
corners. In most cases, the objects come with grading gr : ObC → Z, and the
homspaces are subject to certain conditions based on the grading, such as:
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• Hom(x, x) = {idx} for all x ∈ ObC .

• For objects x ̸= y, if gr(x) ≤ gr(y) then Hom(x, y) is empty, and otherwise
Hom(x, y) is (gr(x)− gr(y)− 1)-dimensional.

• Composition ◦ : Hom(x, y) × Hom(y, z) → Hom(x, z) is an embedding into
the boundary of Hom(y, z) in a special way. Furthermore, each point in the
boundary of Hom(x, y) is in the image of the composition map.

These conditions can be made more precise by describing the homspaces as ⟨k⟩-
manifolds (where k is the dimension of the homspace)10. The “framed” part of the
definition comes from so-called neat embeddings of the homspaces into Euclidean
spaces with corners.

The prototypical example of a flow category comes from Morse theory, as was
also developed by Cohen, Jones, and Segal in [CJS95b]. Let f : M → R be a Morse-
Smale11 function on a smooth, closed, finite-dimensional Riemannian manifold M ,
the flow category of f is a prototypical example of a framed flow category. The
flow category of f is a topological category Cf whose objects are the discrete space
of critical points and whose homspaces are the moduli space of broken gradient
flows between them. The grading is given by the Morse index and composition is
concatenation of the broken flows. The Morse-Smale condition on f ensures that
the compactified moduli spaces have the extra structure necessary to make Cf into
a framed flow category (see [Coh19] for more details).

Remark 3.30. As defined, flow categories are examples of topologically enriched
categories, not internal ones. However, at least in the Morse setting, it is possible
to encounter a genuine topological category if we allow Morse-Bott functions whose
critical points may be submanifolds.

In [CJS95b], the authors show that for a Morse-Smale function f : M → R, the
classifying space BCf is homeomorphic to the underlying manifold M . The original
paper [CJS95b] was never published, due to the fact that a few key assumptions
were not in the literature at the time (cf. [Coh19, Remark on p.16]). Many of these
gaps have since been addressed, and so the original proof of Cohen, Jones, and Segal
is widely accepted.

In the same unpublished preprint, the authors also address the case when f is
Morse but not Morse-Smale. They claim that BCf is homotopy equivalent M in
this case, rather than homeomorphic, and their proof uses many of the techniques
of topological categories and simplicial spaces which we have discussed in this note.
Unfortunately, there was an error in their proof (discussed in [Cal20]), although their

10Roughly, Hom(x, y) being a ⟨k⟩-manifold means that the boundary can be split up into k pieces
which intersect at the corners of the manifold. For a precise definition, see [LS14, §3.1].

11Recall that Morse means the critical points of f are non-degenerate and Morse-Smale means
that the stable and unstable manifolds of the gradient flow (formed with respect to a chosen
Riemannian metric) intersect transversely.
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claim is often cited and generally believed to be true. Some of the content of [Cal20]
was an attempt to fix the proof, which unfortunately was not successful. At this
time, the author is not aware of anything in the literature which addresses the non-
Morse-Smale case, although a version of this result has been established for discrete
Morse theory [NTT18].
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