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APPENDIX SA: LOCAL RISK ATTITUDES TOWARD TIME LOTTERIES

CONSIDER THE CASE of discrete time and infinite horizon (T = N) and suppose that pref-
erences are represented by

V (p) = Ep

[
D(t)u(x)

]
� (SA.1)

where u : X → R+ is continuous and strictly increasing, and D : N → (0�1] is a strictly
decreasing discount function. Notice that (SA.1) generalizes EDU by allowing for nonex-
ponential discounting.

A function D is discretely convex if it is convex for all points in its domain, that is,

αD(t1)+ (1 − α)D(t2)≥ D
(
αt1 + (1 − α)t2

)
for all t1� t2 ∈ N and α ∈ (0�1) with αt1 + (1 − α)t2 ∈ N. A function D is discretely concave
if −D is discretely convex.

The following proposition establishes the relationship between attitudes toward time
lotteries and the convexity of the discount function.

PROPOSITION SA.1: Preferences represented by (SA.1) are RSTL if and only if D is dis-
cretely convex. Moreover, they cannot be RATL.

PROOF: First, we show that preferences are RSTL (RATL) if and only if D is discretely
convex (concave). The value of δ(x�t) is

V (δ(x�t))=
∑
τ �=t

D(τ)u(c)+D(t)u(c + x)�

whereas the value of the time lottery p = 〈px(t)� t〉t∈N with
∑

t px(t)t = t is

V (p)=
∑
t

px(t)

[∑
τ �=t

D(τ)u(c)+D(t)u(c + x)

]
�
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Therefore,

V (p)≥ V (δ(x�t)) ⇐⇒
[∑

px(t)D(t)−D(t)
][
u(c + x)− u(c)

]≥ 0�

which, because u is strictly increasing, holds if and only if D is discretely convex.
Next, we show that D cannot be discretely concave. Suppose D is discretely concave, so

that

D(t) ≤D(1)+ (t − 1)
[
D(2)−D(1)

]
�

Taking t ≥ 2D(1)−D(2)
D(1)−D(2) and using the fact that D is strictly decreasing, we obtain D(t) < 0,

which contradicts the fact that the discount function is positive. Q.E.D.

The second part of Proposition SA.1 states that discount functions cannot be discretely
concave, implying that we cannot have RATL.

In light of Proposition SA.1, we ask whether discounted utility can satisfy a local version
of RATL. We say that preferences are locally risk averse toward time lotteries at time t if a
sure payment at t is preferred to a random payment occurring at either t − 1 or at t + 1
with equal probabilities, that is,

V (δ(x�t))≥ V
(〈

0�5� (x� t − 1);0�5� (x� t + 1)
〉)

for all x ∈ [w�b]. Similarly, we say that preferences are locally risk seeking at t if the
reverse inequalities hold.

Our next proposition shows that even this weaker version of RATL is inconsistent with
preferences represented by (SA.1). Thus, even if we abandon (global) convexity, it would
be of limited help.

PROPOSITION SA.2: Suppose preferences are represented by (SA.1). The set of periods in
which preferences are locally RATL is finite.

PROOF: The sequence {D(t)} is monotone and bounded. Thus, by the monotone con-
vergence theorem, it converges to some number, say d ≥ 0. We need to show that the
sequence {D(t + 1)+D(t − 1)− 2D(t)} has no negative limit points:

lim inf
t→∞
(
D(t + 1)+D(t − 1)− 2D(t)

)≥ 0�

Suppose this is not true. Then there exists ε > 0 and a subsequence {D(tk)} such that

D(tk + 1)+D(tk − 1)− 2D(tk)≤ −ε

for all tk. However, because D(tk) converges to d, it follows that D(tk + 1)+D(tk − 1)−
2D(tk) converges to zero. Thus, there exists tk such that for all t > tk,

−ε

2
≤D(tk + 1)+D(tk − 1)− 2D(tk)≤ ε

2
�

which contradicts the previous inequality. Q.E.D.
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APPENDIX SB: PROOFS OF THE RESULTS IN APPENDIX B

SB.1. Proof of Proposition 5

First notice that, because preferences are dynamically consistent, there is no loss in
taking t = 3. To simplify the expressions, it is convenient to let λ ≡ (c + x)/c > 1 denote
the consumption with the prize as a proportion of consumption without it. Using the
formula in the text, the utility of the safe lottery equals

V0 = [(1 −β)c
] 1

1−ρ

[
1 +β+ λ1−ρβ2 + β3

1 −β

] 1
1−ρ

�

and the utility of the risky lottery is

V0 = [(1−β)c
] 1

1−ρ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 +β

⎡
⎢⎢⎢⎢⎣

(
λ1−ρ + β

1 −β

) 1−α
1−ρ

+
(

1 +β+ λ1−ρβ2 + β3

1 −β

) 1−α
1−ρ

2

⎤
⎥⎥⎥⎥⎦

1−ρ
1−α

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

1
1−ρ

�

Comparing these two expressions, we find that preferences are locally RSTL at t if and
only if the following inequality holds:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 +β

⎡
⎢⎢⎢⎢⎣

(
λ1−ρ + β

1 −β

) 1−α
1−ρ

+
(

1 +β+ λ1−ρβ2 + β3

1 −β

) 1−α
1−ρ

2

⎤
⎥⎥⎥⎥⎦

1−ρ
1−α

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

1
1−ρ

>

(
1 +β+ λ1−ρβ2 + β3

1 −β

) 1
1−ρ

� (SB.1)

To simplify notation, in what follows we will repeatedly use the function f : R → R,
defined by f (x) ≡ x

1−α
1−ρ . We will also repeatedly use the following fact:

λ1−ρ + β

1 −β
+ 1 +β+ λ1−ρβ2 + β3

1 −β

2

{
>
<

}
1 + λ1−ρβ+ β2

1 −β

⇐⇒ ρ

{
<
>

}
1� (SB.2)

We first verify that (SB.1) always holds when α≤ 1.

LEMMA SB.1: Let α≤ 1. Then preferences are RSTL.

PROOF: There are three cases: (i) α≤ ρ≤ 1, (ii) ρ < α≤ 1, and (iii) α≤ 1 < ρ.
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Case (i): α≤ ρ≤ 1. Since 1 − ρ < 0, inequality (SB.1) can be written as

(
λ1−ρ + β

1 −β

) 1−α
1−ρ

+
(

1 +β+ λ1−ρβ2 + β3

1 −β

) 1−α
1−ρ

2
>

(
1 + λ1−ρβ+ β2

1 −β

) 1−α
1−ρ

�

Because ρ < 1, inequality (SB.2), we also know that

λ1−ρ + β

1 −β
+ 1 +β+ λ1−ρβ2 + β3

1 −β

2
> 1 + λ1−ρβ+ β2

1 −β
�

The result then follows from Jensen’s inequality, since f (x) is increasing and convex when
α�ρ≤ 1.

Case (ii): ρ < α ≤ 1. To simplify notation, define η ≡ 1−α
1−ρ

∈ (0�1), where η > 0 since
both α and ρ are lower than 1, and η < 1 since α > ρ. We can rewrite inequality (SB.1)
substituting α for η as

(
λ1−ρ + β

1 −β

)η

+
(

1 +β+ λ1−ρβ2 + β3

1 −β

)η

2
>

(
1 + λ1−ρβ+ β2

1 −β

)η

�

Rearrange this condition as

T(η) ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1

λ1−ρ + β

1 −β

+β

⎞
⎟⎟⎟⎟⎟⎟⎠

η

+

⎛
⎜⎜⎝ 1

1 + λ1−ρβ+ β2

1 −β

+β

⎞
⎟⎟⎠

η

> 2�

It is straightforward to verify that T is a convex function of η. Recall that η ∈ (0�1).
Evaluating at η= 0, we obtain T(0)= 2.

Since T is a convex function of η, it suffices to show that its derivative with respect to
η at zero is positive. We claim that this is true. To see this, notice that

T ′(0)= ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

1 + λ1−ρβ+ β2

1 −β

+β

1

λ1−ρ + β

1 −β

+β

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
� (SB.3)

which can be shown to be strictly positive for any ρ < 1. Thus, T(η) > 2 for all η ∈ (0�1],
establishing RSTL.
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Case (iii): α ≤ 1 < ρ. Inequality (SB.1) can be simplified as⎡
⎢⎢⎢⎢⎣

(
λ1−ρ + β

1 −β

) 1−α
1−ρ

2
+

(
1 +β+ λ1−ρβ2 + β3

1 −β

) 1−α
1−ρ

2

⎤
⎥⎥⎥⎥⎦

1−ρ
1−α

< 1 + λ1−ρβ+ β2

1 −β
�

Since 1−α
1−ρ

< 0, this holds if

(
λ1−ρ + β

1 −β

) 1−α
1−ρ

+
(

1 +β+ λ1−ρβ2 + β3

1 −β

) 1−α
1−ρ

2
>

(
1+λ1−ρβ+ β2

1 −β

) 1−α
1−ρ

� (SB.4)

Notice that f (x) = x
1−α
1−ρ is convex since

f ′′(x)=
(

1 − α

1 − ρ

)(
1 − α

1 − ρ
− 1
)
x

1−α
1−ρ −2 > 0�

where we used 1−α
1−ρ

< 0 and 1−α
1−ρ

− 1 < 0. Thus, by Jensen’s inequality,

(
λ1−ρ + β

1 −β

) 1−α
1−ρ

+
(

1 +β+ λ1−ρβ2 + β3

1 −β

) 1−α
1−ρ

2

>

⎛
⎜⎜⎝
λ1−ρ + β

1 −β
+ 1 +β+ λ1−ρβ2 + β3

1 −β

2

⎞
⎟⎟⎠

1−α
1−ρ

� (SB.5)

From condition (SB.2), we have

λ1−ρ + β

1 −β
+ 1 +β+ λ1−ρβ2 + β3

1 −β

2
< 1 + λ1−ρβ+ β2

1 −β
�

Raising to the power of 1−α
1−ρ

< 0, gives

⎛
⎜⎜⎝
λ1−ρ + β

1 −β
+ 1 +β+ λ1−ρβ2 + β3

1 −β

2

⎞
⎟⎟⎠

1−α
1−ρ

>

(
1 + λ1−ρβ+ β2

1 −β

) 1−α
1−ρ

�

Substituting in (SB.5), we obtain(
λ1−ρ + β

1 −β

) 1−α
1−ρ

+
(

1 +β+ λ1−ρβ2 + β3

1 −β

) 1−α
1−ρ

2
>

(
1 + λ1−ρβ+ β2

1 −β

) 1−α
1−ρ

�

which is precisely the condition for RSTL (SB.4). Q.E.D.
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LEMMA SB.2: Let α≤ ρ. Then preferences are RSTL.

PROOF: By Lemma SB.1, the result is immediate when α ≤ 1. Therefore, let α > 1
(which, by the statement of the lemma, requires ρ > 1).

Rearranging inequality (SB.1), we obtain the following condition for RSTL:(
λ1−ρ + β

1 −β

) 1−α
1−ρ

+
(

1 +β+ λ1−ρβ2 + β3

1 −β

) 1−α
1−ρ

2
<

(
1+λ1−ρβ+ β2

1 −β

) 1−α
1−ρ

� (SB.6)

Moreover, from condition (SB.2), we have

λ1−ρ + β

1 −β
+ 1 +β+ λ1−ρβ2 + β3

1 −β

2
< 1 + λ1−ρβ+ β2

1 −β
�

Notice that f (x) is increasing when α�ρ≥ 1 and it is concave when ρ≥ α. Then condition
(SB.6) follows by Jensen’s inequality. Q.E.D.

We are now ready to prove the main result.
First, suppose ρ < 1. Let γ ≡ − 1−α

1−ρ
∈ (0�+∞) so we can rewrite inequality (SB.1) in

terms of γ and ρ as

1(
λ1−ρ + β

1 −β

)γ + 1(
1 +β+ λ1−ρβ2 + β3

1 −β

)γ <
2(

1 + λ1−ρβ+ β2

1 −β

)γ �

which can be simplified as

G(γ)≡

⎛
⎜⎜⎝ 1

λ1−ρ + β

1 −β

+β

⎞
⎟⎟⎠

γ

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1 + λ1−ρβ+ β2

1 −β

+β

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

γ

< 2�

The first term in the expression on the left is convex and decreasing in γ, because the term
inside the first brackets is smaller than 1:

ρ≤ 1 =⇒ 1

λ1−ρ + β

1 −β

+β ≤ 1�

The second term is convex and increasing in γ because the term inside the second brackets
is greater than 1:

ρ≤ 1 =⇒ 1
1

1 + λ1−ρβ+ β2

1 −β

+β

≥ 1�

Since the sum of convex functions is convex, it follows that G is a convex function of γ.
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Evaluating γ at the extremes, we obtain G(0) = 2 and limγ→∞ G(γ) = +∞ > 2. More-
over, note that

G′(0)= ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

λ1−ρ + β

1 −β

+β

1

1 + λ1−ρβ+ β2

1 −β

+β

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
�

which, following some algebraic manipulations, can be shown to be strictly negative.
Thus, there exists γ̄ > 0 such that G(γ) > 2 (RATL) if and only if γ > γ̄. But, since

γ = − 1−α
1−ρ

(so that γ is strictly increasing in α), then there exists a finite ᾱρ�β�x�c > max{1�ρ}
such that we have RATL if α > ᾱρ�β�x�c and RSTL if α < ᾱρ�β�x�c . This concludes the proof
for ρ < 1.

Now suppose that α > ρ ≥ 1 (the result is trivial if α ≤ ρ from Lemma SB.2). Let η ≡
1−α
1−ρ

≥ 1. Then we have RSTL if and only if

(
λ1−ρ + β

1 −β

)η

+
(

1 +β+ λ1−ρβ2 + β3

1 −β

)η

2
<

(
1 + λ1−ρβ+ β2

1 −β

)η

�

Rearrange this condition as

H(η) ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1

λ1−ρ + β

1 −β

+β

⎞
⎟⎟⎟⎟⎟⎟⎠

η

+

⎛
⎜⎜⎝ 1

1 + λ1−ρβ+ β2

1 −β

+β

⎞
⎟⎟⎠

η

< 2� (SB.7)

As before, it can be shown that H(η) is convex. Notice that limη→∞ H(η) = +∞ > 2.
Moreover, H(1) < 2, since

λ1−ρ < 1 ⇐⇒ 1
1

λ1−ρ + β

1 −β

+β

+ 1

1 + λ1−ρβ+ β2

1 −β

+β< 2�

Thus, there exists η̄ > 0 such that H(η) > 2 (RATL) if and only if η> η̄. The result then
follows from the fact that η is increasing in α.

To conclude the proof, it remains to be shown that limx↘0 ᾱρ�β�x�c = +∞. Both sides of
(SB.1) are equal to ( 1

1−β
)

1
1−ρ when λ = 1. The derivative of the expression on the right

(utility of the safe lottery) with respect to λ at λ = 1 is

(
1

1 −β

) ρ
1−ρ

β2� (SB.8)
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The derivative of the expression on the left (utility of the risky lottery) with respect to λ
at λ= 1 is

β
1 +β2

2

(
1

1 −β

) ρ
1−ρ

� (SB.9)

With some algebraic manipulations, it can be shown that for any β ∈ (0�1), the term in
(SB.8) is lower than the one in (SB.9). Q.E.D.

SB.2. Proof of Proposition 6

The proof of the proposition will be presented in a series of lemmas. As in the proof
of Proposition 5, due to multiplicative separability, it suffices to consider lotteries with
background consumption c = 1. We start by obtaining a formula for the value of the kind
of lotteries considered throughout this proof.

LEMMA SB.3: In EZ, the value of lottery p ≡ 1
2 × [1� (x�2)] + 1

2 × [1� (y� t)] is

U(p)=
{
(1 −β)

+β

[[
(1 −β)(x+ 1)1−ρ +β

] 1−α
1−ρ + {1 + (1 −β) ·βt−2[(y + 1)1−ρ − 1

]} 1−α
1−ρ

2

] 1−ρ
1−α
} 1

1−ρ

�

PROOF: For notational simplicity, let z1 ≡ 1 + x and z2 ≡ 1 + y . We start by calculating
the continuation value in period t, which is a constant stream of one in both lotteries:
Vt = 1. Proceeding backwards, there are two possible states of the world, each with 50%
chance: one in which the early prize is paid (in period 2), and one in which the late prize
is paid (at t > 2).

When the early prize is paid, the individual still gets a constant stream of one for any
t > 2, so that V3 = 1. Plugging back in the utility at period 2, gives

V2 = [(1 −β)z1−ρ
1 +β

] 1
1−ρ �

When the late prize is paid, we have

Vt =
[
(1 −β)z1−ρ

2 +β
] 1

1−ρ �

We claim that, for any n= {1� � � � � t − 2},

Vt−n = [1 − (1 −β)βn
(
1 − z1−ρ

2

)] 1
1−ρ �

so that, in particular,

V2 = [1 − (1 −β) ·βt−2
(
1 − z1−ρ

2

)] 1
1−ρ �
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To see this, we proceed inductively. At t − 1, we have

Vt−1 = {(1 −β)+β
[
Et

(
V 1−α
t

)] 1−ρ
1−α
} 1

1−ρ

= {(1 −β)+β
{[
(1 −β)z1−ρ

2 +β
] 1−α

1−ρ
} 1−ρ

1−α
} 1

1−ρ

= [(1 −β)
(
1 +βz1−ρ

2

)+β2
] 1

1−ρ �

Moving back another period, gives

Vt−2 = {1 −β+β
[
(1 −β)

(
1 +βz1−ρ

2

)+β2
]} 1

1−ρ

= {(1 −β)
(
1 +β+β2z1−ρ

2

)+β3
} 1

1−ρ �

To obtain the induction result, suppose that

Vt−n = {(1 −β)
(
1 +β+ · · · +βn−1 +βnz1−ρ

2

)+βn+1
} 1

1−ρ �

Then

Vt−(n+1) = [(1 −β)+β
(
V 1−α
t−n

) 1−ρ
1−α
] 1

1−ρ

= [(1 −β)+β
[
(1 −β)

(
1 +β+ · · · +βnz1−ρ

2

)+βn+1
]] 1

1−ρ

= [(1 −β)
(
1 +β+β2 + · · · +βn +βn+1z1−ρ

2

)+βn+2
] 1

1−ρ �

establishing the induction formula. Using the formula for the geometric progression gives

Vt−n =
[
(1 −β)

(
1 −βn

1 −β
+βnz1−ρ

2

)
+βn+1

] 1
1−ρ

= [1 −βn +βn+1 + (1 −β)
(
βnz1−ρ

2

)] 1
1−ρ

= [1 + (1 −β)βn
(
z1−ρ

2 − 1
)] 1

1−ρ �

which establishes our claim.
Since each of the two states happens with probability 1

2 , we have

E1

[
V 1−α

2

]=
[
(1 −β)z1−ρ

1 +β
] 1−α

1−ρ + [1 + (1 −β) ·βt−2
(
z1−ρ

2 − 1
)] 1−α

1−ρ

2
�

Therefore, the value from the lottery equals

V1 =
{
(1 −β)+β

{[
(1 −β)z1−ρ

1 +β
] 1−α

1−ρ + [1 + (1 −β) ·βt−2
(
z1−ρ

2 − 1
)] 1−α

1−ρ

2

} 1−ρ
1−α
} 1

1−ρ

�

concluding the proof. Q.E.D.
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Next, we obtain necessary conditions for EZ preferences not to be RSTL. By station-
arity, it suffices to compare lotteries in which the early prize is paid at t = 2. That is,
preferences are RSTL if and only if, for all x > 0 and all ζ ∈ {1�2�3� � � �},

1
2

× [1� (x�2)
]+ 1

2
× [1� (x�2 + 2ζ)

]� [1� (x�2 + ζ)
]
�

As in the proof of Proposition 5, let λ ≡ c+x
c

= 1 + x > 1. The value of the safe time
lottery is

V S ≡ (1 −β)
1

1−ρ ·
[
βζ+1

(
λ1−ρ − 1

)+ 1
1 −β

] 1
1−ρ

�

Using the formula from Lemma SB.3, we obtain the value of the risky time lottery:

V R =

⎧⎪⎪⎨
⎪⎪⎩(1 −β)+β

⎡
⎣[(1 −β)λ1−ρ +β

] 1−α
1−ρ + [1 + (1 −β) ·βt2−2(λ1−ρ − 1

)] 1−α
1−ρ

2

⎤
⎦

1−ρ
1−α

⎫⎪⎪⎬
⎪⎪⎭

1
1−ρ

= (1 −β)
1

1−ρ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 +β

⎡
⎢⎢⎢⎢⎣

(
1

1 −β
+ λ1−ρ − 1

) 1−α
1−ρ +

[
1

1 −β
+β2ζ(λ1−ρ − 1

)] 1−α
1−ρ

2

⎤
⎥⎥⎥⎥⎦

1−ρ
1−α

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

1
1−ρ

�

Therefore, preferences are RSTL if and only if

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 +β

⎡
⎢⎢⎢⎢⎣

(
1

1 −β
+ λ1−ρ − 1

) 1−α
1−ρ

+
[

1
1 −β

+β2ζ
(
λ1−ρ − 1

)] 1−α
1−ρ

2

⎤
⎥⎥⎥⎥⎦

1−ρ
1−α

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

1
1−ρ

≥
[

1
1 −β

+βζ+1
(
λ1−ρ − 1

)] 1
1−ρ

(SB.10)

for all λ > 1 and all ζ ≥ 1.
To simplify notation, let f (x) ≡ x

1−α
1−ρ . In the proofs below, we will repeatedly use the

following fact:(
1

1 −β
+ λ1−ρ − 1

)
+
[

1
1 −β

+β2ζ
(
λ1−ρ − 1

)]
2

{
>
<

}
1

1 −β
+βζ

(
λ1−ρ − 1

)

⇐⇒ ρ

{
<
>

}
1� (SB.11)

We first verify that (SB.10) always holds when α< 1.
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LEMMA SB.4: Let α< 1. Then preferences are RSTL.

PROOF: There are three cases: (i) α≤ ρ < 1, (ii) ρ < α< 1, and (iii) α< 1 < ρ.
Case (i): α≤ ρ < 1. Since ρ < 1, equation (SB.10) can be written as

1 +β

⎡
⎢⎢⎢⎢⎣

(
1

1 −β
+ λ1−ρ − 1

) 1−α
1−ρ

+
[

1
1 −β

−β2ζ
(
λ1−ρ − 1

)] 1−α
1−ρ

2

⎤
⎥⎥⎥⎥⎦

1−ρ
1−α

≥ 1
1 −β

+βζ+1
(
λ1−ρ − 1

)
�

Algebraic manipulations and the fact that 1−ρ

1−α
> 0 allow us to rewrite this condition as

f

(
1

1 −β
+ λ1−ρ − 1

)
+ f

(
1

1 −β
−β2ζ

(
λ1−ρ − 1

))
2

≥ f

(
1

1 −β
+βζ

(
λ1−ρ − 1

))
�

Since f is increasing and convex when α< 1 and ρ < 1, (SB.11) implies that this inequality
is true.

Case (ii): ρ < α< 1. Use ρ < 1 to rewrite equation (SB.10) as

(
1

1 −β
+ λ1−ρ − 1

) 1−α
1−ρ

+
[

1
1 −β

+β2ζ
(
λ1−ρ − 1

)] 1−α
1−ρ

2
≥
[

1
1 −β

+βζ
(
λ1−ρ − 1

)] 1−α
1−ρ

�

Rearrange this condition as

⎡
⎢⎢⎣

1
1 −β

+ λ1−ρ − 1

1
1 −β

+βζ
(
λ1−ρ − 1

)
⎤
⎥⎥⎦

1−α
1−ρ

+

⎡
⎢⎢⎣

1
1 −β

+β2ζ
(
λ1−ρ − 1

)
1

1 −β
+βζ

(
λ1−ρ − 1

)
⎤
⎥⎥⎦

1−α
1−ρ

≥ 2�

To simplify notation, denote γ ≡ 1−α
1−ρ

∈ (0�1), where γ > 0 since α< 1 and ρ < 1 and γ < 1
follows from ρ < α. After some algebraic manipulations, this inequality can be written as

M(γ) ≡

⎡
⎢⎢⎢⎣ 1

1 −βζ

1 + (1 −β)
(
λ1−ρ − 1

) +βζ

⎤
⎥⎥⎥⎦

γ

+

⎡
⎢⎢⎣ 1

1
1 −βζ

+βζ

(
1 −β

1 −βζ

)(
λ1−ρ − 1

) +βζ

⎤
⎥⎥⎦

γ

≥ 2�

It is straightforward to show that the expression on the left, M(γ), is a convex function.
Recall that γ ∈ (0�1). Note that M(0) = 2. Since M is convex, it suffices to show that its
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derivative with respect to γ at zero is positive. But note that

M ′(0)= ln

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1 −βζ
+βζ ·

(
1 −β

1 −βζ

)(
λ1−ρ − 1

) +βζ

1 −βζ

1 + (1 −β)
(
λ1−ρ − 1

) +βζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
�

which, after some algebraic manipulations, can be shown to be strictly positive for any
ρ < 1. Thus, M(γ) > 2 for all γ ∈ (0�1], establishing that (SB.10) holds.

Case (iii): α< 1 < ρ. Since ρ > 1, equation (SB.10) becomes

⎡
⎢⎢⎢⎢⎣

(
1

1 −β
+ λ1−ρ − 1

) 1−α
1−ρ

+
[

1
1 −β

+β2ζ
(
λ1−ρ − 1

)] 1−α
1−ρ

2

⎤
⎥⎥⎥⎥⎦

1−ρ
1−α

≤ 1
1 −β

+βζ
(
λ1−ρ − 1

)
�

and, because 1−ρ

1−α
< 0, this inequality holds if and only if

f

(
1

1 −β
+ λ1−ρ − 1

)
+ f

(
1

1 −β
+β2ζ

(
λ1−ρ − 1

))
2

≥ f

(
1

1 −β
+βζ

(
λ1−ρ − 1

))
� (SB.12)

Note that α < 1 < ρ implies that f is decreasing and convex. Since f is convex, Jensen’s
inequality implies

f

(
1

1 −β
+ λ1−ρ − 1

)
+ f

(
1

1 −β
+β2ζ

(
λ1−ρ − 1

))
2

> f

⎛
⎜⎜⎝
(

1
1 −β

+ λ1−ρ − 1
)

+
[

1
1 −β

+β2ζ
(
λ1−ρ − 1

)]
2

⎞
⎟⎟⎠ �

Then, by (SB.11) and the fact that f is decreasing, it follows that

f

(
1

1 −β
+ λ1−ρ − 1

)
+ f

(
1

1 −β
+β2ζ

(
λ1−ρ − 1

))
2

> f

(
1

1 −β
+βζ

(
λ1−ρ − 1

))
�

showing that inequality (SB.12) holds. Q.E.D.

LEMMA SB.5: Let α≤ ρ. Then preferences are RSTL.
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PROOF: By the previous lemma, the result is immediate when α < 1. Therefore, let
α > 1 (which, by the statement of the lemma, requires ρ > 1). Using ρ ≥ α > 1, we can
rewrite condition (SB.10) as

f

(
1

1 −β
+ λ1−ρ − 1

)
+ f

(
1

1 −β
+β2ζ

(
λ1−ρ − 1

))
2

≤ f

(
1

1 −β
+βζ

(
λ1−ρ − 1

))
�

which follows from condition (SB.11) and from the fact that f is increasing and concave
when ρ > α> 1. Q.E.D.

Therefore, when either α < 1 or α ≤ ρ, preferences must be RSTL. To show that a
violation of RSTL implies a violation of SI, we must consider the remaining cases (where
violations of RSTL are possible): α> 1 > ρ and α ≥ ρ > 1. The next two lemmas consider
each of these cases separately.

LEMMA SB.6: Let α> 1 > ρ. Then preferences violate SI.

PROOF: Consider the lotteries pH ≡ 1
2 × [1� (H�2)] + 1

2 × [1� (1�3)] and qH ≡ 1
2 ×

[1� (1�2)] + 1
2 × [1� (H�3)]. To show that preferences violate SI, it suffices to show that

qH � pH for some H > 1. By Lemma SB.3, the values of these lotteries are

U(pH)=
{
(1 −β)

+β

[[
(1 −β)(H + 1)1−ρ +β

] 1−α
1−ρ + [1 + (1 −β) ·β(21−ρ − 1

)] 1−α
1−ρ

2

] 1−ρ
1−α
} 1

1−ρ

and

U(qH)=
{
(1 −β)

+β

[[
(1 −β)21−ρ +β

] 1−α
1−ρ + [1 + (1 −β) ·β((H + 1)1−ρ − 1

)] 1−α
1−ρ

2

] 1−ρ
1−α
} 1

1−ρ

�

Since α> 1 > ρ, we find that U(qH) >U(pH) if and only if

[
(1 −β)21−ρ +β

] 1−α
1−ρ − [(1 −β)(H + 1)1−ρ +β

] 1−α
1−ρ

<
[
1 +β(1 −β)

(
21−ρ − 1

)] 1−α
1−ρ − {1 +β(1 −β)

[
(H + 1)1−ρ − 1

]} 1−α
1−ρ �

Because 1−α
1−ρ

< 0, as H ↗ +∞, the LHS converges to [(1 − β)21−ρ + β] 1−α
1−ρ , whereas the

RHS converges to [1+β(1−β)(21−ρ −1)] 1−α
1−ρ . Thus, there exists H̄ such that this inequal-

ity holds for all H > H̄ if

[
(1 −β)21−ρ +β

] 1−α
1−ρ <

[
1 +β(1 −β)

(
21−ρ − 1

)] 1−α
1−ρ �
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Use the fact that 1−α
1−ρ

< 0 to rewrite this inequality as

(1 −β)21−ρ +β> 1 +β(1 −β)
(
21−ρ − 1

) ⇐⇒ (
21−ρ − 1

)
(1 −β) > 0�

which is always true since ρ < 1. Q.E.D.

LEMMA SB.7: Let α> ρ> 1. If ρ−1
α−ρ

< 1 − ln[1−(1−β)β]
lnβ , then preferences violate SI.

PROOF: We claim that there exist H and L with H >L> 0 such that

1
2

× [1� (H�2)
]+ 1

2
× [1� (L�3)

]≺ 1
2

× [1� (L�2)
]+ 1

2
× [1� (H�2 + 3)

]
(SB.13)

if and only if

ρ− 1
α− ρ

< 1 − ln
[
1 − (1 −β)β

]
lnβ

� (SB.14)

For each fixed zH and zL, consider the following lotteries:

pH�L ≡ 1
2

× [1� (zH − 1�2)
]+ 1

2
× [1� (zL − 1�3)

]
and

qH�L ≡ 1
2

× [1� (zL − 1�2)
]+ 1

2
× [1� (zH − 1�3)

]
�

By Lemma SB.3, the values of lotteries pH�L and qH�L are

U(pH�L) =
{
(1 −β)+β

[[
(1 −β)z1−ρ

H +β
] 1−α

1−ρ + [1 +β(1 −β)
(
z1−ρ
L − 1

)] 1−α
1−ρ

2

] 1−ρ
1−α
} 1

1−ρ

�

U(qH�L) =
{
(1 −β)+β

[[
(1 −β)z1−ρ

L +β
] 1−α

1−ρ + [1 +β(1 −β)
(
z1−ρ
H − 1

)] 1−α
1−ρ

2

] 1−ρ
1−α
} 1

1−ρ

�

For notational simplicity, let μH ≡ 1 − z1−ρ
H and μL ≡ 1 − z1−ρ

L and note that 0 < μL <
μH < 1 (since 1 < zL < zH and ρ > 1). Using the fact that 1

1−ρ
< 0 and 1−α

1−ρ
> 0, it follows

that U(qH�L) > U(pH�L) if and only if

[
(1 −β)(1 −μL)+β

] 1−α
1−ρ + [1 −β(1 −β)μH

] 1−α
1−ρ

<
[
(1 −β)(1 −μH)+β

] 1−α
1−ρ + [1 −β(1 −β)μL

] 1−α
1−ρ �

Let φ(μ) ≡ [(1 − β)(1 − μ) + β] 1−α
1−ρ − [1 − β(1 − β)μ] 1−α

1−ρ , and note that, by the pre-
vious inequality, there exists zH > zL > 1 such that U(qH�L) > U(pH�L) if and only if
φ(μH) > φ(μL) for some μH and μL with 0 <μL < μH < 1. That is, U(qH�L) > U(pH�L)
for some zH > zL > 1 if and only if φ(·) is not weakly decreasing in the interval (0�1),
which, because φ(·) is differentiable, is true if and only if φ′(μ) > 0 for some μ.

Differentiating φ(·), gives

φ′(μ) =
(

1 − α

1 − ρ

)
(1 −β)

{
β
[
1 −β(1 −β)μ

] 1−α
1−ρ −1 − [(1 −β)(1 −μ)+β

] 1−α
1−ρ −1}

�
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so that φ′(μ) > 0 if and only if

β
[
1 −β(1 −β)μ

] 1−α
1−ρ −1

>
[
(1 −β)(1 −μ)+β

] 1−α
1−ρ −1

�

Notice that the terms inside the brackets are positive (because μ ∈ (0�1)), so we can
simplify this condition as

μ>
1

1 −β
· 1 −β

ρ−1
α−ρ

1 −β
ρ−1
α−ρ+1

for some μ ∈ (0�1). But this is true if and only if the inequality holds for μ= 1:

1 >
1

1 −β
· 1 −β

ρ−1
α−ρ

1 −β
ρ−1
α−ρ+1

�

which can be rearranged as

β
ρ−1
α−ρ >

β

1 − (1 −β)β
�

Taking logs of both sides gives the following necessary and sufficient condition for (SB.13):

ρ− 1
α− ρ

lnβ> lnβ− ln
[
1 − (1 −β)β

]
�

which, because lnβ< 0, can be rearranged as

ρ− 1
α− ρ

< 1 − ln
[
1 − (1 −β)β

]
lnβ

�

which is condition (SB.14). Q.E.D.

LEMMA SB.8: Let α≥ ρ > 1. Preferences are RSTL if and only if

(
1

1 −β
− y

) 1−α
1−ρ

+
(

1
1 −β

−β2ζy

) 1−α
1−ρ

2
≤
(

1
1 −β

−βζy

) 1−α
1−ρ

(SB.15)

for all y ∈ (0�1) and all ζ ∈ {1�2�3� � � �}.

PROOF: Let γ ≡ 1−α
1−ρ

> 0. By (SB.10) (and the fact that ρ > 1), preferences are RSTL if
and only if

(
1

1 −β
+ λ1−ρ − 1

)γ

+
[

1
1 −β

+β2ζ
(
λ1−ρ − 1

)]γ
2

≤
[

1
1 −β

+βζ
(
λ1−ρ − 1

)]γ
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for all λ > 1 and all ζ ≥ 1. Let y ≡ 1 − λ1−ρ and notice that y ∈ (0�1) (since λ ∈ (1�+∞)
and ρ > 1). Thus, we can rewrite the RSTL condition as(

1
1 −β

− y

)γ

+
(

1
1 −β

−β2ζy

)γ

2
≤
(

1
1 −β

−βζy

)γ

for all y ∈ (0�1). Q.E.D.

LEMMA SB.9: Let α ≥ ρ > 1 and suppose preferences violate RSTL. Then preferences
violate SI.

PROOF: Let γ ≡ 1−α
1−ρ

> 1. We claim that for each fixed y , β, and ζ, there exists a thresh-
old γ̄y�β�ζ such that preferences are RSTL if and only if γ ≥ γ̄y�β�ζ , which, by the previous
lemma, is equivalent to(

1
1 −β

− y

)γ

+
(

1
1 −β

−β2ζy

)γ

2
>

(
1

1 −β
−βζy

)γ

⇐⇒ γ < γ̄y�β�ζ� (SB.16)

To see this, rearrange (SB.16) as

R(γ) ≡

⎛
⎜⎜⎝

1
1 −β

− y

1
1 −β

−βζy

⎞
⎟⎟⎠

γ

+

⎛
⎜⎜⎝

1
1 −β

−β2ζy

1
1 −β

−βζy

⎞
⎟⎟⎠

γ

> 2� (SB.17)

Notice first that R is a convex function of γ, since

R′′(γ)=

⎛
⎜⎜⎝

1
1 −β

− y

1
1 −β

−βζy

⎞
⎟⎟⎠

γ

·

⎡
⎢⎢⎣ln

⎛
⎜⎜⎝

1
1 −β

− y

1
1 −β

−βζy

⎞
⎟⎟⎠
⎤
⎥⎥⎦

2

+

⎛
⎜⎜⎝

1
1 −β

−β2ζy

1
1 −β

−βζy

⎞
⎟⎟⎠

γ

·

⎡
⎢⎢⎣ln

⎛
⎜⎜⎝

1
1 −β

−β2ζy

1
1 −β

−βζy

⎞
⎟⎟⎠
⎤
⎥⎥⎦

2

> 0�

Algebraic manipulations establish that (SB.17) fails for γ = 1. Moreover, (SB.17) is always
true for γ large enough, since limγ→∞ R(γ) = +∞ > 2� Therefore, there exists a unique
γ̄β�y�ζ > 1 such that the inequality holds if and only if γ > γ̄β�y�ζ .

Recall from Lemma SB.7 that preferences violate SI if

ρ− 1
α− ρ

< 1 − ln
[
1 − (1 −β)β

]
lnβ

�
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Since γ − 1 = α−ρ

ρ−1 , this condition can be written as

1
γ − 1

< 1 − ln
[
1 − (1 −β)β

]
lnβ

�

which can be further simplified as

γ >
ln
[
1 − (1 −β)β

]− 2 lnβ

ln
[
1 − (1 −β)β

]− lnβ
�

Therefore, preferences violate RSTL if and only if γ ≥ γ̄β�y�ζ , whereas they violate SI if
γ ≥ ln[1−(1−β)β]−2 lnβ

ln[1−(1−β)β]−lnβ . To conclude the proof, it suffices to show that the cutoff for RSTL
violations is higher than the (sufficient) cutoff for SI violations:

γ̄β�y�ζ ≥ ln
[
1 − (1 −β)β

]− 2 lnβ

ln
[
1 − (1 −β)β

]− lnβ
�

Recall that γ̄β�y�ζ solves

R(γ) =

⎛
⎜⎜⎝

1
1 −β

− y

1
1 −β

−βζy

⎞
⎟⎟⎠

γ

+

⎛
⎜⎜⎝

1
1 −β

−β2ζy

1
1 −β

−βζy

⎞
⎟⎟⎠

γ

= 2�

Recall that R is convex, R(1) < 2 and R(∞) > 2. Thus, we need to show that

R

(
ln
[
1 − (1 −β)β

]− 2 lnβ

ln
[
1 − (1 −β)β

]− lnβ

)
< 2�

Note that

ln
[
1 − (1 −β)β

]− 2 lnβ

ln
[
1 − (1 −β)β

]− lnβ
< 2�

So, it suffices to show that⎛
⎜⎜⎝

1
1 −β

− y

1
1 −β

−βζy

⎞
⎟⎟⎠

2

+

⎛
⎜⎜⎝

1
1 −β

−β2ζy

1
1 −β

−βζy

⎞
⎟⎟⎠

2

< 2

for all for all y ∈ (0�1) and all ζ�β. Rearrange this expression as(
1

1 −β
− y

)2

+
(

1
1 −β

−β2ζy

)2

2
<

(
1

1 −β
−βζy

)2

�

With some algebraic manipulations, this inequality can be rewritten as

(
1 +βζ

)2
<

2
1 −β
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for all y ∈ (0�1) and all ζ = 1�2�3 � � � . Since the LHS is decreasing in ζ (because β< 1),
it suffices to verify this condition at ζ = 1, where we have

(1 +β)2 <
2

1 −β
⇐⇒ 0 < 1 −β+β2 +β3�

Let ξ(β) ≡ 1 −β+β2 +β3 and notice that

ξ′(β) = −1 + 2β+ 3β2�

which has roots β = −1 and β = 1
3 . Moreover, ξ is convex at β ∈ [0�1] since ξ′′(β) =

2 + 6β> 0. Therefore, ξ′(β) < 0 for β ∈ [0� 1
3) and ξ′(β) > 0 for β ∈ ( 1

3 �1], showing that
ξ has a minimum at β= 1

3 :

ξ(β) ≥ ξ

(
1
3

)
= 1 − 1

3
+
(

1
3

)2

+
(

1
3

)3

> 0�

concluding the proof. Q.E.D.

Combining the results from the lemmas above, it follows that preferences that satisfy
SI must be RSTL, concluding the proof of the proposition. To see this, recall that:

• When α < 1, preferences are always RSTL, regardless of whether they satisfy SI
(Lemma SB.4).

• When ρ ≥ α, preferences are always RSTL, regardless of whether they satisfy SI
(Lemma SB.5).

• When α> 1 > ρ, SI never holds (Lemma SB.6).
• When α > ρ > 1, SI holds if γ is below a threshold that is lower than the threshold

for RSTL ( ln[1−(1−β)β]−2 lnβ
ln[1−(1−β)β]−lnβ < γ̄β�y�ζ), so that SI implies RSTL (Lemma SB.9). Q.E.D.

Co-editor Joel Sobel handled this manuscript.

Manuscript received 13 June, 2018; final version accepted 13 November, 2019; available
online 18 November, 2019.


	Appendix SA: Local Risk Attitudes Toward Time Lotteries
	Appendix SB: Proofs of the Results in Appendix B
	Proof of Proposition 5
	Proof of Proposition 6


