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Optimality in active learning is under intense debate in numerous disciplines. We introduce a new empirical
paradigm for studying naturalistic active learning, as well as new computational tools for jointly modeling
algorithmic and rational theories of information search. Participants in our task can ask questions and learn
about hundreds of everyday items but must retrieve queried items from memory. To maximize information
gain, participants need to retrieve sequences of dissimilar items. In eight experiments (N= 795), we find that
participants are unable to do this. Instead, associative memorymechanisms lead to the successive retrieval of
similar items, an established memory effect known as semantic congruence. The extent of semantic congru-
ence (and thus suboptimality in question asking) is unaffected by task instructions and incentives, though
participants can identify efficient query sequences when given a choice between query sequences.
Overall, our results indicate that participants can distinguish between optimal and suboptimal search if
explicitly asked to do so, but have difficulty implementing optimal search from memory. We conclude
that associative memory processes may place critical restrictions on people’s ability to ask good questions
in naturalistic active learning tasks.

Public Significance Statement
The ability to guide our own learning is one of the greatest developmental tools we have. A common
theory of such self-guided or “active” learning is that people tend to ask questions that gather the
most information. However, most work supporting this theory is based on research with simple domains
where questions need not be generated from memory. We show that in more complex domains, where
more realistic questions must be recalled, subjects are far less able to generate optimal queries. This sug-
gests that optimal question askingmay bemore limited in naturalistic, everyday domains than previously
thought.

Keywords: active learning, optimal search, semantic congruence, word embeddings, computational
modeling

People often choose what information they want to gather. A child
can choosewhich toy to explore; a student can choosewhat textbook
to read; and a scientist can choosewhat experiments to run. This kind
of learning is known as active learning and has been the subject of
intense study in recent years in several fields, including developmen-
tal and cognitive psychology (Coenen et al., 2019; Gopnik, 1996),
education (Carr et al., 2015), neuroscience (Friston, 2009), and

machine learning (Settles, 2009). Although there are many questions
to ask about active learning, perhaps the most pressing question
about active learning is this: how and why do people seek the partic-
ular information they seek?

Theories of rational cognition provide an increasingly popular
answer to this question (Anderson, 1990; Griffiths et al., 2010).
These theories propose that people search for information optimally;
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that is, they generate queries that provide the most information pos-
sible. The rational account of active learning has been successfully
tested in many domains in psychology (Coenen et al., 2019;
Meder et al., 2021), including causal learning (Bramley et al.,
2015), categorization (Markant & Gureckis, 2014), spatial search
(Gureckis & Markant, 2009), rule learning (J. D. Nelson et al.,
2001), and function learning (A. Jones et al., 2018; Wu et al.,
2018). Rational theories have also benefited from research on
optimal experimental design in statistics, which provides a mathe-
matically rigorous framework for specifying query optimality
(A. Atkinson et al., 2007; Cavagnaro et al., 2011; Kiefer, 1959;
Lindley, 1956; Myung & Pitt, 2009; Myung et al., 2013; Ouyang
et al., 2016).
Of course, the rational account is not the only theory of active learn-

ing. One of the earliest experimental investigations of active learning
was conducted by Wason (1966, 1968). Using a card selection task,
Wason showed that participants seldom asked the optimal question
and instead showed a tendency for confirmatory search (Wason,
1966). There are compelling rational accounts of Wason’s findings
(Klayman & Ha, 1987; Oaksford & Chater, 1994, 2007), but some
researchers have also argued that confirmatory search is a direct prod-
uct of fundamental cognitive mechanisms, including associative
mechanisms implicated in memory (Bhatia, 2016; Glöckner &
Betsch, 2008; Holyoak & Simon, 1999).
It would not be surprising if the associative structure of memory

were to constrain the types of questions people generate in active
learning. After all, associative memory has been shown to play a cru-
cial role in closely related tasks, such as categorization (e.g., Nosofsky
& Palmeri, 1997), judgment (e.g., Juslin et al., 2008), and decision
making (e.g., Aka & Bhatia, 2021). That said, there have been few
attempts to explore memory processes in naturalistic active learning,
as most studies are conducted using artificial stimuli, varying on a
very small number of dimensions, that are unlikemanyof the real enti-
ties in the world that people must learn about. For example, there are
very few instances in real life where people have to learn the property
values of various triangles and squares with different types of shad-
ings and patterns, a common experimental task in the psychology lit-
erature. By contrast, many real-world property learning tasks involve
natural objects, like foods or animals, for which individuals have rich
existing representations. Additionally, most experiments on active
learning ask subjects to choose among a relatively small number of
experimenter-generated queries, reducing the role of memory pro-
cesses, which would be expected to influence subjects’ retrieval of
queries (but see Rothe et al., 2018; Wilke et al., 2009 for exceptions).
Overall, it is not clear, based on prior work, whether or not people
behave optimally when theymust retrieve sequences of (complex, nat-
uralistic) questions from memory.
One important source of conflict between theories of rational

search and theories of memory search involves the role of similarity.
Optimal search often requires asking questions that are dissimilar
to each other, as asking the same (or a similar) question repeatedly
will usually provide the same (or similar) answers/information.
Consider, for example, a task in which the learner has to determine
how much of a new nutrient there is in different food items. The
learner can ask questions about each item sequentially (how much
of the nutrient is there in a bagel? how much in pita? how much in
an egg?) and must retrieve each item (bagel, pita, egg) from memory
before the query. As similar items usually have similar properties,
for the questions to be maximally informative, the queried items

must be as different from each other as possible. It is much better
to follow up a query about bagel with a query about egg than a
query about pita.

This optimal search strategy is the opposite of what researchers
have observed in most recall tasks. Typically, when asked to
retrieve items from memory, people generate sequences of semanti-
cally similar items, an effect known as semantic congruence. The
semantic-congruence effect is remarkably robust and emerges across
a variety of tasks including free association (De Deyne et al., 2019;
D. L. Nelson et al., 2004), free recall from lists (Howard & Kahana,
2002; Romney et al., 1993), semantic memory search (Bousfield &
Sedgewick, 1944; Hills et al., 2012), and memory-based decision
making (Aka & Bhatia, 2021; Bhatia, 2019; Z. H. Zhang et al.,
2021). This is due to the associative structure of memory (Anderson
& Bower, 2014; R. C. Atkinson & Shiffrin, 1968). Retrieved items
cue successive items based on their strength of association. Items
that are similar are more associated with each other, which is why
the retrieval of bagel is more likely to cue pita than egg.

How is this conflict resolved in naturalistic active learning tasks?
Are people able to search optimally and retrieve sequences of
dissimilar items, or are they fundamentally constrained by the
associative memory processes that lead to semantic congruence
in other recall tasks? As discussed above, most studies on active
learning are conducted under rarefied conditions that do not require
memory search. This is largely due to the difficulty in modeling
naturalistic active learning, in which people can search over and
ask questions about thousands of common items and entities.
Such items do not always have easily quantifiable representations,
and researchers are thus unable to specify formal models of mem-
ory search that operate over these representations. Yet without such
models, and the quantitative representations that enable them,
researchers can say little about the memory processes that underly
naturalistic question asking and whether these processes are actu-
ally optimal.

Overview of Approach

Fortunately, recent work has shown the promise of natural language
processing models, trained on large text corpora, for tackling the
problem of representation (Bhatia &Aka, 2022). For example, distrib-
uted semantic models (DSMs) use patterns of word–word or word–
document co-occurrence in very large collections of texts, to build
real-valued, high-dimensional vector representations of thousands
or even millions of real words and phrases (Griffiths et al., 2007;
M. N. Jones & Mewhort, 2007; Landauer & Dumais, 1997;
Mikolov et al., 2013; Pennington et al., 2014). As DSMs are trained
on vast amounts of text corpora, these representations are very rich
and can capture a lot of what people know and associate with
words (and their corresponding objects and concepts). Crucially,
objects that are semantically similar, like bagel and pita, tend to
have similar word distributions in text, and therefore end up with vec-
tor representations that are close to each other by metrics like cosine
similarity or Euclidean distance. For this reason, similarity measure-
ments in DSMvector spaces can be used to describe many psycholog-
ical phenomena related to semantic similarity, and more generally
semantic representation and memory retrieval (Bhatia et al., 2019;
Günther et al., 2019), including semantic-congruence effects in free
association, free recall from lists, semantic memory search, and
memory-based decision making (Aka & Bhatia, 2021; Bhatia, 2019;
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Griffiths et al., 2007; Hills et al., 2012; Howard & Kahana, 2002;
M. N. Jones & Mewhort, 2007; Mandera et al., 2017).
We use DSMs tomodel memory search in a new naturalistic active

learning task (Figure 1A). In the task, participants (a) learn a novel
property by querying different entities in a category and getting feed-
back on those entities’ property scores, and then (b) in the test phase
predict the scores of a fixed set of test items. Property scores for the
entities are constructed by prespecified linear functions on their

DSM vectors, giving similar items similar property scores.
Experiments 1a, 2, and 3 implement this task with 1,594 food
items, while Experiment 1b implements it with 1,734 animals.
Additionally, Experiment 2 compares the queries in the active learn-
ing task with recall in a standard semantic memory search task.
Experiment 3 provides detailed coaching on how to do well in the
active learning task. Experiments 4a, 4b, 5a, and 5b do not directly
use the task but instead ask participants to judge the optimality of

Figure 1
Experimental and Modeling Setup

Note. (A) The practice, active learning, and test phases of the naturalistic active learning task. In the practice phase,
the participants were given five pairs of items and scores, one at a time. The practice phase was designed to provide
the participants with a broad understanding of the task. In the active learning phase, participants generated their own
queries, submitted the queries, and were shown the queried items’ scores. Items were queried successively. In the
test phase, participants were presented with 20 preselected items one at a time and asked to predict the items’ scores
based on what they had learned in the active learning phase. (B) In the memory model, activation of candidate que-
ries at time t is linearly dependent on a query’s similarity to the query at time t− 1, as well as a query’s frequency.
Activation is subsequently passed through a softmax function to obtain probabilities for sampling every possible
query given the previous query, Pr [st |st−1]. (C) In the Bayesian learning model, the learner comes into the active
learning phase with a prior belief of the property, which we set at a standard multivariate normal distribution over θ.
After receiving the feedback upon query at t, the learner updates the belief of θ using the Bayes rule (the arrow and
equation on top). The posterior belief after query t becomes the prior belief for the subsequent query at t + 1 (the
arrow and equation at the bottom). In the test phase, the learner makes predictions for test item x* based on the pos-
terior belief of θ after the full active learning phase. See the online article for the color version of this figure.
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individual searches or search sequences in the task. All experiments
are incentivized, and participants can earn more money with better
performance at test. Experiments 2 and 3 are preregistered.
Our use of linear functions on DSM vector spaces is driven by our

prior work which has found that human judgments of the real-world
properties of common objects (such as the healthiness of foods, the
riskiness of various technologies, the leadership qualities of famous
individuals, and the similarities of objects like birds and vegetables)
can be accurately approximated using a linear function on the
objects’ DSM vectors (Bhatia, 2019; Bhatia & Stewart, 2018;
Bhatia et al., 2022; Gandhi et al., 2022; Richie & Bhatia, 2021;
Zou & Bhatia, 2021a; see Richie et al., 2019 for a comprehensive
analysis). In some of this work, we have also found that more flexible
nonlinear functions do not add predictive value in describing human
judgments. The reason for this is likely the richness of the word
vectors—many complex real-world properties of objects can be rep-
resented using linear combinations of 300+ dimensions. We were
also motivated by our recent work on (passive) category learning
that finds that linear functions on DSM vectors are much easier to
learn than nonlinear functions on these vectors (Zou & Bhatia,
2021b). This work was motivated by the classical findings of
Shepard et al. (1961), and essentially replicated these findings
using DSM vectors as the underlying attribute structures for objects.
Ultimately, linear functions on DSM vectors accurately specify
human judgments of real-world properties and are also the easiest
to learn, which is why they are a good starting point for our analysis.
Participants’ queries allow us to measure the extent of semantic

congruence or incongruence in search behavior. We specify seman-
tic congruence as the averaged cosine similarity between the DSM
vectors of each pair of two adjacent items in the query sequence.
To model the dynamics that underlie query generation, we specify
memory search as a Markov randomwalk over the hundreds or thou-
sands of items in the category (foods or animals; Abbott et al., 2015;
De Deyne et al., 2019). Our memory model predicts the probability
of retrieving an item as a (positive or negative) function of the
semantic similarity with the previously retrieved item, as well as
the item’s word frequency (Figure 1B). By fitting this model on par-
ticipants’ query sequences from our experiments, we can quantify
the effect of semantic similarity (and dissimilarity) on memory pro-
cesses in naturalistic question asking.
Our memory model also allows us to make predictions about partic-

ipant responses in the test phase of our task, and how these responses
depend on underlying memory dynamics. In particular, by assuming
that participants optimally extrapolate from the training data to the
test data (i.e., that they are ideal Bayesian learners) we can formally
specify the relationship between test accuracy (the ability of our partic-
ipant to learn the underlying property function) and retrieval strategy
(the tendency of participants to display semantic congruence or incon-
gruence in search; Figure 1C). Additionally, wemeasure the efficiency
of our participant’s queries using BayesianD-optimality, awell-known
efficiency criterion in research on optimal experimental design (Kiefer
& Wolfowitz, 1959; Myung & Pitt, 2009). D-optimality allows us to
evaluate the quality of participant queries, and by doing so, relate
the mechanisms revealed by our algorithmic memory model to the
computational goals of the task. As the function that participants are
required to learn is linear in the DSM vector space, we use linear
D-optimality. However, for robustness, we also examine how the linear
D-optimality relates to the measurement of optimality for Gaussian
process function learning, the latter of which allows for nonlinear

mapping between word vectors and property scores (Hayes et al.,
2019; Lucas et al., 2015; Wu et al., 2018).

Experiments 1a and 1b

The goal of these experiments was to investigate naturalistic active
learning in a new experimental task involving thousands of foods
(Experiment 1a) and animals (Experiment 1b). Participants were
asked to learn a hypothetical property possessed by foods or animals
and were allowed to ask about nearly any food or animal in the train-
ing phase of the task. We used a variety of computational techniques
to analyze query generation, its relationship with memory retrieval,
and its effect on learning performance.

Method

Participants

Participants were 396 U.S. residents who spoke fluent English
recruited from Prolific Academic (https://www.prolific.ac; Experiment
1a: Mage= 34 years, SDage= 12 years, N= 198, 71% female, 27%
male, 0.5% other/prefer not to say; Experiment 1b: Mage= 32 years,
SDage= 12 years,N= 198, 62% female, 36%male, 1.5% other/prefer
not to say). In all experiments in this article, no other demographic
information besides age and gender was collected, and gender was col-
lected as a three-way choice between the categories above (although
in subsequent experiments, we changed “other” to “nonbinary” in
response to participant feedback). For data quality control, we only
recruited the participants with an approval rate of over 80% on Prolific.

Stimuli

All food and animal stimuli were collected via the Natural
Language Toolkit interface to WordNet (Bird et al., 2009; Miller,
1995). We extracted all nouns that were descendants (hyponyms,
hyponyms of hyponyms, etc.) of the first and second synsets of
the word food (Experiment 1a) and the first synset of the word ani-
mal (Experiment 1b), and then filtered out ambiguous and nonfood/
nonanimal items and those items that did not have vectors in a stan-
dard word vector model, word2vec trained on Google News
(Mikolov et al., 2013). This led to 1,594 usable food items and
1,734 usable animal items, each of which was represented by a
300-dimensional vector.

Our use of the Google News word2vec model was driven by prior
work, which has found that distances in this vector space are good
predictors of human similarity judgment (Mikolov et al., 2013;
Pereira et al., 2016) and that linear functions of this space can be
used to accurately predict both similarity judgments (Richie &
Bhatia, 2021) and judgments of other properties of objects
(Bhatia, 2019; Bhatia & Stewart, 2018; Bhatia et al., 2022;
Gandhi et al., 2022; Richie & Bhatia, 2021; Zou & Bhatia, 2021a;
see Richie et al., 2019 for a comprehensive analysis). Importantly,
this work shows that the accuracy of the word2vec model persists
for animals and foods (stimuli in our experiments) despite the fact
that the underlying corpus contains news articles. Most of this
work also finds that there are few differences between this model
and other popular models like GloVe (Pennington et al., 2014),
though word2vec does have the benefit of having a larger vocabulary
with multiword phrases (e.g., words like “polar_bear”). Indeed, we
have found that only 60% of the animal words and 61% of the food
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words in our stimuli sets are in the vocabulary of a popular GloVe
model trained on the Common Crawl corpus. Out of the words
that are in both vocabularies, there is a Pearson correlation of
r= .66, 95% CI [0.66, 0.66] in the cosine similarities of animals
and r= .64, 95% CI [0.64, 0.64] in the cosine similarities of
foods, suggesting our upcoming results would be similar if we had
used GloVe instead of word2vec. Of course, there are also more
recent models, like Bidirectional Encoder Representations from
Transformers, or BERT, which specify vectors for sentences. We
decided not to use these models in our article as prior work has
shown that their vectors are not good for modeling similarity without
further fine tuning (Reimers & Gurevych, 2019).
Prior research suggests that the 10-dimensional principal compo-

nents of the original 300-dimensional word2vec vectors in one
domain can predict item properties nearly as well as the full
300-dimensional vectors do (Richie et al., 2019). Thus, to generate
coherent and learnable properties, we subjected all 1,594 food vectors
and all 1,734 animal vectors to (separate) principal component analy-
sis (PCA) and used the first 10 principal components (which
explained 30% and 32% of the variation in foods and animals, respec-
tively).We further quantifiedword frequency using the Google Books
NGram corpus (Michel et al., 2011; Trenkmann, 2016).
We applied random linear functions on the word vector principal

components to generate artificial property scores for all items. The
generated weight vectors were 10-dimensional, corresponding to
the 10-dimensional word vector principal components. Thus, for
an item i, described by a 10-dimensional (decomposed) word vector
xi, the property score was yi =

∑
xi · u∗, where θ* was the random

weight vector. The weight vectors were all sampled from a multivar-
iate standard normal distribution and different experiments used dif-
ferent random samples. In Experiment 1a, only one randomly
generated weight vector was used. In Experiment 1b, we generated
four random weight vectors and each participant was assigned to
one of the weight vectors (see Tables A1 and A2 for example
items with high and low scores in different experiments). To avoid
unnecessary cognitive load for participants, we scaled all property
scores such that the values ranged from −100 to +100 and rounded
scores to the nearest integer for display. As these properties were
generated using random functions on the word vectors, they do
not necessarily have concise descriptions consisting of one word
(e.g., tasty) or even a short phrase (e.g., American dinner foods).
The reason we used random linear functions on the decomposed

word vectors was to ensure that our artificial properties tracked
important and discriminating dimensions of foods and animals.
We had initially tried to specify random functions on the unreduced
300-dimensional vectors but found that they did not generate prop-
erties on which our objects varied greatly. By contrast, the principal
components decomposition extracts the dimensions on which the
objects in a given domain (foods or animals) have the greatest var-
iance, and random functions on these dimensions subsequently gen-
erate properties with systematic and interpretable differences across
different objects in the domain. It is worth noting that a linear func-
tion on the PCA-reduced vectors is also a linear function on the orig-
inal unreduced word vector space.

Procedures

Our task consists of three phases (Figure 1A). Before the active
learning task, participants participated in a practice phase, where

they were presented five items and the corresponding property
scores, one at a time, in a random order. Each item-score pair
appeared onscreen for 3 s. To aid participant learning and encourage
sampling of a diverse range of items, we randomly sampled five
items 100,000 times and selected the set with the highest Bayesian
D-optimality (see our discussion of D-optimality below). This
ensured that the practice items would expose participants to a reason-
able span of the food space or animal space. To ensure that the prac-
tice items were sufficiently familiar to participants, before sampling
practice items, we removed items occurring less than 40 times in the
SUBTLEX-US corpus of American English subtitles (Brysbaert &
New, 2009).

In the active learning phase, the participants’ task was to enter
the food or animal items of their own choice in a textbox. The
entered word/phrase was passed to the predefined property diction-
ary, and the corresponding score was returned and appeared
onscreen for 3 s. In case the entry was not in our dictionary, we
encouraged participants to check for spelling errors or alternate
spelling forms and reenter the word/phrase, or enter another item
until the item was accepted. Participants were asked to enter a
total of 20 items.

Following the active learning phase, we tested participants’ learn-
ing performance with 20 preselected food or animal items, presented
in a random order. We selected 20 test foods and 20 test animals
using the same procedure as for the practice items. For each item,
participants were asked to indicate their best guess of its property
score using a slider from−100 to +100. To aid participants’ test per-
formance, we displayed the scores of the 20 items they entered in the
active learning phase throughout the test phase. No feedback was
provided in the test phase. Practice and test items can be found in
Table 1.

After completing the experiment, participants were given a base
payment of $2 and were given a bonus of $1.00 if their test perfor-
mance (measured by root-mean-square error [RMSE]) was in the top
10%, and $0.50 if they were in the top 50%.

Table 1
Practice Items and Test Items, for Experiments 1a, 1b, 2, and 3

Experiments 1a, 2, and 3 (food) Experiment 1b (animals)

Practice items Test items Practice items Test items

Vinegar Candy Turkey Mammoth
Margarita Cream Wolf Trout
Trout Macaroni Camel Sheep
Muffin Caramel Moth Buzzard
Noodle Tomato Alligator Ox

Dumplings Mare
Oregano Chicken
Fish Parrot
Coconut Crocodile
Tongue Pony
Chardonnay Badger
Guacamole Snake
Sugar Coyote
Egg Sardine
Eggplant Rhino
Alcohol Insect
Grape Doggie
Pumpkin Lamb
Corn Shellfish
Bumbo Frog
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Memory Search Model

We modeled the memory search as a Markov information acquisi-
tion process, where the probabilities of searching each of the candidate
queries were only dependent on the similarity between the candidate
queries and the most recently searched query, as well as the word fre-
quency of the candidate queries themselves. In line with classic mem-
ory retrieval models, we assumed that participants searched for aword
among all candidate queries in the memory space S. Assuming the
Markov property, the model predicted the switch from one query
st−1 to another query st using transition probabilities Pr [st|st−1],
where st−1, st∈ S and t∈ {2, 3,…, T} are the time steps. We allowed
Pr [st|st−1] to be a function of two key cognitive mechanisms—
semantic congruence and word frequency—giving us:

Pr [st|st−1] = s(b1simst−1,st + b2freqst ), (1)

where simst−1,st is the cosine similarity between st−1 and st, freqst rep-
resents the frequency (log-transformed) of candidate query st, and σ(·)
is the softmax function that sets

∑
st[S Pr [st|st−1] = 1.

We fit the memory search models under a hierarchical Bayesian
framework, which provided both group- and individual-level estima-
tion of β1 and β2. The hierarchical Bayesian model fitting was carried
out in rstan, an R implementation of Stan (Stan Development Team,
2021). The group-level grand means μk were set at the standard nor-
mal distribution, and the individual-level degree of deviation from
the grand mean σk was set to follow a half-Cauchy distribution
(with location= 0 and scale= 5). On the individual level, the
model allowed each participant’s parameters to deviate from the
grand mean with different size δk,j (drawn from a prior standard nor-
mal distribution), resulting in an individual-level parameter βk,j= μk
+ σkδk,j, where j indexes participant ID and k denotes different
parameters in the memory search models. All group- and individual-
level parameters were estimated simultaneously via fitting the
individual-level memory search data. To check the convergence of
Markov chain Monte Carlo (MCMC), we ran five independent
chains for each fit and estimated an R-hat for the convergence
check (Gelman & Rubin, 1992). Each of the five chains contained
2,000 iterations after 1,000 warmup samples, totaling 10,000 formal
samples for each fit. All R̂ values were below 1.05, indicating excel-
lent convergence of the MCMC simulations.

Ideal Bayesian Learning Model

Participants learned about the target property from the scores
given as feedback to queries. To formally capture this dynamic
learning process, we assumed that the participants were ideal
Bayesian learners who took as input the scores yt of their query
(quantified by a word vector xt) and learned a linear mapping
between them (Figure 1C). Participants updated their belief of
weights θ that determined the linear mapping after observing each

pair of xt and yt using the Bayes rule: pt(u|xt, yt) = pt(u)p(yt |xt , u)�
pt (u)p(yt |xt , u)

,

where xt is an 11-length vector, a concatenation of a 10-dimensional
word vector principal components and the constant 1. As in a typical
(Bayesian) linear regression, we allowed for a nonzero intercept in the
Bayesian learning model and thus θ was an 11-dimensional vector,
that is, a concatenation of the 10-dimensional weight (on the word
vectors) and an intercept (note that our algorithm for generating the
property scores assumed an intercept of zero, but that was unknown

to the participants). At onset, the prior belief of θ was set as a
Gaussian distribution centered at 0 with unit standard deviation.

In the test phase, we assumed that participants made predictions on
the test items based on the updated posterior distribution p(θ|X, y),
where X is the design matrix corresponding to their 20 queries in
the active learning phase and y are the corresponding scores. The pre-
dicted scores at test can be written as ŷ∗ = �

p(u|X, y)ux∗du, where
x* is the vector corresponding to the test item. A nice property of
the Bayesian learning model’s predictions at test was that its predic-
tions were not sensitive to the order in which queries were generated.

To be consistent with the score generation process, we used the
original scores (rather than the rescaled scores in the range [−100,
100] that were displayed to participants) in the Bayesian learning
model. Accordingly, in evaluating participants’ predictive accuracy
using Pearson’s R and RMSE, we back-transformed their prediction
scores at test using the same set of scaling factors, to be compatible
with the original scores.

Bayesian D-Optimality of Queries

The ideal Bayesian learning model also allowed us to evaluate
query efficiency with Bayesian D-optimality, one of the most
often used optimality criteria (Chaloner & Verdinelli, 1995; Kiefer
& Wolfowitz, 1959; Myung & Pitt, 2009). Mathematically,
Bayesian D-optimality of the full set of queried items is the determi-
nant of the Fisher information matrixD= det{XXT + Σ−1}, whereX
is the 11× 20 design matrix corresponding to the 20 queried items,
and Σ is the 11× 11 covariance matrix before querying the items. At
the beginning of the experiment, Σ is set as an identity matrix, cor-
responding to the standard multivariate normal prior distribution on
θ. Intuitively, if the queried items are sparsely distributed in the
space, the design matrix typically has a high Bayesian
D-optimality. By contrast, if the queried items are close to one
another, the design is likely to have a low Bayesian D-optimality.

Note that it is also possible to evaluate single-query informativeness
at each time step in the learning phase using Bayesian D-optimality.
This measure could be included in the memory search model, in
addition to the two predictors in Equation 1. However, the more par-
simonious memory search model in Equation 1 outperformed an
extended model with Bayesian D-optimality as an additional predictor
in memory with decisive Bayes factors (BF; Experiment 1a: BF=
5.58× 108; Experiment 1b: BF= 8.89× 108), due to the collinearity
between Bayesian D-optimality and semantic congruence. Therefore,
we report the main memory search model in Equation 1.

We also attempted to compare our D-optimality measure with a
measure of optimality for Gaussian process function learning, the latter
ofwhich allows very flexible nonlinear relationships between predictor
and response variables (Hayes et al., 2019; Lucas et al., 2015; Wu
et al., 2018). Gaussian process function learning does not assume
any specific functional form. Instead, it merely assumes that items
nearby in the word vector space (i.e., X ) should score similarly on
the target property (i.e., y). Fortunately, information-theoretic tools
allowed us to measure the query optimality for Gaussian process func-
tion learning despite its flexibility. Specifically, we measured the
design entropy for Gaussian process function learning (see
Gramacy, 2020, p. 224). The higher the design entropy, the more opti-
mal the query sequence for Gaussian process function learning. We
found that D-optimality and Gaussian process design entropy were
highly correlated in our datasets, with Spearman correlations above
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.8 for all experiments (see Figure A1). The implication is that in our
data, queries that are suboptimal with D-optimality are also suboptimal
with Gaussian process entropy and that replacing D-optimality with
Gaussian process entropy in our models is unlikely to alter any results.
This shows that our basic findings are largely robust to attributing dif-
ferent inductive biases to participants.

Transparency and Openness

All experimental materials, data, and code can be found at the
Open Science Framework (OSF; He et al., 2023).

Results

Search Sequences Display Semantic Congruence

Participants tended to query items that were semantically related
to previously recalled items. Across Experiments 1a and 1b, t tests
revealed that participants’ average cosine similarities between con-
secutive queries exceeded the mean similarity among all possible
transitions (all t. 59 and p, 10−10 for foods and animals). At
the individual level, all of the 198 participants in Experiment 1a
and the 198 participants in Experiment 1b displayed semantic con-
gruence higher than the random level, and 94% and 99% of partic-
ipants in Experiments 1a and 1b, respectively, reached the
conventional significance threshold of p, .05.
Participants also tended to query items that were encountered and

discussed frequently in the world, like apple or egg, more often than
rare (at least to the typical participant in our samples of U.S. resi-
dents) items like medlar or pawpaw (both types of fruit). We com-
pared the average (log) word frequency of each participant’s
queries to that of all possible foods (Experiment 1a) or animals
(Experiment 1b). All of the 198 participants in Experiment 1a and
the 198 participants in Experiment 1b in Experiment 1b displayed
the tendency of querying high-frequency items, and 99% and
100% of participants in Experiments 1a and 1b, respectively,
reached the significance threshold of p, .05.

Memory Search Model Fits

As mentioned above, we used a computational memory search
model to formally capture memory retrieval dynamics in the active
learning phase. Hierarchical Bayesian model fitting of the model
provided both group- and individual-level estimation of β1 and β2,
allowing us to test the extent to which the memory-based active
learning process was determined by similarity with the previous
item and word frequency (Table 2). On the group level, cosine sim-
ilarity had a strong effect on sequential memory search for food

items in Experiment 1a and for animals in Experiment 1b, as indi-
cated by a positive value of β1. Likewise, frequent words/phrases
were much more likely to be queried than infrequent ones for both
foods in Experiment 1a and animals in Experiment 1b, as indicated
by a positive value of β2. The individual-level estimation also sug-
gested that a majority of our participants displayed these tendencies.

Individual-level parameters correlated in the expected ways with
the model-free measures of memory properties: β1 almost perfectly
correlated with adjacent semantic similarity (the average cosine sim-
ilarity of successively retrieved items; Figure 2A), and β2 perfectly
correlated with (log-transformed) word frequency (Figure 2B).
These results serve as a useful sanity check and suggest that the
underlying cognitive processes in our naturalistic active learning
task resembled those underlying a typical memory task, processes
that likely lead to suboptimal queries.

Bayesian Learning Model Predicts Test Performance

The ideal Bayesian learningmodel captured the between-participant
variation in test performance (Figure 3). We found that the predicted
performance at test by the Bayesian learning model trained on each
participant’s queries was correlated with the actual performance of
the participants measured by both Pearson’s R (Experiment 1a:
r= .418, p, 10−9, 95% CI [0.295, 0.526]; Experiment 1b:
r= .236, p, .001, 95% CI [0.100, 0.363]) and RMSE (Experiment
1a: r= .219, p= .002, 95% CI [0.082, 0.358]; Experiment 1b:
r= .166, p= .019, 95% CI [0.028, 0.299]). The results suggest that
the ideal Bayesian learning model was able to at least partly capture
the heterogeneity in test performance across participants.

Note that participants’ actual test performance was significantly
better than the baseline model that assigned random scores at test
(baseline predictions were generated by randomly shuffling partici-
pant responses at test, and comparing these shuffled responses with
the true test scores 100 times per participant). This indicates that
despite their suboptimality in query generation, participants were
able to use the observed data in the training phase to predict property
scores at test. However, actual test performance did not reach the
accuracy levels predicted by the ideal Bayesian learning model
(ps, 10−12 in all experiments, Figure 3). This could be because
of additional sources of noise during the test phase. Although the
ideal Bayesian learner is noiseless, participants themselves could
have made random errors when giving ratings.

Semantic Congruence Hinders Optimal Search and
Subsequent Learning

We correlated the Bayesian D-optimality of each participant’s query
sequence with the estimated degree of semantic congruence, β1, in the

Table 2
Summary of Hierarchical Bayesian Estimation of Memory Model Parameters

Experiment

Group-level M and 95% CI Percentage of individual-level 95% CI beyond 0

Semantic congruence (β1) Word frequency (β2) Semantic congruence (β1) Word frequency (β2)

Experiment 1a 0.62 [0.57, 0.67] 0.97 [0.93, 1.02] 93% 99%
Experiment 1b 0.71 [0.66, 0.76] 0.93 [0.90, 0.97] 98% 100%
Experiment 2 0.68 [0.63, 0.74] 0.86 [0.80, 0.91] 100% 100%
Experiment 3 0.42 [0.36, 0.50] 0.87 [0.80, 0.94] 67% 98%

Note. CI= confidence interval.
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memory search model (Figure 2C). As the two variables entail a
strong tradeoff, participants whose queries are more positively influ-
enced by the similarity with previous items have lower levels
of Bayesian D-optimality; these correlations are expectedly negative.
Interestingly, Bayesian D-optimality was positively correlated with β2
(Figure 2D). The reason for this is that words with higher frequencies

have larger vector norms in many DSMs (Kintsch, 2014; Wilson &
Schakel, 2015). Querying words with large vector norms, in turn,
tends to increase the volume of the space spanned by the set of queries,
and volume is very closely related to Bayesian D-optimality.

Semantic incongruencewas also associated with better test perfor-
mance as predicted by the ideal Bayesian learning model. We found

Figure 2
Memory Retrieval in Naturalistic Active Learning

Note. (A) Correlations between adjacent semantic similarity and β1 in the memory model. (B) Correlations between the (log-transformed) word frequency of
retrieved items and β2 in the model. (C) Correlations between β1 and Bayesian D-optimality. (D) Correlations between β2 and Bayesian D-optimality. This
analysis collapsed all the participant-generated query sequences from different experimental conditions in Experiment 2 (N= 102) and Experiment 3 (N=
100). See the online article for the color version of this figure.

HE, RICHIE, AND BHATIA8

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



that β1 was positively correlated with the ideal Bayesian learning
model’s predicted RMSE at test (Experiment 1a: r= .318, p,
10−5, 95% CI [0.187, 0.438]; Experiment 1b: r= .381, p, 10−7,
95% CI [0.255, 0.494]) and negatively with its predicted
Pearson’s R at test (Experiment 1a: r=−.115, p= .105, 95% CI
[−0.251, 0.024]; Experiment 1b: r=−.222, p= .002, 95% CI
[−0.350, −0.085]), though the Pearson’s R correlation for
Experiment 1a does not cross the threshold for significance.
Additionally, participants who displayed more semantic incongru-

ence also performed better at test. β1 was positively correlated with
participants’ actual RMSE at test in both Experiment 1a (r= .155,
p= .029, 95% CI [0.016, 0.288]) and Experiment 1b (r= .137,
p= .054, 95% CI [−0.002, 0.271]. Likewise, β1 was negatively cor-
related with participants’ actual Pearson’s R at test in both Experiment
1a (r=−.078, p= .276, 95% CI [−0.215, 0.062]) and Experiment
1b (r=−.182, p= .010, 95% CI [−0.314, −0.044]). Again, the
RMSE correlation for Experiment 1b and the Pearson’s R correlation
for Experiment 1a do not cross the threshold for significance.

Simulated Query Strategies and Test Performance

To more systematically examine the tradeoff between semantic
congruence in memory retrieval and optimal search in active learning,
we simulated a semantic similarity-based retrieval strategy and com-
pared its Bayesian D-optimality, as well as the predicted test perfor-
mance by the ideal Bayesian learning model, with that of a number
of other retrieval strategies (Figure 4). The semantic similarity-based
strategy produced the lowest query Bayesian D-optimality and
achieved the worst test performance among all retrieval strategies.
In stark contrast, the D-optimality Greedy strategy that kept selecting
from the most informative queries according to the Bayesian
D-optimality criterion always produced the lowest semantic congru-
ence in queries and the best performance at test. Retrieval strategies
that were searched based on word frequency or based on random sam-
pling achieved intermediate D-optimality and accuracy rates at test.

The participants’ actual query sequences were far from optimal, as
compared with the D-optimality Greedy strategy (Figure 4). They

Figure 3
Baseline, Actual and Ideal Test Performance Across Experiments, Measured With Pearson’s R and RMSE, Respectively

Note. Each point in the graphs corresponds to a single participant, and connected actual and ideal points show the relationship between participants’ actual
performance and the performance of a Bayesian learner trained on their queries. The baseline performance is that of a model that guesses test scores randomly.
Experiment 2 used the active learning condition in this analysis (N= 50). Experiment 3 used both the coached learning and uncoached learning conditions
(N= 100). RMSE= root-mean-square error. See the online article for the color version of this figure.
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Figure 4
Properties of Actual and Simulated Memory Query Strategies

Note. Actual query uses the participants’ actual sequences of queries. Random query randomly selects from all the items with no replacement.
Frequency-based query randomly selects from the top-100most frequent itemswith no replacement (being equivalent to selecting one from five high-frequency
items at each query step). Similarity-based query keeps randomly selecting one from the top five most cosine-similar items that has not been queried before.
Greedy query keeps randomly selecting one from the top five items with the highest Bayesian D-optimality. The top two panels indicate the Bayesian
D-optimality and adjacent semantic similarity of simulated queries, whereas the bottom two panels indicate the test performance (RMSE and Pearson’s R)
of an ideal Bayesian learning model that makes predictions based on simulated queries. The simulation sample size equals the sample size in each experiment,
respectively (N= 198, 198, 50, 100 for Experiments 1a, 1b, 2, and 3, respectively). The shaded bands are 95% confidence intervals. RMSE= root-mean-square
error. See the online article for the color version of this figure.
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also displayed more semantic congruence and achieved lower
Bayesian D-optimality, than the random or frequency-based queries.
Overall, these results, once again, suggest that participants were
unable to ask the most informative questions when the questions
had to be generated from memory.

Discussion

We examined naturalistic active learning for foods (Experiment
1a) and animals (Experiment 1b). Our paradigm allowed us to
observe and model participant query generation over a vast domain
involving over a thousand potential items. In line with prior research
on memory search, we found strong evidence for semantic congru-
ence, that is, retrieved items tended to cue the subsequent retrieval of
semantically similar (rather than dissimilar) items. This result was
further validated by the fits of our Markov memory model, which
showed a strong positive effect of semantic similarity (as well as
an effect of word frequency) on recall. Furthermore, as expected,
participant-level semantic-congruence effects were negatively corre-
lated with Bayesian D-optimality scores, as well as performance at
test. Finally, a formal comparison of various memory search strate-
gies showed that observed search processes were much worse than
optimal.

Experiment 2

Experiment 1 showed that participants display semantic congru-
ence (rather than semantic incongruence) in naturalistic active learn-
ing, which hinders learning. In Experiment 2, we wished to
investigate the magnitude of this effect by comparing the extent of
semantic congruence in our task with a standard semantic memory
search task in which participants were asked to retrieve all the items
they could from a category without any overarching learning goal.
This allowed us to examine the degree to which participants were
able to modulate memory search and prioritize the retrieval of dissim-
ilar itemswhen given an active learning task. Experiment 2 also used a
different set of property scores to Experiment 1 and thus tested the
robustness of the findings in Experiment 1. This experiment was pre-
registered on AsPredicted.org: https://aspredicted.org/IVD_VYF. In
our preregistration, we planned to include effects of both semantic
congruence and D-optimality in our memorymodel and hypothesized
that both conditions would show effects of semantic congruence,
while only the active learning condition would show an effect of
D-optimality. However, due to high collinearity between semantic
congruence and D-optimality (Figure 2C), we ultimately dropped
D-optimality from the memory model. This omission should not
affect our ability to test Experiment 2’s core hypothesis, that partici-
pants would be able to modulate search when retrieving items from
memory for the purpose of (efficient) active learning, as compared
to memory retrieval without a goal.

Method

Participants

One hundred and two U.S. residents fluent in English were
recruited from Prolific Academic in the same way as in previous
experiments (Mage= 32 years, SDage= 13 years; 60% female,
40% male). They were randomly assigned to an active learning con-
dition (N= 50) or to a semantic memory search (N= 52) condition.

Stimuli

The stimuli were the same as in Experiment 1a. However, a new
random linear function was used to derive property scores. The list of
high- and low-score items can be found in Table A1.

Procedures

The procedure and instructions for the active learning condition
were identical to those of Experiment 1a, except that there was no
practice phase. As in Experiments 1a and 1b, we displayed the 20
items they entered in the active learning phase and their correspond-
ing scores throughout the test phase to avoid the potential memory
confound in the test phase. In the semantic memory search condi-
tion, participants were simply instructed to recall 20 foods, with
no testing phase (and, again, no practice phase).

Memory Search Model

We used the samememory search model as in Experiments 1a and
1b to fit the memory retrieval data. The hierarchical Bayesian model
fitting collapsed the query sequences in both conditions.

Ideal Bayesian Learning Model

In the active learning condition, we applied the same ideal
Bayesian learning model as in Experiment 1a to predict the partici-
pants’ reported property scores at test, based on their queries at the
active learning phase.

Results

Replicating Experiment 1a, participants in Experiment 2 dis-
played strong semantic congruence in sequential search from mem-
ory (see Table 2 for a summary). On the individual level, our
memory search model was able to capture the effects almost per-
fectly (Figure 2A), and semantic congruence in memory search
was strongly correlated with the Bayesian D-optimality of the que-
ries (Figure 2C). Here, we analyzed and collapsed the query
sequences in both the active learning and semantic memory search
conditions. Although there was no learning taking place in the
semantic memory search condition, we calculated the Bayesian
D-optimality of query sequences in that condition as if participants
were to learn a property as those in the active learning condition.
This “as-if” Bayesian D-optimality served as a benchmark for eval-
uating the query optimality in the active learning condition.

In the active learning condition, the Bayesian learning model
trained on the participants’ memory queries was able to capture
the individual differences in test performance measured either by
Pearson’s R (r= .528, p, .0001, 95% CI [0.293, 0.703]) or
RMSE (r= .157, p= .277, 95% CI [−0.081, 0.302]) although the
RMSE measure did not reach the conventional significance thresh-
old. The degree of semantic incongruence during item querying
from memory, β1, was associated with the test performance in the
predicted directions (i.e., negatively correlated with test Pearson’s
R, and positively correlated with test RMSE), although statistical sig-
nificance did not reach the conventional threshold (all ps. .1).
These nonsignificant results were likely due to relatively small sam-
ple size (with N= 50).
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In a direct comparison with the simulated D-optimality Greedy
retrieval strategy that kept selecting from the most informative que-
ries, Figure 4 shows that the actual query sequences in Experiment 2
were far from optimal. Consistent with Experiments 1a and 1b, par-
ticipants in Experiment 2 also displayed more semantic congruence
and achieved lower Bayesian D-optimality, than the random or
frequency-based queries.
Our main interest in Experiment 2 was to evaluate and compare

query properties in the active learning and the semantic memory
search conditions. In our preregistration, we predicted that semantic
congruence would be lower in the active learning condition; however,
we found that the two conditions differed neither on semantic congru-
ence (i.e., β1), t(96.7)= 0.818, p= .416, 95% CI [−0.052, 0.022],
nor on Bayesian D-optimality of the queries, t(99.8)= 0.719,
p= .474, 95%CI [−62.2, 29.1] (see Figure 5). These findings suggest
that semantically congruent memory search was so strong that it can-
not be moved by the demand of efficient learning. Neither did partic-
ipants in the two conditions differ on the search of high-frequency
items (i.e., β2), t(99.1)= 0.034, p= .973, 95% CI [−0.032, 0.031].

Discussion

Experiment 2 replicated the core results of Experiment 1a. As in
Experiment 1a, participants displayed semantic congruence in
retrieval, which hindered their ability to learn the property scores
in our task. More importantly, contrary to our preregistered hypoth-
eses, Experiment 2 showed that the extent of semantic congruence in
our active learning task was identical to that in a simple semantic
memory search task without any learning objective. This indicates
that associative biases in memory are so strong that they completely
hinder participants’ ability to actively learn. In other words, retrieval
strategies are not only suboptimal, they are no better than retrieval
strategies in the absence of any learning goal.

Experiment 3

Why do participants generate suboptimal queries? Is that they are
unable to modulate associative memory mechanisms, which priori-
tize the retrieval of semantically similar, rather than dissimilar,
items? Or, do they just not know how to query efficiently in our

active learning task? In Experiment 3, we examined the boundaries
of the above findings by testing whether explicit task instructions
could improve search efficiency for active learning. In particular,
we contrasted our standard active learning condition with a new active
learning condition in which we coached participants to query more
optimally by sampling dissimilar items. This experiment was prereg-
istered on AsPredicted.org: https://aspredicted.org/blind.php?x=
9nr57q. Similar to Experiment 2, our preregistration included a plan
to include effects of both semantic congruence and D-optimality in
our memory model and hypothesized that participants in the coached
condition would display weaker effects of semantic congruence, and
possibly stronger effects of D-optimality. Again, we dropped
D-optimality frommodeling due to collinearity with semantic congru-
ence, but this does not alter our ability to test the hypothesis that
coaching should modulate search strategy in a way that is beneficial
for learning, relative to the standard active learning condition without
such coaching. Our preregistration also included the hypothesis that
the coached condition would perform better in the test phase than
the standard active learning condition.

Method

Participants

One hundred participants were recruited in the sameway as in pre-
vious experiments (Mage= 33 years, SDage= 11 years; 67% female,
31% male, 2% other/prefer not to say). They were randomly
assigned to an uncoached active learning condition (N= 58) or to
a coached active learning (N= 42) condition.

Stimuli

The stimuli were the same as in Experiment 1a, except that a new
random linear function was used to derive property scores. The list of
high- and low-score items can be found in Table A1.

Procedures

The procedures and instructions for the uncoached condition were
identical to those of Experiment 1a. In the coached condition,

Figure 5
Semantic Congruence, Word Frequency (Estimated Individual-Level β1 and β2 in MemoryModel), and
Bayesian D-Optimality of Participants’ Queries in Experiment 2

Note. Error bars represent 95% confidence intervals. See the online article for the color version of this figure.
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participants were additionally given instructions on how to query
efficiently by retrieving dissimilar items. The additional instructions
read:

Please think carefully about the “usefulness” of a particular query
before you submit it. Generally speaking, asking about items very sim-
ilar to items you’ve already asked about will not tell you much about
the property. For example, if you’ve already learned that “surgeon”
has a high score, then if you ask about “doctor,” it will probably also
have a high score, and you won’t have learned much about what the
property is. (Or take the extreme case where you ask about “surgeon”
twice—you learn nothing the second time you ask about it!) If you
already asked about “surgeon,” you will learn more if you ask about
an item rather different from your previous queries, like “plumber”
or “soldier.”

Memory Search Model

We used the samememory search model as in Experiments 1a, 1b,
and 2 to fit the memory retrieval data in both conditions.

Ideal Bayesian Learning Model

The ideal Bayesian learning model was the same as in Experiments
1a, 1b, and 2.

Results

Replicating Experiment 1a, participants in Experiment 3 displayed
strong semantic-congruence effects in search from memory
(Table 2), which were captured by our memory model (Figure 2A).
Collapsing across conditions, individual-level semantic congruence
in memory search was strongly (negatively) correlated with the
Bayesian D-optimality of the queries (Figure 2C). Participants also
displayed more semantic congruence and achieved lower Bayesian
D-optimality than the random or frequency-based queries
(Figure 4). Additionally, semantic congruence in memory querying
(i.e., β1) was associated with test performance as predicted by the
ideal Bayesian learning model, as well as the actual test performance.
Collapsing across conditions, β1 was negatively correlated with pre-
dicted test Pearson’s R (r=−.233, p= .020, 95% CI [−0.410,
−0.038]), and positively correlated with predicted test RMSE
(r= .302, p= .002, 95% CI [0.112, 0.470]). Across participants,
β1 was also negatively correlated with actual test Pearson’s R (r=
−.264, p= .007, 95% CI [−0.438, −0.071]) and positively corre-
lated with actual test RMSE (r= .297, p= .003, 95% CI [0.106,
0.466]). Overall, semantic incongruence in memory querying led
to better performance at test.
Our primary goal was to test our hypothesis that the “usefulness”

instruction in the coached learning condition should help overcome
the semantic-congruence bottleneck and improve query informa-
tiveness, compared with the uncoached learning condition. As
Figure 6 shows, the uncoached learning and coached learning con-
ditions differed neither on semantic congruence (i.e., β1),
t(79.9)= 1.214, p= .229, 95% CI [−0.136, 0.033], nor on word
frequency (i.e., β2), t(86.4)= 0.323, p= .747, 95% CI [−0.063,
0.087]. Overall, the key query properties did not differ in the two
conditions. Taking the learning task into consideration, the two
conditions did not differ on Bayesian D-optimality, t(93.0)=
1.018, p= .311, 95% CI [−88.6, 28.6]. Neither did they differ
on the actual performance in the test phase, test Pearson’s R:

t(88.9)= 1.049, p= .297, 95% CI [−0.042, 0.136]; test RMSE:
t(77.1)= 0.221, p= .826, 95% CI [−0.056, 0.045]. This contra-
dicted our preregistered predictions.

Discussion

Experiment 3 aimed to examine the boundaries of the effect doc-
umented in this article. In particular, it tested whether participants
could be coached to alter their retrieval strategies, thereby improv-
ing performance at test. Although Experiment 3 replicated our find-
ings in Experiment 1, contrary to our preregistered hypotheses, we
found that coaching did not change the degree of semantic congru-
ence in search and likewise did not have an effect on test scores. It
is important to note that our uncoached condition in Experiment 3
is nearly identical to the active learning condition in Experiment 2
(except for the underlying function that needs to be learned), which
is directly contrasted with a semantic search condition in that
experiment. Putting together these two experiments, we can con-
clude that the degree of semantic clustering in a simple semantic
search task is similar to that in an uncoached active learning task
which is similar to that in a coached active learning task. In other
words, coaching participants in an active learning task does not
alter their behavior relative to a semantic memory search task.

One possible conclusion from this result is that the associative
memory biases that are responsible for the effects shown in this
article are remarkably stubborn and difficult to modulate. That
said, it could also be the case that the search strategies in our
coached condition (in which participants are encouraged to search
for dissimilar items) are identical to the ones they would have used
in the uncoached condition and in the pure semantic memory
search condition of Experiment 2. This implies that the null effect
of coaching could be because of the specific strategies that were
coached, and that other types of coaching or experience could
alter search strategies and change the results of our experiment.

Overview of Experiments 4 and 5

In Experiment 1, we showed that associative memory biases place
critical restrictions on participants’ ability to search optimally in our
naturalistic active learning task. Experiments 2 and 3 further demon-
strated that search strategies are insensitive to task goals and do not
change with explicit instruction. These results raise an important
question: Even though participants may not be able to implement
optimal search, can they nonetheless distinguish optimal and subop-
timal queries from each other?

Experiments 4 and 5 were designed to answer this question.
In Experiment 4, subjects were told to assume they have already que-
ried a particular item (e.g., margarita) and asked which of two other
items (e.g., pea or martini) is the optimal query. Thus, Experiment 4
approximated the item-by-item querying structure of Experiments
1–3, but relieved the demands on participants to generate queries
from memory, which is subject to semantic congruence. In
Experiment 4a, we merely explained the active learning task to sub-
jects before presenting the binary choice task (for foods and ani-
mals); in Experiment 4b, subjects actually completed the active
learning task (for animals) before completing the binary choice
task (for foods). To preview, in both Experiments 4a and 4b, we
found subjects were still biased toward selecting suboptimal items,
despite the minimal demands on memory search. Thus, we carried
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out Experiment 5, which asked subjects to choose the more optimal
of two query sets (of 10 or 20 items). By presenting a choice between
two complete query sets that differed greatly in optimality (cf., a
choice between two items), we heightened the difference in optimal-
ity between choices. As in Experiment 4, participants in Experiment
5a did not complete the active learning task before choosing between
query sets; participants in Experiment 5b did.Moreover, Experiment
5a used empirically observed query sets from participants in
Experiment 1a, while Experiment 5b used query sets simulated
with the similarity-based and optimality-based retrieval strategies
described in the Simulated query strategies and test performance sec-
tion. In Experiments 5a and 5b, subjects could in fact reliably choose
the optimal query set. Participant-level accuracy rates across
Experiments 4a, 4b, 5a, and 5b are shown in Figure 7. We explain
these experiments in more detail now.

Experiment 4a

Method

Participants

Forty-nine participants were recruited from Prolific with the
same restrictions as previous experiments (Mage= 33 years,

SDage= 12 years; 53% female, 40% male, 6% other/prefer not
to say).

Stimuli

For each category (foods and animals), we first selected the five
practice items of Experiments 1–3 (foods: vinegar, margarita, trout,
muffin, and noodle; animals: turkey, wolf, camel, moth, alligator).
For each practice item, we then found the five most similar and five
most dissimilar foods (animals) according to cosine similarity in the
10-dimensional word2vec principal components and selected one
highly similar and one highly dissimilar item from among these 10
items (see Table A3 for all [practice item, similar, dissimilar] triples).
Item selection was subject to the same frequency threshold used to
generate items for the test phase of the active learning conditions
in Experiments 1–3 (SUBTLEX-US frequency ≥40). Choice trials
were then presented as follows:

If you knew the property score of margarita and no other foods, which of
the following foods and its score would help you learn the property more
effectively?

1. pea and its property score
2. martini and its property score

Figure 6
Semantic Congruence, Word Frequency (Estimated Individual-Level β1 and β2 in Memory
Model) and Bayesian D-Optimality of Participants’ Queries and Actual Test Performance
in Experiment 3

Note. Error bars represent 95% confidence intervals. See the online article for the color version of this
figure.
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Procedures

Participants were asked to imagine that they were participating in
our active learning task, which we explained in detail using language
adapted from Experiment 1a, and told that how well one could learn
a property would depend on what items were queried. Participants
were asked to judge, given that a particular item was already queried,
which of two possible queries would give more information about
the property, although they were not told anything about what
made a query set more informative. Participants made a choice for
a practice pair (occupations), followed by five choice pairs for
foods, and five choice pairs for animals. Order of these two groups,
order of pairs within a group, and position of the correct answer on
the bottom or top were randomized for each participant. Participants
were given a base payment of $2.00 and were given a bonus of $0.50
if their performance was in the top 50%.

Results

The top left panel of Figure 7 shows the distribution of
participant-level accuracy rates in Experiment 4a. As can be seen,
50% of subjects always chose the suboptimal query, 20% of subjects
always chose the optimal query, and the remainder sometimes chose
the optimal query and sometimes chose the suboptimal query.

To test whether this preference for suboptimal queries was reli-
able, we used the R package rstanarm (Goodrich et al., 2022) to
conduct a Bayesian logistic regression. In particular, we regressed
choice (optimal= 1, suboptimal= 0) onto a fixed intercept, and
random intercepts for subject and trial, that is, choice� 1 +
(1|Subject) + (1|Trial). We ran four chains, with 5,000
samples per chain, with the first 2,500 samples of each chain
treated as warmup. R-hats for all parameters were close to
1.0, and the number of effective samples was over 1,000 for all
parameters.

The effect of interest is the fixed intercept. The 95% credible inter-
val for this effect was below 0 (−4.3, −0.2; M=−2.2), suggesting
that subjects reliably chose the suboptimal query.

Experiment 4b

Method

Participants

Fifty participants were recruited from Prolific with the same
restrictions as previous experiments (Mage = 38 years, SDage =
15 years; 58% female, 40% male, 2% nonbinary/prefer not
to say).

Figure 7
Distribution of Participant-Level Accuracy Rates in Experiments 4a, 4b, 5a, and 5b

Note. See the online article for the color version of this figure.
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Stimuli

Active learning stimuli were identical to Experiment 1b (animals).
Binary choice stimuli were identical to Experiment 4a (foods).

Procedures

The procedure was identical to Experiment 4a, except that par-
ticipants first performed the active learning task of Experiment
1b (animals), and then performed the binary choice task of
Experiment 4a for just foods. Participants were given a base pay-
ment of $3.00 and were given a bonus of $1 if their performance
in the active learning test phase was in the top 10%, and $0.50 if
their performance was in the top 50%. They received an additional
bonus of $0.50 if their performance was in the top 50% of the
binary choice phase.

Results

The top right panel of Figure 7 shows the distribution of
participant-level accuracy rates in Experiment 4b. We conducted
the same Bayesian logistic regression as in Experiment 4a. R-hat
and number of effective samples were similarly satisfactory. Once
again, the 95% credible interval for the fixed-effect intercept was
below 0 (−5.5, −2.6; M=−3.9), suggesting that subjects reliably
chose the suboptimal query.
Contrary to what was expected, relative to Experiment 4a, the dis-

tribution of accuracy rates in Experiment 4b shifted to the left,
reflecting an increased preference for suboptimal queries. This was
confirmed by a direct statistical comparison between the two exper-
iments: choice� 1 + experiment + (1|trial) + (1|
subject), where experiment = 1 indicates Experiment 4b
and experiment = 0 indicates Experiment 4a. The probability
of direction (see Makowski et al., 2019), the percentage of the
fixed-effect intercept posterior below or above 0 (whichever is
larger than 50%), of experiment is 100%, and the 95% credible
interval is (−6,−1.2), strong evidence that participants in Experiment
4b made more suboptimal choices than those in Experiment 4a did.
Experiment 4b had an active learning task before doing the binary
choice task, whereas Experiment 4a did not. It is possible that the
extracognitive load or distraction due to the training had led to
worse performance in Experiment 4b. It is also possible that the active
learning task made the participants accustomed to choosing the most
similar items and that tendency carried forward into the binary choice
task. Nonetheless, participants in both Experiments 4a and 4b failed to
choose the more optimal query in an ideal Bayesian learning manner.

Experiment 5a

Method

Participants

Forty-eight participants were recruited from Prolific with the same
restrictions as previous experiments (Mage= 29 years, SDage= 9
years; 63% female, 37% male).

Stimuli

The stimuli in Experiment 5awere five pairs of query sets sampled
from the participant queries generated in Experiment 1a.

Specifically, we selected the five query sets with the highest
Bayesian D-optimality, and the five query sets with the lowest
Bayesian D-optimality. Each highly optimal query set was paired
with one of the least optimal query sets. These pairs are shown in
Table A4.

Procedures

Participants were instructed on the nature of the active learning
task, as they were in Experiment 4a. Participants were then asked
to judge, in a pair of two query sets, which set would give more
information about the property, although they were not told anything
about what made a query set more informative. To start, participants
made a choice for a practice pair, followed by five pairs of query sets
sampled from the participant queries generated in Experiment 1a.
Participants then made choices for all five pairs of query sets. The
position of the correct answer on the left or right was randomized
once such that, for a given choice pair, the correct answer was on
the same side for all participants. The order of choice pairs was ran-
domized for each participant. Participants were given a base pay-
ment of $1.35 and were given a bonus of $0.50 if their
performance was in the top 50%.

Results

The bottom left panel of Figure 7 shows the distribution of
participant-level accuracy rates in Experiment 5a, which skew to
the right, tentatively reflecting the overall preference for the optimal
query sets. We conducted the same Bayesian logistic regression as in
Experiments 4a and 4b. R-hat and the number of effective samples
were similarly satisfactory. The probability of direction was 93%
(95% credible interval: −0.4, 2.2; M= 0.9), notable evidence that
subjects chose the optimal query set more often than the suboptimal
query set.

Experiment 5b

Method

Participants

Fifty participants were recruited from Prolific with the same
restrictions as previous experiments (Mage= 34 years, SDage= 11
years; 62% female, 34% male, 4% nonbinary/prefer not to say).

Stimuli

Active learning stimuli were identical to those of Experiment 1b
(animals). Stimuli for the binary choice phase were five choice
pairs of two simulated 10-item query sets. Within a choice pair,
the foods at the beginning of the sequence were identical and were
randomly selected. However, for one sequence, subsequent items
were chosen by the D-optimality Greedy strategy in simulated
query strategies and test performance. For the other sequence, the
semantic similarity-based strategy in simulated query strategies
and test performance was used. Both strategies searched in the
10-dimensional principal component space, and item selection
was subject to the same frequency threshold used to generate test
items for the test phase of the active learning conditions of
Experiments 1–3 (SUBTLEX-US frequency ≥40). These choice
pairs are shown in Table A5.
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Procedures

Participants first performed the active learning experiment of
Experiment 1b (animals) and then performed the binary choice
experiment for just foods. Within the binary choice experiment,
each pair of 10-item sequences was presented side by side in a
table format. The position of the optimal query sequence on the
left or right was randomized once such that, for a given choice
pair, a sequence was on the same side for all participants.
Participants indicated their choices on radio buttons listed vertically.
The order of choice pairs was randomized for each participant, as
was the position of the radio button for the correct answer on the
top or bottom. Participants were given a base payment of $3.00
and were given a bonus of $1 if their performance in the active learn-
ing test phasewas in the top 10%, and $0.50 if their performancewas
in the top 50%. They received an additional bonus of $0.50 if their
performance was in the top 50% of the binary choice phase.

Results

The bottom right panel of Figure 7 shows the distribution of
participant-level accuracy rates in Experiment 5b. We conducted
the same Bayesian logistic regression as in Experiments 4a, 4b,
and 5a. The R-hat and number of effective samples were similarly
satisfactory. The probability of direction was 99% (95% credible
interval: [0.2, 1.8]; M= 1.0), suggesting that subjects reliably
chose the optimal query. In short, Experiments 5a and 5b showed
that participants were able to identify the more efficient set of queries
when the complete sets of queries, rather than single queries, were
presented. That being said, there was a lot of variability across par-
ticipants (Figure 7). Although the modal participant consistently
made optimal choices, a nonnegligible proportion actually chose
the suboptimal options more often than the optimal ones.
It can also be seen that, relative to Experiment 5a, participants’

preferences have shifted to the right in Experiment 5b, reflecting
increased preference for optimal queries. This shift of preferences
may be due to a few different reasons. It could be because of the
additional training in Experiment 5b, as noted in Figure 7. The sim-
ulated query sets may also widen the gap in optimality between the
optimal and suboptimal query sets in Experiment 5b, relative to the
participant-generated query sets in Experiment 5a. The different
domains under examination (foods in Experiment 5a vs. animals
in Experiment 5b) may also play a role.

Discussion

Participants in Experiments 1–3, which required generating que-
ries from memory, overwhelmingly made suboptimal queries.
Participants in Experiment 4, which presented choices between
two experimenter-provided queries, still preferred suboptimal que-
ries, despite reduced demands on memory. Only in Experiment 5,
which presented choices between two complete query sets, did par-
ticipants make optimal choices. We interpret this pattern of findings
more in the General Discussion, to which we now turn.

General Discussion

We found that participants failed to generate optimal behavior in
our experiments, behavior that maximized information gain by que-
rying sequences of dissimilar items. Rather, associative memory

mechanisms led to the successive retrieval of similar items
(Experiments 1a and 1b). Additional preregistered experiments
showed that, contrary to hypotheses, participants’ querying behavior
was no more optimal—or less similarity-driven—in our active learn-
ing task than a traditional semantic search task (Experiment 2), and
no more optimal or less similarity-driven when directly told to query
more optimally by querying dissimilar items (Experiment 3), sug-
gesting that optimal active learning may be at the mercy of extremely
stubborn memory constraints, which are difficult to alleviate by task
instructions. A final set of experiments showed that participants had
difficulty correctly distinguishing the efficiency of individual pairs
of queries (Experiments 4a and 4b). Instead, they displayed an obvi-
ous tendency to regard the suboptimal items as more informative
than the optimal items. However, they were able to distinguish the
efficiency of full query sets (Experiments 5a and 5b). This indicates
that people can, in the right settings, understand what optimality
entails (see also Rothe et al., 2018 for similar results in a related
memory-based task).

However, the fact that biases persisted when people were asked
to choose between experimenter-generated pairs of stimuli indi-
cates that our biases may not be limited to only memory. Of course,
memory may still be an important determinant of these biases.
For example, it could be that people evaluate experimenter-
generated queries based on which ones seem more accessible in
their minds, that is, the item in the prompt primes the selection
of the more similar option. This could explain why people are
closer to optimality when given full query sets (in which there is
no item in the prompt). Of course, it is also possible that people
believe that an appropriate amount of confirmatory search by que-
rying similar items is an efficient strategy for the property learning
task in the experiments.

Our results stand in stark contrast with theoretical positions that
propose that people search in optimal ways. Although such theories
have been successful in explaining human inquiry in domains rang-
ing from causal learning (Bramley et al., 2015) to spatial search
(Gureckis & Markant, 2009), prior work has documented important
limitations to optimal search. For example, it seems that people are
only able to partially represent the hypothesis space (Bramley et
al., 2017, 2018; Markant et al., 2016), which leads them to select
queries that are informative with respect to an approximate represen-
tation but suboptimal with respect to an ideal learner. It is also the
case that in search from memory, people’s decisions to switch que-
ries appear to be independent of the efficiency of the queries (Wilke
et al., 2009). Other work has argued that people show a tendency for
confirmatory search (Wason, 1966), which is a byproduct of associ-
ative memory mechanisms like the ones documented in this article
(Bhatia, 2016; Glöckner & Betsch, 2008; Holyoak & Simon,
1999). We suspect that any setting in which participants must formu-
late sequences of queries in natural language will probably be con-
strained by memory processes, particularly the similarity-driven
associative memory search. For example, in Rothe et al.’s (2018)
experiments, participants were asked to generate a single question
to gather information about the layout of enemy battleships in the
game Battleship. These participants already struggled to generate
the most informative questions. If they were asked to generate addi-
tional questions, we suspect subsequent questions would be similar
to previous ones, leading to suboptimal query sequences.

Although associative memory processes curtail optimal active
learning, that does not mean that people’s memory processes are
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inherently flawed. Rather, memory serves multiple cognitive func-
tions and the associative biases documented in this article may
reflect optimal tradeoffs between diverging task demands. Indeed,
many researchers have argued that association or similarity-driven
memory search is part of an optimal system for semantic memory
retrieval (Hills et al., 2012). Related work has shown that associative
memory processes implicated in judgment and decision biases are
adaptive in that they often lead to accurate inference and generaliza-
tion with minimal cognitive cost (Bhatia, 2017; Tenenbaum &
Griffiths, 2001). Regulating these processes in active learning
tasks may be too effortful, and people may be optimally trading
off the performance with the cognitive cost required to succeed in
our task (Lieder & Griffiths, 2020). This theory predicts that even
though we were unable to reduce semantic congruence and increase
optimal search through coaching, performance may improve with
higher incentives or practice.
One important limitation of our work is the fact that we specified

our property scores using a linear function on the DSM space. This
choice was motivated by considerable prior work that has found that
many real-world properties can be approximated as linear functions
on DSM spaces (Bhatia, 2019; Bhatia & Stewart, 2018; Bhatia et al.,
2022; Gandhi et al., 2022; Richie & Bhatia, 2021; Zou & Bhatia,
2021a; see Richie et al., 2019 for a comprehensive analysis) and
that it is easier for people to learn linear functions than nonlinear
functions on underlying attribute spaces (Shepard et al., 1961;
Zou&Bhatia, 2021b). Thus, we believe that to the extent that people
are using inductive biases, these biases likely favor linear functions.
However, it is nonetheless possible that participants entered our task
with inductive biases favoring nonlinear functions, and optimally
generated search queries given these nonlinear inductive biases.
To test this possibility, we replicated our measurements of linear
D-optimality with the design entropy for Gaussian process function
learning and found that the two measures were highly correlated,
indicating that search queries that were suboptimal under our linear
measure would also be suboptimal under a more flexible and poten-
tially nonlinear mapping between word vectors and property scores.
In fact, it has even been argued that these two types of function learn-
ing may be two views of the same solution to function learning
(Lucas et al., 2015). Of course, it could be the case that the
similarity-based search strategies documented in this article are opti-
mal in nonlinear settings, which is why future work should attempt
to explicitly design stimuli sets in which these metrics diverge.
Future work should also explore how behavior changes as partici-
pant beliefs are refined over the course of the task. It could, again,
be the case that the similarity-based search processes documented
in this article become more efficient once weights have been learned
and the decision maker becomes highly confident about the under-
lying function.
Other future directions include the refinement of our memory and

learning models. For example, participants in our study learned
about novel target properties. Yet they came into the experiments
with idiosyncratic knowledge about food items or animals. Thus,
it is likely they held different prior beliefs about the novel target
properties. As prior belief is not the focus of this article, we assumed
all participants held the same prior belief in the experiments. In
future work, the shape of prior belief can be set as free parameters
and the same framework can be used to derive the prior representa-
tion of target properties in a given domain (H. Zhang et al., 2015).
Individual differences in this regard can be revealed.

The Bayesian learning model also assumes that participants main-
tain a distribution of belief over multiple hypotheses (possible coef-
ficients on the latent high-dimensional representations). However,
other research suggests that in a closely related—and simpler—
active category learning setting, participants maintain a single
hypothesis at a time (Markant & Gureckis, 2014) and acquire easily
interpretable queries (Cheyette et al., 2023). Previous research also
reveals other simple heuristics, such as the split-half heuristic
(Navarro & Perfors, 2011) and the likelihood difference heuristic
(J. D. Nelson, 2005), in active learning tasks. More recently,
researchers have found support for Gaussian processes in function
learning, especially in explaining how people use similarity-based
generalization to guide search (Schulz et al., 2019; Wu et al.,
2018). Other work has shown that uncertainty plays a crucial role
in guiding search behavior and resolving explore-exploit tradeoffs
(Schulz & Gershman, 2019; Speekenbrink, 2022). It is possible
that such processes play a role in the query search in our active learn-
ing tasks and subsequently explain some of the departures from opti-
mality. If people only hold one hypothesis at a time, obtaining the
information of a semantically similar item is likely to be more inter-
pretable than a distant item, while not necessarily being less infor-
mative. Future work should consider explicitly modeling these
processes in memory-based active learning.

Therefore, we suggest that suboptimality may emerge from both
associative retrieval and from misconception about what is most
informative in the naturalistic active learning settings. These results
add to our understanding of the complexity of and the limitations to
optimal search for naturalistic active learning. On top of the associ-
ative memory processes that prevent people from accessing more
informative queries (in Experiments 1–3), the preference for simple
hypotheses and easily interpretable data may be other important
driving forces. Teasing apart these factors, as well as their interac-
tions, in naturalistic active learning remains a promising direction
for future research.

Our work contributes to the emerging body of research that offers
researchers a naturalistic search domain to study active learning
(Bramley et al., 2018; Hornsby & Love, 2022; Liefgreen et al.,
2020; Z. H. Zhang et al., 2021). Additionally, our computational
models integrate insights from several fields and are able to jointly
describe both algorithmic memory search processes (which we
have specified using a Markov random walk model) as well as the
optimality or suboptimality of these search processes for active
learning (which we have specified using an ideal Bayesian learner
and the Bayesian D-optimality metric). In this way, our article pre-
sents a powerful new research paradigm for naturalistic active learn-
ing. There has been an increasing interest in porting computational
cognitive models beyond abstract lab stimuli, to attempt to describe
everyday cognition. This has been driven by the availability of new
machine learning models that offer quantitative representations for
natural entities (in the form of word vector representations (Bhatia,
2019; Bhatia & Aka, 2022; Bhatia & Stewart, 2018; Bhatia et al.,
2019; Gandhi et al., 2022; Lu et al., 2019; Zou & Bhatia, 2021a,
2021b), or image vectors (Hebart et al., 2020; Peterson et al.,
2018; Trueblood et al., 2021), as well as the growing demand
from policy makers and practitioners for theory-driven behavioral
and cognitive insights. Our research is part of this trend, and we
look forward to future work that applies established algorithmic
and rational theories of cognition to rich stimuli sets to better under-
stand human cognition and behavior in the wild.
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Constraints on Generality

Although our participants were adults from western cultures, we
feel confident that the results of our article reflect general cognitive
tendencies that would replicate across cultures and languages. That
said, it would not be surprising if the underlying semantic representa-
tions and prior beliefs over these representations vary across cultures.
Future work could try to use our paradigm to formally model cultural
differences in memory-based search for active learning.
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Appendix

Experimental Materials and Supporting Results

Figure A1
The Correspondence Between D-Optimality for Bayesian Linear
Regression and Log Design Entropy for Gaussian Process
Function Learning in Experiments 1a, 1b, 2, and 3

Note. The two hyperparameters for the Gaussian process were set at length
scale= 1 and nugget= 0.01. Of course, the choice of the hyperparameters
(especially length scale) may have an impact on the measurement of log
design entropy. A larger length scale makes the log design entropy more
closely aligned to the Bayesian D-optimality, whereas a smaller length
scale (which corresponds to a more complex nonlinear relationship)
makes the former deviate from the latter. See the online article for the
color version of this figure.

Table A1
Food Items With the Highest and Lowest Scores for Each of the
Random Linear Functions Used in Experiments 1a, 2, and 3

Experiment 1a Experiment 2 Experiment 3

Highest scores
Apple Pumpkin Soft drink
Turnip Apple Scotch whiskey
Medlar Cherry tomato Malt whiskey
Pawpaw Strawberry Alcoholic beverage
Crab apple Candy cane Tequila
Macoun Cupcake Liquor
Potato Navel orange Beer
Damson Potato Wine
Casaba Blueberry Coke
Sugar beet Tomato Vino

Lowest scores
Skim milk Arak Sour cream
Coconut milk Poteen Cornbread
Lingcod Ouzo Garlic salt
Broth Camomile tea Orzo
Cocktail sauce Broth Caster sugar
Spanish mackerel Brandy Pie crust
Albacore Pastis Streusel
Lemon juice Curacao Cornmeal
Chicken broth Rotgut Casserole
Lime juice Firewater Matzo meal

(Appendix continues)
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Table A2
Animals With the Highest and Lowest Scores for Each of the Four Random Linear Functions
Experiment 1b

Function 1 Function 2 Function 3 Function 4

Highest scores
Mastodon Cowry Basset hound Striper
Stegosaurus Horsehead Golden retriever Gopher
Plesiosaur Giant Poodle Snook
Bernese mountain Dog Pterodactyl Collie Crawdad
Ichthyosaur Blowfish Puppy Shad
Apatosaurus Dragon Pooch Walleye
Malamute Serpent Beagle Tarpon
Tyrannosaurus rex Kine Dalmatian Smallmouth
Shetland sheepdog Medusa Cocker spaniel Crappie
Golden retriever Manta Dog Redfish

Lowest scores
Swiftlet Springer spaniel Tunny Bos indicus
Skylark Cocker spaniel Tuna Gorilla gorilla
Mealybug Miniature poodle Threadfin Serow
Greenfly Weimaraner Dolphinfish Banteng
Spider mite Siberian husky Jack mackerel Canis familiaris
Tobacco budworm Labrador retriever Skipjack tuna Pan troglodytes
Armyworm Shetland sheepdog Hogfish Bos taurus
Tsetse Great pyrenees Yellowfin Pongo pygmaeus
Bollworm Yorkshire terrier Striped marlin Malayan tapir
Mealy bug Golden retriever Yellowfin tuna Giraffa camelopardalis

Table A3
Choice Pairs for Experiments 4a (Animals and Foods) and 4b (Foods)

Domain Previous query Optimal Suboptimal

Animals Turkey Goose Hippo
Wolf Moose Maggot
Camel Donkey Jellyfish
Moth Wasp Yak
Alligator Rattlesnake Dodo

Foods Vinegar Buttermilk Meatball
Margarita Martini Pea
Trout Herring Toast
Muffin Cake Shellfish
Noodle Dumpling Cranberry

Note. Each choice pair between an optimal and suboptimal item (goose and hippo, respectively) is conditioned on
having already chosen the previous query (e.g., turkey).

(Appendix continues)
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Table A4
Choice Pairs for Experiment 5a

Optimal Suboptimal

Pair 1
Noodle, trout, fish, apple, pear, water, beer, wine, cheese, burger, ham,
milk, lettuce, tomato, ketchup, strawberry, plum, grape, beef, pork

Apple, pineapple, candy, strawberry, ketchup, avocado, banana, pomegranate,
apple, pear, potato, carrot, grape, bean, corn, apple, apple, apple, apple,
apple

Pair 2
Broccoli, pizza, sushi, mackerel, cake, rice, apple, chocolate, beer, wine,
chocolate, pea, butter, potato, salmon, yam, parfait, tuna, pudding, juice

Chicken, pineapple, apple, banana, turnip, carrot, mango, strawberry,
blueberry, radish, lettuce, cabbage, corn, kale, broccoli, cucumber, parsnip,
potato, kiwi fruit, persimmon

Pair 3
Vinegar, noodle, muffin, trout, margarita, biscuit, steak, fries, wine, fish,
gammon, salad, chicken, broccoli, potato, lettuce, beer, lager, salad, cider

Vinegar, salt, sugar, pepper, cinnamon, nutmeg, chili, cayenne, rosemary,
basil, tomato, onion, courgette, mushroom, carrot, potato, aubergine,
lettuce, cabbage, radish

Pair 4
Pizza, chocolate, beer, water, salmon, lobster, broccoli, corn, potato,
whiskey, sausage, watermelon, wine, salad, grape, salt, sugar, banana,
apple, lemon

Vinegar, salt, pepper, garlic, paprika, potato, carrot, chips, vegetable, broccoli,
cauliflower, corn, pea, banana, spinach, tomato, onion, lettuce, beetroot,
pumpkin

Pair 5
Fish, alcohol, beef, chicken, lamb, pork, burger, beer, wine, cereal,
chocolate, water, lettuce, radish, apple, cherry, pear, trout, cabbage, cola

Bagel, toast, baguette, bread, sandwich, donut, croissant, dough, cake, pastry,
cheesecake, dessert, fruitcake, chocolate cake, chocolate, vanilla, blueberry,
cranberry, brownie, cookie

Note. The more optimal set is on the left in each pair.

Table A5
Choice Pairs for Experiment 5b

Optimal Suboptimal

Pair 1
Apple, flounder, soda, cilantro, cognac, barbeque, wheat, limpet,
casserole, coho

Apple, strawberry, grapefruit, pineapple, avocado, celery, onion,
romaine, asparagus, chard

Pair 2
Soda, flounder, cauliflower, cognac, barbecue, flour, broth, grape,
lolly, halibut

Soda, cola, juice, coca_cola, coke, beer, alcohol, rum, gin, vodka

Pair 3
Bread, coral, booze, cilantro, grape, fish, soda, filet, marzipan,
wheat

Bread, loaf, waffle, cake, muffin, marshmallow, birthday_cake,
pie, flapjack, kibble

Pair 4
Tagliatelle, coho, coke, corn, barbeque, cognac, lollipop,
vinegar, papaya, fish

Tagliatelle, gorgonzola, risotto, cannelloni, rigatoni, potato_pancake,
quiche, ravioli, penne, linguine

Pair 5
Cheese, flounder, booze, grape, soda, broth, coho, barbecue,
lollipop, rice

Cheese, english_muffin, apple_sauce, oatmeal, cottage_cheese,
granola, muffin, pretzel, waffle, loaf
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