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Allocation Mechanisms without Reduction†

By David Dillenberger and Uzi Segal*

We study a simple variant of the house allocation problem ( one-sided 
matching). We demonstrate that agents with recursive preferences 
may systematically prefer one allocation mechanism to the other, 
even among mechanisms that are considered to be the same in stan-
dard models, in the sense that they induce the same probability dis-
tribution over successful matchings. Using this, we propose a new 
priority groups mechanism and provide conditions under which it is 
preferred to two popular mechanisms, random top cycle and random 
serial dictatorship. (JEL C78, D44, D82)

I. Motivation

Many goods are allocated using randomizing devices. These include, among oth-
ers, public schools, course schedules, or dormitory rooms to students and shifts, 
offices, or tasks to workers. Standard analysis of allocation mechanisms is interested 
in their efficiency and in possible manipulations of their outcomes but typically not 
in the way these procedures are perceived by the agents to whom outcomes are allo-
cated. The literature on allocation problems, and more generally on  one-sided and 
 two-sided matching (for a survey, see Abdulkadiroǧlu and Sönmez 2013), typically 
maintains the assumption that agents are interested only in the overall probability 
they will receive their desired outcome. This assumption implies the equivalence 
of different randomized mechanisms (Abdulkadiroǧlu and Sönmez 1998; see also 
Pathak and Sethuraman 2011). Nevertheless, we show that taking into account the 
procedures that generate this probability may be important and that seemingly sim-
ilar mechanisms like random top cycle (TC) and random serial dictatorship (SD) 
can be ranked differently when preferences over compound lotteries are taken into 
consideration. Moreover, we use this insight to propose a new mechanism which 
may be better than those currently discussed in the literature.

The basic structure we investigate is simple:  N  units of two different types need 
to be allocated to  N  individuals, one per person. For example,  N  dorms—some face 
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west and the others face east—that need to be allocated to incoming students. Some 
will prefer one type, and some will prefer the other. Since there are only two types, 
there is no room for strategic manipulations, and agents’ optimal strategy is to reveal 
their true preferences. For tractability, in the formal analysis we will confine atten-
tion to the case of a large population: a continuum of agents and units.

We first take an  ex ante approach, where agents are yet to learn their own pref-
erences (as well as those of the other agents) over the goods. These preferences 
are revealed after the first part of the procedure takes place. In professional sports, 
for example, teams typically know their rank in the draft before they know which 
positions they would like to fill. This will become clearer by the time they know the 
draft prospects and the medical condition of their current roster for next year. In a 
school context, prospective students often attend visit days and open houses long 
after the assignment procedure has been announced. Individuals in such situations 
thus view possible mechanisms as compound lotteries, that is, lotteries over the 
interim probabilities of receiving their desired outcome. Crucially, our analysis is 
based on the assumption that sequential probabilities are not taken by individuals to 
be the same as their product. In other words, individuals do not obey the reduction 
of compound lotteries axiom, according to which an agent should be indifferent 
between any  multi-stage lottery and the  single-stage lottery that induces the same 
probability distribution over final outcomes.

Extensive experimental results suggest that individuals often fail to reduce com-
pound lotteries to simple ones using probability laws (see, among others, Halevy 
2007; Abdellaoui, Klibanoff, and Placido 2013; Harrison,  Martínez-Correa, and 
Swarthout 2015; and Masatlioglu, Orhun, and Raymond 2017). This is not neces-
sarily a mistake, as is demonstrated by the following example. One hundred doses 
of vaccine are available for 100 people. Two doses guarantee immunization, while 
one dose only reduces the probability of developing severe symptoms by half. The 
authorities can either randomly select half the people and give each two doses or 
give one dose to everyone. As a patient, are you indifferent between these two sce-
narios? More broadly, violations of the reduction axiom may reflect preferences 
over different processes even if they lead to the same overall distribution over final 
outcomes, or intrinsic preferences toward the timing of resolution of uncertainty.

Many theoretical models in which the reduction of compound lotteries axiom is 
relaxed have been proposed. We follow this approach and postulate that individu-
als have recursive preferences over compound lotteries. This structure allows us to 
distinguish between mechanisms that induce the same lotteries under the reduction 
assumption.1 A notable case is the two aforementioned mechanisms, TC and SD, 
which are no longer indifferent to each other without this assumption. We show 
conditions under which each of them is preferred to the other (see Section  III). 
Moreover, it is this perception of mechanisms that enables us to propose a new pri-
ority groups (PG) mechanism, which under familiar conditions is considered better 
than both by the receiving agents.

1 The mechanism design literature often ignores this sequential resolution of uncertainty. If a person submits his 
preferences to an algorithm and learns nothing until his final outcome is revealed, he probably will not view this as 
a compound lottery.
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The PG mechanism has the following structure. In the first stage, each indi-
vidual is informed which of the two goods he is going to receive. In addition, he 
is informed to which “trading group” he belongs, where being in a certain group 
determines the probability at which the individual will be able to trade, if desired, 
in the second stage. In the second stage each individual learns his preferences. 
Those who hold their desired good keep it. The remaining individuals can trade, 
where for those who hold the good for which there is an excess supply, the prob-
ability of being selected to trade is the one assigned to them in the first stage. 
Priority groups are common in many industries, for example, in the airline indus-
try. While priority groups often depend on some merit (for example, the amount 
spent and miles flown in the previous calendar year), in the alternative we suggest 
the assignment to groups is random.

Intuitively, the different mechanisms we consider induce lotteries over interim 
probabilities that can be ranked in terms of “riskiness.” Following Machina (1982), 
we approximate local behavior by expected utility functionals, and the curvatures of 
these local utility functions determine the desirability of a mechanism. For exam-
ple, TC generates a less risky distribution than SD and thus is preferred if all local 
utilities are concave. We outline conditions over these utilities that determine pref-
erences over mechanisms and show that these conditions can also be linked to atti-
tudes toward the timing of resolution of uncertainty (see Section IV).

While our analysis is mainly focused on the  ex ante approach, it can also be 
applied to the interim case, in which each individual learns his place in the mecha-
nism after he already knows his type. We demonstrate this in Section VI. Here again, 
the absence of the reduction assumption allows us to examine the performance of 
seemingly identical mechanisms and to show conditions under which TC or SD is 
superior to the other and conditions where PG is preferred to both. More generally, 
it is important to emphasize that our analysis is not restricted to any specific order. 
It applies whenever mechanisms involve some sequential resolution of uncertainty 
(even with more than two stages) and individuals do not obey the reduction of com-
pound lotteries assumption.

The rest of the paper is as follows. Section II introduces the basic structure and 
the TC and SD mechanisms. Section III describes the preferences we consider and 
compares TC to SD. Section IV discusses the PG mechanism and provides condi-
tions under which it is preferred to both TC and SD. Section V extends our analysis 
beyond the class of preferences we studied in the previous sections. Section VI con-
siders the interim case. Section VII concludes with some further discussion.

II. Two Allocation Mechanisms

Consider the following continuum variant of the house allocation problem 
(Hylland and Zeckhauser 1979). There are goods of two types,   g 1    and   g 2,    in propor-
tion  p : 1 − p , to exactly supply the total quantity needed to accommodate a   [0, 1]   
continuum of agents. All agents have the same stochastic preferences, where with 
probability  q  each prefers   g 1    to   g 2    (independently of the preferences of others). We 
normalize payoffs so that the utility from the desired outcome is  1  and the utility 
from the other outcome is  0 . We analyze below the case of excess supply of   g 1   , that 
is,  p > q . The analysis of the case  p < q  is similar.
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In this section  we consider two familiar mechanisms, each consisting of two 
stages.

• TC: In the first stage, the goods are randomly allocated among the agents so that 
the probability of person  i  holding good of type   g 1    or   g 2    is  p  or  1 − p , respec-
tively. In the second stage, the entire profile of preferences is revealed, and 
trade, if needed, takes place. Those who like their holdings will keep them. The 
rest will trade according to the following schedule: if  m  proportion of people 
holding one type of good and  ℓ < m  proportion of people holding the other 
type are unhappy with their holdings, then the latter group will trade and get 
their desired outcome, while  ℓ  out of the former group will be selected at ran-
dom and get their preferred option. The other  m − ℓ  will keep their undesired 
outcome.2

• SD: In the first stage, the order of the agents is randomly determined so that 
the probability of each person being in the top  m  part of the queue is  m . In 
the second stage, the entire profile of preferences is revealed. The agents then 
choose goods according to the order determined in the first stage. Agents get 
their desired outcome if, when their turn arrives, such a unit is still available.

We first adopt an  ex ante perspective. In both cases, we assume here that in the first 
stage, before individuals know their preferences, the uncertainty of the relevant mech-
anism is revealed. In the second stage, people learn their preferences and act according 
to the outcome of the first stage. It is clear from the descriptions of the above mecha-
nisms that they involve some sequential revelation of information: the outcome of the 
mechanism and the revelation of individual preferences. However, it is easy to see that 
both TC and SD lead to the same overall probability of success and are hence deemed 
indifferent if agents are interested only in the overall probability at which they will 
receive their desired outcome (see Abdulkadiroǧlu and Sönmez 1998).

Suppose that the individual knows that he will face a binary lottery of the form   
(x, π; y, 1 − π)  , where  x  and  y  are fixed and  x  is preferred to  y , but the winning prob-
ability  π  is determined by a random device such that with probability   α i    the value 
of  π  is   π i   . We denote such lotteries as  ⟨ π 1  ,  α 1  ; …;  π n  ,  α n  ⟩ . This is a  two-stage lottery, 
where in the first stage, with probability   α i   , the winning probability of the second 
stage is determined to be   π i   . The second stage is a simple lottery over the final out-
comes  x  and  y , where the former is obtained with probability   π i   .

Consider first the TC mechanism. Since there is an excess supply of   g 1    (  p > q ), 
all those who receive   g 2   —their proportion is  1 − p  of the population—know that 
they will end up with their desired outcome regardless of their preferences. Either 
they will like it and keep it, or they will be able to trade. The size of the group of 
those who will receive   g 2    but would like to replace it with   g 1    is  q (1 − p)  .

Those who receive   g 1    (proportion  p  of the population) will not know their true 
status until their preferences and trading outcomes are revealed. With probability  q  

2 This is a variant of the classic top cycle mechanism. It can equivalently be formulated more closely to the 
familiar top cycle as a problem of matching with indifferences and using a specific  tie-breaking rule. Since the 
environment we consider is simple, we maintain our formulation and slightly abuse the title “cycle.”
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they will like their outcome, but with probability  1 − q  they will look for a trading 
partner. In the latter case, the conditional probability of successful trade is

(1)    
q (1 − p) 
 _ 

 (1 − q) p   .

Their overall probability of satisfaction is therefore

  q +  (1 − q)   q (1 − p) 
 _ 

 (1 − q) p   =   q _ p   < 1. 

The TC mechanism thus yields the lottery over probabilities of receiving the desired 
outcome that is given by   X 1   = ⟨1, 1 − p; q/p, p⟩ . This is an  ex ante lottery—before 
individuals know the outcome of the allocation mechanism, and of course before 
they know their preferences and the outcome of the trading period.

Consider now the SD mechanism (still assuming  p > q ). Out of the first  
 (1 − p)/(1 − q)  individuals,   (1 − q)  × (1 − p)/(1 − q) = 1 − p  will choose 
  g 2    and  q × (1 − p)/(1 − q) < p  will choose   g 1   . As   g 2    is exhausted by the first  
 (1 − p)/(1 − q)  individuals, the other  ( p − q)/(1 − q)  will be able to satisfy their 
desires only if they prefer   g 1    to   g 2   . The probability of having these preferences is  q . 
SD thus leads to the lottery over probabilities given by   X 2   = ⟨1, (1 − p)/(1 − q);  
q, ( p − q)/(1 − q)⟩ . Here, too, the analysis is  ex ante, before individuals know 
their position in the queue or their preferences (which will only later be revealed 
to them). Observe that if  p = q , then in a large economy both TC and SD yield 
(almost) everyone his desired outcome for sure.

III. Are TC and SD Equivalent?

The two lotteries over the probabilities of success we have previously dis-
cussed,   X 1   = ⟨1, 1 − p; q/p, p⟩  and   X 2   = ⟨1, (1 − p)/(1 − q); q, ( p − q)/(1 − q)⟩ , 
have the same “expected value.” That is, the expected probability of receiving the 
preferred good is the same under both mechanisms, which is  1 − p + q . This is 
not surprising. As  p , the proportion of good   g 1   , is greater than  q , the proportional 
demand for   g 1   , it must be that eventually  p − q  agents will not be happy with their 
outcome.  Ex ante, when agents do not yet know their preferences and the outcome 
of the mechanism, the reduced probability of success for each of them is there-
fore  1 − p + q . This, however, does not necessarily mean that all mechanisms with 
this reduced probability are equally attractive.

Let  x =  “receive the desired outcome” and  y =  “receive the unde-
sired outcome.” As  x  and  y  are fixed, the probability   π i    represents the lottery   
(x,  π i  ; y, 1 −  π i  )  . The decision-maker has preferences  ⪰  over compound lotteries of 
the form  ⟨ π 1  ,  α 1  ; …;  π n  ,  α n  ⟩ , which can be represented by a functional  V . Following 
Kreps and Porteus (1978) and Segal (1990), we use the recursive analysis of pref-
erences over compound lotteries, where the decision-maker considers the  two-stage 
lottery  ⟨ π 1  ,  α 1  ; …;  π n  ,   α n  ⟩  as a lottery over his subjective values of the lotteries   
(x,  π i  ; y, 1 −  π i  )  . In particular, we do not assume the reduction of compound lotteries 
axiom, hence  V  is not ordinally equivalent to  ∑  α i    π i   .
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We analyze mechanisms as cumulative distribution functions over   [0, 1]  , where  
  F X   ( π   ∗ )   is the probability that the mechanism  X  yields a simple lottery  
  (x, π; y, 1 − π)   with  π ≤  π   ∗  . The set of feasible mechanisms is a strict subset of all 
simple lotteries (that is, lotteries with finite support) over the interval   [0, 1]  , whose 
outcomes are the winning probability  π  of the lottery   (x, π; y, 1 − π)  . In particular, 
we confine our attention to mechanisms in which the induced allocation is  ex post 
efficient, in the sense that after all units are allocated, there are no two agents who 
can benefit from an exchange between them, where at least one of these improve-
ments is strict.  Ex post efficiency implies that every individual who prefers the good 
for which there is excess supply must obtain it, as otherwise there will be scope for 
an improving trade. Therefore, any lottery in which some fraction of the population 
know for sure that independently of their preferences they will not receive their 
desired outcome (that is, any lottery over  ex ante probabilities in which   π i   = 0  is 
in its support) will be inefficient and will not be considered a valid mechanism. On 
the other hand, both TC and SD are  ex post efficient. It is enough to show that there 
is no agent who holds the item for which there is excess demand while he prefers 
the other good. By the construction of the TC mechanism, any such individual will 
participate in the second-stage trade. In SD, such an individual will never choose 
this good when his turn arrives, as his preferred good, which is in excess supply, will 
still be available.

Following Machina (1982), we assume first that the representation function  V  is 
smooth in the sense of being Fréchet differentiable: for every  F  there exists a con-
tinuous local utility function   u F   ( · )   over   [0, 1]   such that

  V (G)  − V (F)  =  ∫ 
0
  
1
   u F   (π)  d (G (π)  − F (π) )  + o (∥ G − F ∥)  .

Fréchet differentiability implies that when individuals evaluate small changes from 
the distribution  F , they act precisely as would an expected utility maximizer with 
(Bernoulli) utility function   u F   ( · )  . We maintain this assumption on preferences mostly 
for tractability and conciseness. In Section V we use the popular  rank-dependent 
utility model to demonstrate that a similar analysis can be performed for other, 
 non-Fréchet differentiable preferences.

For  α ∈  [0, 1]  , denote by   G α    the distribution of

  α  X 1   +  (1 − α)   X 2   =   ⟨  1,   
 (1 − p)  (1 − αq) 

  ____________ 
1 − q  ;   q _ p  , αp; q,   

 (1 − α)  (p − q) 
  ___________ 

1 − q   ⟩    .

PROPOSITION 1: If for all  α  the local utility of  V  at   G α    is concave, then   X 1   ≻  X 2    
and TC is preferred to SD. If all these local utilities are convex, then   X 2   ≻  X 1    and 
SD is preferred to TC.

PROOF: 
Observe that for  p > q ,   X 2    is a mean-preserving spread of   X 1   , and therefore 

for  α > α′ ,   G α′    is a mean-preserving spread of   G α   . The proposition now follows 
from theorem 2 in Machina (1982). ∎
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Risk aversion along a segment connecting two lotteries may be a reasonable 
assumption when lotteries are over monetary payoffs, but such an attitude is much 
less obvious in the present context. To illustrate, consider lotteries of the form  
  Y ε   = ⟨(1/2) − ε, 1/2; (1/2) + ε, 1/2⟩ . Obviously they are ordered by 
 mean-preserving spread, where for  ε′ > ε ,   Y ε′    is a mean-preserving spread of   Y ε   . 
However, there is no obvious reason to posit a specific ranking between   Y 0    and   Y 0.5   . 
If time is not involved, it seems plausible to assume that   Y 0   ∼  Y 0.5   , as both represent 
a simple even chance of winning. If the passage of real time is considered, then pref-
erences between the two capture preferences over the timing of resolution of uncer-
tainty, as   Y 0.5    is fully resolved in the current period, whereas   Y 0    resolves only later. As 
we will further discuss in Section IV, there is no empirically obvious pattern for such 
preferences. We are thus interested also in situations where the local utilities are not 
always concave or always convex. We use this in the next section where we offer a 
new mechanism and show conditions under which this mechanism is better than both 
TC and SD.

IV. The Priority Groups Mechanism

In this section, we offer an alternative new mechanism, called priority groups 
(PG), and provide conditions under which it is preferred to both TC and SD. This 
mechanism first allocates the two goods as in the TC mechanism and determines 
the trading probabilities of the   (1 − q) p  group of people who will find out that they 
received   g 1   , the good they do not like but for which there is an excess supply.

The formal procedure is as follows. In the first stage, allocate the two goods 
at random, where each person has probability  p  of getting   g 1    and  1 − p  of get-
ting   g 2   . Also, select  n  priority groups, where each person has probability   r i    of being 
a member of group  i ,  i = 1, …, n , where   ∑ i  

     r i   = 1 , and assign each group prob-
ability   s i   ,  1 =  s 1   > ⋯ >  s n   , such that the overall probability for trade of the 
unlucky   (1 − q) p  group equals the sum of the subgroups’ probabilities (see equa-
tion (1)). That is,

(2)   ∑ 
i
      r i    s i   =   

q (1 − p) 
 _ 

 (1 − q) p   .

Since there is an excess demand for   g 2   , those who get it are guaranteed to eventu-
ally obtain their desired outcome. The size of this set is  1 − p . Also, those who will 
be assigned to the top priority group will obtain their desired outcome even if they 
received   g 1   . The size of this set is  p r 1   . As the allocation of the goods and the assign-
ments to the priority group are simultaneous,  ex ante each person knows that with 
probability  1 − p + p r 1    his probability of getting his desired outcome is 1.

Those who get   g 1    and are assigned to group  i  (the probability of this event is  p r i   ) 
know that either they will like it and keep it or they won’t like it and will be able 
to trade with probability   s i   . That is, with probability  p r i    they have  q +  (1 − q)   s i    
probability of getting their desired outcome. The PG mechanism is therefore the 
following lottery over probabilities:

(3)    ⟨  1, 1 − p + p r 1  ; q +  (1 − q)  s 2  , p r 2  ; …; q +  (1 − q)   s n  , p r n   ⟩    .
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This mechanism is  ex post efficient. Those who like   g 1    will not end up with   g 2   . 
Either they receive   g 1    and keep it or they receive   g 2    but will be able to trade it. The 
next claim shows that the reduced probability of this mechanism is the same as the 
one we computed at the beginning of Section III.

CLAIM 1: The reduced probability of lottery  (3) is  1 − p + q , independently of  
 n ,   r i   , and   s i   ,  i = 1, …, n .

PROOF: 
The reduced probability is

  1 − p + p r 1   +   ∑ 
i=2

  
n

    (q +  (1 − q)   s i  ) p r i   = 1 − p +   ∑ 
i=1

  
n

    (q +  (1 − q)   s i  ) p r i   

 = 1 − p + qp +  (1 − q) p  ∑ 
i=1

  
n

     r i    s i   

 = 1 − p + q ,

where the first equality follows by   s 1   = 1  and the last one by equation (2). ∎

Below, we analyze a special case of this mechanism and show conditions 
under which it is superior to both SD and TC. Specifically, we consider the case 
where  n = 2 ,   r 1   ≤  [q (1 − p) ] / [ (1 − q) p]  , and by equation (2),

(4)   s 2   =   
q (1 − p) 
 _ 

 (1 − q) p r 2  
   −    r 1   _  r 2     =   

q (1 − p) 
  ____________  

 (1 − q) p (1 −  r 1  ) 
   −    r 1   _ 

1 −  r 1  
   .

Let

  A ( r 1  )  = q +   
 (1 − p) q − p (1 − q)   r 1    ________________  

p (1 −  r 1  ) 
   .

Equation (3) becomes

(5)   X 3   ( r 1  )  =   ⟨  1, 1 − p + p r 1  ; A ( r 1  ) , p (1 −  r 1  )  ⟩    .

Observe that if   r 1   = 0 , then   X 3   ( r 1  )   reduces to   X 1   = ⟨1, 1 − p; q/p, p⟩ , the lottery 
obtained by the TC mechanism. On the other hand, if   r 1   =  [q (1 − p) ] / [p (1 − q) ]  , 
then by equation  (4)   s 2   = 0  and   X 3   ( r 1  )   reduces to   X 2   = ⟨1, (1 − p)/(1 − q); 
q, ( p − q)/(1 − q)⟩ , the lottery obtained by the SD mechanism.

We now show that under some simple conditions, neither TC nor SD are optimal. 
We will do this by showing that moving from either in the direction of the PG mech-
anism will make individuals better off  ex ante.

Denote by   u  r 1      the local utility   u   X 3   ( r 1  )     of  V  at   X 3   ( r 1  )  .

PROPOSITION 2: If   u 0    is convex on   [q/p, 1]   and   u  
  q(1−p) _____ 
p(1−q)  

    is concave on   [q, 1]  , then 
neither TC nor SD is optimal.
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PROOF:
By Machina’s (1982) analysis

       ∂ _ ∂  r 1  
  V ( X 3   ( r 1  ) )  =   ∂ _ ∂  r 1  

  E [ u  r 1     ( X 3   ( r 1  ) ) ]  

 = p u  r 1     (1)  −   p − q
 _ 

1 −  r 1  
    u   r 1    ′   (A ( r 1  ) )  − p u  r 1     (A ( r 1  ) )  .

As  A (0)  = q/p , we get

     ∂ _ ∂  r 1  
  V ( X 3   ( r 1  ) )  |   

 r 1  =0

   = p u 0   (1)  −  (p − q)   u  0  ′   (  q _ p  )  − p u 0   (  q _ p  )  ,

which is positive if and only if

    p
 _ p − q   [ u 0   (1)  −  u 0   (  q _ p  ) ]  >  u  0  ′   (  q _ p  )  .

This inequality is satisfied whenever   u 0    is convex on   [q/p, 1]  , hence TC is not 
optimal.

For the second part, denote   r  1  ∗  =  [q (1 − p) ] / [p (1 − q) ]  . As  A ( r  1  ∗ )  = q , we get

     ∂ _ ∂  r 1  
  V ( X 3   ( r 1  ) )  |   

 r 1  = r  1  ∗ 
   = p u  r  1  ∗    (1)  − p (1 − q)   u   r  1  ∗   ′   (q)  − p u  r  1  ∗    (q)  ,

which is negative if and only if

    1 _ 
 (1 − q)    [ u  r  1  ∗    (1)  −  u  r  1  ∗    (q) ]  <  u   r  1  ∗   ′   (q)  .

This inequality is satisfied whenever   u  r  1  ∗     is concave on   [q, 1]  , hence SD is not 
optimal. ∎

Note that the functions   u 0    and   u  r  1  ∗     are local utilities at two different distributions, 
and therefore do not restrict each other.

As we have pointed out in the previous section, the conditions in Proposition 2 
are not implausible. Theoretically, they are tied to forms of intrinsic preferences 
toward the timing of resolution of uncertainty.3 Recent experimental studies (for 
example, Ahlbrecht and Weber 1997; Kocher, Krawczyk, and van Winden 2014; 
Masatlioglu, Orhun, and Raymond 2017; and Nielsen 2020; see also Dillenberger 
and Segal 2017 and references therein) suggest that there is no conclusive evidence 
about which attitudes toward the resolution of uncertainty are the most prominent. 
These change based on the nature of the outcomes (goods or bads), the framing of 
the problem (choosing among information structures or among compound  lotteries), 

3 Kreps and Porteus (1978) pointed out that in a recursive setting, risk aggregation (about future consumption) 
takes place in the period in which it is resolved. They establish a link, within the recursive expected utility model, 
between the curvature of the utility functions in different periods and preferences over the timing of resolution of 
uncertainty. Related conditions, for more general settings, are in Grant, Kajii, and Polak (1998) and Dillenberger 
(2010).
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and the skewness (positive or negative) of the underlying distribution over the prob-
abilities. Furthermore, not only is it unclear which type is most prominent in a het-
erogeneous population but also whether we can characterize an individual as having 
a global attitude in this regard. The latter is reflected in different curvatures of the 
local utility at different points.

V.  Rank-Dependent Utility

Thus far we have confined attention to functionals  V  that are Fréchet differentia-
ble. While many known models are consistent with this assumption (for  example, 
quadratic utility  , Chew, Epstein, and Segal 1991, and weighted expected utility, 
Chew 1983), there are many popular models that are not. A prominent example 
is  rank-dependent utility (Quiggin 1982).4 Our aim is to show that the possible 
improvement of the PG mechanism over both TC and SD holds more gener-
ally. We demonstrate this by providing sufficient conditions on a version of the 
 rank-dependent utility functional known as the dual theory (Yaari 1987).5

Since  1 > A ( r 1  )  , the  rank-dependent value of   X 3   ( r 1  )   (see equation (5)) is

   V RD   ( X 3   ( r 1  ) )  = u (A ( r 1  ) ) g (p (1 −  r 1  ) )  + u (1)  [1 − g (p (1 −  r 1  ) ) ]  .

By the definition of  A ( r 1  )   we get

(6)    ∂ _ ∂  r 1  
    V RD   ( X 3   ( r 1  ) )  =   ∂ _ ∂  r 1  

   [u (A ( r 1  ) ) g (p (1 −  r 1  ) )  + u (1)  [1 − g (p (1 −  r 1  ) ) ] ]  

 = −  
(

  p − q
 _ 

p   (1 −  r 1  )    2 
  
)

 u′ (A ( r 1  ) ) g (p (1 −  r 1  ) ) 

 − pu (A ( r 1  ) ) g′ (p (1 −  r 1  ) )  + pu (1) g′ (p (1 −  r 1  ) )  .

Recall that   r 1   = 0  represents the TC case. We get

     ∂ _ ∂  r 1  
    V RD   ( X 3   ( r 1  ) )  |   

 r 1  =0

   = −   p − q
 _ p  u′ (  q _ p  ) g (p)  − pg′ (p)  [u (  q _ p  )  − u (1) ]  .

For example, for  u (π)  = π  this equation becomes

  −   p − q
 _ p  g (p)  − p [  

q − p
 _ p  ] g′ (p)  ,

which is positive if and only if

( ∗ )   η g   (p)  > 1 .

4 Other examples include Gul (1991) and  Cerreia-Vioglio, Dillenberger, and Ortoleva (2015).
5 If we order the prizes in the support of a lottery  ⟨ π 1  ,  α 1  ; …;  π n  ,  α n  ⟩ , with   π 1   >  π 2   > … >  π n   , then the 

functional form for  rank-dependent utility is  V (⟨ π 1  ,  α 1  ; …;  π n  ,  α n  ⟩)  = u ( π n  ) g ( α n  )  +  ∑ i=1  n−1   u ( π i  )  [g ( ∑ j=i  n    α j  )  − 
g ( ∑ j=i+1  n    α j  ) ]  , where  g  :   [0, 1]  →  [0, 1]   is strictly increasing and onto and  u :  [0, 1]  → ℝ  is increasing. In the dual 
theory,  u  is the identity function. We will assume in this section that  g  is differentiable. 
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The SD case is obtained when   r 1   =  [q (1 − p) ] / [p (1 − q) ]  . Now

        ∂ _ ∂  r 1  
    V RD   ( X 3   ( r 1  ) )  |   

 r 1  =  q (1−p)  _ 
p (1−q)   

   =   −   
p   (1 − q)    2 
 _ p − q  u′ (q) g (  p − q

 _ 
1 − q  )  

 − pg′ (  p − q
 _ 

1 − q  )  [u (q)  − u (1) ]  ,

which is negative if and only if

    
u′ (q)  (1 − q) 

  _________ 
1 − u (q)    >  η g   (  p − q

 _ 
1 − q  )  .

For  u (π)  = π  this condition becomes

( ∗  ∗ )  1 >  η g   (  p − q
 _ 

1 − q  )  .

It is common to assume that  g  is an inverse  S-shaped function—concave for small 
probabilities and convex for high probabilities.6 This property captures a tendency 
to overweight both best and worst events that occur with small probabilities. The 
two conditions, ( ∗ ) and ( ∗ ∗ ), are consistent with this shape of  g . It is indeed easy to 
construct functional forms for  g  that satisfy both.

The two conditions ( ∗ ) and ( ∗ ∗ ) are sufficient to show that there are PG mech-
anisms with two groups that are better than both TC and SD. A natural question 
is whether there is an optimal PG mechanism, at least for the case  n = 2  and  
 u (π)  = π . Since the  rank-dependent value of   X 3   ( r 1  )   is a continuous function on a 
closed segment, then, by equation (6), a necessary condition for an interior optimum 
is

(7)  −  
(

  p − q
 _ 

p   (1 −  r 1  )    2 
  
)

 g (p (1 −  r 1  ) )  + p [1 − A ( r 1  ) ] g′ (p (1 −  r 1  ) )  = 0 

 ⇒  
(

  1 _ 
p (1 −  r 1  ) 

  
)

 g (p (1 −  r 1  ) )  = g′ (p (1 −  r 1  ) )  

 ⇒  η g   (p (1 −  r 1  ) )  = 1 .

If   η g    is strictly increasing, there is a unique   r  1  ∗   with this property. Note that this 
condition is consistent with ( ∗ ) and ( ∗ ∗ ) since  p > p (1 − r)  > ( p − q)/(1 − q ) 
(recall that   r 1   ∈  [0,  (q (1 − p) ) / ( p (1 − q) ) ]  ). Differentiate again to obtain

(8)  −   p − q
 _ 

1 −  r 1  
   [  

2g (p (1 −  r 1  ) )   _  
p   (1 −  r 1  )    2 

   −   
2g′ (p (1 −  r 1  ) )   __________ 

1 −  r 1  
   + g″ (p (1 −  r 1  ) ) ]  .

6 For empirical evidence in favor of inverse  S-shaped probability weighting, see, among others, Gonzales and 
Wu (1999), Tversky and Kahneman (1992), and  Fehr-Duda and Epper (2012).
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Using equation  (7), the sign of expression  (8) is the same as the sign of  
 − g″ (p (1 −  r  1  ∗ ) )  . It is thus negative if  g″ (p (1 −  r  1  ∗ ) )  > 0 , in which case   r  1  ∗   is indeed 
optimal.

VI. Known Preferences

In previous sections we studied the  ex ante case, where the first part of the mech-
anism is implemented before individuals know their own preferences. A similar 
method can be used to study the case where individuals know their preferences from 
the beginning. Here we demonstrate how our analysis can be easily applied to this 
case as well. As before, we confine attention to the case of large (continuum) econo-
mies and assume, without loss of generality, that there is an excess supply of   g 1   , that 
is,  p > q . In the TC mechanism we can therefore identify four groups:

 (i)  qp  will get   g 1    and like it.

 (ii)   (1 − q) p  will get   g 1    and prefer to trade it for   g 2   .

 (iii)  q (1 − p)   will get   g 2    and prefer to trade it for   g 1   .

 (iv)   (1 − q)  (1 − p)   will get   g 2    and like it.

Since  p > q , the third group is smaller than the second one, and therefore all 
members of the third group will be able to trade. In other words, all those who 
prefer   g 1    (the first and third groups) are guaranteed to receive it. Those who pre-
fer   g 2    face a lottery. With probability  1 − p  they will get their desired outcome, 
and with probability  p  they will get their desired outcome if they will be able to 
trade; the probability of this event is   [q (1 − p) ] / [ (1 − q) p]  . Their underlying  
conditional lottery is thus   W 1   = ⟨1, 1 − p;  [q (1 − p) ] / [ (1 − q) p] , p⟩ .

In the SD mechanism, the  q  who prefer   g 1    are guaranteed to receive it. 
A person who prefers   g 2    will get it only if he is in the top  α  of the list where  
  (1 − q) α = 1 − p , that is, if his rank is less than  (1 − p)/(1 − q) . The underlying 
conditional lottery is thus   W 2   = ⟨1, (1 − p)/(1 − q); 0, ( p − q)/(1 − q)⟩ . Note that 
here, after the first step of the mechanism, all participants know for sure whether or 
not they will receive their preferred outcome.

We obtain that all those who prefer   g 1    to   g 2    ( q  of the group) know in advance 
that since there is an excess supply of their desired good, they will eventually get it 
under both procedures and are therefore indifferent between the two mechanisms. 
Those who prefer   g 2    to   g 1    have to compare   W 1    with   W 2   . Here again both mecha-
nisms induce the same overall probability of success,  (1 − p)/(1 − q) , while   W 2    is a 
mean-preserving spread of   W 1   , so that the same qualitative results as in Proposition 
1 hold. The results from the  rank-dependent utility model can be extended to this 
case as well.

The analysis of the PG mechanism is also analogous to the  ex ante case. It is 
now applied only for individuals who want   g 2    (the others will get their desired out-
come whether they initially hold it or trade for it.) As before, we start by randomly 
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assigning the goods and by splitting individuals into two priority groups. Those who 
belong to the first group will be able to trade for sure. The probability of belonging 
to this group is   r 1   . With probability  1 −  r 1   , people belong to the second priority 
group and will be able to trade with probability   s 2   . To equate supply and demand, 
the constraint on   s 2    is

  q (1 − p)  =  (1 − q) p ( r 1   +  (1 −  r 1  )   s 2  )  ⇒  s 2   =   
q (1 − p)  −  (1 − q) p r 1    ________________  

 (1 − q) p (1 −  r 1  ) 
   .

Each of the individuals who want   g 2    thus faces the following lottery:

(9)   W 3   ( r 1  )  =   ⟨  1, 1 − p + p r 1  ;   
q (1 − p)  −  (1 − q) p r 1    ________________  

 (1 − q) p (1 −  r 1  ) 
  , p (1 −  r 1  )  ⟩    ,

where the first entry means that the desired outcome is guaranteed to those who 
hold   g 2    or those who hold   g 1    but are in the first priority group. Observe that if   r 1   = 0 , 
this reduces to TC, whereas SD corresponds to   r 1   =  [q (1 − p) ] / [ (1 − q) p]  < 1 .

Denote by   v  r 1      the local utility   v  W 3   ( r 1  )     of  V  at   W 3   ( r 1  )  . Mimicking the calculations as 
in the proof of Proposition 2 for   W 3   ( r 1  )   rather than   X 3   ( r 1  )  , one obtains the following 
result.

PROPOSITION 3: If   v 0    is convex on   [ (q (1 − p) ) / ( (1 − q) p) , 1]   and   v 
  q(1−p) _____ (1−q)p  

    is con-
cave on   [0, 1]  , then neither TC nor SD is optimal.

PROOF:
By Machina’s (1982) analysis

    ∂ _ ∂  r 1  
  V ( W 3   ( r 1  ) )  =   ∂ _ ∂  r 1  

  E [ v  r 1     ( W 3   ( r 1  ) ) ]  

 = p v  r 1     (1)  −   p − q
 ___________  

 (1 − q)  (1 −  r 1  ) 
    v   r 1    ′   (  

A ( r 1  )  − q
 _ 

1 − q  )  − p v  r 1     (  
A ( r 1  )  − q

 _ 
1 − q  )  .

As  A (0)  = q/p , we get

     ∂ _ ∂  r 1  
  V ( W 3   ( r 1  ) )  |   

 r 1  =0

   = p v 0   (1)  −   p − q
 _ 

1 − q    v  0  ′   (  
q (1 − p) 
 _ 

p (1 − q)   )  − p v 0   (  
q (1 − p) 
 _ 

p (1 − q)   )  ,

which is positive if and only if

    
p (1 − q) 
 _ p − q   [ v 0   (1)  −  v 0   (  

q (1 − p) 
 _ 

p (1 − q)   ) ]  >  v  0  ′   (  
q (1 − p) 
 _ 

p (1 − q)   )  .

This inequality is satisfied whenever   u 0    is convex on   [ (q (1 − p) ) / (p (1 − q) ) , 1]  , 
hence TC is not optimal.

For the second part, denote   r  1  ∗  =  [q (1 − p) ] / [p (1 − q) ]  . As  A ( r  1  ∗ )  = q , we get

     ∂ _ ∂  r 1  
  V ( W 3   ( r 1  ) )  |   

 r 1  = r  1  ∗ 
   = p v  r  1  ∗    (1)  − p v   r  1  ∗   ′   (0)  − p v  r  1  ∗    (0)  ,
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which is negative if and only if

   v  r  1  ∗    (1)  −  v  r  1  ∗    (0)  <  v   r  1  ∗   ′   (0)  .

This inequality is satisfied whenever   v  r  1  ∗     is concave on  [0, 1] , hence SD is not optimal. ∎

VII. Discussion

There is a vast literature on allocation problems of indivisible goods. This liter-
ature typically distinguishes between possible mechanisms based on criteria that 
are linked to the strategic interaction between the receiving agents and the agents’ 
incentives to truthfully reveal any private information they may have. In this paper 
we take a different approach. We purposely abstract away from any strategic 
 considerations by confining attention to a setting in which there are only two types 
of goods and use individual preferences over mechanisms to compare them. We thus 
concentrate on the  decision-theoretic dimension of the mechanisms without having 
to worry about individuals’ manipulations of their preferences over the outcomes.

Random allocation mechanisms typically involve  multi-stage lotteries. Based 
on compelling evidence that people do not routinely use the laws of probability to 
reduce  multi-stage lotteries, we postulate that individuals perceive mechanisms as 
compound lotteries and have recursive preferences over them. Simple and famil-
iar conditions then allow us to compare mechanisms that are deemed identical in 
standard models. Moreover, our approach permits us to offer a new mechanism that 
under some conditions outperforms standard mechanisms.

In this paper we show that it is enough to have  n = 2  priority groups to (some-
times) improve upon both TC and SD. In the special case of  rank-dependent utility 
we also outline conditions for an optimal PG mechanism with two groups. We do 
leave open, however, the question of what the optimal number of groups is (together 
with the probability of trade assigned to each of them). This question crucially 
depends on the individuals’ preferences.

There are some considerations about the actual implementation of the PG mech-
anism that we do not explicitly address in the paper. First, it is often the case that 
having more groups entails higher bureaucratic costs that may offset the benefit of 
having finer division of the population. Therefore, even if it is theoretically ben-
eficial to have more priority groups, a  cost-benefit analysis may dictate a smaller 
number of such groups.

Implementation of the extreme cases of TC and SD requires no knowledge of 
individual preferences or even aggregate preferences. The goods are allocated at 
random (TC), and individuals are ordered at random (SD) regardless of preferences. 
In order to determine which is better, however, society needs to have information 
about the value of  q  and about individual preferences over lotteries.

The allocation of the goods in the PG mechanism does not require knowledge 
about  q , but the determination of the sizes of the groups and their probabilities of 
trade needs to satisfy equation (2), which requires  q .7 Moreover, as is demonstrated 

7 For the analysis in Section V, knowing  q  is needed only to the extent that it determines the possible range of   r 1   , 
the size of the group that is guaranteed the option to trade.
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in Section V, the optimal division into priority groups requires knowledge about 
individual preferences.
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