JMM 2024

Prime ideals in the Burnside Tambara functor

Maxine E. Calle

with Sam Ginnett

part of the 2019 CMRG at Reed College

Burnside Green functor

Burnside Tambara functor

fix a finite group G throughout

Burnside ring

Def.

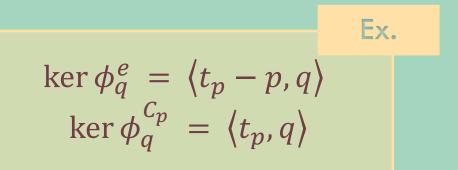
The Burnside ring of G is $A(G) = \operatorname{Gr}(\operatorname{Fin}G)$ $= \mathbb{Z}[\{G/H\}_{H \leq G}]/\sim$ with + = disjoint union and × = Cartesian product

Ex.

$$A(C_p) \cong \mathbb{Z}[t_p]/(t_p^2 - pt_p)$$

for $t_p = C_p/e$
and $1 = C_p/C_p$

The prime ideals of the Burnside ring are $\operatorname{Spec}(A(G)) = \{\ker \phi_q^H \mid H \leq G, q \text{ prime or } 0\}$ $\operatorname{where} \phi_q^H : A(G) \to \mathbb{Z} \to \mathbb{Z}/q\mathbb{Z}$ $X \mapsto |X^H|$



Thm (Dress).

Burnside Green functor

Def.

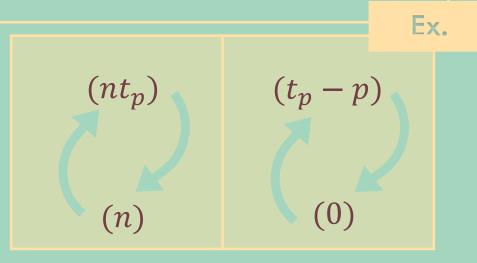
Ex.

Acp

The Burnside Green functor of G is given by $A_G = \{A(H)\}_{H \le G}$ with restrictions, transfers, and conjugation maps $A(C_p) \cong \mathbb{Z}[t_p]/(t_p^2 - pt_p)$ $A(e) \cong \mathbb{Z}$

An ideal is $I = {I(H)}_{H \le G}$ with $I(H) \subseteq A(H)$ an ideal so that I is closed under R, T, and c

An ideal P is prime if for any ideals I and J, if $I \cdot J \subseteq P$ then $I \subseteq P$ or $J \subseteq P$



Def.

Burnside Green functor

Def.

The Burnside Green functor of G is given by $A_G = \{A(H)\}_{H \le G}$ with restrictions, transfers, and conjugation maps $A(C_p) \cong \mathbb{Z}[t_p]/(t_p^2 - pt_p)$ $A(e) \cong \mathbb{Z}$

An ideal is $I = {I(H)}_{H \le G}$ with $I(H) \subseteq A(H)$ an ideal so that I is closed under R, T, and c

An ideal P is prime if for any ideals I and J, if $I \cdot J \subseteq P$ then $I \subseteq P$ or $J \subseteq P$

 $(t_p - p) \qquad \qquad \mathsf{Spec}(\underline{A}_G) = \\ \{P(H, q)\} \text{ for } \\ H \leq G, \\ q \text{ prime or } 0 \end{cases}$

Def.

Ex.

Acp

Burnside Tambara functor

Ex.

A_{Cp}

Tambara The Burnside Green functor of G is given by $\underline{A}_G = \{A(H)\}_{H \leq G}$ with restrictions, transfers, and conjugation mapsand norms

$$A(C_p) \cong \mathbb{Z}[t_p]/(t_p^2 - pt_p)$$

$$T (P) = P (P) (T_p \cap P)$$

$$T (P) = P (P) (T_p \cap P)$$

$$T (P) = P (P)$$

$$A(e) \cong \mathbb{Z}$$

An ideal is $I = \{I(H)\}_{H \le G}$ with $I(H) \subseteq A(H)$ an ideal so that I is closed under R, T, and c ...and N

Def.

An ideal P is prime if for any ideals I and J, if $I \cdot J \subseteq P$ then $I \subseteq P$ or $J \subseteq P$

Thm (Lewis).

$$t_p - p) \qquad \qquad \mathsf{Spec}(\underline{A}_G) = \\ \{P(H, q)\} \text{ for} \\ H \leq G, \\ q \text{ prime or } 0$$

Burnside Tambara functor

Def.

Acp

Def.

Tambara The Burnside Green functor of G is given by $A_G = \{A(H)\}_{H \le G}$ with restrictions, transfers, and conjugation maps ...and norms Ex. $A(C_p) \cong \mathbb{Z}[t_p]/(t_p^2 - pt_p)$

 $A(e) \cong \mathbb{Z}$

An ideal is $I = \{I(H)\}_{H \leq G}$ with $I(H) \subseteq A(H)$ an ideal so that I is closed under R, T, and c ...and N

An ideal P is prime if for any ideals I and I, if $I \cdot J \subseteq P$ then $I \subseteq P$ or $I \subseteq P$

(0)

Thm (C.-Ginnett). $(t_p - p)$ $\text{Spec}(A_G) =$ $\{P(H,q)\}$ for $G = C_N, H \leq G$ q prime or 0

For any finite group G,

 $\{P(H,p) \mid H \leq G, p \text{ prime or } 0\} \subseteq \operatorname{Spec}(\underline{A}_G)$ built from ker ϕ_p^K s

For any finite Abelian group G,

$$\{P(H,p) \mid H \leq G, p \text{ prime or } 0\} \subseteq \operatorname{Spec}(\underline{A}_G)$$

with certain containment relations.

- $P(H,0) \subseteq P(H,p)$
- $P(K,0) \subseteq P(H,0)$ if $H \leq K$
- $P(K,p) \subseteq P(H,p)$ if $H \leq_{\hat{p}} K$

look at "non-p part"

For $G = C_N$,

$$\{P(i,p) \mid i \mid n, p \text{ prime or } 0\} = \operatorname{Spec}(\underline{A}_G)$$

with certain containment relations.

- $P(i,0) \subseteq P(i,p)$
- $P(j,0) \subseteq P(i,0)$ if $i \mid j$
- $P(j,p) \subseteq P(i,p)$ if $i \mid_{\hat{p}} j$

look at "non-p part"

For $G = C_N$,

$$\{P(i,p) \mid i \mid n, p \text{ prime or } 0\} = \operatorname{Spec}(\underline{A}_G)$$

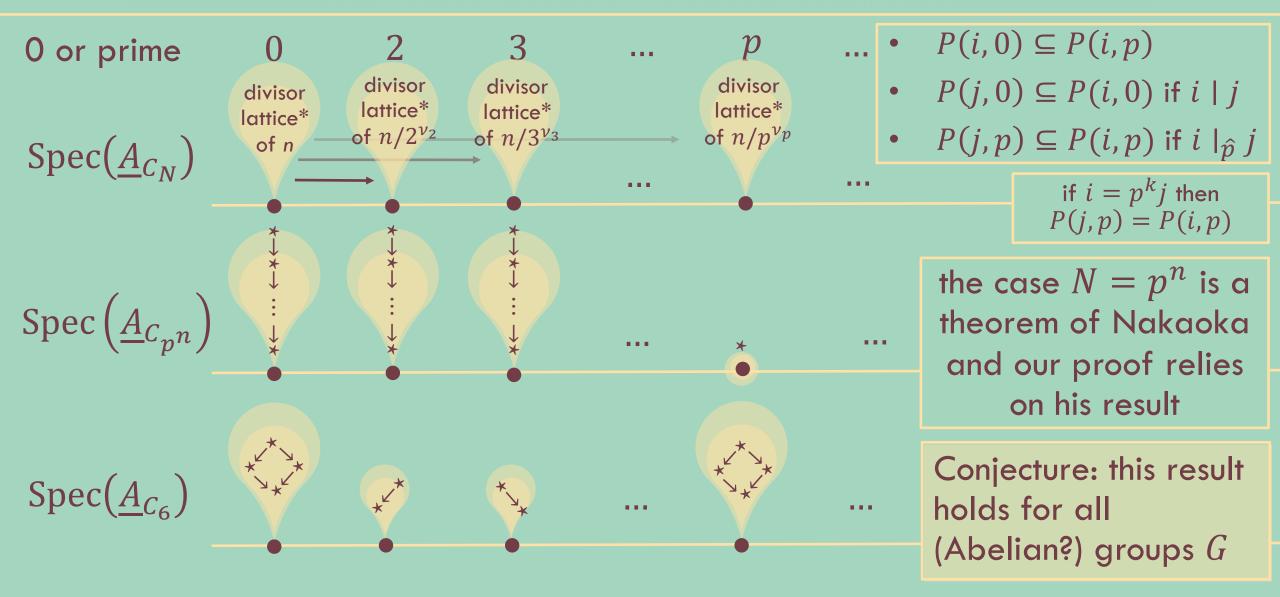
with certain containment relations.

- $P(i,0) \subseteq P(i,p)$
- $P(j,0) \subseteq P(i,0)$ if $i \mid j$
- $P(j,p) \subseteq P(i,p)$ if $i \mid_{\hat{p}} j$

if $i = p^k j$ then P(j,p) = P(i,p)

(for
$$p \neq 0$$
)

$$\frac{i}{p^{\nu_i}} \left| \frac{j}{p^{\nu_j}} \right|$$



References

M. Calle and S. Ginnett

The spectrum of the Burnside Tambara functor of a cyclic group

Journal of Pure and Applied Algebra: Vol. 27, Iss. 8 (2023)

A. Dress

Notes on the theory of finite groups Universität Bielefeld notes (1971)

L. G. Lewis

The theory of Green functors Unpublished notes (1980)

H. Nakaoka

The spectrum of the Burnside Tambara functor on a finite cyclic p-group Journal of Algebra: Vol. 398, Iss. 1 (2014)

Thanks for listening!