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Deliberately Stochastic†

By Simone Cerreia-Vioglio, David Dillenberger, 
Pietro Ortoleva,  and Gil Riella*

We study stochastic choice as the outcome of deliberate randomiza-
tion. We derive a general representation of a stochastic choice function 
where stochasticity allows the agent to achieve from any set the maxi-
mal element according to her underlying preferences over lotteries. We 
show that in this model stochasticity in choice captures complemen-
tarity between elements in the set, and thus necessarily implies viola-
tions of Regularity/Monotonicity, one of the most common properties 
of stochastic choice. This feature separates our approach from other 
models, e.g., Random Utility. (JEL D80, D81)

A robust finding in the study of individual decision making is the presence of 
stochastic, or random, choice: when subjects are asked to choose from the same 
set of options multiple times, they often make different choices.1 An extensive lit-
erature has documented this pattern in many experiments, in different settings and 
with different populations, both in the lab and in the field. It often involves a signif-
icant fraction of the choices, even when subjects have no value for experimentation 
(e.g., when there is no feedback), or when there are no bundle or portfolio effects 
(e.g., when only one choice is paid).2 It thus appears incompatible with the typi-
cal assumption in economics that subjects have a complete and stable preference 

1 To avoid confusion, these terms are used to denote two different phenomena: (i) one person faces the same 
question multiple times and gives different answers; (ii) different subjects answer the same question only once, but 
subjects who appear similar, given the available data, make different choices. In this paper we focus on the first one.

2 The pattern of stochastic choice was first reported in Tversky (1969). A large literature followed. Focusing on 
choices between risky gambles (as in our model), see Camerer (1989); Starmer and Sugden (1989); Hey and Orme 
(1994); Ballinger and Wilcox (1997); Hey (2001); Regenwetter, Dana, and Davis-Stober (2011); Regenwetter and 
Davis-Stober (2012); and Agranov and Ortoleva (2017).
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ranking over the available alternatives and consistently choose the option that max-
imizes it.3

A large body of theoretical work has developed models to capture stochastic behav-
ior. Most of these models can be ascribed to one of two classes. First, models of “ran-
dom utility/preferences,” according to which subjects’ answers change because their 
preferences change stochastically.4 Second, models of “bounded rationality,” or “mis-
takes,” according to which subjects have stable and complete preferences, but may fail 
to always choose the best option and thus exhibit a stochastic pattern.5

While according to the interpretations above the stochasticity of choice happens 
involuntarily, a third possible interpretation is that stochastic choice is a deliberate 
decision of the agent: she may choose to report different answers from the same 
menu. The goals of this paper are to develop axiomatically a model in which sto-
chastic choice follows this interpretation, and to identify whether, and how, such a 
model of deliberate randomization generates different behaviors and can be distin-
guished from other models of stochastic choice.

A small existing literature has suggested why subjects may wish to report sto-
chastic answers. Machina (1985) notes that this is precisely what the agent may 
wish to do if her preferences over lotteries or acts are convex (i.e., quasiconcave in 
probability mixtures), which implies affinity toward randomization between equally 
good options. Crucially, convexity is a property shared by many existing models 
of decision making under risk, and it captures ambiguity aversion in the context of 
decision making under uncertainty. Convexity of preferences also has experimen-
tal support (Becker, DeGroot, and Marschak 1963, Sopher and Narramore 2000). 
Different reasons for stochastic choice to be deliberate were suggested by Marley 
(1997) and Swait and Marley (2013), who follow lines similar to Machina (1985); 
Dwenger, Kübler, and Weizsäcker (2018), who suggest it may be due to a desire to 
minimize regret; and Fudenberg, Iijima, and Strzalecki (2015), who connect it to 
uncertain taste shocks. In Section IV we discuss these papers in detail.

Recent experimental evidence supports the interpretation of stochastic choice as 
deliberate. Agranov and Ortoleva (2017) show how subjects give different answers 
also when the same question is asked three times in a row and subjects are aware of 
the repetition; they seem to explicitly choose to report different answers.6 Dwenger, 
Kübler, and Weizsäcker (2018) find that a large fraction of subjects choose lotteries 
between available allocations, indicating an explicit preference for randomization. 
They also show similar patterns using the data from a clearinghouse for univer-
sity admissions in Germany, where students must submit multiple rankings of the 
universities they would like to attend. These are submitted at the same time, but 

3 This behavior is obviously consistent whenever there are multiple alternatives that maximize preferences and 
the individual uses different rules to break indifferences.

4 Thurstone (1927), Luce (1959), Harsanyi (1973), Falmagne (1978), Cohen (1980), Barberá and Pattanaik 
(1986), McFadden and Richter (1991), Loomes and Sugden (1995), Clark (1996), McFadden (2006), Gul and 
Pesendorfer (2006), Ahn and Sarver (2013), Fudenberg and Strzalecki (2015).

5 Models of this kind appear in economics, psychology, and neuroscience, including the well-known Drift 
Diffusion model: among many, Busemeyer and Townsend (1993); Harless and Camerer (1994); Hey and Orme 
(1994); Camerer and Ho (1994); Wu and Gonzalez (1996); Ratcliff and McKoon (2008); Gul, Natenzon, and 
Pesendorfter (2014); Manzini and Mariotti (2014); Woodford (2014); Fudenberg and Strzalecki (2015); Baldassi 
et al. (2018). For surveys, Ratcliff and Smith (2004), Bogacz et al. (2006), Johnson and Ratcliff (2013).

6 In a survey conducted at the end of the experiment, most subjects report choosing different answers deliber-
ately. These results hold true also in robustness tests with unusually high stakes.



2427CERREIA-VIOGLIO ET AL.: DELIBERATELY STOCHASTICVOL. 109 NO. 7

only one of them (chosen randomly) matters. They find that a significant fraction of 
students report inconsistent rankings, even when there are no strategic reasons to do 
so. A survey among applicants supports the interpretation that these random allo-
cations are chosen intentionally, and show that they are correlated with an explicit 
preference for randomization.7

We develop axiomatically a general model of stochastic choice over lotteries as 
the outcome of a deliberate desire to randomize. We aim to capture and formalize 
the intuition of Machina (1985) that such inclination may be a rational reaction if the 
underlying preferences over lotteries are (at least locally) convex. We consider a sto-
chastic choice function over sets of lotteries over monetary outcomes, which assigns 
to any menu a probability distribution over its elements. We focus on lotteries not for 
technical reasons, but because we are interested in linking stochastic choice to features 
of preferences over lotteries in general, and violations of Expected Utility in particular. 
The focus on lotteries over monetary outcomes is inessential, as similar results are 
available for arbitrary prize spaces. We confine attention to monetary prizes for sim-
plicity and since most of our leading examples use them (see Section I).

We begin our analysis with a representation theorem: we show that a rationality- 
type condition on stochastic choice, reminiscent of known acyclicity conditions, 
guarantees that it can be represented as if the agent had a preference relation over the 
final monetary lotteries, and chose the optimal mixing over the available options. In 
this model the stochasticity has a purely instrumental value for the agent: she does 
not value the randomization per se, but rather because it allows her to obtain the lot-
tery over final outcomes she prefers. Implicit in our approach is that agents evaluate 
mixtures of lotteries by looking at the distribution over final outcomes they induce.

Next, we show that our model has some stark implications. Possibly the most well-
known property of stochastic choice, widely used in the literature, is Regularity (also 
called Monotonicity): it posits that the probability of choosing ​p​ from a set cannot 
decrease if we remove elements from it. It is often seen as the stochastic equivalent of 
independence of irrelevant alternatives (IIA), and it is satisfied by many models in the 
literature, most prominently, models of Random Utility, albeit it is well known that it 
is often empirically violated. We show that our model of deliberate stochastic choice 
will necessarily lead to some violations of Regularity (unless the stochastic choice is 
degenerate, i.e., there is no stochasticity). Intuitively, our agent may choose from a set ​
A​ two options that, together, allow her to “hedge.” But this holds only if they are both 
chosen: they are complementary to each other. If either option is removed from ​A​, the 
possibility of hedging may disappear and the agent no longer has incentive to pick the 
remaining one, which in turn generates a violation of Regularity. The key observation 
is that the agent considers all the elements chosen as a whole, for the general hedging 
they provide together. By contrast, Regularity is based on the assumption that the 
appeal of each option is independent from the other options present in the menu or in 

7 Other papers have documented a desire to randomize. To our knowledge, the first was Rubinstein (2002), who 
confronts subjects with the task of making multiple choices in a row from a fixed set of alternatives. Each choice 
resembles the task of betting on the color of a ball drawn from an urn with a known distribution of colors. He doc-
uments a strong tendency to give different answers, even when it leads to dominated choices. Sandroni, Ludwig, 
and Kircher (2013) consider a version of the dictator game in which dictators can choose between 7.5 euros for 
themselves and 0 to the recipient, 5 to both, or a lottery between them. About one-third of the subjects choose to 
randomize. Similarly, Miao and Zhong (2018) find that substantial proportions of subjects in dictator games chose 
to randomize between allocations.
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the choice. Thus, a violation of Regularity is an essential feature of the hedging behav-
ior that we aim to capture, as we formally show.8

That our model is inconsistent with Regularity has direct implications on its rela-
tion with existing models, most prominently models of Random Utility. Since it is 
well known that the latter must satisfy Regularity, the only behavior that can be rep-
resented by both models is one that can always be described as if the agent had only 
one utility and randomization occurred only in the case of indifference, a degenerate 
random utility. In other words, the conceptual difference between the two models is 
reflected in a substantial behavioral difference, via the property of Regularity, which 
is very easily testable in experiments. Since also the models in Fudenberg, Iijima, and 
Strzalecki (2015) satisfy Regularity, the same relation holds between our model and 
theirs.

The remainder of the paper is organized as follows. Section I presents the general 
Deliberate Stochastic Choice model. Section II establishes that our model is incom-
patible with Regularity and studies its other behavioral implications. Section III dis-
cusses the relation with the existing literature. All proofs appear in the Appendices.

I.  A General Model of Deliberate Stochastic Choice

A. Framework and Foundations

Let ​​[w, b]​  ⊆  ℝ​ be a nontrivial interval of monetary prizes and let ​Δ​ be the set 
of lotteries (Borel probability measures) over ​​[w, b]​​, endowed with the topology 
of weak convergence. We use ​x, y, z​ and ​p, q, r​ for generic elements of ​​[w, b]​​ and 
​Δ​, respectively. Denote by ​​δ​x​​  ∈  Δ​ the degenerate lottery (Dirac measure at ​x​) that 
gives the prize ​x  ∈ ​ [w, b]​​ with certainty. If ​p​ and ​q​ are such that ​p​ strictly first-order 
stochastically dominates ​q​, we write ​p ​ >​FOSD​​  q​.

Denote by ​​ the collection of all finite and nonempty subsets of ​Δ​. For any ​
A  ∈  ​, ​co​(A)​​ denotes the convex hull of ​A​, that is, ​co​(A)​  = ​ {​∑ j​   ​​ ​α​j​​ ​p​j​​  :  ​p​j​​  ∈  A 
and  ​α​j​​  ∈ ​ [0, 1]​, ​∑ j​   ​​ ​α​j​​  =  1}​​.

The primitive of our analysis is a stochastic choice function ​ρ​ over ​​, i.e., a map ​
ρ​ that associates to each ​A  ∈  ​ a probability measure ​ρ​(A)​​ over ​A​. For any stochas-
tic choice function ​ρ​, ​A  ∈  ​, and ​p  ∈  A​, ​​supp​ρ​​​(A)​​ denotes the support of ​ρ​(A)​​, 
and we write ​ρ​(A)​​(p)​​ to denote the probability ​ρ​ assigns to ​p​ in menu ​A​.

As a final bit of notation, since ​ρ​(A)​​ is a probability distribution over lotteries, 
thus a compound lottery, we can compute the induced lottery over final monetary 
outcomes. Denote it by ​​   ρ​(A)​​  ∈  Δ​, that is

	​ ​   ρ​(A)​​  = ​  ∑ 
q∈A

​​​ ρ​(A)​​(q)​q.​

By construction, the convex hull of a set ​A​, ​co​(A)​​, will also correspond to the set 
of all monetary lotteries that can be obtained by choosing a specific ​ρ​ and computing 
the distribution it induces over final prizes.9

8 In Section II we explore other implications of the model, beyond Regularity. For example, we show that it 
necessarily implies a version of stochastic intransitivity.

9 That is, by construction ​co​(A)​  =  { p  ∈  Δ  :  p  =  ​ ̄  ρ​(A)​​​ for some stochastic choice function ​ρ}​.
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We can now discuss our first axiom. Our goal is to capture behaviorally an agent 
who is deliberately choosing her stochastic choice function following an under-
lying preference relation over lotteries. When asked to choose from a set ​A​, she 
considers all lotteries that can be obtained from ​A​ by randomizing: using our nota-
tion above, she considers the whole ​co​(A)​​, and the lottery ​​   ρ​(A)​​​ can be seen as her 
“choice.”

Our axiom is a rationality-type postulate for this case. Consider two sets ​​A​1​​​ and ​​
A​2​​​, and suppose that ​​   ρ​(​A​2​​)​​  ∈  co​(​A​1​​)​​. This means that the lottery chosen from ​​A​2​​​ 
could be obtained also from ​​A​1​​​. Standard rationality posits that the “choice” from ​​
A​1​​​, ​​   ρ​(​A​1​​)​​​, must then be at least as good as anything that can be obtained from 
​​A​2​​​. Since we do not observe preferences, we cannot impose this; but at the very least 
we can say that there cannot be anything in ​​A​2​​​ that strictly first-order stochastically 
dominates ​​   ρ​(​A​1​​)​​​. This is the content of our axiom, extended to any sequence of 
length ​k​ of sets.

AXIOM 1 (Rational Mixing): For each ​k  ∈  핅 \​{1}​​ and ​​A​1​​, …  , ​A​k​​ ∈ ​, if

	​ ​   ρ​(​A​2​​)​​  ∈  co​(​A​1​​)​,  …  ,  ​   ρ​(​A​k​​)​​ ∈ co​(​A​k−1​​)​,​

then ​q  ∈  co​(​A​k​​)​​ implies ​q  ​≯​FOSD​​  ​   ρ​(​A​1​​)​​​.

Rational Mixing is related to conditions of rationality and acyclicity typical in the 
literature on revealed preference with limited observations, along the lines of Afriat’s 
condition and the Strong Axiom of Revealed Preferences (see, e.g., Chambers and 
Echenique 2016). Intuitively, the ability to randomize allows the agent to choose 
any option in the convex hull of all sets; thus, it is as if we could only see the choices 
from convex sets, and posit a rationality condition for this case.

Note that Rational Mixing implicitly (i) includes a form of coherence with strict 
first-order stochastic dominance, and (ii) assumes that the agent cares only about 
the induced distribution over final outcomes, rather than the procedure in which it 
is obtained. That is, for the agent the stochasticity is instrumental to obtain a better 
distribution over final outcomes, rather than being valuable per se. This implies a 
form of reduction of compound lotteries, which we will maintain throughout.

B. Deliberate Stochastic Choice Model

DEFINITION 1: A stochastic choice function ​ρ​ admits a Deliberate Stochastic 
Choice representation if there exists a complete preorder (a transitive and reflexive 
binary relation) ​≿​ over ​Δ​ such that

	 (i)	 For every ​A  ∈  ​,

		​  ​   ρ​(A)​​  ≿  q  for every q  ∈  co​(A)​;​

	 (ii)	 For every pair ​p, q  ∈  Δ​, ​p  ​>​FOSD​​  q​ implies ​p  ≻  q​.
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THEOREM 1: A stochastic choice function ​ρ​ satisfies Rational Mixing if and only if 
it admits a Deliberate Stochastic Choice representation.

A Deliberate Stochastic Choice model captures a decision maker who has a pref-
erence relation ​≿​ over lotteries and chooses deliberately the randomization that gen-
erates the optimal mixture among existing options. This procedure is most prominent 
in regions where ​≿​ is strictly convex and, in particular, if there exist some ​p, q  ∈  Δ​ 
and ​α  ∈ ​ (0, 1)​​ such that ​αp + ​(1 − α)​q  ≻  p, q​. When faced with the choice from ​​
{p, q}​​, she would strictly prefer to randomly choose rather than to pick either of the 
two options. The stochasticity is thus an expression of the agent’s preferences.

Prominent examples of preferences with this property are the Rank Dependent 
Expected Utility (RDU) model with the common inverse S-shaped probability 
weighting function (overweight small probabilities and underweight large prob-
abilities, where the former implies convexity),10 and strictly convex versions of 
Quadratic Utility (Chew, Epstein, and Segal 1991).11 Another example is when ​
≿​ follows the Cautious Expected Utility model of Cerreia-Vioglio, Dillenberger, 
and Ortoleva (2015); these preferences are convex (albeit not strictly convex every-
where), and may exhibit stochastic choice. In Cerreia-Vioglio et al. (2018) we show 
that the corresponding Cautious Stochastic Choice model tightly links stochasticity 
of choice and the Certainty Bias, as captured by both Allais paradoxes (Common-
Ratio and Common-Consequence effects), one of the most prominently observed 
violations of Expected Utility. Both stem from the presence of multiple utilities 
and the use of caution.12 The general class of convex preferences over lotteries was 
studied in Cerreia-Vioglio (2009).

On the other hand, the model does not restrict preferences to have any region 
of strict convexity. It also permits indifference to randomization, e.g., when ​≿​ fol-
lows Expected Utility, or, more generally, when it satisfies Betweenness;13 or even 
aversion to randomization, e.g., if ​≿​ is RDU with convex probability weighting 
function: in these cases the agent has no desire to mix and we should observe no 
stochasticity (except for indifferences).

Note also that the model puts no restriction on the way the agent resolves 
indifferences: when multiple alternatives maximize the preference relation, any 
could be chosen. Although it is a typical approach not to rule how indifferences 

10 If we order the prizes in the support of a finite lottery ​p​, with ​​x​1​​ < ​x​2​​ < ⋯ < ​x​n​​​, then the functional form for 
RDU is ​V​(p)​  =  u​(​x​n​​)​ f ​(p​(​x​n​​)​)​ + ​∑ i=1​ n−1 ​​u​(​x​i​​)​​[f​(​∑ j=i​ n  ​​ p​(​x​j​​)​)​ − f ​(​∑ j=i+1​ n  ​​ p​(​x​j​​)​)​]​,​ where ​f  : ​[0, 1]​  →  ​[0, 1]​​ is strictly 
increasing and onto and ​u : ​[w, b]​  →  ℝ​ is increasing. Regions where ​f ​(l)​  >  l​ imply affinity to randomization.

11 For example, such preferences over lotteries are convex if they are represented by the product of two positive 
expected utility functionals, that is, ​V​(p)​  =  ​E​p​​​(u)​ × ​E​p​​​(v)​​, where ​u​ and ​v​ are positive, continuous, and strictly 
increasing.

12 Preferences admit a Cautious Expected Utility representation if there exists a set  of strictly increasing and 
continuous (Bernoulli) utility functions over monetary outcomes, such that the value of any lottery ​p​ is given by 
​V​(p)​  =  ​inf​v∈​​ ​v​​ −1​​(​E​p​​​(v)​)​​. That is, the agent has a set of utility functions over outcomes, and evaluates each lottery ​
p​ by first computing the certainty equivalent of ​p​ with respect to each possible function in the set, and then picking 
the smallest one. Cerreia-Vioglio et al. (2018) show that as long as there are finitely many utilities, agents have a 
strict desire to randomize if and only if they violate Expected Utility in line with the Certainty Bias.

13 Betweenness requires that ​p ∼ q ⇒ αp + ​(1 − α)​q ∼ q​ for all ​p, q ∈ Δ​, ​α  ∈  ​(0, 1)​​. It is satisfied by any 
Expected Utility maximizer. Utility theories with the Betweenness property were studied by Dekel (1986) and 
Chew (1989). See also an earlier axiomatization developed by Fishburn (1983).
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are resolved, following it may lead to discontinuities.14 This implies that, for each 
preference relation ​≿​, there is potentially more than one stochastic choice function 
derived from it, depending on how indifferences are resolved. In general, we say that 
a stochastic choice function ​​ρ ˆ ​​ is consistent with a preference relation ​≿​ if and only 
if for each ​A ∈ ​, ​​   ​ρ ˆ ​​(A)​​ ≿ q​ for all ​q ∈ co​(A)​​.

As we pointed out in the introduction, Theorem 1 does not require the lotteries to 
be over monetary outcomes; they could be over an arbitrary set of prizes, as long as 
there is some natural dominance relation (a partial order) ​⊳​ over the space of lotter-
ies that one can use to replace ​​>​FOSD​​​ in the statement of the Rational Mixing axiom. 
This can be a generalization of the concept of first-order stochastic dominance, or 
any other partial order that satisfies the additional property that ​p  ⊳  q​ implies that ​
p  ⊳  αp + ​(1 − α)​q​ for every ​α  ∈  [ 0, 1)​ and for every pair ​p​ and ​q​.

Remark 1: Our framework implicitly assumes that we observe the stochastic 
choice function ​ρ​ for all sets in ​​. This is very demanding, and a natural ques-
tion is what tests are required if we observe only limited data. In fact, the Rational 
Mixing axiom is necessary and sufficient in any dataset that includes all doubletons ​​
{ p, q}​​ such that ​p ​ >​FOSD​​  q​. Consider any ​ ⊆ ​ such that ​​{ p, q}​ ∈ ​ whenever ​
p ​ >​FOSD​​  q​ and denote by ​​ρ​​​​ the restriction of ​ρ​ on ​​. Then, ​​ρ​​​​ satisfies Rational 
Mixing if and only if ​​ρ​​​​ admits a Deliberate Stochastic Choice representation. (The 
proof follows exactly the same steps as the proof of Theorem 1.)

Remark 2: The preference relation ​≿​ in a Deliberate Stochastic Choice model 
need not admit a utility representation, e.g., if it is lexicographic.15 As usual, to 
guarantee the existence of a utility representation we need ​≿​ to be continuous.16 
We call this case a Continuous Deliberate Stochastic Choice model. Proposition 3 
in Appendix A gives an axiomatic characterization of it, obtained by strengthen-
ing Rational Mixing with a continuity requirement. In words, consider the binary 
relation ​R​, defined as ​pRq​ if ​p  = ​    ρ​(A)​​​ for some ​A​ such that ​q  ∈  co​(A)​​. Rational 
Mixing simply posits that the transitive closure of ​R​ is consistent with ​​>​FOSD​​​. To 
obtain a continuous representation, we need to extend this requirement to the closed 

14 While with choice correspondences the continuity of the underlying preference relation implies continuity of 
the choice correspondence (i.e., satisfies the closed graph property), here it is as if we observed also the outcome of 
how indifference is resolved (which may be stochastic). This will necessarily imply discontinuities of ​ρ​, following 
standard arguments. An alternative, although significantly less appealing, approach would be to consider a stochas-
tic choice correspondence, which could be fully continuous.

15 For example, consider the binary relation ​​≽​L​​​ defined by  ​p  ​≽​L​​  q​ if either ​​E​p​​​(​x​​ 3​)​ > ​E​q​​​(​x​​ 3​)​​ or 
​​E​p​​​(​x​​ 3​)​ = ​E​q​​​(​x​​ 3​)​​ and ​​E​p​​​(x)​ ≥ ​E​q​​​(x)​​. This binary relation is complete, transitive, and satisfies Independence, but 
fails Continuity. Note that for any (finite) menu of lotteries ​A  ∈  ​, ​arg max​(​≽​L​​, A)​  ≠  ∅​. Define ​ρ​ to be such that ​
ρ​(A)​​(q)​  =  1/|arg max​(​≽​L​​, A)​|​ for all ​q  ∈  arg max​(​≽​L​​, A)​​. Since ​​≽​L​​​ satisfies Independence, ​​ ̄  ρ​(A)​​  ​≽​L​​  q​ for all 
​q  ∈  co​(A)​​, and since ​​≽​L​​​ strictly preserves first-order stochastic dominance, all the requirements of Theorem 1 are 
met. Yet clearly ​​≽​L​​​ does not admit a utility representation.

16 We say that a relation ​≿​ is continuous if and only if for each ​q  ∈  Δ​ the sets ​​{ p  ∈  Δ : p  ≿  q}​​ and ​​
{p ∈ Δ : q ≿ p}​​ are closed with respect to the topology of weak convergence.
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transitive closure of ​R​ (i.e., the minimal continuous and transitive relation that con-
tains ​R​).

II.  Regularity and Deliberate Randomization

In this section we study the relation of the Deliberate Stochastic Choice model with 
the Regularity property we mentioned in the introduction. As we explained there, 
Regularity, also called Monotonicity, is a well known and extensively used property 
in the stochastic choice literature. Formally, we have the following definition.

AXIOM 2 (Regularity): For each ​A, B  ∈  ​ and ​p  ∈  A​, if ​A  ⊆  B​, then 
​ρ​(B)​​(p)​  ≤  ρ​(A)​​(p)​​.

Intuitively, Regularity states that if we remove some elements from a set, the 
probability of choosing the remaining elements cannot decrease. Conceptually, it is 
related to notions of independence of irrelevant alternatives applied to a stochastic 
setting: the removal of any element, chosen or unchosen, cannot “hurt” the chances 
of choosing any of the remaining ones. In other words, the attractiveness of an 
option should not depend on the availability of other ones. Crucially, the property 
of Regularity is one of the characterizing features of models of Random Utility. 
We should note that despite its widespread use and normative appeal, substantial 
experimental evidence has been collected that shows how Regularity is violated: see 
Rieskamp, Busemeyer, and Mellers (2006) for a survey.

To analyze this property in our model, it will be useful to formally define when is 
the individual exhibiting stochastic choice. Recall that in our model this may happen 
either when there is a genuine desire to randomize, or in the case of indifferences. 
We say that an agent exhibits a non-degenerate stochastic choice function if stochas-
ticity is present beyond indifference: if we can find some ​p​ and ​q​ such that the agent 
randomizes between them and also does so when either is made a “little bit worse” 
by mixing with ​​δ​w​​​ (the worst possible outcome).

DEFINITION 2: A stochastic choice function ​ρ​ is non-degenerate if there exist ​
p, q  ∈  Δ​ with ​|​supp​ρ​​​(​{ p, q}​)​|  ≠  1​ and ​λ  ∈ ​ (0, 1)​​ such that

	​ |​supp​ρ​​​(​{λp + ​(1 − λ)​ ​δ​w​​, q}​)​| ≠ 1  and  |​supp​ρ​​​(​{p, λq + ​(1 − λ)​ ​δ​w​​}​)​| ≠ 1.​

Endowed with these definitions, we have the following theorem.

THEOREM 2: Let ​ρ​ be a stochastic  choice function that admits a Continuous 
Deliberate Stochastic Choice representation ​≿​.  The following statements are 
equivalent:

	 (i)	​ ρ​ is non-degenerate;

	 (ii)	​ ρ​ and any other ​​ρ ˆ ​​ consistent with ​≿​ violates Regularity;
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	 (iii)	​ ≿​ has a point of strict convexity, that is, there exist ​p, q  ∈  Δ​ and ​λ  ∈ ​ (0, 1)​​ 
such that

	​ λp + ​(1 − λ)​q  ≻  p, q.​

Theorem 2 shows that the Deliberate Stochastic Choice model must lead to vio-
lations of Regularity, unless the Stochastic Choice is degenerate (no stochasticity, 
or purely to break indifferences). That is, whenever there is even a single instance 
in which the individual makes a non-degenerate stochastic choice, then there nec-
essarily is some other instance where her choices violate Regularity. In fact, the 
result is stronger: violations of Regularity and stochasticity imply one another; and 
both occur if and only if the underlying preferences have points of strict convexity. 
Without them, under the model there should never be any stochasticity (except pos-
sibly in the case of indifference), as the agent does not have a desire to randomize; 
but with them, we also have violations of Regularity.

One important implication of the result above is to distinguish our model from 
models that satisfy Regularity, which include most popular models such as Random 
Utility and Luce’s (1958) model. Thus, the desire to randomize not only is concep-
tually different, but also leads to a behavior that violates the core property of many 
models in the literature.

To gain an intuition, consider some ​p, q​ where preferences are strictly convex, 

i.e., there exists ​λ  ∈ ​ (0, 1)​​ such that ​λp + ​(1 − λ)​q  ≻  p, q​, as in item (iii) of the 

theorem. For simplicity, suppose that ​r  = ​ λ ˆ ​p + ​(1 − ​λ ˆ ​)​q​ is the unique ​≿​-optimal 

mix between ​p​ and ​q​. Let ​​r​ε​​​ be a lottery within distance ​ε  >  0​ of ​r​ but strictly 
first-order stochastically dominated by it. First observe that ​p​ will be chosen with 
probability ​​λ ˆ ​​ from ​​{ p, q, ​r​ε​​}​​: in the face of both ​p​ and ​q​, the presence of ​​r​ε​​​ is of no 
value to the agent. But suppose ​q​ is removed: then, as long as ​ε​ is small enough 
(​​r​ε​​​ is close to ​r​), ​p​ will be chosen with very small probability from ​​{ p, ​r​ε​​}​​: the value 
of ​p​ decreases significantly without ​q​, and the agent now puts most weight on ​​r​ε​​​. 
This pair of choices violates Regularity. The idea behind this construction is that ​
p​ and ​q​ are complementary to each other. But if ​q​ is removed, the agent can no 
longer hedge between them; ​​r​ε​​​, which was inferior to their mixture, then becomes 
an attractive alternative in the face of ​p​. Overall, the crucial aspect is that the abil-
ity of choosing both ​p​ and ​q​ at the same time renders them appealing, while they 
would not be appealing in isolation. This is a fundamental aspect of when hedg-
ing is advantageous: the whole set of chosen elements is relevant for the agent, for 
the hedging opportunities it provides. Such complementarity between alternatives 
violates standard independence of irrelevant alternatives arguments, according to 
which chosen elements should be appealing in isolation, which is also reflected in 
the Regularity axiom. For that reason, violations of Regularity are a “structural” 
feature of our model.

The result of Theorem 2 has an additional conceptual implication. From the point 
of view of our model, violations of Regularity should not be seen as mistakes or as 
forms of bounded rationality. On the contrary, our model entails a strong form of 
“rationality:” individuals are endowed with well-defined, stable, and monotone pref-
erences over lotteries, and select the combination of options from all possible ones to 
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maximize them, reducing compound lotteries. With the exception of possibly violating 
Expected Utility, our agents are thus as close as possible to the standard rational eco-
nomic decision maker. Our results show that despite all this, not only they may exhibit 
stochastic choice, but when they do they also, as a manifestation of their preferences, 
violate the property of Regularity, often described as the counterpart of “rationality” 
for stochastic choice. (This interpretation may thus be put in question.)

We conclude this section by discussing which violations of Regularity and of 
other properties are compatible with, or even implied by, our model. On the one 
hand, our model is compatible with many violations, including documented ones, 
as well as others that are yet to be explored experimentally, beyond those of the 
form identified in the constructive proof of Theorem 2. For example, consider some ​
p, q, r  ∈  Δ​ such that some mixture of ​p​ and ​q​ is ranked above ​r​, but ​r​ is better than ​
p​ and any mixture between ​p​ and ​r​. (Such examples are easy to construct when 
preferences are strictly convex. In the Cautious Stochastic Choice model discussed 
in footnote 12, these will be present whenever the set ​​ is finite, with ​r​ being a 
degenerate lottery.) In this case, from the set ​​{r, p}​​, ​p​ would never be chosen, but 
it may be chosen with strictly positive probability from ​​{ p, q, r}​​. Our model is also 
consistent with situations where ​r​ lies above the line segment connecting ​p​ and ​q​, 
and violations of Regularity take the form ​ρ​(​{ p, q, r}​)​​(r)​  >  ρ​(​{ p, r}​)​​(r)​​. Violations 
of this kind have been widely documented and referred to as versions of the com-
promise effect or of the attraction effect without dominance (see Simonson 1989; 
Tversky and Simonson 1993; Rieskamp, Busemeyer, and Mellers 2006; Soltani, De 
Martino, and Camerer 2012; see also the discussion in Natenzon 2019).

On the other hand, the Deliberate Stochastic Choice model is not compatible with 
violations of Regularity due to the addition of a (strictly) first-order stochastically 
dominated option. For example, suppose that ​p​ is chosen more frequently in ​​{ p, q, r}​​ 
than in ​​{ p, q}​​, where ​r​ is dominated by ​p​ but not by ​q​. These violations of Regularity 
have been documented empirically, and referred to as either the asymmetric domi-
nance effect or the attraction effect with a dominated option (see Ok, Ortoleva, and 
Riella 2015; Soltani, De Martino, and Camerer 2012). They are incompatible with 
our model because no dominated option can ever be part of an optimal mixture, 
thus its addition cannot modify the optimal combination: violations of this type 
may occur only because of indifferences. For similar reasons, our model satisfies a 
weaker version of Regularity that posits that choice probabilities do not decrease if 
we remove elements that are never chosen, again, except for indifferences.

Two other known properties of stochastic choice are Weak and Strong Stochastic 

Transitivity. Take any ​p, q, r​ with ​ρ​(​{ p, q}​)​​(p)​ ≥ 0.5​ and ​ρ​(​{q, r}​)​​(q)​  ≥  0.5​. 

Weak Stochastic Transitivity is satisfied if ​ρ​(​{ p, r}​)​​(p)​  ≥  0.5​; Strong Stochastic 

Transitivity requires ​ρ​(​{ p, r}​)​​(p)​  ≥  max​{ρ​(​{ p, q}​)​​(p)​, ρ​(​{q, r}​)​​(q)​}​​. Both prop-
erties are known to be independent of Regularity, and substantial evidence has 
shown that they are often violated, especially the stronger version. It is easy to con-
struct examples of similar violations in our model (e.g., the evidence discussed in 
Rieskamp, Busemeyer, and Mellers 2006, p. 636); in general, our model is consistent 
with violations of both forms. It is worth noting that Machina (1985) already alluded 
to the idea that with strictly convex preferences, one may expect either version of 
Stochastic Transitivity to be violated, and thus, unlike violations of transitivity 
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of the underlying preference relation ​≿​, such violations should be perceived as 
neither normatively disturbing nor descriptively rare. Our next result establishes 
that not only these violations are compatible with our model, but that any non- 
degenerate stochastic choice function that admits a Continuous Deliberate Stochastic 
Choice representation necessarily violates Strong Stochastic Transitivity.17

PROPOSITION 1: Let ​ρ​ be a stochastic choice function that admits a Continuous 
Deliberate Stochastic Choice representation ​≿​.  The following statements are 
equivalent:

	 (i)	​ ρ​ is non-degenerate;

	 (ii)	​ ρ​ and any other ​​ρ ˆ ​​ consistent with ​≿​ violates Strong Stochastic Transitivity.

In other words, violations of Strong Stochastic Transitivity, just like those of 
Regularity, are core features of our model whenever the stochastic choice is non-de-
generate. Indeed, an immediate corollary of the last two results is that under the 
continuous version of our model, detecting a violation of either of the two properties 
implies that a violation of the other can be found as well.

Finally, our model makes some new empirical predictions on stochastic choice 
via the Rational Mixing Axiom. For example, it is easy to see that the addition of 
an option within the convex hull of a set should not change the final distribution of 
prizes that the agent receives: because it does not provide any new hedging opportu-
nity, it should not affect what final distribution the agent is able to achieve, thus the 
stochastic choice may change only due to indifferences.

III.  Relation with Models in the Literature

Random Utility.—As we discussed, Theorem 2 can be used to easily compare 
the Deliberate Stochastic Choice model with models of Random Utility. Formally, 
we say that a stochastic choice function ​ρ​ admits a Random Utility representation if 
there exists a probability measure over utilities such that for each alternative ​s​ in a 
choice problem ​A​, the probability of choosing ​s​ from ​A​, ​ρ​(A)​​(s)​​, equals the proba-
bility of drawing a utility function ​u​ such that ​s​ maximizes ​u​ in ​A​.18

It is well known that a stochastic choice function that admits a Random Utility 
representation must satisfy Regularity. This is intuitive: if an option is the best 
according to one utility, its choice cannot be made less likely by removing alterna-
tives. (In models of Random Utility, there is no complementarity between the chosen 

17 For some special cases, also violations of Weak Stochastic Transitivity are implied. For example, reconsider 
the Cautious Stochastic Choice model with a finite set ​​. Violations of Weak Stochastic Transitivity can always 
be constructed whenever there are ​p, q  ∈  Δ​ such that both ​p  ∼  q​ and ​​arg max​μ∈​[0,1]​​​V​(μp + ​(1 − μ)​q)​​ is unique.

18 Stochastic choice functions over a finite space of alternatives that admit a Random Utility representation were 
axiomatized by Falmagne (1978) (see also Barberá and Pattanaik 1986). An issue arises when the utility functions 
allow for indifferences; assumptions are needed on how they are resolved. Two approaches have been suggested. 
First, to impose that the set of utility functions such that the maximum is not unique has measure zero for every 
choice problem, as is the case, for example, for logit or probit. Second, to impose a tie-breaking rule, that may vary 
with each utility, but that selects one of the maximizers coherently and independently of the choice problem (e.g., 
satisfying Sen’s ​α​). In what follows we assume that one of these two approaches is adopted.
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elements.) But then, following Theorem 2 we have a sharp distinction between our 
model and models of Random Utility: the only behavior that can be represented by 
both models is one compatible with a degenerate Random Utility model, i.e., with 
only one utility possible, in which the agent exhibits stochastic behavior only when 
she is indifferent. Another immediate implication is that observing a violation of 
Regularity, an easily testable condition, implies that the agents’ behavior cannot 
be represented by Random Utility, while it may be represented by the Deliberate 
Stochastic Choice.

Random Expected Utility.—Gul and Pesendorfer (2006) axiomatize the Random 
Expected Utility model, a version of Random Utility where all the utility functions 
involved are of the Expected Utility type. One of the conditions that characterize this 
model is Linearity.19

AXIOM 3 (Linearity): For each ​A  ∈  ​, ​p  ∈  A​, ​q  ∈  Δ​, and ​λ  ∈ ​ (0, 1)​​,

	​ ρ​(A)​​(p)​  =  ρ​(λA + ​(1 − λ)​q)​​(λp + ​(1 − λ)​q)​.​
We now show that if ​ρ​ admits a Continuous Deliberate Stochastic Representation 

and in addition satisfies Linearity, then ​ρ​ is a degenerate Random Expected Utility 
model, i.e., again a model with only one utility. Formally we have the following 
result.

PROPOSITION 2: Let ​ρ​ be a stochastic choice function that admits a Continuous 
Deliberate Stochastic Choice representation and satisfies Linearity. Then, there 
exists a continuous function ​u : ​[w, b]​  →  핉​ such that, for any choice problem ​A​,

	​ ​supp​ρ​​​(A)​  ⊆ ​ {p  ∈  A : ​E​p​​​(u)​ ≥ ​E​q​​​(u)​ ∀ q ∈ A}​.​

Other Models of Deliberate Randomization.—A small existing literature has 
suggested models of stochastic choice as deliberate randomization. As we have 
discussed, our own model formalizes and extends the intuition of Machina (1985) 
(see also Marley 1997 and Swait and Marley 2013) in a fully axiomatic setup.20 
Dwenger, Kübler, and Weizsäcker (2018) propose a model in which agents choose 
to randomize following a desire to minimize regret. Their key assumption is that the 
regret after making the wrong choice is smaller if the choice is stochastic rather than 
deterministic. Allen and Rehbeck (2019) develop a model of deliberate randomiza-
tion that includes as special cases known models of stochastic choice.

19 Given a set ​A  ⊆  Δ​ and a lottery ​q  ∈  Δ​, the set ​λA + ​(1 − λ)​q​ denotes the set of all lotteries ​p  ∈  Δ​ such 
that ​p  =  λr + ​(1 − λ)​q​ for some ​r  ∈  A​.

20 Machina (1985) suggests the following condition: if ​A, ​A ′ ​  ∈  ​ are such that ​co​(A)​  ⊆  co​(​A ′ ​)​​ and 
​​ ̄  ρ​(​A ′ ​)​​  ∈  co​(A)​​, then ​​ ̄  ρ​(​A ′ ​)​​  =  ​ ̄  ρ​(A)​​​. (This condition is related to Sen’s ​α​ axiom.) While naturally related to our 
Rational Mixing axiom, this condition is not sufficient to characterize our model. (Unless preferences are strictly 
convex, it is also not necessary, because of indifferences: for example, ​A​ and ​​A ′ ​​ may differ only for the inclusion 
of some strictly dominated option that is never chosen in either case, but the stochastic choice may not coincide as 
indifference may be resolved differently.)
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Fudenberg, Iijima, and Strzalecki (2015) provide conditions under which stochas-
tic choice corresponds to the maximization of Expected Utility and a perturbation 
function that depends only on the choice probabilities. Formally, they axiomatize a 
stochastic choice function ​ρ​ such that, for each choice problem ​A​,

(1)	 ​ρ​(A)​  = ​ arg max​ 
p∈Δ​(A)​

​ ​ ​ ∑ 
x∈A

​​​​[p​(x)​u​(x)​ − c​(p​(x)​)​]​,​

where ​Δ​(A)​​ is the set of probability measures on ​A​, ​u​ is a von Neumann-Morgenstern 
utility function and ​c  :  ​[0, 1]​  →  ℝ ∪ ​{∞}​​ is strictly convex and ​​C​​ 1​​ in ​​(0, 1)​​. They 
call this representation Weak Additive Perturbed Utility (Weak APU).21 Because of 
the strictly convex perturbation function ​c​, this functional form gives the agent an 
intrinsic incentive to randomize. However, there are two important differences with 
our model.

A first difference is that we study a domain of menus of lotteries while Fudenberg, 
Iijima, and Strzalecki (2015) study menus of final outcomes. This is not a mere 
technical difference, as our goal is to study, in the spirit of Machina (1985), the 
link of stochastic choice with non-Expected Utility behavior; and (deterministic) 
non-Expected Utility preferences over lotteries must necessarily be present for a 
comparison to be possible.

A second, crucial difference between the models is that even though the model 
in Fudenberg, Iijima, and Strzalecki (2015) rewards probabilistic choices and this 
sometimes gives the individual an incentive to randomize, their model does satisfy 
Regularity (Fudenberg, Iijima, and Strzalecki 2015, p. 2386). This is a crucial con-
ceptual difference, as it implies that their model does not include one of the main 
driving forces of ours, as we discussed above. It also implies that the formal relation 
between their model and ours is the same as with Random Utility: the only behavior 
compatible with both is one of an agent that exhibits stochastic choice only when 
indifferent.22

The results above are summarized in Figure 1.23

Other Related Literature.—Our paper is related to various other strands of the 
literature. First, it is related to models that connect violations of rationality (in the 
form of the Weak Axiom of Revealed Preferences or Regularity) to various forms of 
bounded rationality and costly information processing: among many, see for deter-
ministic choice Manzini and Mariotti (2007), Masatlioglu, Nakajima, and Ozbay 
(2012), Ok, Ortoleva, and Riella (2015); for stochastic choice, Manzini and Mariotti 
(2014), Caplin and Dean (2015), Matějka and McKay (2015), Natenzon (2019), and 

21 Their paper also characterizes the case in which the function ​c​ satisfies the additional requirement that 
​​lim​q→0​​ ​c ′ ​​(q)​  =  − ∞​, which they call an Additive Perturbed Utility representation.

22 An alternative way to apply their paper to the case of lotteries is, instead of using their representation theorem 
directly, to use a continuous version of their functional form, ​∑ ​[p​(x)​u​(x)​ − c​(p​(x)​)​]​​, as a representation for the 
preferences in our Theorem 1. This would lead to a model that is a hybrid of the two formulations.

23 For preferences that satisfy Linearity but not Regularity, suppose that facing a menu ​A​, the agent considers 
two functions ​u​ and ​v​, finds the sets ​​arg max​p∈co​(A)​​​ ​E​p​​​(u)​​ and ​​arg max​p∈co​(A)​​​ ​E​p​​​(v)​​, and splits the probability of choice 
evenly among all maximizers. This behavior satisfies Linearity, but violates Regularity whenever one adds to a set 
an option that is the unique maximizer for one of the utility functions for which, before the addition, there was more 
than one maximizer.
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many references therein. As we have discussed, as opposed to these papers, in our 
model violations of Regularity follow even if subjects are fully rational and are fully 
informed about the options, as long as their underlying preferences are (at least 
locally) convex.

Stoye (2015) studies choice environments in which agents can randomize at will 
(thus restricting observability to convex sets). Considering as a primitive the choice 
correspondence of the agent in an Anscombe-Aumann setup,24 he characterizes var-
ious models of choice under uncertainty that include a desire to randomize. Unlike 
Stoye, we take as a primitive the agent’s stochastic choice function, instead of the 
choice correspondence; this not only suggests different interpretations, but also 
entails substantial technical differences. In addition, we study a setup with risk, and 
not uncertainty, and characterize the most general model of deliberate randomiza-
tion given a complete preference relation over monetary lotteries.

Finally, as we have mentioned, our general representation theorem (Theorem 1) 
is related to the literature on revealed preference on finite datasets. By randomizing 
over a set of alternatives, the agent can obtain any point of its convex hull. It is as 
if we could only see individuals’ choices from convex sets, restricting our ability to 
observe the entire preferences. Our problem is then related to the issue of eliciting 
preferences with limited datasets, originated by Afriat (1967), and for our first the-
orem we employ techniques from this literature. Our results are particularly related 
to Chambers and Echenique (2016) and Nishimura, Ok, and Quah (2017).

24 The paper considers also a setup with pure risk, but in that case the analysis is mostly focused on character-
izing the case of Expected Utility, where there is no desire to randomize.

Random utility

Linearity

Regularity

Expected utility

Weak APU

Random expected utility

Degenerate
random utility

Continuous deliberate
stochastic choice

Figure 1. Relation with Other Models
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Appendix A. Continuous Deliberate Stochastic Choice

In this section we extend the result of Theorem 1 to the case in which the underly-
ing preference relation admits a representation by a continuous utility function. For 
this we need to strengthen the consistency condition in the Rational Mixing axiom 
to apply not only to the transitive closure of the relation ​R​ defined in Remark 2, but 
to its closed transitive closure. Formally, define the binary relation ​R​ on ​Δ​ as

	​ pRq  if and only if  ∃ A  ∈   such that p  = ​    ρ​(A)​​ and q  ∈  co​(A)​.​

Intuitively, ​pRq​ if it ever happens that ​p​ is chosen, either directly ​​(​{ p}​ = ​supp​ρ​​​(A)​)​​  
or as the outcome of randomization (​ p  = ​    ρ​(A)​​​), from a set ​A​ where ​q​ could have 

also been chosen ​​(q  ∈  co​(A)​)​​. Denote by ​​   tran​(R)​ ​​ the minimal continuous and 

transitive binary relation on ​Δ​ such that ​R  ⊆ ​    tran​(R)​ ​​. We call ​​   tran​(R)​ ​​ the closed 
transitive closure of ​R​. We can now write the following postulate.

AXIOM 4 (Continuous Rational Mixing): If ​p, q  ∈  Δ​ are such that ​p ​   tran​(R)​ ​ q​, 
then it cannot be the case that ​q ​ >​FOSD​​  p​.

We have the following result.

PROPOSITION 3: A stochastic choice function ​ρ​ satisfies Continuous Rational 
Mixing if and only if it admits a Deliberate Stochastic Choice representation ​≿​ that 
can be represented by a continuous utility function.

PROOF OF PROPOSITION 3:
Suppose first that ​ρ​ admits a Deliberate Stochastic Choice representation ​≿​ 

that can be represented by a continuous utility function. This implies that ​≿​ is a 
continuous preorder. Since, by the representation of ​ρ​, ​R  ⊆  ≿​, this implies that 

​​   tran​(R)​ ​  ⊆  ≿​. But then, if ​p, q  ∈  Δ​ are such that ​p ​   tran​(R)​ ​ q​, we also have 
that ​p  ≿  q​, which implies that it is not true that ​q ​ >​FOSD​​  p​. That is, ​ρ​ satisfies 
Continuous Rational Mixing.

Conversely, suppose ​ρ​ is a stochastic choice function that satisfies Continuous 
Rational Mixing. Pick any pair of lotteries ​p​ and ​q​ in ​Δ​ with ​q ​ >​FOSD​​  p​. This 
implies that ​q ​ >​FOSD​​  αq + ​(1 − α)​p​ for every ​α  ∈ ​ [0, 1)​​. By Continuous Rational 

Mixing, we must have that ​​‾ ρ​(​{p, q}​)​ ​  =  q​, which implies that ​qRp​. Moreover, again 

by Continuous Rational Mixing, we cannot have that ​p ​   tran​(R)​ ​ q​. This shows that 

​​   tran​(R)​ ​​ is an extension of the first-order stochastic dominance relation. By Levin’s 
Theorem (see Bridges and Mehta 1995, Lemma 8.3.4), there exists a continuous 

function ​u  :  Δ  →  ℝ​ such that ​p ​   tran​(R)​ ​ q​ implies ​u​(p)​  ≥  u​(q)​​, with strict inequal-

ity whenever it is not true that ​q ​   tran​(R)​ ​ p​. Now we can proceed as in the proof of 
Theorem 1, using the preference relation the function ​u​ induces, to conclude the 
proof. ∎
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Appendix B. Proof of the Results in the Main Text

PROOF OF THEOREM 1:
It is clear that if ​ρ​ admits a Deliberate Stochastic Choice representation, then ​

ρ​ satisfies Rational Mixing. Suppose, thus, that ​ρ​ satisfies Rational Mixing and 
define the binary relation ​R​ the same way it is defined in the main text (see Remark 
2). Pick any pair of lotteries ​p​ and ​q​ such that ​p ​ >​FOSD​​  q​. This implies that 
​p ​ >​FOSD​​  ​(αp + ​(1 − α)​q)​​ for every ​α  ∈ ​ [0, 1)​​. Define ​​A​1​​  = ​ { p, q}​​ and ​​A​2​​  = ​ { p}​​. 
Notice that Rational Mixing implies that we must have ​​   ρ​(​A​1​​)​​  =  p​. Consequently, 

we have ​pRq​. Moreover, if we have ​k  ∈  ℕ​ and ​​A​1​​, … , ​A​k​​​ such that ​​   ρ​(​A​1​​)​​  =  q​ 

and ​​   ρ​(​A​i​​)​​  ∈  co​(​A​i−1​​)​​ for ​i  =  2, … , k​, Rational Mixing implies that ​p  ∉  co​(​A​k​​)​​. 
This shows that we cannot have ​q tran​(R)​ p​. We conclude that ​tran​(R)​​ is an extension 
of the first-order stochastic dominance relation. Now pick any complete extension ​
≿​ of ​tran​(R)​​. By what we have just seen, ​≿​ is also an extension of the first-order 
stochastic dominance relation. Moreover, by definition, we have that ​​   ρ​(A)​​Rq​ for 
every ​q  ∈  co​(A)​​, for every ​A  ∈  ​. Consequently, we have ​​   ρ​(A)​​  ≿  q​ for every 
​q  ∈  co​(A)​​, for every ​A  ∈  ​. This proves Theorem 1. ∎

PROOF OF THEOREM 2:
(i) implies (iii). Assume that ​ρ​ is non-degenerate. Then, there exist ​p, q  ∈  Δ​ and ​

λ  ∈ ​ (0, 1)​​ with ​p  ≿  q​ and ​|​supp​ρ​​​(​{p, λq + ​(1 − λ)​ ​δ​w​​}​)​|  =  2​. Since ​≿​ preserves 
strict first-order stochastic dominance and is a Deliberate Stochastic Choice repre-
sentation of ​ρ​, this implies that ​p, q  ≻ ​ δ​w​​​ and there exists ​γ  ∈ ​ (0, 1)​​ with

	​ γp + ​(1 − γ)​q  ≻  γp + ​(1 − γ)​​(λq + ​(1 − λ)​ ​δ​w​​)​  ≿  p  ≿  q.​

That is, ​≿​ has a point of strict convexity.
(iii) implies (i). By assumption, there exist ​p, q  ∈  Δ​ and ​γ  ∈ ​ (0, 1)​​ such that

(2)	 ​γp + ​(1 − γ)​q  ≻  p, q.​

Since ​≿​ is continuous, this implies that there exists ​λ  ∈ ​ (0, 1)​​ such that 
​γ​(λp + ​(1 − λ)​ ​δ​w​​)​ + ​(1 − γ)​q ≻ λp + ​(1 − λ)​ ​δ​w​​, q​ and ​γp + ​(1 − γ)​​(λq + 
​(1 − λ)​ ​δ​w​​)​ ≻ p, λq + ​(1 − λ)​ ​δ​w​​​. Since ​≿​ is a Deliberate Stochastic Choice represen-
tation of ​ρ​, this can happen only if ​|​supp​ρ​​​(​{p, q}​)​| = |​supp​ρ​​​(​{λp + ​(1 − λ)​ ​δ​w​​, q}​)​|  
=  |​supp​ρ​​​(​{p, λq + ​(1 − λ)​ ​δ​w​​}​)​|  =  2​.

(iii) implies (ii). Assume that there exist ​p, q  ∈  Δ​ and ​λ  ∈ ​ (0, 1)​​ such that 
​λp + ​(1 − λ)​q ≻ p, q​. Since ​≿​ strictly preserves first-order stochastic dominance, we 
must have ​p ≠ ​δ​w​​​ and ​q ≠ ​δ​w​​​. By continuity of ​≿​, there exist maximal and minimal ​​
α​​ M​​ and ​​α​m​​​ in ​​[0, 1]​​ such that ​​α​​ M​ p + ​(1 − ​α​​ M​)​q ∼ ​α​m​​ p + ​(1 − ​α​m​​)​q ≿ αp + ​
(1 − α)​q​ for every ​α  ∈ ​ [0, 1]​.​ Note that we must have ​0 < ​α​m​​ ≤ ​α​​ M​ < 1​. By 
construction, ​​α​​ M​ p + ​(1 − ​α​​ M​)​q ≻ λp + ​(1 − λ)​​(​α​​ M​ p + ​(1 − ​α​​ M​)​q)​​ for every 
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​λ  ∈ ​ [​α​m​​, 1]​​. Continuity of ​≿​ and the fact that ​≿​ strictly preserves first-order sto-
chastic dominance now imply that there exists ​ε  ∈ ​ (0, 1)​​ such that

	​ ε ​δ​w​​ + ​(1 − ε)​​(​α​​ M​p + ​(1 − ​α​​ M​)​q)​ 

	 ≻ λp + ​(1 − λ)​​(​α​​ M​ p + ​(1 − ​α​​ M​)​q)​ 

	 ≿ λp + ​(1 − λ)​​[ε​δ​w​​ + ​(1 − ε)​​(​α​​ M​p + ​(1 − ​α​​ M​)​q)​]​​

for all ​λ  ∈ ​ [​α​m​​, 1]​​. Let ​r  =  ε ​δ​w​​ + ​(1 − ε)​​(​α​​ M​ p + ​(1 − ​α​​ M​)​q)​​ and fix any ​​ρ ˆ ​​ con-
sistent with ​≿​. The observation above implies that ​​ρ ˆ ​​(​{ p, r}​)​​(p)​  < ​ α​m​​​. However, 
the definition of ​​α​m​​​ and the fact that ​≿​ strictly preserves first-order stochastic 
dominance imply that ​​supp​​ρ ˆ ​​​​(​{ p, q, r}​)​  ⊆ ​ { p, q}​​ and ​​ρ ˆ ​​(​{ p, q, r}​)​​(p)​  ≥ ​ α​m​​​, which is 
a violation of Regularity.

(ii) implies (iii). By contradiction, assume that ​≿​ does not have a point of strict 
convexity. That is, suppose that for all ​p, q ∈ Δ​ with ​p ≿ q​, we have ​p ≿ λp + ​
(1 − λ)​q​ for every ​λ  ∈ ​ [0, 1]​​. Since ​≿​ is a complete preorder, this is equivalent to 
say that ​≿​ has convex lower contour sets. That is, the set

	​ ​{ p  ∈  Δ  :  r  ≿  p}​​

is convex for all ​r  ∈  Δ​. Now, let ​≥​ be any linear order (a complete, transitive 
and antisymmetric binary relation) on ​Δ​ (the existence of ​≥​ is guaranteed by the 
Well Ordering Principle, for example). Define ​⊵​ to be the relation that applies 
​≿​ and ​≥​ lexicographically. That is, for every ​p, q  ∈  Δ​, ​p  ⊵  q​ if and only if ​p  ≻  q​ 
or ​p  ∼  q​ and ​p  ≥  q​. Note that ​⊵​ is also a linear order on ​Δ​. Finally, let ​​ρ ˆ ​​ be the 
stochastic choice function that, for each ​A  ∈  ​, assigns probability 1 to the unique 
maximizer of ​⊵​ in ​A​. It is clear that ​​ρ ˆ ​​ satisfies Regularity. Moreover, by the defi-
nition of ​⊵​, if ​p  ∈  A​ is such that ​​{ p}​  = ​ supp​​ρ ˆ ​​​​(A)​​, then ​p  ≿  q​ for every ​q  ∈  A​.  
Since ​≿​ has convex lower contour sets, this implies that, in fact, ​p  ≿  q​ for every ​
q  ∈  co​(A)​​. That is, ​​ρ ˆ ​​ is a stochastic choice function consistent with ​≿​ that satisfies 
Regularity, which is a contradiction. ∎

PROOF OF PROPOSITION 1:
Given the equivalence result in Theorem 2, we may show that (ii) is equivalent to ​

≿​ having a point of strict convexity.
Suppose, then, that ​≿​ has a point of strict convexity. That is, suppose there exist ​

p, q  ∈  Δ​ and ​λ  ∈ ​ (0, 1)​​ such that ​λp + ​(1 − λ)​q  ≻  p, q​. Since ​≿​ preserves strict 
first-order stochastic dominance, this implies that ​p, q  ≻ ​ δ​w​​​. Now, let ​​ρ ˆ ​​ be any sto-
chastic choice function consistent with ​≿​. Without loss of generality, suppose that 

​​ρ ˆ ​​(​{p, q}​)​​(p)​  ≥  0.5​. Since ​≿​ preserves strict first-order stochastic dominance, we 

also have that ​​ρ ˆ ​​(​{q, γq + ​(1 − γ)​ ​δ​w​​}​)​​(q)​  =  1​. Finally, by the continuity of ​≿​, 

there exists ​γ  ∈ ​ (0, 1)​​ such that ​λp + ​(1 − λ)​​(γq + ​(1 − γ)​ ​δ​w​​)​  ≻  p​. Since ​​ρ ˆ ​​ is 
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consistent with ​≿​, this implies that ​​ρ ˆ ​​(​{p, γq + ​(1 − γ)​ ​δ​w​​}​)​​(p)​  <  1​, which vio-
lates Strong Stochastic Transitivity.

Conversely, suppose that ​≿​ does not have a point of strict convexity. Let ​​
ρ ˆ ​​ and ​⊵​ be defined as in the proof of Theorem 2. By the argument there, ​​ρ ˆ ​​ is a 
stochastic choice function consistent with ​≿​. Now suppose ​p, q, r  ∈  Δ​ are such that 
​​ρ ˆ ​​(​{p, q}​)​​(p)​  ≥  0.5​ and ​​ρ ˆ ​​(​{q, r}​)​​(q)​  ≥  0.5.​ By construction, this is equiva-
lent to ​p  ⊵  q​ and ​q  ⊵  r​, which implies that ​p  ⊵  r​. This now implies that 
​​ρ ˆ ​​(​{p, r}​)​​(p)​  =  1.​ This shows that ​​ρ ˆ ​​ satisfies Strong Stochastic Transitivity. ​∎​

PROOF OF PROPOSITION 2:
Let ​≿​ be the Continuous Deliberate Stochastic Choice representation of 

a stochastic choice function ​ρ​ and suppose that ​ρ​ satisfies Linearity. Fix any 
pair of lotteries ​p​ and ​q​ such that ​p  ≻  q​. We claim that we must have that 
​ρ​(​{p, q}​)​​(p)​  =  1​. To see that, let ​​λ​​ ⁎​​ be the minimum value in ​​[0, 1]​​ such that 

​​λ​​ ⁎​ p + ​(1 − ​λ​​ ⁎​)​q  ≿  λp + ​(1 − λ)​q​ for every ​λ  ∈ ​ [0, 1]​​. Note that ​​λ​​ *​  ≠  0​.  
Otherwise, we would have that ​​λ​​ ⁎​ p + ​(1 − ​λ​​ *​)​q  =  q  ≿  p​, a contradiction  with 
​p  ≻  q​. If ​​λ​​ ⁎​  =  1​, then trivially we obtain that ​ρ​(​{p, q}​)​​(p)​  =  1​. Thus, we are 

left with the case ​​λ​​ ⁎​  ∈ ​ (0, 1)​​. Since ​≿​ represents ​ρ​, we must have that ​ρ​(​{​λ​​ ⁎​p + 
​(1 − ​λ​​ ⁎​)​q, q}​)​​(​λ​​ *​ p +​(1 − ​λ​​ ⁎​)​q)​ = 1​. By Linearity, we get that ​ρ​(​{p, q}​)​​(p)​ = 1​.  
Now fix any pair of lotteries ​p​ and ​q​ in ​Δ​ with ​p  ≿  q​. For each λ ∈ (0, 1), 
define ​​p​ λ​ b

 ​​   = λp + (1 − λ)​​δ​b​​​ and ​​p​ λ​ w​​   =  λp + (1 − λ)​​δ​w​​​. Since ​≿​ strictly pre-
serves first-order stochastic dominance, we have that, for any ​λ  ∈ ​ (0, 1)​​,  
​​p​ λ​ b

 ​​ ≻ ​​q​ λ​ w​​. By what we have just proved, this implies that ρ({  ​​p​ λ​ b
 ​​, ​​q​ λ​ w​​})(​​p​ λ​ b

 ​​)  =  1. 
By Linearity, we have that, for any ​α  ∈ ​ (0, 1)​​ and ​r  ∈  Δ​, ρ({α​​p​ λ​ b

 ​​ + (1 − α)r,  
α​​q​ λ​ w​​ + (1 − α)r})(α​​p​ λ​ b

 ​​ + (1 − α)r)  =  1. Since ​≿​ represents ​ρ​, this implies 
that α​​p​ λ​ b

 ​​ + (1 − α)r ≿ α​​q​ λ​ w​​ + (1 − α)r. Since this is true for any ​λ ∈ ​(0, 1)​​,  
continuity of ​≿​ implies that ​αp + ​(1 − α)​r ≿ αq + ​(1 − α)​r​.  
We have just shown that, for any ​p, q  ∈  Δ​ with ​p  ≿  q​, we have 
​αp + ​(1 − α)​r  ≿  αq + ​(1 − α)​r​, for every ​α  ∈ ​ (0, 1)​​ and ​r  ∈  Δ​. Since ​≿​ is 
continuous, it is well-known that this implies that it admits an expected-utility  
representation. That is, there exists a continuous function ​u  :  ​[w, b]​  →  ℝ​ such  
that, for every pair of lotteries ​p​ and ​q​ in ​Δ​, ​p  ≿  q​ if, and only if, ​​E​p​​​(u)​  ≥ ​ E​q​​​(u)​​. 
The proposition is now an immediate consequence of this observation. ∎
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