Information-dependent Utilities and Beliefs

DAVID DILLENBERGERT R. VIJAY KRISHNAT PHILIPP SADOWSKI§

April 21, 2020 at 23:53 hrs

Abstract

We axiomatize a model of preferences over menus of acts in which not only beliefs
but also state-dependent utilities depend on the individual’s choice of information.
Our most general model features both contemplation about the appropriate way to
evaluate alternatives as well as acquisition of information about the payoff relevant
state of the world, before a choice is made. We then focus on the special case where
the value of alternatives depends directly and exclusively on the state of the world

and on the choice of information about that state.
KeYy WoORDS: Contemplation, Information Acquisition

JEL Classification: D80, D81, D90

1. Introduction

We study an individual who has preference over menus of acts, defined on some state

space S. We begin by axiomatizing a representation, according to which the value of
a menu x is given by

o V(z) = max L max 3 pa, (£(5)) du(p, v)

peM fex
s
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The representation || features simultaneous information acquisition about the state
of the world s € S and contemplation about how to evaluate alternatives via a utility
u, that is randomly drawn from a set of possible state-dependent utilities . The
interpretation is that the individual chooses a joint distribution over beliefs and utilities
from a specific feasible set, and for each realized pair chooses the act that maximizes
the corresponding expected utility. This is a constrained optimization problem, with
the constraint being specified by properties of the set 91. This model unifies the
approach of de Oliveira et al. (2017) that study information uncertainty and that of
Ergin and Sarver (2010a) that study uncertainty about future tastes. In Section 3 we
characterize this representation, highlighting the way in which it behaviorally relaxes
each of the aforementioned models.

In Section 4 we proceed to study a special case of [#]|, where the individual
can choose only a partition P of S, prior to choosing an act. Any act f has two
components, f; and fo. Upon learning the cell J € P, the individual updates the prior

7o according to Bayes’ law. The value of any set of acts is given by

Vi(w) =max > [max} mo(s | J) [us(fi(s)) + valfals), P)] mo()
JeP s

The representation suggests that the choice of information about the state of the

world directly affects the individual’s value for the second component of consumption,

the outcome of f,. Below we briefly discuss two examples of motives that could be

accommodated by this representation.

Example 1.1. Future consumption choice: The second consumption component is
itself a consumption choice problem for a not explicitly modeled future, and today’s
information choice may affect the value of such continuation problems by affecting the
future information constraint. This is our leading interpretation and we will refer to it
when discussing the formal model. It is further developed in Dillenberger, Krishna,
and Sadowski (2020), where the present static model of menu choice is the starting
point for an infinite horizon model of repeated choice with intertemporal information

constraints.

Example 1.2. Vindication or Repudiation: The individual may feel repudiated if the
chosen information was “misleading” in terms of the second consumption component
and may feel vindicated if it was not. To give one simple example, suppose the value

of vindication or repudiation depends only on the potential value of information about



the second component, independently of actual consumption utility. Specifically, for

['(s, P, z) := arg max Z Z Lisenmo(s)v(fa(s))

fex  Jepgey
where 14 is 1 if the set A obtains and 0 otherwise. Define
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and let the amount of vindication or repudiation from choosing P € 991 when the

choice set is x and the state turns out to be s be

P — vt +oug
_ s 2
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Note that r(P) takes values in [—1/2,1/2], so that positive values correspond to
vindication. The following separable value function then captures direct utility from
the second consumption component and vindication or repudiation of the choice of P

for the second component:

vs(f2(s), P) = v(fa(s)) + Brs(P)

2. Domain

Let the consumption space Y be a compact metric space. The space of lotteries over
Y is denoted by A(Y). Let S be a finite space of states, and % (A(Y)) denote the
space of all acts from S that realise a lottery over Y. Let X := F (F(A(Y))) denote
the space of all closed subsets of GJ(A(Y)); a menu is an element x € X. A preference
is a binary relation > on X.

Of special interest is a subspace of the domain L := F(A(Yy)), where Y, < Y is
closed and convex. Thus, L consists only of singleton menus; we will assume (in terms
of axioms and the representation) that the value of elements ¢ € L is not uncertain.

In Section 4 we will consider the special case Y = C x W where C' and
W are compact metric spaces, and where W is also convex.’ When the second
component corresponds to continuation choice problems as in Example 1.1, then
W = H(F(A(C))), namely, the space of second-stage consumption choice problems,
and L = F(A(C x F(A(C)))).

(1) In other words, W can be embedded linearly in a vector space.



3. Information Acquisition and Contemplation

In this section we present axioms on the preference > over X that are equivalent to a

representation with information acquisition and contemplation.

3.1. Standard Properties

Our first axiom collects basic properties of % that are common in the menu-choice

literature.

AxioM 1 (Basic Properties).

(a) Order: x is non-trivial, complete, and transitive.

(b) Continuity: The sets {y : * % y} and {y : y % x} are closed for each x €
F(A(C x W)).

(¢) Lipschitz Continuity: There exist ¢*,f; € L and N > 0 such that for all x,y € X
and t € (0,1) with ¢t > Nd(z,y), we have (1 —t)x + tl* > (1 — t)y + ;.

(d) Monotonicity: z uy x « for all z,y € X.

1

e) Aversion to Randomization: If z ~ v, then > iz + Ly for all z,y € X.
) 3 2Y Y

Items (a)—(d) are standard.? Item (e) is familiar from Ergin and Sarver (2010a)
and de Oliveira et al. (2017) and relaxes Independence in order to accommodate
unobserved information choice.

The next axiom captures the special role played by the subdomain L, for which
the consumption value bears no uncertainty, and hence does not benefit from either
information acquisition about the objective state s € S or from contemplation about

the subjective taste.

AXioM 2 (L-independence). For all z,y € X, t € (0,1], and ¢ € L, = > y implies
te + (1 —t)0 >ty + (1 —t)L.

Axiom 2 is closely related to the C-Independence axiom in Gilboa and Schmei-
dler (1989), and is motivated in a similar fashion: Because consumption streams
require no information acquisition or contemplation, mixing two menus with the same

consumption stream should not alter the ranking between these menus.

(2) For a discussion of (c) see Dekel et al. (2007) and for (d) see Kreps (1979).



3.2. Representation of Information Acquisition and Contemplation

Recall that C(Y) is the space of all uniformly continuous functions on the compact
metric space Y and for a € A(Y) and u € C(Y), u(o) := {, u(y) da(y) =: {a,u);
endowed with the supremum norm, C(Y) is a Banach space. Fix ¢ € L, and define
Uy = {ug € C(Y) : uy(€1) = 0, ||usl|, = 1}. Finally, define & := {(piuy,...,patt,) :
us € U, ps =0, . ps = 1}. The space U will serve as our subjective state space
below. It is useful to reconsider & as &l := {(p,u) : p := (p1,...,psn) € A(S), u :=
(1, .. u,) € X g 8}

Theorem 1. Let = be a binary relation on X. Then, the following are equivalent:

(a) % satisfies Basic Properties (Aziom 1) and L-Independence (Aziom 2).

(b) There ezists a metric space of continuous functions i (as defined above) and a
(unique) minimal® set M of finite, normal, and positive charges* on U that is weak™*
compact such that

[ij Forallle L andse S, § paus(ls)du(p,u) is independent of pn € M, and
[ii] The function V : X — R given by

4] V() := max [L max Y p.us(f(s)) dp(p, u)

HEM fex
represents z.

The proof of Theorem 1 is in Appendix 5.

4. Information-Dependent Consumption Values

We now pose additional axioms that are plausible if contemplation about the taste is
not independent of information acquisition about s € S, but rather consumption values
depend directly on that information choice. To that end, let C' and W be compact
metric spaces, where W is also convex, and Z < W also closed and convex. Let the
space of prizes now be Y = C' x W, and let Y, := C x Z, so that L = F(A(C x Z)).
L-Independence (Axiom 2) suggests that the value of consuming elements in L is
independent of the choice of information.”

(3) M is a minimal set of charges if any larger set of charges gives the same utility for every x.
(4) A charge is a finitely additive measure.
(5) Recall Example 1.1, where W = X (F(A(C))) consists of consumption choice problems for the

future, and the continuation utility vs; depends on the choice of P through its effect on the



4.1. No Complementarities

For tractability, we assume that there are no complementarities between consumption
dimensions C' and W. This is satisfied, for example, if consumption utility is quasilinear
in C. Formally, DM’s value for a menu does not change when substituting act f with
g as long as they induce, on each state s, the same marginal distributions over C' and
W. For any f € F(A(C x W)), we denote by fi(s) and fo(s) the marginals of f(s)
on C' and W, respectively.

Ax10M 3 (State-Contingent Indifference to Correlation). For a finite menu z, if f €
and g € F(A(C x W)) are such that g1 (s) = f1(s) and g2 (s) = fa(s) for all s € 5,
then [(\({f}) U {g}] ~ 2.

4.2. Indifference to Incentivized Contingent Commitment

Let /., (* € L be the >-worst and -best members of L, respectively. Suppose the worst
element of Y corresponds to receiving, in every state s, the worst outcome c; in C' as
well as a particular outcome in Z, which we denote by 2, so that £, = (¢;,2;) € L.

Analogously, suppose ¢* = (¢, zf

s$77s

) € L is the best element in Y. For instance, under
our leading interpretation, the worst outcome in state s is consumption ¢, paired with
the act that delivers the worst outcome in C' in every state in the continuation stage,
so that indeed ¢, = (c;,z;) € L.

Suppose, further, that DM is offered a chance to replace a certain choice problem
with another. DM’s attitude towards such replacements may depend on his information
choice, which is subjective, unobserved, and menu-dependent. That said, any strategy
of choice from a menu gives rise to a consumption act. Therefore, any choice problem
y should leave DM no worse off than receiving /., and no better off than receiving £*.
Since ¢* leaves DM strictly better off than ¢, in every state, the optimal choice from a
menu (1 — t)x + t0* should generate an outcome that is also strictly better than /,.

For each I < S, f € F(A(C x W)), (c,w) € C x W, and ¢ € [0, 1], define

(unmodeled) future information constraint. Since Z = F(A(C)) contains acts (singleton menus)
that do not require any choice in the future, the value of elements in L = F(A(C x Z)) should

indeed be independent of the choice of P.
(6) Axiom 3 is closely related to Axiom 5 in Krishna and Sadowski (2014), where other related notions

of separability are also mentioned. The important difference is that Axiom 3 requires indifference
to correlation in any menu x, rather than just singletons, because different information may be

optimal for different menus.



[ @1 (c,w) e F(A(C x W)) by

(1—¢)f(s)+e(c,w) ifsel

f®e1(c,w))(s) :=
( (e w))) f(s) otherwise

That is, for any state s € I, the act f @, ; (¢, w) perturbs the outcome with (c, w).

Fix ce C and let {5 := (, @15 (¢, z) € L, and define the induced binary relation
Zson Zbyzzsifly z L.

Let X* := {(1 —t)x + tl* : x € X is finite, t € (0,1)}. For a mapping e : x —
(0,1], let 2@ sw := {f @e(p)s (¢, w): f e :c}, which perturbs the continuation lottery
in state s for any act f in x by giving weight e(f) to (¢;,w). For x € X* we then
require > [ @ 2z, | and [z Pe s w]| X [x Pes 2, | for all s € S and w € W. This is
part (a) of Axiom 4 below.

Part (b) investigates the conditions under which DM is actually indifferent to
replacing continuation lotteries with the worst consumption outcome. The idea is that
there should be a contingent plan that specifies which act DM will choose for each
state, such that he will be indifferent between the original menu and one where he is
penalized whenever his choice does not coincide with that plan.

To formalize this state contingent notion of strategic rationality, we define the set
of contingent plans =, to be the collection of all functions £ : S — x. An Incentivized

Contingent Commitment to £ € =,, is then the set

FE) ={fBrse (¢, 2): fexand [ ={s: f=E(s)} }

which replaces the outcome of f with the worst outcome (¢, 2;) in any state where
f should not be chosen according to . Obviously z % F(§) for all £ € Z,. However, if
for no s € S is it ever optimal to choose an act outside ¢ (s), then z ~ F (&) should

hold.

Ax10M 4 (Indifference to Incentivized Contingent Commitment).

(a) f x e X* and e: x — (0,1], then & > [x @5 2, | and [x B s w] X [x Bes 25 | for
all se S and we W.

(b) For all x € X, there is € € =, such that x ~ .F (&).

4.3. Concordant Independence

We aim to capture a situation where the choice of partition and the actual realization of

the payoff-relevant state fully determine the value for the W component of consumption.



We say that  and y are concordant if the same information choice is optimal for both
x and y. We argue that, if x and y are concordant, then both should be concordant
with the convex combination %x + %y. While Independence may be violated when
considering menus that lead to different optimal initial information choices, % |x
should satisfy Independence if X’ < X consists only of concordant menus. That is,
any violation of Independence is entirely due to a change in the choice of information.
We now introduce our behavioral notion of concordance (Definition 4.1 below).
For each J € P, let

£)(s) = (¢, zf) sed

(c;,z;) otherwise

and define the menu z1(P) := {f; : J € P}. Then, z; (P) ~ ¢* if, and only if, ; (P)
is evaluated under a partition that is at least as fine as P.

For a choice problem z, we then have %x + %xl (P) ~ %x + %E* if, and only
if, some partition that is at least as fine as P is optimal for x. Thus, the same
collection of partitions is optimal for two menus = and y, if for all P € % we have
sx + 321 (P) ~ 3o+ 30* if, and only if, 3y + 221 (P) ~ sy + 30*7
Definition 4.1. Choice problems x and y are concordant, if 3z + Sx1 (P) ~ 32 + $0*
if and only if 1y + 1z (P) ~ 3y + 10* for all P € P.

Ax10M 5 (Concordant Independence). If 2 and y are concordant, so are z and z+ 3.

Furthermore, if X’ < X consists of pairwise concordant menus, then x|, satisfies

Independence.®

4.4. Representation with Information Dependent Consumption

Values

Theorem 2. A binary relation > on X satisfies Axioms 1-5 if, and only if, there

exists a function V : X — R that represents = and has a representation of the form

V(z) = max maXZ mo(s | J) [us(fi(s)) + vs(fa(s), P)] mo(J)

Pt Jer fex
where MY is a finite collection of partitions P of S, us € C(C), and v(-, P) € C(W)
for each s € S and P € i)ﬁf), with the property that for all P, P’ € E)th,, s €S,
vs(+, P = vs(+, P')|1, and vs(w,-) = vs(27, ) for allwe W.

(7) See Lemma 6.19 in Appendix 6.4 for a instantiation of this intuition.
(8) Ifx,y,2, (1 —t)z+tz,(1 —t)y+tze X', t € (0,1),and x > y, then (1 —t) x+tz > (1 —t) y+iz.



The theorem suggests that the decision maker does not independently contem-
plate his taste, but rather that the choice of information about the state of the world
directly affects his value for (the W component of) consumption. For instance, a
positive outcome may be valued higher if it was generated by a well informed choice
than by pure luck. As another example, the decision maker may directly experience the
C component of consumption once the state is realized, but derives a value from the
W component prior to the realized state and dependent directly on the information
event J € P with s € J.

5. Appendix: Proof of Theorem 1
5.1. Algebraic Representation

Proposition 5.1. Let > be a binary relation on X. Then, the following are equivalent.
(a) X satisfies Basic Properties (Axiom 1) and L-Independence (Axiom 2).

(b) There exists a function V' : X — R that represents X and is L-affine, Lipschitz

Continuous, and convex. Moreover, any such representation of X is unique up to a

positive affine transformation.

The proof that (b) implies (a) is standard and is thus omitted. The remainder of
this section proves that (a) implies (b). We shall first show that under our assumptions,

every closed subset is indifferent to its closed convex hull.

Lemma 5.2. If > satisfies Basic Properties (Axiom 1), then for each x € H(Z),
x ~ cch(zx).

Proof. First consider = € X that is finite and follow Ergin and Sarver (2010a, Lemma
2). Notice that cch(x) % o by Monotonicity (Axiom 1(d)). Let z° := z, and for each
k > 1, define z* := %mk’l + %:Bk’l. Then, by Aversion to Randomization (Axiom 1
(e)), 871 > 2*. In other words, by Order (Axiom 1(a)), z = a* for all k > 1. But
notice that d(z*, cch(z)) — 0 as k — co. Therefore, by Continuity (Axiom 1(b)), it
follows that x % cch(z), which proves that x ~ cch(z) for all finite subsets of X.
Now consider the general case, where x € X is arbitrary. Then, there exists
a sequence of finite sets (x,,) such that (i) z,, < x for all m, and (ii) d(z,,,z) —
0 (in the Hausdorff metric). But each z,, ~ cch(z,,). It is also easy to see that
d(cch(x), cch(z,,)) — 0 as m — oo. Continuity (Axiom 1(b)) now implies that x ~

cch(z), which proves the claim. O



In light of Lemma 5.2, in what follows, we may restrict attention to the space

K (X).

Lemma 5.3. If % satisfies Order (Axiom 1(a)), Continuity (Axiom 1(b)), and L-
Independence (Axiom 2), then there exists a continuous and affine function ¢ : L — R
such that ¢ represents % |, ie, for all ¢,¢' € L, ¢ > ¢ if, and only if, ((¢) = ((¢).

Moreover, ( is unique up to positive affine transformation.

Proof. Order, Independence, and Continuity hold on L, so by the Expected Utility
Theorem, the claim follows. m

Corollary 5.4. If x satisfies Axiom 1, there exist ¢, ¢; € L such that ¢* > ¢;.

Proof. Consider ¢*,¢; € L that exist by Lipschitz continuity (Axiom 1(c)). Set z =
y = {¢*} and a = 1. Lipschitz continuity then implies ¢* > 1¢* + 1¢,. Similarly, let
z=y={}and o = 3,

immediately that ¢# > ;. O]

so Lipschitz continuity implies %ﬁﬁ + %ﬁﬁ > {y. It follows

Lemma 5.5. Given the function ¢ : L — R from lemma 5.3 above, there exists
V : X — R such that

(a) = % yif, and only if, V(x) = V(y) for all x,y € X,

(b) forall £e L, V(¢) = ((¢), and

(c) V is continuous.

Proof. Let ¢* be a x-best and ¢, a z-worst element of L. By Corollary 5.4, £* > (,.
First, consider the case where z € X is such that ¢* > z % (.. By Continuity
(Axiom 1(b)), there exists a € [0,1] such that z ~ al* + (1 — a)l,. Define V(z) :=
C(alr+(1—a)ly) = aC(t*)+(1—a)((Ly). It is easy to see that for all £ € L, V(£) = ¢(¢).

Next, consider the case where z > ¢*. By Continuity, for any ¢ € L, there exists
a € [0,1] such that ax + (1 — a)l, ~ £. Now, set V(x) = [V () — (1 —a)V (L,)]/a.

To see that V(x) is independent of the choice of ¢, suppose ¢ € L and d’ € [0, 1]
are such that ¢ x> ¢ and 'z + (1—a')l, ~ ', so that V(z) = [V(¢') — (1 —d" )V (£,)]/d.
Because az + (1 — a)l, ~ ¢, by L-Independence (Axiom 2) for all b € [0,1], b(az +
(1 —a)ly) + (1 = b)ls ~ bl + (1 — b){,. Now, choose b such that bl + (1 — b)l, ~ 0.
Then, b(ax + (1 — a)é*) + (1 = b)l, ~ ¢, which implies ba = «’. Using the fact that

10



V() =0bV(l)+ (1 —-0b)V (L), we see that
V(') — (1= d)V(L)

Vi) = -
B [bV(E) + (1 - b)V(E*)] — (1 —=ba)V (L)
B ba
V() - 1—aV(£)

which is independent of the choice of b, or equivalently, the choice of ¢'.
We can deal with case where £, > z in a similar fashion. The continuity of V'
follows immediately from the continuity of > and from the continuity of ¢, which

completes the proof. O
Lemma 5.6. If tx + (1 —t)¢ > ty + (1 — t){ then = > y.

Proof. Suppose not. Then, by L-Independence, there are x,y, ¢, and t such that z ~ y
and tx + (1 — t)¢ > ty + (1 — t)¢. By Lipschitz Continuity (Axiom 1(c)), and because
d(z,z) = 0, we have t'z + (1 — ¢')¢* > t'z + (1 — ') for all ' > 0. Observe that
by Negative Transitivity of the strict relation >, it must be that for all ¢, either
t'r+ (1=t >z or x> t'z + (1 — ¢')¢; holds, and the same for y. There are three
cases to consider.

Case 1: For all € > 0 there is (1 —t') < e with > t'z + (1 — t/)¢;. Then, since
x ~ y, L-Independence implies that ty + (1 — )¢ >t (t'z + (1 — t')¢y) + (1 —t)¢ for all
such (1—¢") > 0. At the same time, by continuity, we can pick (1 — f) > 0 small enough,
such that by replacing z with tz + (1 — )4y, t (fx + (1 — 0)6;) + (1 =)0 > ty+ (1 —t)¢
still holds. Taking € < (1 — ¢) establishes a contradiction.

Case 2: For all € > 0 there is (1 —#') < & with ¢y + (1 — ¢')¢* > y. This case is
analogous to case 1.

Case 3: There is ¢ > 0 such that for all (1 —¢) <€, both 'z + (1 —t){; x «
and y z t'y + (1 — t')¢*. We claim that this case can never occur. To see this, first
observe that by continuity, if ¥z + (1 —t')¢; > x for all (1 —¢') < ¢ then ¢ % w;
and if y > t'y + (1 — ¢)¢* z x for all (1 —#) < ¢ then y % ¢*. But then we have
y xz ¢* > 0y > z, which contradicts the premise that z ~ y. ]

The next Corollary follows immediately from L-Independence and Lemma 5.6.
Corollary 5.7. z > y if, and only if, tx + (1 — ¢)¢ > ty + (1 — t)¢ for all t € (0, 1].

Lemma 5.8. ¢ > ¢ if, and only if, tz + (1 — ¢)¢ > tz + (1 —¢)¢ for all t € [0, 1).

11



Proof. If z > /,, by continuity there are o € (0,1) and ¢ € L with az + (1 — a)l, ~ L.
Applying Corollary 5.7 repeatedly yields that ¢ > ¢ if, and only if, ¢’ [ax + (1 — a)l,] +
(1=t ~tl+ 1=tV >0+ (1 —t)VW ~ t[ax+(1—a)]+ (1 —t) for
all ' € (0,1). Again by Corollary 5.7, and for ¢’ = m, this is equivalent to
te + (1 —1t)¢ >tz + (1 —t)¢'. The case where ¢* > x is similar and hence omitted. [J

Lemma 5.9. The function V' defined in the proof of Lemma 5.5 has the following
properties:
(a) V is monotone, ie, V(z vy) = V(z) for all z,y € X;
(b) V is L-affine, ie, for all z € X, £ € L and a € [0,1], V(az + (1 — a)f) = aV(z) +
(1 —a)V(0);
(c) V is convex.

Proof. To ease notational burden, we shall assume only in this part of the proof, and
without loss of generality, that V (¢*) = 1 while V(¢,) = 0. We prove the claims in
turn.

(a) V represents X, so it is clear that it is monotone.

(b) Let x € X and ¢ € L. Consider first the case where ¢* > x % /,. Then, there

exists ¢, € L such that © ~ ¢,. Then, by L-Independence, for all a € (0,1],
az + (1 —a)l ~ al, + (1 — a)l. Therefore, V (az + (1 — a)l) = V(al, + (1 — a){) =
aV(ly) + (1 —a)V({l) =aV(z)+ (1 —a)V(¥), as required.
Now consider the case where x > (*  the case where ¢, > = being analogous.
Because ¢ x (., Lemma 5.8 yields t/, + (1 — t){ > {,, and then, by Corollary
5.7, tx + (1 — t)¢ > {,. By continuity, there are a € (0,1) and ¢, such that
¢ > atr+(1—t)0) + (1 — a)ly ~ £ > (. Further, let 3 € [0,1] be such
that ¢ ~ p0* + (1 — )0, (so that V ({) = f3), and let v € (0,1) be such that
0 ~ yl* + (1 — 4)L,. First, from Corollary 5.7 and the definition of V it is easy
to verify that V (tx + (1 —t){) = I (independent of whether tx + (1 — )¢ X £* or
not). Next, by Lemma 5.8, tx + (1 —t)¢ ~ tx + (1 —t) (6¢* + (1 — 5)€y). Then, by
Corollary 5.7,

a(tr+ (1—1) (B0 + (1— B)6)) + (1 — a)ly ~ v0* + (1 — )L,

or
atz + a(l =)0 + [1 —at — a(l — )] by ~ 0" + (1 — )L,

Because x > ¢*, Corollary 5.7 and Lemma 5.8 further imply that a(1 —¢)(1 — 3) +
(1—a)>(1—=v)ory—a(l—t)B > at > 0. This implies that v > «a (1 — ) S.

12



Corollary 5.7 then yields that

1—at—a(l— —a(l- 1—
ot 1-at—aof t)ﬁg* Ly—ad=HB,. Yy,
Dy D, Dy D,

where Dy =v—a(l—-t)f+ (1 —7)=1—a(l —1)p.
It follows that 1 — v < 1 —at — a(1 — t)F, and hence, again by Corollary 5.7,

t l—at—a(l =t)—(1—
at, 1-at—a(l—05-(1-),
D, D,
where Dy =at+1—at—a(l —t)f—(1—7v) =5 —a(l —1)5.
Hence, —2——x + [1 — V_aa—t] Uy ~ 0*, so that V (z) = w Putting

~ (F

y—a(l-t)8 (1-t)p
everything together establishes the lemma, ie,
V() + (1 - OV (£) = % —V (tz + (1 —t)0)

We first show that V' is midpoint convex, ie, V(321 + 225) < 2V(z1) + 1V (22).
Suppose first that 1 ~ 2. Then, by Aversion to Randomization (Axiom 1 (e)), z1 %
121 4 2, from which it follows immediately that V(3z; +125) < SV (1) + 3V (22).
Let us now suppose that x; > x5 and consider the case where ¢* > x;. By continuity,
there exists A € (0,1) such that y := Azy + (1 — X\)¢* ~ z;. Notice that because
Vis L-affine, V(y) = AV (22) + (1 = M)V (¢*) = V(z1). Let 7 := 2521 + 1759 =

ES)
12+_/\,\(%5”1 + 1z) + L‘r—g\ﬁ*, so that V(z) = %V(%xl + 130) + ;—iV(f*), where we
have used the L-affinity of V. But notice also that V(z) < 25V (21) + =5V (v)

by Aversion to Randomization (Axiom 1 (e)) because z; ~ y. We also have
AV (1) + 5V (y) = 25 (V(z1) + V(za)) + 2V(0*). Substituting in the value

1+X 1+X 1+X 1+X
of V(z) obtained above, we see that V(321 + 322) < 1V(z1) + 3V (22), as claimed.

Now consider the case where x1 > x5 but x7 > £*. Then, by continuity, there exists
a € [0,1] such that y = axy + (1 — a)l, ~ x5. Therefore, V(y) = aV (z1) + (1 —

a)V(ly) = V(x1). Set T = {925 + 7=y = T (541 + 522) + 172/ Then, using

the L-affinity of V, we obtain V(z) = 2LV (321 + 312) + 772V (L),

But notice that xs ~ y, so that by Aversion to Randomization (Axiom 1 (e)),
V(Z) < 22V (xg) + 1J%aV(y) We also have —-V (xq) + 1+LaV(y) = 1_%G(V(:lcl) +

= 1+4a 1+a

V(x2)) + 152V (£,). Substituting in the value of V/(z) obtained above, we see that
V(321 + 332) < 2V(21) + 1V(x,), as claimed.
As noted above, V' is continuous, and because it is midpoint convex, it is convex. [J

Recall that V' is Lipschitz if there exists a constant K > 0 such that for all

r,ye X, |V(z) = V(y)| < Kd(x,y), where d(-,-) is the metric on X.
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Lemma 5.10. If > satisfies Lipschitz continuity (Axiom 1(c)) and is represented
by a continuous and L-affine V', then V' is Lipschitz. Conversely, if V' is Lipschitz,

non-trivial, L-affine, and represents %, then it satisfies Lipschitz continuity.

Proof. Let N > 0 be as given in Lipschitz continuity. Fix § € (0,1) such that
Np < 1. First consider the case where x,y € X are such that 0 < d(x,y) <  and let
o = Nd(z,y). Then, by Lipschitz Continuity, (1 — a)x + al* > (1 — a)y + afy. By the
L-affinity of V, it follows that V(y) — V(z) < %[V(ﬁﬁ) - V(fﬁ)]. But notice that
a/N < 8, so setting K = N/(1— NB)[V(¢*) — V(£y)], we find that

V) = V() < T—[V(E) - V(&)
< T [V(e) - V(&)]d(.y)
< Kd(z,y)

We now follow Dekel et al. (2007) and remove the restriction on the z and y. For
arbitrary x,y € X, let 0 =: \g < A\; < -+ < Ajy1 = L such that (\j;1 — \j)d(z,y) < S
forallj = 0,...,J. Define z; := X\jz+(1=X\;)y, so d(z;41,%;) = (N\j11—A;)d(z,y) < B.
From the result established above, we see that V(z;41) — V(z;) < Kd(zj11,2;) =
K(X\j+1— Aj)d(x,y). Summing over j, we find V(y) — V(z) < Kd(x,y). Interchanging
the roles of = and y, it follows that |V (z) — V(y)| < Kd(x,y), as claimed. The converse
is as in Dekel et al. (2007) and is omitted. O

Because V' is L-affine, ie, V' = ( on L, it follows from Lemma 5.3 that V' is unique
up to positive affine transformation. This proves (a) implies (b), which establishes

Proposition 5.1.

5.2. Abstract Convex and Monotone Representation

Every f € F(A(C x W)) is a product lottery of the form f(1) x --- x f(n). A
function u € 4l acts on F(A(C x W)) as follows: u(f) := >, pu;(f(é)). For any z €
K (F(A(C x W))), define its support function H, : 4 — R as H,(u) := maxye, u(f).
The extended support function of z € H.(F(A(C x W))) is the unique extension
of the support function H, to span(il) by positive homogeneity. Theorem 5.102 and
Corollary 6.27 of Aliprantis and Border (1999) imply that a function defined on
span(4l) is sublinear, norm continuous, and positively homogeneous if, and only if, it is

the extended support function of some weak™ closed, convex subset of F(A(C x W)).
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Therefore, a function H : 4 — R is a support function if its unique extension to
span(4l) by positive homogeneity is sublinear and norm continuous.

Given a function H : 34 — R whose extension to span(il) by positive homogeneity
is sublinear and norm continuous, we may define zy := {f € aff (F(A(C x W))) :
u(f) < H(u) for all u € 4}. Support functions enjoy the following duality: For any
weak* compact, convex subset z of aff (F(A(C x W))), zp, = z, and for any function
H as defined above, H,, = H.

For weak™ compact, convex subsets x and z’ of X, support functions exhibit
the following properties: (i) z < 2’ if, and only if, H, < Hy, (i) Hypra-ne =
tH, +(1—t)H, for all t € (0,1), (iii) Hyne = Hy A Hy, and (iv) Hopgoay = Hy v Hy.
(By Lemma 5.14 of Aliprantis and Border (1999), ch(x U 2’) is compact because x and
x' are compact, which ensures that Hygoar) is well defined.) Finally, observe that for
(F= 00 x .. x 0l Hy = 0.

Proposition 5.11. Let V : X — R be Lipschitz, convex, and L-affine. Then, there

exists a minimal set 91 of finite normal charges on 4 so that V' can be written as

[5.1] V(z) = max [Lr?gcxgpsus(f(S)) du(p,u)
where the set 9 < ba, (8) is weak® compact and | maxye, 3, psuts(f(s)) du(p, u) is
independent of yu for all z € L. Moreover, for a dense set of points in X, there is a

unique p € 91 that achieves the maximum in [5.1].

In Proposition 5.11 above, ba, (i) is the space of bounded additive, or finitely
additive, measures (ie, charges) on 4l that are also normal (ie, inner and outer regular).
The last part of the proposition reflects the fact that V' is linear on L. The set 9 is

minimal in the sense that if /' < 91 is compact, then there exists x € X such that
V(w) > masyer [§y maxses X, pan(£0)) dup.w)].

Proof. By Lemma 5.2, for every x € X, V(z) = V(cch(z)). Therefore, we may restrict
attention to convex menus.

Let W : K.(F(A(C x W))) — Cy(Ll) be the map that associates each compact,
convex subset z of F(A(C x W)) with its support function, ¥ : x — H,. Note that ¥
is invertible. Moreover, ¥ is an isometry because d(z,2’) = ||H, — Hy ||, for all z, 2" €
H(F(A(C x W))). Thus ¥ is an affine isometric embedding of K.(F(A(C' x W)))

(9) Recall that bay,(41) is the space of finite normal charges on $1.
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in Cy(U). Moreover, ¥({¢*}) = 0. In sum, ¥ (H.(F(A(C x W)))) is a compact and
convex subset of Cy(4) that contains the origin.

Let V : U(H(F(A(C x W)))) — R be defined as follows: V(H) := V() where
H = H, for some z. Because V is injective, it follows that V is well defined. Thus,
V is Lipschitz, convex, and W(L)-affine. Recall that by definition, V ({¢*}) = 0 =
V(Hy), and W({¢*}) = 0. Therefore, V is positively homogeneous. Extending V' to
cone(V (K. (F(A(C x W))))) by positive homogeneity, it follows by Proposition 7.4
that V (and hence V') has the desired representation. O

Proposition 5.12. Let V' : X be as in [5.1]. Then, the following are equivalent.
(a) V' is monotone, in the sense that x 2’ implies V(x) < V (2').
(b) Every charge p € M is positive, ie, u(E) = 0 for all (Borel) measurable £ < 4.

Proof. That (b) implies (a) is easy to see. That (a) implies (b) follows from Theorem
S.2 of Ergin and Sarver (2010b) after observing that V' (defined in the proof of 5.12)
is monotone. We note that a similar statement is contained in the proof of Lemma 3.5
of Gilboa and Schmeidler (1989). O

This establishes Theorem 1. The following corollary follows immediately from

Corollary 7.3 and Lemma 7.5.

Corollary 5.13. Let V : X — R be as in [5.1]. Suppose E < X is convex and V| is
linear. Then, there exists p € 9 such that V() = | maxse, >, pi; (f(2)) dpe(p, u) for
all € .

6. Appendix: Proof of Theorem 2

Each of the following subsections will introduce a new axiom which will, in turn, impose
further restrictions on the set 9, eventually leading us to the desired representation

in Theorem 2.

6.1. Partitional Representation

In this section, we consider the representation in [¢] of > and impose Indifference to
Incentivized Contingent Commitment (henceforth IICC, Axiom 4).

The main consequence of assuming [ICC (Axiom 4) is that instead of considering
arbitrary finitely additive measures p € 9t over 4 x A(S) in the representation [¢], we

can replace each p by a pair (P,u) along with a prior belief my over S, where P is a

partition of S and ue C(C' x W).
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Proposition 6.1. Consider a preference relation > on X, and suppose V : X - R
represents > and has the form in [¢]. Then, (a) implies (b), where:

(a) % satisfies IICC (Axiom 4).

(b) The function V' has the form

6.1 Viw) = max [Z (max Y mo(s | ) w(7(5))) mw]
’ P LJep seJ

where 9, is a collection of pairs (P,u) where P is a partition and u = (us)ses is a
collection of state dependent (vN-M) utility functions on C' x W with the property
that for all s € S, us(a) = ul(a) for all (P,u), (P',u') e M, and a € A(C x Z).

Notice that each partition P along with a prior 7y is equivalent to a posterior
belief over S, while u corresponds to a Dirac measure over i, both of which are
countably additive. Thus, an essential part of the proof of Proposition 6.1 is to
show that IICC (Axiom 4) allows us to replace each p € 9t by a countably additive
measure without affecting the representation. The proof is lengthy precisely due to
the complications that arise from dealing with € 9 in [¢] that are finitely additive.
If we knew beforehand that each p was countably additive, the proof would simply
formalize the intuition behind IICC (Axiom 4) and be considerably shorter. The rest

of this section proves Proposition 6.1.
6.1.1. Nice Menus and their Density

Recalling the notation introduced in Section 4.2, let =, := {¢ € Z, : F(€) ~ x}. By
IICC (Axiom 4), =, is non-empty. It follows from the definition of =, that for each
¢ € =,, there exist fi,..., fm € z such that for each i = 1,...,m, f; = &(s) for some
s € S. The collection {f1,..., fi} denotes a set of generators of the set x according to

€. We shall also say that {fi,..., fi.} generates x according to &.

Lemma 6.2. For 2 € X*, let {fi,..., fm} generate = according to & € Z,. Then,

.T}N{fh_,_,fm}.

Proof. By defintion of &, x ~ F(£), and by repeated application of IICC(a) (Axiom
4(a)), we obtain {fi,..., fm, l«} = F(£). It is also the case, by Monotonicity (Axiom
1(d), that = = {f1,..., fm}- Thus, to establish the claim, it suffices to show that
{fi, oo fos } 2 {15 oo fons Ui}

To see this, first let zg := {f1,..., fm} and z( := {f1,. .., fm, l+}, and suppose,

by way of contradiction, that x{ > .
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Set ¢ := d(zg, 7)) > 0 and let g* be such that d(zg, zo U {g*}) < min[e/2, 1/k],
where k is an integer.'® By Monotonicity (Axiom 1(d)), zo U {g*} X zo.

By repeated application of IICC(a) (Axiom 4(a)), we obtain that zo U {g¥} = z}.
Thus, we have constructed a sequence of menus (zo U {g¥})r that converges to zg
with the property that zo U {g*} X z}, > z, for all k. This is impossible because % is
Continuous (Axiom 1(b)) which establishes the claim. O

Definition 6.3. A menu z is nice if z € X* and there is a unique ¢ € Z,. X denotes

the space of nice menus. A menu x is minimal if x > 2\{f} for all f € x.

Let x be a nice menu, & € éx, and f1,..., fn the corresponding generators of
x. Each such ¢ induces a partition Ji, ..., J,, of S wherein {(s) = f if, and only if,
s € Ji. In this case, we shall say that fi is active in state s € Ji, so that J; denotes

all the states where fj is active.
Proposition 6.4. The space X of nice menus is dense in X.

Proof. 1t is easy to see that the space X™ is dense in X. Therefore, it will suffice to show
that Xy is dense in X*. For any z € X*, it can be shown that IICC (Axiom 4) implies
the existence of a minimal set of generators, {f1,..., fi}. Let . := (1 — &) x + &, and
y:={f1,..., fm} U z.. By Monotonicity (Axiom 1(d)), y > x. Obviously d (y,z) — 0
as € — 0. Because x € X* and ¢ > 0 are arbitrary, it suffices to establish that (some
perturbation of) y € Xj.

Because x € X*, we also have z. € X* and, because {f1,..., fm} < z, also
{fi,..., fm} € X*, which then implies y € X*. We now show that there must be a
unique £ € éy (perhaps after further perturbing y) to establish the proposition.

Suppose there is € € éy with generator set

{fl,  f,(A=e) fig+ele....(L—¢) fi+elu} ~y

(indifference follows from Lemma 6.2) where f! € x for all @ € {1,...,k}. Consider,
now, .¥ (£) and note that it can be generated inductively from yo := {f],..., fi} as
follows, where the induction is over the set of states S = {s1,...,s,}. Forie {1,...,n},
let e; : y — [0, 1] be defined by

0 if f=¢6(s)and fe{fi,..., fn}
ei(f)i=1¢e f(L—e)f +elu=CE8:)¢{fi,- ) [}

1 otherwise

(10) Such a g* can always be found, for instance, by perturbing f; by an arbitrarily small amount.
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Given y;, let
Yiv1 = Yi ®(ei+1,si+1) g*

Observe that, indeed, y, = F (£). Note, further, that by IICC (part a) and Continuity
(Axiom 1(b)), y; Z yir1, with y; > y;4q if (s;) € z.. Suppose, now, that £ > j. In
that case, yo > y, = F(§) ~ y. By Monotonicity, z = 1o, and hence z > y, which
contradicts the observation above that y > x. Therefore, m = j. But then y > x and
the minimality of {f,..., f;,} implies that the generator set that corresponds to &
must be {f1,..., fm}. Because & was chosen arbitrarily among the & € =,, any such &
must have generator set {f,..., fi}.

Suppose, then, that there are &, &' € éy with the same generator set {f1,..., fm},
and f, = & (s) # £ (s) for some s€ S and be {1,...,m}. Let

iy P
(I=t)fp+tly s =s

Note that, by Continuity, for ¢ > 0 small enough, {fi,... o fm} remains the
unique generator set for § := [y\ {fo}] U {fs}. Let € € E; be the contingent plan with

o [T €=
£(s’)  otherwise

and analogously for € and ¢. Then IICC (part a) implies that y > F(£). At the
same time J(f’) = J(¢) ~ y. It is also clear that, for ¢ > 0 small enough and by
Continuity, for any " € =, with J (£”) + y, also J (f") % §,where £ is again defined
analogously. Hence, ég has at least one element less than éy. In finitely many steps
we arrive at an (arbitrarily small) perturbation of y that is in X,. This establishes the

proposition. O

A (static) strategy for DM at a menu x given p € 9 is a mapping (¥ : 4 — x.
The strategy (¥ is finite if there is a finite partition (E;) of 4, such that for each E;
there exists f; € x with (#(F;) = fi. The value of this finite strategy is

Vi) = 3 | Spahilo) dutp.w

A strategy (¥ is optimal at z if there is no other strategy that gives a higher
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payoff. A finite optimal strategy (¥ is an optimal strategy that is finite, ie, one where

Vi) = 3 | s s dutow

~ e | [ o (. £ et

HeEM

where ((p,u), f) = >, psus(fi(s)). Notice that if a finite strategy ¢/ is optimal at z
and if f; is the act chosen in the cell E;, we must necessarily have, for all (p,u) € E;,
{p,u), fip = {(p,u), f) for all fea.

In the sequel, (¥ denotes an finite optimal strategy when one exists. It is easy to
see that for a finite x, an optimal strategy is always finite, though there may be many
such strategies that are optimal. If (# induces the partition (E;), we refer to (F;) as

an optimal partition of 4l for p at x.

Definition 6.5. Let {fi,..., f,,} be a set of generators of x, and let (E;)"; be a
partition of . Then, (E;) is a partition of 8 consistent with {fi,..., fm} if (p,u) € E;

implies {(p,u), fi) = {(p,u), f;) for all j =1,...,m.

Intuitively, a partition (E;) of 4l is consistent with {fi,..., f,} if there is some
optimal p such that it is optimal to choose f; when (p,u) € E;.

For each e M, let V(x, p) := § maxse, >, pstts(f(s)) dpu(p, u) be the utility
from choosing the measure p. Let T : X =3 9t be the mapping selecting the maximizing
p for each z; that is, T(r) := argmax,cgy V(z, ). It is easy to see that V(z,u) is
continuous in p, so it follows that T is a correspondence that is closed valued. The

following lemma implies that finite menus always have consistent partitions.

Lemma 6.6. Let € X be finite and suppose {fi,..., fi} is a set of generators of x.
Then, we Y({fi,..., fm}) implies p € T(x).

Proof. Consider the following string of inequalities:

V(z)=V{fi,. o\ fm}) because {fi,..., fm} generates
=V{fi, -, [} 1t) definition of p
< Vix,p) V' (-, 1) is monotone
< V(x) definition of V/
which proves that p € T (z), as claimed. O
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Lemma 6.7. Let z be finite. For any € L and £ > 0, (i) T(z) = T((1 — &)z + &¢),
(ii) if « is nice, then (1 — €)x + £f is also nice, and (iii) if © € Y(x) and (E;) is an
optimal partition of 4 for p at x, then it is also an optimal partition of L for u at
(1—¢e)x + el

Proof. Let x be finite and p € Y(z). Then, V(z) = V(x,u) = V(x, ') for all p/ € M.

We also have

V(l—e)z+el,p) =1 —e)V(z,pu)+eV(L,p
> (1—e)V(x, 1) +eV(lu)
= (1 - E)V(:U7 ﬂ/> + 5‘/(@7 :u/)
=V((Q—e)z+el, )

where the inequality uses the fact that V(z,u) = V(x, ') and the second equality
follows because V' (¢, u) = V (¢, ') for all p, ' € 9 and ¢ € L. This proves part (i).
Part (ii) follows immediately from the definition.

To see part (iii), let (¥ be a finite optimal strategy with (E£;) as the optimal
partition of . Then,

Vi) = Vi) = 3 | s s dutow

For the menu (1 —e€)z + ¢, consider the strategy (f, ), ,(E;) = (1 —¢)f; +&l. Then,

V((l —e)x + el p, Céife)wge)
~1-9 % | . £ dutpw +e X | .0 dutpw
= (1—¢)V(x)+eV(0)
>V ((1—e)x+el, )
for all 1/ € 9 where the second equality follows from part (i). This proves that

Cﬁfe)z ¢ 1s a finite optimal strategy at the menu x given the optimal y € 9 and

completes the proof. O

6.1.2. From Finitely Additive Measures to Partitional Systems

A collection of probability measures {py,...,pr} on S (so each p; € A(S)) forms a
partitional system if (i) for all s € S, p;(s) > 0 implies p;(s) = 0 for all j # ¢, and (ii)
for all s, Zle pi(s) > 0. In other words, every state s is supported by exactly one p;
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in the collection. In this Section, we show that [ICC also implies that the abstract
measures considered above can be replaced by a partitional system.
For a fixed partition (F;) of i, p e 9, and s € S, consider the map

(0 Frs) = | pas)dnoon)

Each tuple (y1, E;, s) induces a continuous and linear preference functional § E, pstts () dp(p, u)
on A(C' x W). By the Expected Utility Theorem, this linear functional has a vN-M
utility representation which we denote by p;(s)t;s(-), where ||t ||, = 1. Thus, for all

ae A(C x W), we have

p(s)a(a) = | plopue) dutpon)

Then, p;(s)u; s is a local EU representation of p on E; for state s. We do not index

pi(s)t; s by the relevant (E;) and u because these should be clear from the context.

Definition 6.8. Let € Mt and (E;) a partition of Y. Then,

e A measure p is Type la on E; in state s if p;(s)u; s = 0, ie, if p;(s)u;, is trivial.

e A measure p is Type Ib on E; in state s if p;(s)u, s is non-trivial, p;(s)i, is constant
on A(C x Z), and £, maximizes p;(s)u; s on A(C x W).

e A measure u is Type Ila on E; in state s if p;(s)u; s is non-trivial and not constant
on A(C x 7).

e A measure p is Type IIb on E; in state s if p;(s)u; s is non-trivial, constant on
A(C x Z), and there exists a € A(C' x W) such that p;(s)u; s(a) > p;(s)u; 5(5) for
some (and hence all) g e A(C x Z).

It is easy to see that the above taxonomy of measures is both mutually exclusive
and exhaustive. Analogous to the definition in Section 3.1 above (and abusing notation),
for any o € A(C' x W) we define

(I1—¢e)f(s)+ea ifs'=s

(f De,s a) <8 ) = f(S) otherwise

Lemma 6.9. Let = be a finite menu, p € YT (x), and suppose there is a finite optimal
strategy ¢ with (E;) as the optimal partition of 4, where (¥(F;) = f; € . Suppose
is Type II (a or b) on some E; in state s € S and there exists o € A(C' x W) such that

| pmlo = 506 autr > 0

Then, the menu z := 2\{f;} U {fi ®. s a} is such that V(z) > V(z) for all ¢ > 0.

22



Proof. Let pe€ Y(x) so that V(z) = V(z,u). If
| popmfa = 56)) dutp) > 0

then it must necessarily be that p(E;) > 0. The measure p and the set E; induce the

functional

Vi(z, p, ) - L I?S;XZP us(f(s)) du(p, u)

on X. Let V2 denote the restriction of V; to F(A(C' x W)). By construction,

f Zp $)us(f(s)) dpu(p, u)

and because p(E;) > 0, V? is non-trivial. By hypothesis, we have V2 (f®. sa) > V().

Consider the menu z and the strategy which entails the choice of f; for (p,u) € E;
when j # i, and the choice of f; ®. s a when (p,u) € E;. This strategy delivers utility
bounded above by V(z, ), ie,

JZP s)us f3(s)) dp(p, u ] JZP s)us(fi(s)) du(p, u)
J#i
+€Lp®%w—ﬁ®ﬁw@m)

~ Vi) e | plslo = () dutrw
> V(x)

because SEip(s)uS(Oz — fi(s)) du(p,u) > 0 by hypothesis. Noting that V' (z) = V(z, u)
by the definition of V' completes the proof. n

Let My := {Y({f1,-.-, fm}) : {f1,-.., fin} generates x for some x € X}. It fol-

lows from Lemma 6.6 that for all finite x,

max V(z, 1) = max V(z, i)

In what follows, we shall restrict attention to finite menus and, therefore, it suffices to
consider the set M. Let Yo : Xo = My be defined as To(z) = T(x) n M.

Lemma 6.10. Let 2 := {fi,..., fin} be the generator set for some nice menu z,
and suppose p € T(xg). Let J; denote the states where f; is active, and also let (E;)
represent a finite optimal strategy (for p) at  so that act f; is chosen in the cell F;.

Then, p is not Type II (a or b) at E; in state s for all t = 1,...,m and s € Jf.
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Proof. Let p € Y(xo) so that V(z) = V() = V(x0, ) and suppose p is Type II (a
or b) at FE; in state s € J¢. Note also that because z is nice, there is a unique & € =,
such that z ~ F(§), and the generator of x is unique.

Case 1: First consider the case where f;(s) is not a maximizer for p;(s)i; (+)
on A(C' x W). Let f* be the act such that (i) f(s") = fi(s) for all s’ # s, and (ii)
f#(s) maximizes p;(s)ii;s(-) on A(C x W), so that p;(s)i;s(f(s)) > pi(s)hs (fi(s))-
An act satisfying (ii) exists because u is Type II at E; in state s.

Now, consider the menu x; . := {f1,..., (1 —¢)fi+ef*, ..., fm}. By Lemma 6.9,
V(z;e) > V(x) for all ¢ > 0. Notice also that z;. — = as ¢ — 0.

For any € > 0, consider =, _, and notice that the set-valued map ¢ — =, _ is a
continuous, closed, and compact valued correspondence. By IICC (Axiom 4), there

exists £ € ém Consider the maximization problem (parametrized by ¢)
[P1] W(e) := max V (F(£)) st. £eg,,,

Notice that W(0) = V(z) and that because =;. is finite, a solution to [P1] always
exists. We claim that for any € > 0, the value of problem [P1] is precisely the value of
Tie, 16, W(e) = V(z;.).

To see this, notice that from the proof of Lemma 6.2, it follows that V(z;.) >
V(F(€)) forall € € Z; .. By IICC (Axiom 4), there exists & € Z,, _ such that V(.F(€)) =
V(z;c). Therefore, W(e) = V(z;.). Combining the two inequalities establishes that
W(e) = V(x;.) for all € > 0.

By the Theorem of the Maximum — see for instance, Ok (2007, p306) — W
is continuous in €. The Theorem of the Maximum also implies that the maximizer
correspondence is upper hemicontinuous, and therefore for any £ that is optimal for
the problem [P1], the limit &} := lim._,o&* is also a maximizer. (The limit always
exists because Z,, _ is a continuous, closed, and compact valued correspondence.) The
continuity of W then implies that W (0) = V(F(&5)).

There are two possibilities now. The first is that for all € > 0, there exists
e € (0,e°) such that *(s) = (1—¢) f; +fF is active in state s. Because &f = lim._,¢ &,
it follows that &} (s) = f;, ie, f; is active in state s. In other words, £§ # £. But we have
already established that W (0) = V(z) = V(F(&})), which contradicts the assumption
that x is nice, which rules out this first possibility.

The other possibility is that there exists an £, > 0 such that for all £ < ., the
act (1 —e)f; + eff is inactive in every such state s € J¢, ie, £¥(s) # (1 —e)fi + e f.

In this case, for all € < €., we have £ = £}. Because z is nice, it must necessarily
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be that & = &. This implies that for all such ¢, V(z;.) = W(e) = W(0) = V(2).
But this contradicts our earlier observation (which follows from Lemma 6.9) that
V(z;e) > V(x) if pis Type II at E; in state s whenever f; is active in state s € J;.
This contradiction rules out the second possibility, and completes the proof of the first
case.

Case 2: Suppose that f;(s) is a maximizer for p;(s)u; s(-) on A(C' x W). If p is
of Type Ila on E; in state s € J¢, then p;(s)u; s(-) is not constant on A(C' x Z). If p is
of Type IIb on E; in state s € Jf, then p;(s)u; s(+) is constant on A(C' x Z). However,
in either case, there exists ¢ € L such that p;(s)u; s(fi(s)) > pi(s)u;s(€(s)). (Such an ¢
exists because f;(s) is a maximizer of p;(s)u; s(-) and by hypothesis that u is of Type
I, there exists some € A(C x Z) that is not a maximizer.)

Consider the menu %x + %E. By Lemma 6.7, we see that p € Y(x) implies
1€ YT(3z + 30). Because z is nice, xg, which satisfies V(z9) = V(z), is the unique
generator set of x. L-Independence now implies that V(%xo + %f) = V(%x + %6)
Moreover, Lemma 6.7 says that %x + %6 is nice. It follows immediately that %ZL'() + %ﬁ
is a generator set for 1z + (.

Now consider the nice menu %x + %6 with generator %xo + %E, and let pu €
T(3z0+ (). By construction, 1 f;(s)+3£(s) is not a maximizer of p;(s)u;, on A(C'x W)
(although f;(s) is), which means that we now satisfy the hypotheses of Case 1. Lemma
6.7 ensures that YT(32 + 3¢) N T(z) # @ and that a finit optimal strategy at z is also
optimal at %x + %5. These facts allow us to establish that even in this case, u cannot
be of Type II, which completes the proof. n

Let = be nice and let p € Yo(x). Let (E!*") be the partition induced by an
optimal strategy (for instance, one coming from the generators of z) given p and
consider the mapping

(1. B2%,9) = p(a() = [ plsha) dntp
Bl
Let {fi,..., fx} be the unique generator set of =, and let J; denote the set of states

where f; is active so (J;) is a partition of S. Now define

”Y,i,x = Z pi(s)

SEJi

pi(s)/V. ifsed;

0 otherwise

(o] pi(s) ==

~

Us 1=, ;s where ¢ is such that s € J;
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and let
M := {e AL : supp(fp) = {(ps, &) : i = 1,...,k where k <n = |S|}}

Note that 7/2@ # 0 so that p; is well defined. To see this, suppose that yfw = (. Then,
pi(s) = 0 for all s € J;. This implies that p;(s)u; (f) = 0 for all acts f, which implies
that {f1,..., fx} ~ {f1,---, fi}\{f:}. That is, we can drop the act f; from the set
{f1,..., fr} without any loss in utility, contradicting the assumption that {fi,..., fx}
is the unique generator set of x.

Consider the mapping
D, a, (EI")) = e M

where supp i = {(p;,1t) : i =1,...,k}, p; for i = 1,... k and U are defined in [&%], and
1 itself is defined as
,[L((pl,fl)) = ”(Ezwx)

Let 95Tp < 9 be the image of ©. (The domain of ® is easily defined, but notationally
cumbersome, and because omitting it will not cause any confusion in the sequel, we
refrain from a formal definition.)

A collection of probability measures {pi,...,px} on S (so each p; € A(S)) forms
a partitional system if (i) for all s € S, p;(s) > 0 implies p;(s) = 0 for all j # i, and
(ii) for all s, Zle pi(s) > 0. In other words, every state s is supported by exactly one
p; in the collection.

A positive measure p on 4 is elementary if its support is Dirac (degenerate) on
U, ¢t(s) and the support on A(S) is a partitional system of probability measures on .
In other words, there exist pi,...,pr € A(S) and u, € L 41, for all s such that p is
supported on the finite collection (py,u), ..., (pr, u) where u = (u;)ss. Rather than
saying that the marginal of ;1 on A(S) has support {p,...,pxr}, we will often say in
the sequel that p supports the partitional system (p;).

With these definitions, it is clear that each i € 95?,, is elementary. The following
proposition says that it is without loss of generality to restrict attention to measures
in Dﬁtp. Towards this end, let us define V:Xo— R as

V() = sup [2 [maxszs)us(f(s))]u(pi,u)]

,U,Effnp fex

7

Proposition 6.11. For all nice z, V(z) = V(z). Moreover, the supremum in the
definition of V is attained.
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Proof. Let z be nice, u € To(z), and {fi,..., fr} the unique generator set of x. Let
us first prove that V() < V(). Let (E™") be an optimal partition of i for u at =,
and let i = D (u, z, (E"")). Then,

7

V(z, p) r?gx lZ JEH ) s)us(f(s)) dp(p, u)
2 maXZpi S ui,s

Lemma 6.10 says that u cannot be of Type II (a or b) if s € J, and hence must be
either Type Ia or Type Ib. In either case, p;(s)u; s(f(s)) < 0 = pi(s)i;(£1(s)) for all
s € J{. Therefore, it must be that

We now prove that V(x) < V() for all nice x. Suppose, by way of contradiction,
that V(x, i) > V(z) for some nice z and ji € Dj?p. Suppose the optimal strategy here
is to choose f; € x whenever the ‘interim information’ is (p;, u).

Now recall that i = D (u,y, (EFY)) for some p e Ty and y € X,. Consider the
strategy ¢ that is constant on E!"Y, ie, satisfies (*(E!"Y) = f; € x for each i (where f;
is the optimal choice when presented with the interim information (p;,u)). The value

of this strategy, V(x, u, ("), is given by

Viw,p, ¢") = Z > wayp(S)uS(fi(s)) du(p, u)]
= Z Zpi(s)ﬁi,s(fi(s))]

It follows from Lemma 6.10 that p is not Type II (a or b) at E!"Y in state s for all
s € Jf. (Note that the partition (.J;) is generated by the unique ¢ € éy. Thus, (J;) does
not depend on z.) Therefore, for all such s € Jf, it must be that p;(s)u; s(fi(s)) < 0.
For such an s € Jf, if we replace f;(s) by ¢, we obtain the new menu z’, which has
the property that V(z/, u, (") = V(z, ii). But this implies V(2') = V(z, i) > V(z),
where the strict inequality follows from our hypothesis. This violates IICC (Axiom 4)

and Continuity because z’ is obtained from x by replacing payoffs in acts in = by /4,
so that « = #’. This proves that V() = V(z) for all nice x.
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Now, to show that the maximum is achieved in the definition of V(x), observe

that for each nice z, there exists u € To(x), so that

Vz) =V(x,p) definition of
< Viz, j1) from proof of V(z) < V(z) above
< V(z) definition of V
< V(x) because V() < V(x) as proved above

where i = D (p, z, (E"")), p € To(x), and (EX") is a finite optimal strategy for p at

x. Therefore, i is V—optimal for x, as claimed. O

Because V' is Lipschitz, it follows immediately that V is also Lipschitz on Xj.
By Proposition 6.4, X is dense in X, so that 1% uniquely extends to X. It is easy to
see that in the representation of V, this amounts to replacing ifnp with its closure. In
what follows, we shall therefore assume that Sjtp is closed and that V is defined on X.
Thus far, we have shown that X is represented by a function V : X — R that

has the form

[6.2] V(z) = maxV(z, u)

where

e cach p € 9 is a positive elementary measure,
Vi) = | Spence (570 s (£16)) o) ana
o V(lyu)=V () for all p, ' € M and ¢ € L.

Lemma 6.12. Let p be an elementary measure. Then, there exists an elementary

probability measure i such that for all x € X, V(x, u) = V(x, f1).

Proof. Let p be supported on (pi,u), ..., (pr,u), and let ||u]|; be the total weight of
p. (That is, ||pll; = 25, ((pi,u)).) For any s € S, define 1ty := ||u||; us, and for any
p e A(S), let a(p,u) := p(p,u)/ |||, where it = (1t5)ses. It is easy to see that j so
defined is elementary and is also a probability measure.

Moreover, we have

= X Y ()i 5)
Zmaxzup’ ||u||1us( (s))

= V(‘%M)
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which establishes the claim. O

Two partitional systems of probability measures {p1,...,pr} and {q1,...,qx} are
similar if for all ¢ = 1,... k, supp(p;) = supp(q;)-

Every elementary probability measure 1 on A(S) supports a partitional system.
We now show that we can replace, ie, without affecting utility considerations, y by
another elementary probability measure ji that supports another partitional system

that is similar to the partitional system supported by pu.

Lemma 6.13. Let u be an elementary probability measure whose support is (p1, ), . . ., (pg, u).
Let {p1,...,DPr} be a partitional system on A(S) that is similar to {pi,...,px}. Then,

there exists an elementary probability measure i with support (p1, 1), ..., (pg, tt) such

that for all x € X we have V(z, u) = V(z, ft).

Proof. Define uy :

Then, we have

(pi(s)/pi(s))us, and set u(p;,u) = f(p;,u), where 1t = (lig)ses-

Vi(w, o) = 2 max } jipi, ) pils) s(f(s))
= Z max ) u(ps, u) pi(s) us(f(s))

fex
= V(z, p)
which completes the proof. O

Let p be an elementary probability measure and define 7, € A(S) as
mu(s) ==Y u(p) p(s)
p

Let mp € A(S) and P := (J;) be a partition of S. Then, the conditional probability
induced by J; is ¢;(-, mo | J;) where

qi(S;ﬂ'O ’ Jl) = 7T0(S ‘ J1>

for all J; € P. It is easy to see that (qz( T | JZ)) is a partitional system of probabilities
on S. Conversely, let © be an elementary measure that supports the partitional system
(p:;). This induces the partition P, := (J;) of S where J; := supp(p;).

Lemma 6.14. Let mg € A(S), 1 an elementary probability measure that supports
the partitional system (p;), and let (J;) be the partition of S induced by (p;). Then,

there exists an elementary probability measure p* such that
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(a) p* supports the partitional system (g;(-, 7o | J;)),
(b) m,x = m, and

(c) V(z,pu) =V (x,p*) for all x € X.

Proof. Let u and my be as hypothesized and consider the induced partitional system
(¢i(-;m0 | J;)). By Lemma 6.13, there exists an elementary probability measure /i that
supports (Qi('; o | Jl)) while keeping utilities unaltered.

For each s, define the utility function

¥ . Ziﬁ(%(s;ﬂ'o | Ji)aﬁ>)ﬂ{seJi} -
u, = Uy
22 70(Ji) U sey

and observe that in the sums in both the numerator and denominator, only one term

is non-zero. Now, define the elementary probability measure p* as follows: If s is

supported by ¢;(+;mo | Ji), set
1 (qi(mo | i), w*) i= mo(J;)

and 0 otherwise, which proves (a). With this definition, m«(s) = >, p* ((¢:(:; 7o |
Ji),u*)) - gi(s;mo | Ji) = mo(s), as desired for the proof of (b). To see (c), notice that

we have

— ngcxzﬂo(z]i) ¢i(s;mo | Ji) ﬂ(qi(';r:?}i)t]i)’ﬁ) us(f(s))

= ngqui(s;Wo | Ji)ﬂ(qi(';ﬂo | Jz>7ﬁ) ﬁS(f<S>>

which completes the proof. O

We are now in a position prove Proposition 6.1.
6.1.3. Proof of Proposition 6.1

Proof of Proposition 6.1. We shall prove (a) implies (b). We have shown that given
the representation [¢] in Theorem 1 and IICC (Axiom 4), V has the form in [6.2],
where every p € 90t is an elementary (positive, but finite) measure. Lemma 6.12 shows
that it is without loss of generality to consider p that are elementary probability

measures. Consider such a p and suppose it supports the partitional system (p;). Let
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J; = supp(p;), and notice that (J;) is a partition of S. Lemma 6.14 says that it is
without loss of generality to assume that every p supports the partitional system
(qi(-;ﬂo ] Jl)) (recall that ¢;(s;m | J;) = mo(s | J;)) and also has the feature that
Tu(s) =20 1(a(s;mo | i) qi(s;mo | J;) = mo(s) for all s. (To ease notational burden,
in what follows we shall write ¢;(s;m | J;) as ¢;(s).)

In particular, this last property implies that p(g;, u) = m(J;) and p(g;, u)gi(s) =
mo(Ji)mo(s | J;). This implies

UEEDY lr?gCXZ qi(S)us(f(S))] (g w)

= Z I?SEXZWO(S | J;) us(f(5>)] mo(Ji)

J;eP
= Z n}lgCX Z mo(s | Ji)uS(f(S))] mo(Ji)
JieP | s€J;

= V’(a:, 0, (P7 u))

In other words, the informational content of the elementary probability measure p
is now encoded into the prior 7y, the partition P = (J;), and the utility functions
u = (ug). Let M be the collection of all such pairs (P,u) induced by elementary

probability measures in 9. Then, we can write
V(z) = max V (z, u)
o
= Vv’ P
(Ig.}iaé}i)(w (:Ca To, ( ) u))

=:V'(x)

where V'(z) = V(x) for all z € X; this proves the representation part.

Observe now — see [6.2] — that for all £ € L and p, ' € M, we have V (£, ) =
V (¢, 1'). This implies that, for all £ € L and (P,u), (P',u’) € M, we have V' (¢, mg, (P,u)) =
V (€, mo, (P’ u)).

Recall that (7 € L is such that u,(¢'(s)) = 0 for all s € S. For any a € A(C x Z),
define ég e L as
. a if s =s

lo(s') =
(1(s") otherwise

For all (P,u), (P’,w) € M, we then have V (£5, my, (P,u)) = V ({5, mo, (P', ). Notice
that V (05,7, (P,u)) = mo(s)us(e) = mo(s)i'(a) = V (€5, mo, (P',0')). Since this is

S
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true for all & € A(C x Z), it follows that ug and u), are identical on C' x Z for all
(P,u), (P',u') € M. This proves that (a) implies (b). O

6.2. Separable Representation

We now investigate the implication of imposing State-Contingent Indifference to
Correlation (henceforth SCIC, Axiom 3).

Proposition 6.15. Let V' be as in [6.1] and suppose V represents >. Then, the
following are equivalent.

(a) % satisfies SCIC (Axiom 3).

(b) There exist functions u, € C(C') and a set M7 consisting of pairs of (P, (vs)) where
P is a partition and v, € C(W) for each s such that (P, (vy)), (P, (v;)) € M
implies vg|z = v.|z for all s € S, and V' can be written as

6.3] V(zr) = max Z 7o(J) ?&XZ mo(s | J) [us(fi(s)) + vs(fa(s))]

(P{vs))emy S

Before we prove the proposition, we introduce some notation and prove a lemma.

Suppose V : X — R represents > and takes the form [6.1]. For each (P, u), define

Via, (Pw)) = 35 (max Y mols | 1) ua(£(s))) ()

JeP

to be the expected utility when the pair (P, u) is chosen from 9t,.

For each a € A(C' x W), define the equivalence class [a] := {a/ € A(C' x W) :
a; = o), as = o} of lotteries with identical marginals over C' and W. Consider now
the collection

m = {(P,u’) : (Pu) e My, ul(a) = m[in]us(a’), and o € A(C x W)}

ad'ela

and observe that v, : A(C'x W) — R is continuous and linear'* so that v/, € C(C' x W).
Moreover, for all (P, '), (P, i) € M, w.|crz = W.|cxz. This implies that V (¢, (P,u'))
is independent of (P,u’) € M.

Now define V' : X — R as

! ,: !
[6.4] Vi(z) P V(z, (P,u'))

(11) It is easy to see that for all o € [a] and B’ € [B], (3¢/ + 38'); = 3a; + 3; for i = 1,2. This,
the continuity of u/(-; P), and the fact that us(a/; P) is linear in o/, immediately imply that

/

u’(+; P) is linear.
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Observe that V' is monotone, ie, z < 2’ implies V'(x) < V'(2’). This follows immedi-

ately from the form of V' in [6.4]. We claim that V" also represents % .

Lemma 6.16. Let V and V' be defined as in [6.1] and [6.4] respectively. Then, for all
re X, V(ix)=V'(z).

Proof. Because V is Lipschitz, it suffices to show that V(z) = V'(z) for all finite
x. Notice first that for all x € X, V'(z) < V(x). To see this, fix  and let (P, u)
be a maximizing pair for V’. That is, V'(z) = V(z,(P,u)). But V(z, (P,u)) <
V(z, (P,u)) < V(z), where the first inequality follows from the definition of u, which
entails that for each a € A(C' x W), ul(a) < ug(a).

We shall now show that for all finite x € X, V(z) < V'(z). Note first that for
each z and for any (P,u) that is optimal for = with P = {J;,...,J,},fori=1,....,m

we can define the acts

fi= arg}maXZWo(S | Ji) us(f(s))
€Ex s
Then, we see that V(z) =V ({f1,..., fm}), ie, {f1,..., fn} is the generator set of .
Now define the act fZ so that for each s € S,

fi(s) = arg min u,(c)
o€l fi(s) ]
With this definition, we make the following observations.
(&) V{f1,-- o fm}) = V{f1, ... fm}) by repeated application of SCIC (Axiom 3).
(b)Y V{f1,- . fuds (Pow) = V{f1,- .-, fm}s (PoW)) for all pairs (P,u) and (P,u).
This follows from the definitions of u) and fi, which imply that in any state s,
w(ils) =w(is). A
() VI{fi,-- s fm)) = V{ f1s -, fn}, (P, 1)) where (P, 1) is a maximizing pair in 9T,
for {f1,..., fm} under V.
(A) V{f1,- o fuds (P) = V{1, -, fm}, (P,1)). This follows from the definitions
s, W(fi(s)) = W(fil9)).

of i/ and f,-, which imply that in any state
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We can now use these equalities to form the following chain.

Vi) =V{fi, -, fm}) definition of {f1,..., fi}
—V{fi. s fm)) established in (a) above
= V({fl, o fm} (P P, u)) established in (c) above
—V{f1,- s fm}s (P)) established (d) above
<V'({f1,--  fm}) definition of V'
< V'(x) monotonicity of V'
which completes the proof. ]

Proof of Proposition 6.15. 1t is easy to see that (b) implies (a). We now show that (a)
implies (b).

Lemma 6.16 implies we can replace V in [6.1] by V' in [6.4]. Moreover, from
the definition of V' in [6.1], us(a) = u(a) for all (P,u), (P',u') € M, and for all
aeA(C x Z).

For any a € A(C' x W) with marginals a; and as, let a; ® as € A(C) x A(W)
denote the product lottery with the same marginals. Recall that the lottery ¢f € L is
such that u,(¢7(s)) = 0 for all s. Given (P,u), now define
o uy(ay) = 1us(my ®€£(5)) (and notice us(ar) = u(a) for all (P, u), (P, u') € M, and

for all v € A(C x Z) because a; ® l(s) € A(C' x Z)); and
o v(ag) = uy (f{(s) R az).
With these definitions, us € C(C) while vs(-) € C(WW). Notice that the lotteries
L1 ®@as) + 101(s) and 1 (o ®€;(s)) + %(fl(s) ® ) have identical marginals, which
implies that for every (P,u),

ue (3 (0n ®@az) + 30()) = . (31 @ () + §(€1(s) @)

This means we can write

)
= %us (a1 ®€;(3)) + %us (EI(S) ® ag) = %us(al) + %US(O(Q)

where the second equality holds because ug(-) is constant on the equivalence class of
lotteries with identical marginals. The first and third equalities from the linearity of

u,(+), while the last equality follows from the definitions of us and v,(-).
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But we have already stipulated that u, (ﬂ(s)) = 0, which implies that for all s,

we have
us (o1 ® o) = uy(ar) + vy(a)

Substituting in [6.4] and invoking Lemma 6.16 gives us [6.3], as desired. O]

As always, for each (P, (v,)) € 97, define V(z, (P, (v,)) as
V(w, (P, (v5)) = >, mo(J) I;lchZ mo(s | J) [us(fi(s)) + vs(f2(s))]

JeP

6.3. Representation with Deterministic Continuation Utilities

Thus far, we have seen that > has a representation as in [6.3]. We now impose
Concordant Independence (Axiom 5).

Proposition 6.17. Let V be as in [6.3] and suppose V represents %. Then, the
following are equivalent.
(a) % satisfies Concordant Independence (Axiom 5).

(b) V can be written as

[6.5] V(z)= max Z maxZ mo(s | J) [us(f1(s)) + vs(fa(s), P)] mo( )

pe sp | 1€°

where DY is a finite collection of partitions P of S, u, € C(C), and v,(-, P) € C(W)
for ecach s € S and P € Sﬁg, with the property that for all P, P’ € 9)?2, s €S,
US(‘7P)|Z = /US(WP/)|Z‘

For a fixed P in the representation in [6.3], let X}, and Xp be defined as follows:
Xp={z:V(z) = V(z, (P, (vy))) for some (P, (vy)) € M, and
V(z) > V( ( ( 1)) for all ( ,(v))) € M) such that P # Q}
Xp = {z:V(z)=V(x, (P, (vs))) for some (P, (vs)) € M, and
Vi) = V( ( ( 1)) for all ( (V) €

Recall the choice problem x;(P) defined above. For each J € P, let

e M such that P # Q}

£)(s) = (¢, zf) sed

(c;,z;) otherwise

s 17s

and define the menu x1(P) := {f; : J € P}. That is, for any partition P, z;(P) is a

problem where the choice of P is optimal.
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Lemma 6.18. Let x € X}. Then, for all A € (0,1), (1—X)z+ Az, (P) € X}. Moreover,
V(@ =Nz + Az1(P)) = V((1 =Nz + M*) > V((1 = Nz + Az1(Q)) if, and only if,
P is not finer than Q.

Proof. We begin by establishing three claims.
(i) In the representation [6.3], vs(z]) > vs(z; ) for all s € S.
(i) V(21(Q)) < V(£*) for all Q € P.
(iii) V(21(Q), (P, (vs))) = V(£*) if, and only if, P is finer than Q.
To see (i), observe that by a repeated application of IICC (Axiom 4), [£, ®q,s) (¢, w])] >
[0 @) (c5,wy)] = £y for all s € S. Because we have v,(z) = v)(z) for all z € Z and
(P, (vs)), (P', (v})) € M7 in [6.3], vs(2]) > vs(z; ) follows for all s € S.
Given claim (i), and because us(c/) > us(c;) for all s, claim (ii) follows by
evaluating V' in [6.3] at z1(Q).
To establish claim (iii), consider first P finer than @), then

V (@1(Q), (P.(v,))) = Y, m (J) max Z?To /) [us (f1 (5)) + vs (f2(5))]

= fex(Q)
= > (] ZWO 1J) [us(ch) +vs(z1)]
JeP

=V <€*7( 7(”5))) = V(f*)

Now suppose instead that P is not finer than (). Then there must be J € P with s € J
such that

[arg max (Z mo (s'|J) [us (f1 (s) + ve (f2 (S'))])] (s) = Lx (5)

fex1(Q)

Then, by claim (i) and because us(c!) = us(c; ) for all s by construction, we find that

V(é*) > V(‘ftl(Q)a (P> (Us)))
With the claims in hand, observe that

V((=Nz+ i (P)=V(1—=Naz+ ey (P),(P,))

for all (P',-) € M. Let (vs) be such that (P, (vs)) € M) and V (z) =V (x, (P, (vy))).
Then
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by claims (ii) and (iii). Moreover, for any other (Q, (v)) € M},

V(L =Nz + Az (P), (Q, (v)) = (1L = NV (z,(Q, (v)) + AV (21(P), (@, (v})))
< (1= NV (z) + AV (e¥)

where the strict inequality is because V(z, (@, (v))) < V(z) = V(x,(P,-)) (recall that
ze Xp) and V(z,(P), (Q, (v)))) < V(£*) (claim (ii) above). This implies (1 — \)z +
Az1(P) € Xp. Moreover, it now follows immediately that V ((1 — X))z + Az, (P)) =
V(1 =X x4+ M\*).

Finally, suppose P is not finer than Q). Consider the menu (1 — )z + A\z1(Q)
and suppose (FP’,-) € My is optimal for this menu. Notice that if P* # P, then
V(z,(P',-)) < V(z,(P,-)) = V(x) by virtue of x € Xp, and that if P = P’, then
V(z1(Q), (P,-)) < V(£*) by case (iii) because P is not finer than Q. Thus,

V((l — ANz + )\xl(Q)) = V((l — Nz + A\ (Q), (P, ))
= (1 - )\)V(ZL“, (P,7 )) + )‘V(xl(Q)v (P/7 ))
< (1 =NV(z,(P,-) + AV (€*) = V((1 = Nz + \*)

It is immediate that V((1 — Az + Az1(Q)) = V((1 — Nz + A*) if Q) coarser than P,
which completes the proof. O

Lemma 6.19. X7}, is convex and consists of concordant choice problems.

Proof. Consider z,y € Xp. By Lemma 6.18, sz + 121(P) € X}, and V(32 + 121(Q)) =
V(32 + 20*) if, and only if, @ is coarser than P, and the same is true for y. Hence,
%x + %xl(Q) ~ %x + %E* if, and only if, %y + %xl(Q) ~ %y - %E* for all Q € P,
which establishes that x and y are concordant (as in Definition 4.1). By Concordant
Independence (Axiom 5), x, y, and %x + %y are concordant. Concordant Independence
(Axiom 5) also implies that V' is linear on a concordant set of menus, so that V(52 +
3Y) =3V (@) +3V(y).

Now suppose (Q, (v)) € img is optimal for ;z + %y By the representation in
[6.4], V(52 + 3y) = V(32 + 39 (Q, (v))) = 5V (2 (Q, (v0))) + 5V (4 (@, (v}))). Since
V(z) = V(x;(Q, (v)))) and V(y) = V(y;(Q, (v)))) for all @ € P, it must be that
V(z;(Q,(v)))) = V(x). Because z € X}, Q = P, ie, 32 + 3y € X

Standard continuity arguments now imply that every z € [x,y] is concordant

1

with x and y and the argument above establishes that () = P for any maximizer

(@, (v))) at z, ie, X is convex. O
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Lemma 6.20. For each x € X, there exists (P, (v;)) € 9] such that x € cl(X}).

Proof. Let x € Xpl NN Xpn and suppose n > 2 (because if n = 1, then z €
Xp < cl(Xp)). Without loss of generality, suppose that none of P, ..., P, are finer
than P;. In analogy to the arguments in the proof of Lemma 6.18, we find that
V((1=Nz+Ax1(Py), (P, (v))) = V(1=XN)z+M*) > V((1=Nz+ Az (P), (B, (v})))

for some v} with (P, (v))) € M) and all (P, (v))) € M for i = 2,...,n. That is,

s

(1 =Xz + Az (Py) € Xp, for all X € (0,1), which implies x € cl(X} ) as claimed. [

Lemma 6.21. Let x € X}, and let Y, denote the set of choice problems that (i) are

concordant with z, and (ii) have a unique optimal partition. Then, Y, = X}.

Proof. By hypothesis, P is uniquely optimal for z. Let () # P be optimal for y € Y.
Because V' is L-affine, we may assume without loss of generality, that = ~ y. (This
is made clear in the proof of Lemma 6.19.) If P is not finer than @), by Lemma 6.18,
(1 =Ny + Az1(Q) > (1 = N + Az1(Q), which contradicts our assumption that x and
y are concordant. Conversely, if () is not finer than P, then an analogous argument
establishes that (1 — X\)z + Az1(P) > (1 — A\)y + Az1(P), which also contradicts our
assumption that x and y are concordant. Therefore, P must be the unique optimal
partition for any y € Y,. Thus, Y, < X},. That X}, < Y, is an immediate consequence
of Lemma 6.19. [

Notice that replacing 9t with its weak™ closure (in the event that it is not weak™
compact) in [6.3] does not affect the representation. Therefore, we shall now assume

that M7 is weak™*-compact.

Lemma 6.22. Let z € cI(X}). Then, there exists (v,) such that (P, (v,)) € 97 is
optimal for all y € cl(X}).

Proof. By Lemma 6.21, Y, < X} which, by Lemma 6.19, is convex. By Concordant
Independence, X | x;, satisfies Independence. That is, 14 x1, 1s linear. It follows from
Corollary 7.3 and Lemma 7.5 below that there exists (vs) such that (P, (vs)) is optimal
for all 2 € X}. Continuity now implies that (P, (vs)) is optimal for all x € cl(X}p). O

It follows that we can replace the set M7 by a finite collection {(Py, (v})), ..., (Pn, (v]))} =
M as in [6.5]. Thus, we have shown that (a) implies (b) in Proposition 6.17. That (b)
implies (a) is clear.

With the representation in [6.5] in hand, for any partition P € Emg, we define

Viw,P) = 3 max| Yimo(s [ ) [un(£(5) + vl fals), P)] mo(J)

JeP
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which is the utility of a menu, conditional on an initial information choice.

6.4. Proof of Theorem 2

Given the representation in [6.5], we complete the proof that the Axioms 1-5 imply
the representation in Theorem 2 by showing that v(w, ) = vg(2;,-) for all w e W.

Notice that Emf? in [6.5] is finite and can be taken to be minimal (in the sense
that if ‘ﬁg is another set that represents V' as in [6.5], then Qﬁf, c ‘ﬁg) without affecting
the representation. Recall that X* := {(1 — t)z + t¢* : x € X is finite, ¢t € (0,1)}.

Lemma 6.23. Let > have a representation as in [6.5]. For all P € i)ﬁg, there exists a

finite z € X}, n X* that can be written as = 32’ + $z1(P) for some 2’ € X.

Proof. The finiteness and minimality of ﬂﬁg) in [6.5] implies that for any P € ﬂﬁg,, there
exists an open set O < X},. Because the space X* is dense in X, there exists ' € OnX*.
It follows immediately from the representation in [6.5] that x := %x’ +%$1 (P) e XpnX™,

as claimed. O

Lemma 6.24. Let > have a representation as in [6.5]. For all P € im]ﬁ), vs(w, P) =
vs(z5, P).

R

Proof. Suppose instead that vs (w, P) < vs(z;, P). Consider x € X, n X* which
exists by Lemma 6.23. Then, for € > 0 small enough such that P remains optimal,
[2 @5 25 | > [x D5 w]. To see this, suppose f is such that f @. s (c;,w) is chosen

optimally from the menu = @, s w. Then, v, (w, P) < vs (25, P) implies

(1= )[us(fi(s)) + vs(fals), P)] + € [us(cy) + vs(w, P)]
< (1= 2) [us(fa(s) + vs(fals), P)] + € [us(ey) + va(z, P)]

This implies V(z @, 5 z; ) > V (@, s w). But this contradicts part (a) of IICC (Axiom
4), which requires that [z @, s w] X [z D 2, | for all we W. O

That the representation in Theorem 2 implies the Axioms is straightforward.

7. Convex Duality

We review some notions from convex analysis. Our review follows Ekeland and Turnbull
(1983).
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Let X be a Banach space, X* its norm dual, C' < X, and f: C' > X a convex
and Lipschitz function. The subdifferential of f at v € C'is df(x) := {z* € X* :
{y —z,2*) < f(y) — f(x) for all y e C}. A necessary and sufficient condition for the
existence of a subdifferential at x € C' is that there exists K > 0 such that for all y € X,
f(z) — f(y) < K ||y — z||. To see this, recall that the set epi(f) := {(z,t) e X x R :
t = f(x)}, the epigraph of the function f, is a convex set (if, and only if, f is a convex
function). For each z € C, we define A(z) := {(y,t) e X xR : f(zx) —t > K ||y — z||}.
[t is easy to see that the set A(z) is (i) nonempty, (ii) convex, and (iii) open. It is also
easy to show that epi(f) n A(x) = @, so there exists a non-vertical hyperplane that
separates the two sets. Following the arguments in Gale (1967), we can conclude that
Of (x) # @, and moreover, there exists x* € df(z) such that ||z*|| < K. This is the
content of the Duality Theorem of Gale (1967). (Indeed, Gale (1967) also shows that
local Lipschitzness is a necessary condition for df(x) to be nonempty.) We will rely

on the following result in the sequel.

Proposition 7.1 (Duality Theorem in Gale (1967)). Let C < X be convex and
suppose f : C'— R is convex and Lipschitz of rank K. Then, there exists z* € 0f(z)
such that [|z*|| < K.

In what follows, we will denote by dx f(z) := {z* € 0f(z) : ||z|| < K}. For each
z* € X* and a € R, we can define the continuous affine functional ¢(-,2*) : X — R as
o(y; 2*) = {y, z*)—a. The function ¢ < f forall y € C'if, and only if, {y, z*)—a < f(y),
and is exact at x € C if p(x;2*) = f(z). If ¢ is exact, the value of a which makes
it so is given by —a(z*) := f(x) — (x,2*). Therefore, x* € df(x) if, and only if, the
continuous affine functional ¢(y;z*) = f(z) + {y — x,2*) < f(y) for all y € C with
o(x;x*) = f(x). In other words, x* € 0f () if, and only if, p(y; 2*) = f(x)+{y — z,z*)
is a supporting hyperplane for the graph of f at x.

Notice that for any intercept a = a(z*), (x,2*) — a < {(x,2*) — a(z*), so
a(z*) = infla e R : f(z) = (z,2*) — a] = sup[x € C : {x,2*) — f(x)]. This smallest
intercept is the Fenchel conjugate of f, and is denoted by f*: X* — R u {—w0, +0},
and is given by

fr(@*) = sup [ (z,2") - f(z)]

zeC
Proposition 2 of Ekeland and Turnbull (1983) shows that z* € df(x) if, and only if,

f(@) + f*(27) = (o, 2%).
By Proposition 7.1, it follows that for Lipschitz f, the conjugate function is given
by f*(2*) := maxec [ (z,z*) — f(x)]. We now show that for positively homogeneous
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functions, the conjugate function f* is identically 0.

Proposition 7.2. Let C' € X be a convex cone, and let f : C' — R be convex and
Lipschitz. Then, the following are equivalent:

(a) f is positively homogeneous, ie, f(Ax) = Af(x) for all A > 0;

(b) f*(2*) € R implies f*(xz*) = 0.

Proof. Suppose f* = 0. Fix x € ', and recall that because f is convex and Lipschitz,
there exists * € df(x). This implies f(z) = (x,z*). It is easy to see that x* € df(A\z)
for all A > 0, so that f(Ax) = Af(x). That is, f is positively homogeneous.

Now suppose f is positively homogeneous. Fix x € C' and suppose z* € 0f(x).
We will first show that for any A > 0, 2* € df(Ax). Then, by the definition of
of, for any y € C, (y —z,2*) < f(y) — f(2*). Now let A > 0 and let y € C be
arbitrary. Because C' is a cone, there exists z € C such that Az = y. This implies
(y — Az) = ANz — 2*) < M f(2) — f(z)] = f(y) — f(Az), which proves that z* € 0 f(x)
implies z* € df(Ax) for all A > 0.

Now suppose z* is such that f*(z*) € R. Because f is positively homogeneous,
we have f(0) = 0. (To see this, note that f(0) = f(2 x 0) = 2f(0) which implies
f(0) = 0.) Therefore, f*(z*) = (0,2*) — f(0) = 0. Now suppose f*(z*) > 0. Then, for
any € € (0, f*(z*)), there exists x € C' such that f*(z*) — e = (z,2*) — f(z) > 0. But
then we can choose A > 0 such that (A\z,2*)— f(Az) > f*(z*), which is a contradiction.
Therefore, it must be that f*(z*) = 0. O

This allows us to establish the following corollary.

Corollary 7.3. Let C' = X be a convex cone, and f € R be convex, Lipschitz, and
positively homegeneous. Then, there exists a weak™ compact set 9t < X* such that
f(z) = max[{x, z*) : z* € M.

Proof. We have already established that for each = € C, there exists x* € df(z) such
that [|z*|| < K, where K is the Lipschitz constant of f. We have also established
that * € df(Ax) for all A > 0. Therefore, f(y) = (y,a*) for all y € C. Letting
M = cl({z* € of(x) : x € C, ||z*]| < K}) (in the weak* topology) establishes the

claim. ]

If C'is convex and A < C'is also convex, then f : C' — R is A-affine if for all
rxeC,aec A, and t € (0,1), we have f(tx + (1 —t)a) =tf(z) + (1 —t)f(a).

For a fixed x € C, notice that f is affine on the set ch({z} U A). Let &, be the
collection of all (convex) subsets of C' such that if F € €, then (i) 2 € E and (ii) f|g
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is affine. A simple application of Zorn’s lemma shows that for each x € C, there is a
largest set £, that contains x and where f|g, is affine.

Notice that there exist x € X such that this maximal set E, is not unique.
Indeed, for any a € A, and z,y € C such that f is not affine on [z, y] (the closed line
segment joining x and y), then a € E, n E,, but E, u E, (or it’s convex hull) is not a
member of 6,,.

If f is Lipschitz continuous (as we shall assume below), then it is easy to see
that the set E, must be closed as well.

Proposition 7.4. Let C' = X be a convex set, and f € R be convex and Lipschitz
of rank K. Let A < C be convex and suppose that 0 € A, f(0) = 0, and that f is
A-affine. Then, for each x, there exists x* € X* such that z* € dfx(y) for all y € E,
where E, is defined above. Moreover, there exists a weak* compact set My < X*
such that f(z) = max[{(z,z*) : * € M;] and (a,2*) is independent of x* € M, for
all a € A.

Proof. Fix x € C, let y1,...,y, € E,, and define y := %ZZ n. Then, by Proposition
7.1, there exists y* € 0k f(y). Recall the affine function (-, y*)X :— R given by

o(r;y*) =< —y,y*) + f(y)

The affine function ¢ satisfies the following two properties:
o f(z) = ¢(x;y*) for all z € C, and

o fly) =ely;y")
The first requirement implies that f(y;) >

(
up and dividing by n, we see that £ > f(y;) = £ 37, ¢(y;; ¥*). However, f restricted
to E, is affine which implies + . f (y;) = f(y); similarly, ¢ is affine, which implies

L3 y) = elys v,
But we have noted above that f(y) = ¢(y; y*), which is possible if, and only if,

yi;y*) for all i = 1,...,n. Summing

f(y:) = o(y;;y*) for all i = 1,... n. But this is equivalent to saying that y* € dx f(v;).

For any y € E,, dxf(y) is a (nonempty) closed (and hence compact) subset
of {v* € X* : |la*|| < K}." Thus, (Oxf(Y)),cp,
of the compact set {z* € X* : [|[z*|| < K}. But we have just established that for
any yi,...,Yn € Ey, (Vi Ox f(yi) # @. In other words, the collection of closed sets

is a collection of closed subsets

(O f(y))yeEz has the finite intersection property. The compactness of {z* € X* :

(12) By the Banach-Alaoglu Theorem — see, for instance, Theorem 6.25 of Aliprantis and Border
(1999) — the set {z* € X* : ||x*|| < K} is a weak™ compact subset of the dual X*.
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|z*|| < K} then implies that ()., Ox f(y) # @. Thus, there exists ¢, € (,cp, Ok f(y)
which proves the first part.

Fix this ¢, and notice that ¢(y;(,) = f(y) for all y € E,. Because 0 € A,
this implies ©(0;¢,) = 0. In other words, f*(¢;) = 0. (In geometric terms, the
supporting hyperplane determined by (, passes through the origin.) Now, let Mt :=
cl ({¢; € X* 1z e C}). It is immediate that 2, is closed. Because f(a) = {a, (,) for all
x € C, it follows that the same holds for all 2* € M1, which completes the proof. [

We end with an easy observation.

Lemma 7.5. Let C' — X be a convex set, and f € R®, and M a weak™ compact
subset of X* such that for all z € C, f(x) = max[(x, z*) : 2* € M;]. (This implies f
is convex and Lipschitz of rank K for some K.) Let Cy < C be convex. Then, the
following are equivalent.
(a) The function f|g, is linear.
(b) There exists x§ € My such that z§ € (), .o, Ix f(z) (which is equivalent to saying
that f(z) = (x,z¥) for all x € Cy).

Proof. 1t is easy to see that (b) implies (a). To prove that (a) implies (b), we shall prove
the contrapositive. So, suppose (¢, Ox.f(z) = @. Then, there exist zy,..., 2, € Cy
such that ([, Ok f(z;) = @. Let z = 1 3" | ;.

Then, for all z* € 9 we have
o (x;,x*) < {wjxf)y= f(x;) foralli=1,...,n, and
o (x;,x*) <{w;,xf)y= f(x;) for some i € {1,...,n}
This implies £ . (z;, z*) = (Z,2*) < £ >}, f(x;). Since this is true for all z* € M, and
because M is compact, it follows that f(z) = max[(Z,z*) : a* € My] < = 3. f(a,),
which proves that f is not linear on (Y, as claimed. m
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