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Neurocognitive theories of value-based choice propose that people addi-
tively accumulate choice attributes when making decisions. These theories
cannot explain the emergence of complex multiplicative preferences such
as those assumed by prospect theory and other economic models. We inves-
tigate an interactive attention mechanism, according to which attention to
attributes (like payoffs) depends on other attributes (like probabilities)
attended to previously. We formalize this mechanism using a Markov atten-
tion model combined with an accumulator decision process, and test our
model on eye-tracking and mouse-tracking data in risky choice. Our tests
show that interactive attention is necessary to make good choices, that
most participants display interactive attention and that allowing for interac-
tive attention in accumulation-based decision models improves their
predictions. By equipping established decision models with sophisticated
attentional dynamics, we extend these models to describe complex economic
choice, and in the process, we unify two prominent theoretical approaches to
studying value-based decision making.
1. Introduction
There are two major theoretical approaches to modelling value-based decision
making. The first, common in economics and related branches of social science,
proposes that people maximize utility functions, which can be derived based on
normative axioms and their observed violations [1–6]. Such utility functions are
frequently used for economic forecasts, policy prescriptions, and analysis of
social and organizational phenomena. The second approach, common in
fields like psychology and neuroscience, proposes that people engage in infor-
mation sampling and evaluation processes, which can be studied using
laboratory-based attention measures (such as eye-tracking or mouse-tracking),
as well as choice and response time data [7–11]. These processes are the pro-
ducts of mental algorithms and can be interpreted in terms of underlying
cognitive and neural mechanisms.

Unifying these two theoretical traditions by showing how behaviour pre-
dicted by standard utility functions can be generated by cognitively and
neurally plausible information sampling processes has been the focus of con-
siderable interdisciplinary research [12–18]. Yet major challenges remain. At
the heart of the problem is the fact that most standard utility functions propose
complex multiplicative interactions between the attributes of choice options. For
example, expected value (EV) maximization, the simplest economic model of
risky choice, assumes that payoffs are multiplied against corresponding prob-
abilities, and that these probability-weighted payoffs are aggregated into a
utility value for the gamble. Expected utility theory, cumulative prospect
theory and other subjective expected utility theories (SEUT) retain the multipli-
cative structure of EV, while modifying the subjective-value function and
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probability weights, respectively [1,2]. Models such as expo-
nential discounting and hyperbolic discounting assume a
similar set of interactions between payoffs and time delays
in intertemporal choice, and interactions between the attri-
butes of options are also at play in many multi-attribute,
social and strategic choice settings [3–5].

Most cognitive and neurocognitive models of decision
making, by contrast, propose that decision makers sample
one piece of information at a given point in time, and
accumulate the sampled value of this information sequen-
tially and additively into a decision variable. Choice is
made when this decision variable crosses a threshold [8,9].
In some accumulator models, changes to the decision vari-
able are determined by attention to choice attributes,
whereas in others, changes are determined by attention to
choice items [11,19–26]. Visual-fixation and mouse-move-
ment data allow researchers to observe these attentional
inputs, and thus specify the rate of accumulation at each
time point during deliberation. Accumulator models have
been shown to provide a good account of the processes
underlying simple preferential choice. However, it is unclear
how these approaches could be applied to more complex
decisions, which are the focus of much of the research in
economics and social sciences. In risky decisions, for
example, decision makers are shown the payoffs and prob-
abilities of two or more gambles and are allowed to obtain
information about these gambles through visual fixations
on (or mouse movements to) the individual payoffs and prob-
abilities [27–35]. They may, for example, attend to one of the
payoffs of the first gamble, before looking at one of the prob-
abilities of the second gamble. It is likely that such an
attentional process influences the accumulation of decision
variables, and determines choice and response time
[10,22,23]. However, in order to mimic the desirable proper-
ties of multiplicative economic theories, accumulator
models need to involve the multiplicative, rather than
additive, accumulation of payoffs and probabilities.

The difficulty of multiplicatively accumulating sequen-
tially sampled attributes in decision making can be seen as
a type of binding problem, one that is closely related to the pro-
blem of segregating and combining the features of objects in
perceptual tasks [36–38]. In such tasks, models that aggregate
attributes additively would confuse a red circle and a blue
square with a blue circle and a red square. To solve this
binding problem, vision researchers have proposed many
solutions, some of which rely on the biased allocation of
attention to the location of the object [36]. In this paper, we
explore a similar (attentional) solution to the problem of
how neurobiologically plausible processes generate the
multiplicative utility functions of economic theory.

It may be argued that people do not engage in such a
binding process, and that behaviour is better described
by simple additive models (in which choice is a function
of the weighted sum of payoffs and probabilities) than
by multiplicative SEUT. Additive models of risk were pro-
posed by psychologists many decades ago [39,40], and have
also been reconsidered by more recent research [11,41].
These models are suitable for simple risky choice tasks with
single-branch gambles offering only one non-zero payoff
with a positive probability (e.g. $100 with probability 0.5,
and $0 otherwise). In such tasks, multiplicative utility func-
tions can be log-transformed into additive functions
without altering preference orderings. However, additive
models are unable to make reasonable predictions in multi-
branch gambles, which involve multiple payoffs, each with
their own probabilities.

As an example, consider the choice between a gamble X
offering a payoff of $100 with probability 99% and a payoff
of $1 with probability 1%, and a gamble Y offering a payoff
of $100 with probability 1% and a payoff of $1 with prob-
ability 99%. Since X strongly dominates Y, participants
always choose X. SEUT models, like prospect theory, which
multiply (subjective) payoffs against corresponding (subjec-
tive) probabilities, have no difficulty generating this
preference. Additive models, by contrast, consider the pay-
offs and probabilities separately. These models know that
both of the gambles offer payoffs of $100 and $1, and that
both have probabilities of 99% and 1%, but cannot multiply
branch-specific payoffs and probabilities to develop a prefer-
ence for X. In other words, the additive preference
accumulation models are unable to bind the branches of
multi-branch risky gambles in order to appropriately
determine their value.

We examine a solution to the binding problem in decision
making, in order to relate accumulation-based cognitive and
neurocognitive models of decision processes to the types of
multiplicative SEUT functions studied in economics. As
with established models in psychology and neuroscience,
our solution assumes that preferences accumulate dynami-
cally with additive increments determined by inputs from
attentional processes. However, we propose that attentional
processes display nuanced temporal dynamics, so that
attending to high probabilities increases the likelihood of
attending to the payoffs in the same gamble branch, and
vice versa. This interactive attention process implies that the
inputs into the decision variable are not independent over
time; rather the rate of accumulation at a given point of
time depends on what was sampled previously. Crucially,
interactive attention causes payoffs that occur with high prob-
abilities (and probabilities that are associated with high
payoffs) to be more likely to be sampled and thus play a
larger role in the accumulation processes. For the choice pre-
sented in the previous paragraph, this implies that there
would be higher attention to a payoff of $100 when it
occurs with a probability of 99% (as in gamble X ) than
when it occurs with a probability of 1% (as in gamble Y ).
This would guide accumulating preferences towards X and
result in a choice of X over Y.

Some cognitive models of risky choice have assumed that
attention to payoffs depends on their underlying probabilities
[11,26,42]. Additionally, researchers have shown that a feed-
back effect, according to which high attribute values direct
attention to other attributes in the same option, is common
in multiattribute choice and multicue judgement [23,43–46].
This is referred to as the attraction search effect, and is similar
to interactive attention effect examined in the current paper,
except that the attraction search effect involves an attentional
bias that is directed towards all attributes of the option,
whereas the interactive attention effect involves an attentional
bias that is directed towards only the attributes in the same
branch as the high-valued attribute. In this paper, we formal-
ize the interactive attention effect using a Markov model that
specifies attention dynamics, combined with an accumulator
process that aggregates preferences based on attention
[10,11,19–26]. We test the effect by fitting data from two
new experiments and four existing experiments consisting
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Figure 1. Experimental paradigm, interactive attention mechanism and computational model. (a) Participants are shown multi-branch gambles on a computer
screen and are asked to choose between them. (b) They make this decision by attending to the probabilities and payoffs involved in the gambles. Attention
is interactive, so that attending to a high probability (e.g. 99% in gamble X ) increases the probability of attending to the corresponding branch payoff (e.g.
$100 in gamble X ). (c) The full attention process is described by a Markov model, in which the transition matrix (top panel) depends on the underlying payoffs
and probabilities. Decision makers additively aggregate sampled probabilities and payoffs into a decision variable that evolves over time (bottom panel). Decisions
are made when this variable crosses a decision threshold.
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of both eye-tracking and mouse-tracking attention measures
in multi-branch risky choice [27,29]. Our results indicate
that our attention model can describe both the attentional
dynamics and emergent preferences of individuals in these
datasets. The interactive attention mechanism can also gener-
ate the types of multiplicative preferences proposed by
mainstream economic theories (e.g. a preference for X over
Y in the previous paragraph), while retaining the additive
accumulation assumptions of established cognitive and neu-
rocognitive models of choice (see figure 1 for an illustration
of our experimental paradigm and model).
2. Methods
(a) Experimental data
We ran two new risky choice experiments in laboratory using the
MouseLab paradigm (exp. 1: N = 54, Mage = 20.2 ± 1.1, 43%
female; exp. 2: N = 49, Mage = 20.0 ± 1.1, 55% female). In both
experiments, each participant made 32 binary choices between
five-branch gambles. The payoffs were randomly sampled from
the uniform distribution between $0 and $10 (integers only).
The five probabilities in each gamble were generated as follows.
The first probability, p1, was a random number between 0 and 1;
the second probability, p2, was a random draw between 0 and
1– p1; and so on. Finally, the fifth probabilitywas 1 – p1 – p2 – p3 – p4.
The five probabilities were then randomly paired with the five
payoffs within each gamble. The full list of choice problems
can be found in electronic supplementary material, table S1.

At the beginning of each trial, the payoffs and probabilities
were hidden behind boxes. Participants clicked on the boxes to
reveal a payoff or a probability of each gamble. Each time they
clicked on a box, the payoff or probability underneath appeared
while the payoff or probability in the previous click was simul-
taneously hidden. Participants could search as many times as
they wanted, until they chose one of the two gambles with a
key press. The two experiments differed only in the way in
which the payoffs and probabilities were presented (see electronic
supplementary material, figure S1). In exp. 1, payoffs and the
associated probabilities of each gamble were presented side by
side. By contrast, in exp. 2, the lists of payoffs from the two gam-
bles were presented side by side on the left-hand side of the screen
and the lists of probabilities from the two gambles were presented
side by side on the right-hand side of the screen. This was done to
ensure that observed interactive attention effects were not a pro-
duct of the placement of the choice attributes. In data analysis,
we excluded the trials where the participant opened less than
two boxes, or no choice data were recorded in that trial (i.e.
4.49% of all the trials in the two experiments).

We also reanalysed two published studies of multi-branch
risky choice with information acquisition data (as in figure 1a),
one by Pachur et al. [27] and the other by Fiedler & Glöckner
[29]. Pachur et al. had two mouse-tracking experiments, involving
90 participants making risky choices in two separate sessions,
with a break of at least one week between sessions. We treated
the two sessions as two separate experiments. Both experiments
included 90 two-branch risky choices. The choice problems
involved gains, losses and mixed gambles. See electronic sup-
plementary material, table S2 for the list of choice items. Note
that Pachur et al. had another experiment consisting of three
between-subject conditions. We did not use that experiment for
our analysis, as that experiment manipulated attention (and we
were interested only in natural attention dynamics).

Fiedler and Glöckner had two eye-tracking experiments, one
with 21 participants, and the other with 36 participants. In both
experiments, each participant made 50 two-branch risky choices
in the gain domain. In exp. 1, 40 of the 50 choice problems involved
pairs of gambles with the same or similar EVs. In exp. 2, the
absolute EV difference between gambles and the mean EV was
systematically controlled such that they were uncorrelated across
choice problems. See electronic supplementary material, table S3
for the details of choice problems. Our reanalysis was based on
the cleaned data made public by the original authors.
(b) Markov attention models
Our major innovation is in specifying the dynamics of the atten-
tional process. We assume that sequences of attentional states are
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not independent. Rather, when decision makers switch atten-
tional states, the probability of the subsequent attentional state
depends on the previous attentional state. These dynamics can
be described by a Markov process. In the case of a multi-
branch risky choice between gambles X offering N payoffs, and
Y offering M payoffs, there are a total of 2 N + 2 M attentional
states, one for each distinct probability and payoff involved.
Thus, the Markov process involves an (2 N + 2 M ) × (2 N + 2
M ) transition matrix. In our experiments, the Markov attention
models predict switches between the 20 attentional states (in
the five-branch experiments) or eight attentional states (in the
two-branch experiments) (denoted by S) using transition prob-
abilities Pr [stjst�1], where st�1,st [ S and t = 2,3,…, T are the
time steps. Here, a time step is defined as every separate box
opening/fixation. The attentional states correspond to the
payoffs and probabilities in the binary risky choice in each trial.

The central assumption of our model is that attentional tran-
sition probabilities depend on the attribute value revealed by the
attentional state (figure 1b). Specifically, attending to a high prob-
ability increases the likelihood of subsequently attending to the
payoff of the same branch and attending to a high payoff
increases the likelihood of subsequently attending to the corre-
sponding branch probability. Thus, for an attentional state st
that belongs to the same branch as st�1, Pr [stjst�1] is increasing
in zt�1, the (normalized) probability or payoff revealed at the
previous attentional state st�1.

In our main Markov attention model, we allow both prob-
ability-to-payoff interactions (according to which high
probabilities direct attention to payoffs in the same branch) and
payoff-to-probability interactions (according to which high pay-
offs direct attention to probabilities in the same branch), and
thus call it the dual-interaction model. Formally, we write
Pr [stjst�1], as a function of three sets of predictor variables:

Pr [stjst�1] ¼ s

b1B
Optn
t þ b2BAttr

t þ b3BBran
t þ

b4IOptn þ b5IAttr þ b6IStat þ b7I p!Bran þ b8II
x!Branþ

(b9I p!Bran þ b10II
x!Bran

)zt�1,

0
B@

1
CA,

ð2:1Þ
wheres( � ) is the softmax function such that

P
st[S

Pr [stjst�1] ¼ 1. For
expositional convenience, we use bprob�to�pay and b9 interchange-
ably, and use bpay�to�prob and b10 interchangeably in the paper.

Line 1 of the right-hand side of equation (2.1) denotes a set of
bias predictors. BOptn

t specifies whether st belongs to the option on
the left or right side of the screen (1 if left; 0 if right), BAttr

t specifies
whether st belongs to the payoff attribute or the probability attribute
(1 if payoff; 0 if probability), and BBran

t specifies which branch st
belongs to (for two-branch experiments, 1 if the first branch; 0 if
the second branch; for five-branch experiments, the first, second,
…, fifth branches are represented by 1, 0.75, 0.5, 0.25, 0, respectively.
This coding assumes that a branch-wise attentional bias linearly
increases/decreases from top to down in the five-branch
experiments.). Therefore, b1, b2 and b3 describe option-wise,
attribute-wise and branch-wise attentional biases, respectively.

Line 2 captures a set of transition predictors. IOptn indicates
whether st and st�1 belong to the same option (1 if same; 0 if differ-
ent), IAttr indicates whether st and st�1 belong to the same attribute
(1 if same; 0 if different) and IStat indicates whether st and
st�1belong to the same state (1 if same state; 0 if different).
I p!Bran indicates whether st�1 is a probability attribute and st
and st�1 belong to the same branch, whereas Ix!Bran indicates
whether st�1 is a payoff attribute and st and st�1 belong to the
same branch (1 if true, 0 if false). For expositional brevity, we
drop the subscripts t and t-1 in these variables. Therefore, b4, b5

and b6 describe within-option, within-attribute and within-state
transition tendencies, respectively. b7 describes within-branch tran-
sition tendencies starting from a probability attribute and b8

describes within-branch transition tendencies starting from a
payoff attribute. Note that although we did not record consecutive
resampling of the same state in the two five-branch experiments,
we kept b6 in the model to be consistent with other experiments.
As shown in electronic supplementary material, table S4, the
estimated b6 are substantially negative in all the experiments,
particularly in the two five-branch experiments.

Finally, line 3 captures the set of dynamic transition predic-
tors that capture interactive attention. Here, zt�1 represents the
observed attribute value in st�1, the most recent attentional
state. To make the estimated parameters comparable across
attributes, we standardized the values along each attribute
(probability or payoff) using z-scoring. Therefore, b9 (which is
bprob�to�pay in the subsequent text) describes the extent to
which the value of a branch probability increases the likelihood
of transitioning to its associated branch payoff (a probability-
to-payoff interaction), while b10 (which is bpay�to�prob in the sub-
sequent text) describes the extent to which the value of a branch
payoff increases the likelihood of transitioning to its associated
branch probability (a payoff-to-probability interaction).

We also specified starting point probabilities using:

Pr [s1] ¼ s(b1x
Optn
t þ b2x

Attr
t þ b3x

Bran
t ), ð2:2Þ

where s0 represents the start of a trial and s( � ) is the softmax
function that sets

P
s1[S Pr [s1] ¼ 1. This specification allows the

first searched attentional state s1 in each trial to depend on
option-wise, attribute-wise and branch-wise attentional biases
b1, b2 and b3.

In addition, we fit three additional Markov attention models
to evaluate the importance of each of the interaction parameters.
The probability-interaction model turned off the payoff-to-prob-
ability interaction parameter (by setting b9 ¼ bpay�to�prob ¼ 0),
the payoff-interaction model turned off the probability-to-
payoff interaction parameter by setting b10 ¼ bprob�to�pay ¼ 0).
The baseline model turned off both interactions (by setting
b9 ¼ bprob�to�pay ¼ b10 ¼ bpay�to�prob ¼ 0) and thus assumed
that attention does not depend on the specific probability and
payoff values observed in the previous attentional state.

We used hierarchical Bayesian analysis to fit the Markov
attention models, and to generate the predicted transitions and
attention proportions (see electronic supplementary material,
Methods for details).

Note that, for the tractability in predicting attention pro-
portions, we assumed that the attention process during
decision making was a Markov process. This was a strong
assumption because the participants were likely to hold more
than one piece of information in memory when making sub-
sequent information search. In a supplementary attention
model, we allowed the decision maker to keep a record of all
searched information and tested whether they were more (or
less) likely to attend to unsearched information, in addition to
all the predictors in the dual-interaction attention model.
Mathematically, the supplementary attention model becomes:

Pr [stjst�1] ¼ s

b1B
Optn
t þ b2BAttr

t þ b3BBran
t þ

b4IOptn þ b5IAttr þ b6IStat þ b7I p!Bran þ b8II
x!Branþ

(b9I p!Bran þ b10II
x!Bran

)zt�1þ
b11I

Novelty
t

0
BBBB@

1
CCCCA,

where INovelty
t , indicates whether the attentional state, st, had been

previously searched in the trial (1 = unsearched, 0 = searched).
Thus b11 captures the tendency to sample novel pieces of infor-
mation in the attention process. This analysis suggests that the
participants displayed strong tendencies to sample unsearched
information, violating the Markov assumption. However, this
extension did not change all the key findings based on the dual-
interaction attention model (see electronic supplementary
material, tables S4 and S5). Thus, our main analysis was based
on the dual-interaction attention model with the Markov
assumption.
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(c) Attentional drift diffusion choice models
To evaluate the role of attention (both empirical and predicted) in
predicting choices and response times, we examined a drift diffu-
sion model [8,9] with the assumption that the drift rate depends
on the amount of attention to the underlying payoffs and prob-
abilities of the two options, as with the attentional drift
diffusion model (ADDM). In standard drift diffusion models,
preferences for or against the two options are accumulated up
to a boundary, and the mean rate of this accumulation is cap-
tured by the drift rate. In the ADDM, this drift rate further
depends on the information that is attended to during the trial
(figure 1c). In our implementation of ADDM, we assumed that
higher attention to the payoffs or probabilities of an option
lead to a higher weight on these payoffs or probabilities in the
drift rate. As with other drift diffusion models, choices were
made when a positive or negative threshold was crossed
[10,23]. In the ADDM choice models, the drift rate v expresses
as a relative preference for X over Y. Here, we write the drift
rate as a function of unweighted payoffs, attention-weighted
payoffs and attention-weighted probabilities:

v ¼ aþ upay
1
N

XN
n¼1

xn � 1
M

XM
m¼1

ym

 !

þ wpay
1
N

XN
n¼1

axn � xn �
1
M

XM
m¼1

aym � ym
 !

þ wprob
1
N

XN
n¼1

apn � pn �
1
M

XM
m¼1

aqm � qm
 !

, ð2:3Þ

where as (s [ S ¼ {xn,pn,ym,qmjn ¼ 1,2, . . . ,N; m ¼ 1,2, . . . ,M }) is
the attention proportion to the attentional state s. N and M indi-
cate the number of branches in X and Y, respectively. xn and pn
denote the nth payoff and probability, respectively, in X. ym
and qm denote the mth payoff and probability, respectively, in
Y. a is the intercept in the drift rate. upay determines the effect
of unweighted average of payoffs on the drift rate, regardless
of attention. In other words, upay determines the accumulation
of unattended payoffs. upay = 0 implies that the unattended pay-
offs are not accumulated in the decision process. In the
MouseLab experiments, an unseen branch payoff is replaced
with zero. wpay determines the additional accumulation bias for
payoffs due to attention. The accumulation of attended payoffs
is jointly determined by upay and wpay. wprob determines the
accumulation bias for probabilities due to attention. Note that
the unweighted average of probabilities is not in the equation
because N =M in all the experiments and thus the corresponding
term ð1=NÞPN

n¼1 pn � (1=M)
PM

m¼1 qm always equals 0.
Depending on the way in which the attention proportion as

was generated, we had five variants of the ADDM choice
models. Primarily, empirical-ADDM directly used the attention
proportions, as, from the empirical data. We also tested another
four ADDM models based on the predicted attention pro-
portions by each of the four Markov attention models,
respectively. Dual-ADDM used the predicted attention pro-
portions by the dual-interaction attention model, probability-
ADDM used those by the probability-interaction attention
model, payoff-ADDM used those by the payoff-interaction atten-
tion model and baseline-ADDM used those by the baseline
attention model. Note that since empirical-ADDM used the
more accurate attention data, its fits should be better than
those of other ADDM models.

In the DDM choice model that does not take into account the
attention allocated to the different objects, the drift rate is simply

v ¼ aþ upay
1
N

XN
n¼1

xn � 1
M

XM
m¼1

ym

 !
, ð2:4Þ
It is interesting to note that the DDM choice model as speci-
fied above is equivalent to the equiprobable heuristic, one that
ignores the probability attribute for risky decision making, on
the choice side.

We fit the ADDM and DDM choice models using hierarchical
Bayesian analysis (see electronic supplementary material,
Methods for details). Note that the ADDM model used here is
not, strictly speaking, the original ADDM model [8,9]. In the
original ADDM, the drift rate changes after each attention
sample. By contrast, we have simplified the drift rate in our
model to be a time invariant average of the attention-weighted
attributes. Our simplification gives us considerable compu-
tational tractability and allows us to use hierarchical Bayesian
methods for model fitting. It also does not detract from the key
contribution of this paper, which has to do with modelling atten-
tion dynamics. Lombardi and Hare have performed a rigorous
analysis of the relationship between the type of attention-
weighted model investigated in this paper and the more complex
time varying drift rate model used in other applications and have
shown that the two are very similar when the drift rate in the
former model is a function of the (known) reaction time and
relative attention proportion to the attributes [47].

(d) Dominance violation study
We ran an additional one-item risky choice experiment involving
dominance with the students in an undergraduate class at a pri-
vate university in North America (N = 205). The choice was
between X = {$100, 0.99; $1, 0.01} and Y = {$100, 0.01; $1, 0.99}.
Subjects were asked to indicate their preference in a binary
choice.
3. Results
(a) Summary of data
As mentioned above, we conducted two new five-branch
risky choice experiments with the MouseLab paradigm. We
also reanalysed mouse-tracking and eye-tracking data from
four existing two-branch risky choice experiments. Overall,
our full analyses involved 22 285 choices from 340 partici-
pants in six experiments, including eye-tracking data from
2825 choices and 57 participants, and mouse-tracking data
from 19 460 choices and 283 participants.

In our two five-branch experiments, participants chose
the EV-maximizing gamble in 77% and 73% of trials. Simi-
larly, in Pachur et al.’s [27] two mouse-tracking experiments,
EV-maximization rates were 68% and 69%, respectively.
Participants in the study by Fiedler & Glöckner [29] had an
EV-maximization rate of 53% in exp. 1 and 67% in exp. 2.
Across the six experiments, participants obtained an average
of between 21 and 36 attentional samples (eye movements or
mouse clicks) per trial (see electronic supplementary
material, table S6 for other details).

(b) Strong interactive attention effects in all datasets
We fit our Markov attention models to data from the six
experiments. In all cases, we found that the group-level
βprob-to-pay coefficients were significantly positive, with all
95% credible intervals higher than zero (figure 2a), showing
that there are strong interactive attention effects both in
mouse-tracking data and in eye-tracking data, and both in
two-branch and in five-branch gambles. Our fits also
revealed that the βprob-to-pay coefficients were larger than
the corresponding βpay-to-prob coefficients in nearly all
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experiments. This contrast is especially compelling in the
four mouse-tracking experiments (with all 95% credible inter-
vals much higher than zero, see electronic supplementary
material, table S4 for details). In the two eye-tracking exper-
iments, however, a slightly more balanced interactive
attention pattern in the two directions was observed (with
95% credible intervals close to or including zero). It is also
worth noting that the five-branch gamble experiments typi-
cally have much larger interactive attention coefficients than
the two-branch gamble experiments, indicating that the inter-
active attention may play a stronger role in settings with more
complex information structures.

To more formally examine the relative fits of our models,
we carried out a model comparison analysis using the
deviance information criterion (DIC) (figure 2b). This analysis
revealed that the three interactive attention models fit the
attention data better than the baseline model, providing
further evidence for interactive attention. We also found
that the dual-interaction and the probability-interaction
models were always better than the payoff-interaction
model. The only exception was exp. 1 of Fiedler & Glöckner
[29], where the probability-interaction model lagged slightly
behind the payoff-interaction model, with a DIC margin of
7.71. While the payoff-interaction model performed poorly,
the probability-interaction model performed almost as well
as the dual-interaction model, especially in the mouse-
tracking experiments. This once again indicates that
attending to high probabilities drives subsequent attention
to branch payoffs, but that the converse effect is weaker.
This is also consistent with prior theoretical work that
proposes that attention to payoffs depends on probabilities
[11,26,42], but not vice versa.
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(c) Markov attention models predict empirical patterns
Figure 3 provides qualitative evidence for interactive atten-
tion, by showing how attention to high or low branch
probabilities influences the subsequent attentional sample,
in our empirical data. Figure 3 also illustrates our dual-inter-
action model’s predictions for this effect with high accuracy
(see electronic supplementary material, figure S2 for a
predicted versus observed visualization).

As can be seen, attending to a high (low) probability
value increased (decreased) the likelihood that participants
sampled a payoff from the same branch of the gamble in
the successive attention state. This effect is strong in all six
datasets, as indicated by positive group-level correlations
between branch probabilities and the proportion of sub-
sequent transitions to the payoff in the same branch (all r≥
0.43, all p < 0.001). As expected, this pattern can be predicted
by the dual-interaction model, whose dynamics closely
resemble those observed in the data, and generate strong
positive correlations between observed branch probabilities
and the predicted proportion of subsequent transitions to
the payoff in the same branch (all r≥ 0.76, all p < 0.001).
This interactive attention dynamics has led to higher global
attention proportions to the payoffs associated with high
probabilities (see electronic supplementary material, figure
S3). In electronic supplementary material, figure S4, we
show the converse pattern (observing a high payoff increases
the likelihood that participants sample the corresponding
branch probability in the successive attention state). This
pattern is weaker than the pattern shown in figure 3, which
explains the somewhat worse fits of the payoff-interaction
attention model in figure 2b. In electronic supplementary
material, Results, we also show that the Markov attention
models, especially the dual-interaction attention model,
accurately capture both individual-level and trial-level
heterogeneity.

(d) Markov attention models improve choice and
response time predictions

The above sections have shown that participants display
interactive attention and that our Markov attention models
successfully describe attentional dynamics on the group
level, as well as on the individual level and the trial level.
In this section, we test whether equipping the prominent
attentional drift-diffusion model (ADDM) with either
empirical attention data, or the predicted attention data
from our Markov attention models, improves its fits to
choices and response times. Figure 4a displays the Bayesian
estimation of the attention weights for payoffs (wpay) and
probabilities (wprob) at the group level for the main ADDM
models. As can be seen in this figure, wpay and wprob are
always positive in the empirical-ADDM model in all
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experiments, suggesting that the amount of attention to pay-
offs and probabilities positively predicts choice and
response time in these experiments. In dual-ADDM, the
choice model that uses predicted attention proportions
from the main dual-interaction attention model, the atten-
tions weights for payoffs (wpay) and probabilities (wprob)
are almost always positive. The exception to this is exp. 1
of Fiedler & Glöckner [29], for which the two group-level
parameters, wpay and wprob, although positive, include
zero in the 95% credible intervals. In exp. 2, wpay is also
not different from zero (see electronic supplementary
material, table S7 for other parameter values).

A model comparison using DIC further demonstrates that
both empirical attention data and model-generated attention
data improve predictions of choice and response time.
Figure 4c shows that almost all the ADDM models outperform
the simple DDMmodel, the latter of which does not take atten-
tion data into account (see equation (2.4)). The exception to this
is exp. 1 of Fiedler & Glöckner [29], for which the ADDM
models with the predicted attention input do not outperform
DDM. A further comparison between the four prediction-
based ADDM models suggests that the choices and response
times are better explained if the interactive attention parameters
(especially bprob�to�pay) are specified in the attention model. In
particular, the dual-ADDM and the probability-ADDM models
always predict choices and response times better than the
payoff-ADDM and the baseline-ADDM models do. Posterior
predictive check suggests that the dual-ADDM is able to predict
actual choice proportions at the trial level in all experiments at a
moderate level (see electronic supplementary material, figure
S5), although it does not predict well the actual response
times at the trial level, especially in the MouseLab experiments



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20221593

9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 F

eb
ru

ar
y 

20
23

 

(see electronic supplementary material, figure S6). It is worth-
while noting that, in predicting both choice and response
time, the dual-ADDM model significantly underpredict the
variation across trials. Such predictive losses suggest that our
dual-ADDM may be limited in capturing the full attention,
response time and choice patterns, as discussed below.

The empirical-ADDM model, which uses actual attention
proportions, outperforms the ADDM models that use our
Markov attention models’ predicted attention proportions
as input (with the exception of the five-branch-gambles in
exp. 1, where dual-ADDM and probability-ADDM outperform
empirical-ADDM). This suggests that, other than interactive
attention dynamics, there are additional attentional mechanisms
that guide sequential evidence accumulation for decision
making. Previous research has suggested that the attention
during the decision process may be directed to visually salient
objects [48], and options with high values [49,50] or options
with uncertain values [51,52]. Such attention processes may
also play a crucial role in predicting choice and response time,
though they are not the focus of the present paper. Of course,
it may also be possible that unsystematic noise, not captured
by our model, is responsible for the difference between the
empirical-ADDM and dual-ADDM. Future research should
attempt to model other determinants of attention and thus disen-
tangle systematic sources of attentional bias from unsystematic
noise. This somewhat inevitable inaccuracy in attention predic-
tions may have modified the parameter values estimated from
the ADDM models. As can be seen in figure 4a,b, the estimated
parameter values in dual-ADDM appear to be larger than those
in empirical-ADDM. That is likely because our dual-interaction
attention model, while generating attention proportions highly
correlated with the empirical attention proportions (see electronic
supplementary material, Results), underpredicts the variability of
attention proportions allocated to different attributes in the
experiments. This causes the predictions to cluster near the
centre of the distribution, reducing their range and causing esti-
mated parameters to be larger.

Despite the superior fits of empirical-ADDM, there are
many reasons why our approach is beneficial. Firstly, eye
gaze data is not always available. Thus, if the goal is to predict
choice, we need amodel of attentional dynamics, such as dual-
ADDM. Secondly, a complete theory of the choice process
needs to specify both how attention guides the formation of
preferences, as well as how the choice set guides the allocation
of attention [49,51]. Empirical ADDM addresses the first goal
but not the second. In this way, dual-ADDM fills in a large
theoretical gap in the literature. Foremost, by modelling the
allocation of attention, dual-ADDM helps solve a related
theoretical problem: how psychologically realistic choice pro-
cesses can generate multiplicative economic utility functions.
(e) Interactive attention is necessary to make
reasonable choice predictions

Finally, let us return to the example problem presented in the
introduction: the choice between X offering a 99% chance of
$100 and a 1% chance of $1, versus Y offering a 1% chance of
$100 and 99% chance of $1. X strongly dominates Y, and all
SEUT models predict that X will be chosen over Y. Simple
additive accumulation models without interactive attention,
however, cannot distinguish X from Y as both offer $100
and $1 as payoffs and 99% and 1% as probabilities.
To test if people can successfully avoid such dominance
violations, we ran a study asking 205 participants to choose
between X and Y. We found that 201 participants chose X
over Y (p< 0.001 in a binomial test), in line with the predictions
of all SEUT models and in contradiction to the predictions of all
additive models without interactive attention.

Can our dual-interaction attention model, combined
with the ADDM, explain this effect? To test this, we used
the posterior samples of individual-level parameters in our
attention models from our six experiments, to generate out-
of-sample predictions of the attention proportions during a
choice between X and Y. The predicted attention proportions
were in turn used to calculate the drift rate favouring X over
Y (see electronic supplementary material, Methods for
details). We found that 100% of the participants in our six
experiments had a drift rate favouring X over Y, showing
that our main dual-interaction attention model could, like
our human participants, successfully avoid dominance viola-
tions in risky choice. By contrast, the baseline attention
model, which does not have interactive attention, predicted
a drift rate of zero, indicating that it was indifferent between
X and. Thus, interactive attention is necessary to make
reasonable predictions in risky choice. See electronic sup-
plementary material, figure S7 for the predictions of other
Markov attention models for the choice between X and Y.
4. Discussion
The goal of this paper has been to relate cognitive and neurocog-
nitive models of decision making to those commonly studied in
the economic and social sciences. This has been the focus of
considerable interdisciplinary interest, but progress has been dif-
ficult. Prominent cognitive and neurocognitive models assume
that preferences accumulate in additive increments, guided by
attention to the individual attributes of choice options [8,10,23].
Yet in order to make good decisions, and to match the predic-
tions of economic theories, the attributes of options often need
to be aggregated in a multiplicative or interactive manner. In
risky choice, for example, SEUT models assume that payoffs
are multiplied against corresponding probabilities, allowing the
decision maker to successfully evaluate multi-branch gambles
and avoid simple mistakes involving transparent dominance
[1,2,4]. Standard accumulation models, which weigh and sum
up each piece of sampled information separately, cannot avoid
these mistakes and are thus not typically applied to risky choice.

Note that one could, in principle, generate an accumu-
lation model in which the drift rate was simply the
difference between two nonlinear utility functions (e.g. the
difference between the EVs, expected utilities, or prospect
theory utilities of the gambles). However, such a model
would not constitute a complete mechanistic account of the
decision process, as it does not specify the representational
and algorithmic elements necessary to compute nonlinear
utilities, and does not relate the process of nonlinear utility
formation to the (sequential) attention samples that underlie
information acquisition. Standard accumulation models, by
contrast, do provide a complete mechanistic account as
sequentially sampled information is sequentially added to a
running accumulator variable. Such models do quite well in
low-level perceptual decision making (in which additive
operations are suitable for aggregating sequentially obtained
information), and even in some value-based decision making
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settings that have this structure. However, they cannot pro-
vide a good account of multi-branch risky choice, in which
attribute values interact.

We have examined one solution to this problem. Accord-
ing to our proposal, attention to high payoffs or probabilities
increases subsequent attention to payoffs and probabilities
within the same branch of the gamble. Thus, even though
the accumulation process combines inputs additively, interac-
tive attentional dynamics imply that the rate of accumulation
is a multiplicative function of the gamble probabilities and
payoffs, mimicking the desirable normative and descriptive
properties of SEUT. We have formalized our interactive atten-
tion mechanism in a Markov model, combined it with a
standard accumulator, and fit the resulting model on four
existing and two new eye-tracking and mouse-tracking
datasets. We have found strong evidence for interactive atten-
tion in all of the datasets, and have shown that our model
predicts key patterns in attention and choice. In doing so,
we have introduced a number of technical and theoretical
innovations to the modelling of decision making. For
example, ours is one of the first quantitative models that
can be jointly fit to attention, choice and response time data
in complex risky decisions.

By directly relating established theories in psychology
and neuroscience to those in economics, our results open
up a number of useful research directions at the interface of
the social and natural sciences. For example, future work
could use our modelling framework to relate attention to
other interesting properties of economic models of risk
taking, including properties like loss aversion and probability
weighting [15,27,53]. Future work could also try to under-
stand the economic implications of the empirical patterns
documented in this paper (such as the stronger interactive
attention effect of probabilities on payoffs, rather than vice
versa). It would also be useful to test the robustness of
these patterns, and the interactive attention mechanism
more generally, in real-world economic settings. For example,
it could be the case that our model is less relevant for settings
in which the probability and payoff for a particular branch of
the gamble can be sampled simultaneously. Finally, by para-
metrizing participant-level heterogeneity in interactive
attention and decision making, our approach also allows
researchers to relate individual-specific cognitive and neural
variables to individual-specific economic and social out-
comes, facilitating a more rigorous analysis of behaviour
across diverse groups [54–59]. Testing the feasibility of this
approach is a very promising topic for future work.

Of course, our core insight extends beyond risky choice.
Multiplicative utility functions are the basis of economic
decisions in intertemporal, social, consumer and strategic
choice [3,5,6,13]. Accumulation processes have been shown
to describe choice behaviour in these domains [26,60–66],
and it is likely that interactive attention is involved in the
aggregation of information to generate interactive utility
[43,44,67–71]. Thus, better understanding interactive atten-
tion will not only further basic research on different facets
of choice behaviour, but will also facilitate novel practical
and policy-relevant applications, including those pertaining
to health, financial, social, managerial and consumer decision
making [61,72,73].

It is important to note that our paper, as well as the rich
literature that motivates it, relies on the implicit assumption
that attention determines the formation of preferences. This
is an assumption that has been criticized [74], and it is poss-
ible that the link between attention and preference has the
opposite causal direction, that is, that decision makers are
more likely to look at preferred options [49,50]. Moreover,
the interplay between attention and choice may be driven
by normative concerns, like the resolution of uncertainty
and the selection of the most desirable option with the least
amount of cognitive effort [46,49,51,52]. Our work contrib-
utes to the study of the relationship between attention
and choice in two important ways. First, by allowing for
high-valued attributes to bias attention, and for attention, in
turn, to bias the formation of preference, our approach can
help disentangle the causal link between attention and prefer-
ence in a model-based manner. Second, we show that the
bidirectional interplay between attention and choice is
necessary for mimicking the properties of normative econ-
omic models like EV and expected utility maximization.
This in turn is necessary for making good choices (avoiding
dominance violations) when offered multi-branch gambles.
Future work could attempt to relate this economic argument
with the statistical arguments discussed above. Overall, we
look forward to modifications and extensions of our frame-
work that integrate multiple cognitive mechanisms, along
with diverse perspectives from economics, psychology and
neuroscience, in order to develop a unified quantitative
model of human choice behaviour.
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