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Abstract

We propose a model of history-dependent risk attitude, allowing a decision maker’s risk attitude to be 
affected by his history of disappointments and elations. The decision maker recursively evaluates compound 
risks, classifying realizations as disappointing or elating using a threshold rule. We establish equivalence 
between the model and two cognitive biases: risk attitudes are reinforced by experiences (one is more risk 
averse after disappointment than after elation) and there is a primacy effect (early outcomes have the greatest 
impact on risk attitude). In a dynamic asset pricing problem, the model yields volatile, path-dependent 
prices.
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Once bitten, twice shy. — Proverb

1. Introduction

Theories of decision making under risk typically assume that risk preferences are stable. 
Evidence suggests, however, that risk preferences may vary with personal experiences. It has 
been shown that emotions, which may be caused by exogenous factors or by the outcomes of 
past choices, play a large role in the decision to bear risk. Moreover, individuals are affected 
by unrealized outcomes, a phenomenon known in the psychological literature as counterfactual 
thinking.2

Empirical work has found evidence of history-dependent risk aversion in a variety of fields. 
Pointing to adverse consequences for investment and the possibility of poverty traps, develop-
ment economists have observed a long-lasting increase in risk aversion after natural disasters 
(Cameron and Shah [5]) and, studying the dynamics of farming decisions in an experimental set-
ting, increases of risk aversion after failures (Yesuf and Bluffstone [38]). Malmendier and Nagel 
[24] study how personal experiences of macroeconomic shocks affect financial risk-taking. Con-
trolling for wealth, income, age, and year effects, they find that for up to three decades later, 
“households with higher experienced stock market returns express a higher willingness to take 
financial risk, participate more in the stock market, and conditional on participating, invest more 
of their liquid assets in stocks.” Applied work also demonstrates that changing risk aversion 
helps explain several economic phenomena. Barberis, Huang and Santos [4] allow risk aversion 
to decrease with prior stock market gains (and increase with losses), and show that their model 
is consistent with the well-documented equity premium and excess volatility puzzles. Gordon 
and St-Amour [12] study bull and bear markets, allowing risk attitudes to vary stochastically by 
introducing a state-dependent CRRA parameter in a discounted utility model. They show that 
countercyclical risk aversion best explains the cyclical nature of equity prices, suggesting that 
“future work should address the issue of determining the factors that underline the movements 
in risk preferences” which they identified.

In this work, we propose a model under which such shifts in risk preferences may arise. Our 
model of history-dependent risk attitude (HDRA) allows the way that risk unfolds over time 
to affect attitude towards further risk. We derive predictions for the comparative statics of risk 
aversion. In particular, our model predicts that one becomes more risk averse after a negative 
experience than after a positive one, and that sequencing matters: the earlier one is disappointed, 
the more risk averse one becomes.

To ease exposition, we begin by describing our HDRA model in the simple setting of T -stage, 
compound lotteries (the model is later extended to stochastic decision problems, in which the 
DM may take intermediate actions). A realization of a compound lottery is another compound 
lottery, which is one stage shorter. The DM categorizes each realization of a compound lottery 
as an elating or disappointing outcome. At each stage, his history is the preceding sequence of 
elations and disappointments. Each history h corresponds to a preference relation over one-stage 
lotteries. We consider one-stage preferences that are rankable in terms of their risk aversion. 
For example, an admissible collection could be a class of expected utility preferences with the 
Bernoulli function u(x) = x1−ρh

1−ρh
, where the coefficient of relative risk aversion ρh is history 

dependent.

2 On the effect of emotions, see Knutson and Greer [18] and Kuhnen and Knutson [21], as well as Section 1.1. Roese 
and Olson [28] offer a comprehensive overview of the counterfactual thinking literature.
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The HDRA model comprises two key structural features: (1) compound lotteries are evalu-
ated recursively, and (2) the DM’s history assignment is internally consistent. More formally, 
starting at the final stage of the compound lottery and proceeding backwards, each one-stage 
lottery is replaced with its appropriate, history-dependent certainty equivalent. At each step of 
this recursive process, the DM is evaluating only one-stage lotteries, the outcomes of which are 
certainty equivalents of continuation lotteries. Recursive evaluation is a common feature of mod-
els, but by itself has no bite on how risk aversion changes. To determine which outcomes are 
elating and disappointing, the DM uses a threshold rule that assigns a number (a threshold level) 
to each one-stage lottery encountered in the recursive process. Internal consistency requires that 
if a sublottery is considered an elating (disappointing) outcome of its parent sublottery, then its 
certainty equivalent should exceed (or fall below) the threshold level corresponding to its parent 
sublottery. Internal consistency is thus a way to give intuitive meaning to the terms elation and 
disappointment. Combined with recursive evaluation, it imposes a fixed-point requirement on the 
assignment of histories in a multi-stage setting.

Besides imposing internal consistency, we do not place any restriction on how risk aver-
sion should depend on the history. Nonetheless, we show that the HDRA model predicts two 
well-documented cognitive biases; and that these biases are sufficient conditions for an HDRA 
representation to exist. First, the DM’s risk attitudes are reinforced by prior experiences: he 
becomes less risk averse after positive experiences and more risk averse after negative ones. Sec-
ond, the DM displays a primacy effect: his risk attitudes are disproportionately affected by early 
realizations. In particular, the earlier the DM is disappointed, the more risk averse he becomes. 
We discuss evidence for these predictions in Section 1.1 below. Our main result thus provides a 
link between the two structural assumptions of recursive evaluation and internal consistency, and 
the evolution of risk attitude as a function of (personal) experiences.

Our model and its main result are general, allowing a wide class of preferences to be used 
for recursively evaluating lotteries, as well as a variety of threshold rules. The one-stage prefer-
ences may come from the betweenness class (Dekel [11], Chew [8]), which includes expected 
utility. The DM’s threshold rule may be either endogenous (preference-based) or exogenous. 
In the preference-based case, the DM’s threshold moves endogenously with his preference; he 
compares the certainty equivalent of a sublottery to the certainty equivalent of its parent. In the 
exogenous case, the DM uses a rule that is independent of preferences but is a function of the 
lottery at hand; for example, an expectation-based rule that compares the certainty equivalent of 
a sublottery to his expected certainty equivalent. All of the components of the HDRA model – 
that is, the single-stage preferences, threshold rule, and history assignment – can be elicited from 
choice behavior.

We show that the model and characterization result also readily extend to settings that allow 
for intermediate actions. As an application, we study a multi-period asset pricing problem where 
an HDRA decision maker (with CARA preferences) adjusts his asset holdings in each period af-
ter observing past dividend realizations. We show that the model yields volatile, path-dependent 
prices. Past realizations of dividends affect subsequent prices, even though they are statistically 
independent of future dividends and there are no income effects. For example, high dividends 
bring about price increases, while a sequence of only low dividends leads to an equity premium 
higher than in the standard, history-independent CARA case. Since risk aversion is endogenously 
affected by dividend realizations, the risk from holding an asset is magnified by expected future 
variation in the level of risk aversion. Hence the HDRA model introduces a channel of risk that is 
reflected in the greater volatility of asset prices. This is consistent with the observation of excess 
volatility in equity prices, dating to Shiller [34].
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This paper is organized as follows. Section 1.1 surveys evidence for the reinforcement and 
primacy effects. Section 1.2 discusses related literature. Section 2 introduces our model in the 
setting of compound lotteries (for notational simplicity, we extend the setting and results to 
stochastic decision trees only in Section 6). Section 3 contains our main result, which charac-
terizes how risk aversion evolves with elations and disappointments. Section 4 describes how 
the components of the model can be elicited from choice behavior. Section 5 discusses further 
implications of the model. Section 6 generalizes the choice domain in the model to stochastic 
decision trees and studies a three-period asset pricing problem. Section 7 concludes. All proofs 
appear in Appendix A.

1.1. Evidence for the reinforcement and primacy effects

Our main predictions, the reinforcement and primacy effects, are consistent with a body of 
evidence on risk-taking behavior. Thaler and Johnson [37] find that individuals become more 
risk averse after negative experiences and less risk averse after positive ones. Among contestants 
in the game show “Deal or No Deal,” Post, van den Assem, Baltussen and Thaler [27] find mixed 
evidence, suggesting that contestants are more willing to take risks after extreme realizations. 
Guiso, Sapienza and Zingales [14] estimate a marked increase in risk aversion in a sample of 
Italian investors after the 2008 financial crisis; the certainty equivalent of a risky gamble drops 
from 4000 euros to 2500, an increase in risk aversion which, as the authors show, cannot be due 
to changes in wealth, consumption habits, or background risk. In an experiment with financial 
professionals, Cohn, Engelmann, Fehr and Maréchal [9] find that subjects primed with a financial 
bust are significantly more risk averse than subjects primed with a boom. As discussed earlier, 
Malmendier and Nagel [24] find that macroeconomic shocks lead to a long-lasting increase of 
risk aversion. Studying initial public offerings (IPOs), Kaustia and Knupfer [17] identify pairs 
of “hot and cold” IPOs with close offer dates and follow the future subscription activities of 
investors whose first IPO subscription was in one of those two. They find that “twice as many 
investors participate in a subsequent offering if they first experience a hot offering rather than a 
cold offering.” Pointing to a primacy effect, they find that the initial outcome has a strong impact 
on subsequent offerings, and that “by the tenth offering, 65% of investors in the hot IPO group 
will have subscribed to another IPO, compared to only 39% in the cold IPO group.” Baird and 
Zelin [3] study the impact of sequencing of positive and negative news in a company president’s 
letter. They find a primacy effect, showing that information provided early in the letter has the 
strongest impact on evaluations of that company’s performance. In general, sequencing biases3

such as the primacy effect are robust and long-standing experimental phenomena (early literature 
includes Anderson [2]); and several empirical studies, including Guiso, Sapienza and Zingales 
[13] and Alesina and Fuchs-Schündeln [1], argue that early experiences may shape financial or 
cultural attitudes.

The biological basis of changes in risk aversion has been studied by neuroscientists. As sum-
marized in Knutson and Greer [18] and Kuhnen and Knutson [21], neuroimaging studies have 
shown that two parts of the brain, the nucleus accumbens and the anterior insula, play a large role 
in risky decisions. The nucleus accumbens processes information on rewards, and is associated 
with positive emotions and excitement; while the anterior insula processes information about 

3 Another well-known sequencing bias is the recency effect, according to which more recent experiences have the 
strongest effect. A recency effect on risk attitude is opposite to the prediction of our model.
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losses, and is associated with negative emotions and anxiety. Controlling for wealth and infor-
mation, activation of the nucleus accumbens (anterior insula) is associated with bearing greater 
(lesser) risk in investment decisions. Discussing feedback effects, Kuhnen and Knutson [21] note 
that:

[. . .] activation in the nucleus accumbens increases when we learn that the outcome of a past 
choice was better than expected (Delgado et al. (2000), Pessiglione et al. (2006)). Activation 
in the anterior insula increases when the outcome is worse than expected (Seymour et al.
(2004), Pessiglione et al. (2006)), and when actions not chosen have larger payoffs than the 
chosen one.

In a neuroimaging study with 90 sequential investment decisions by subjects, these feedback 
effects are shown to influence subsequent risk-taking behavior (Kuhnen and Knutson [21]).

1.2. Relations to the literature

In many theories of choice over temporal lotteries, risk aversion can depend on the passage of 
time, wealth effects or habit formation in consumption; see Kreps and Porteus [20], Segal [33], 
Campbell and Cochrane [6] and Rozen [30], among others. We study how risk attitudes are af-
fected by the past, independently of such effects. In the HDRA model, risk attitudes depend 
on “what might have been.” Such counterfactual thinking means that our model relaxes conse-
quentialism (Hanany and Klibanoff [16], Machina [23]), an assumption that is maintained by 
the papers above. Our form of history-dependence is conceptually distinct from models where 
current and future beliefs affect current utility (that is, dependence of utility on “what might 
be” in the future). This literature includes, for instance, Caplin and Leahy [7] and Köszegi and 
Rabin [19].

Caplin and Leahy [7] propose a two-period model where the prize space of a lottery is enriched 
to contain psychological states, and there is an (unspecified) mapping from physical lotteries to 
mental states. Depending on how the second-period mental state is specified to depend on the 
first, Caplin and Leahy’s model could explain various types of risk-taking behaviors in the first 
period. While discussing the possibility of second-period disappointment, they do not address 
the question of history-dependence in choices. We conjecture that with additional periods and 
an appropriate specification of the mapping between mental states, one could replicate the pre-
dictions of our model. Köszegi and Rabin [19] propose a utility function over T -period risky 
consumption streams. In their model, period utility is the sum of current consumption utility 
and the expectation of a gain-loss utility function, over all percentiles, of consumption utility at 
that percentile under the ex-post belief minus consumption utility at that percentile under the ex-
ante belief. Beliefs are determined by an equilibrium notion, leading to multiplicity of possible 
beliefs. This bears resemblance to the multiplicity of internally consistent history assignments 
in our model (see Section 5 on how different assignments correspond to different attitudes to 
compound risks). Köszegi and Rabin [19] do not address the question of history dependence: 
given an ex-ante belief over consumption, utility is not affected by prior history (how that belief 
was formed). While they point out that it would be realistic for comparisons to past beliefs to 
matter beyond one lag, they suggest one way to potentially model Thaler and Johnson’s [37]
result in their framework: “by assuming that a person receives money, and in the same period
makes decisions on how to spend the money – with her old expectations still determining current 
preferences” (Köszegi and Rabin [19], Footnote 6). We conjecture that with additional historical 
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differences in beliefs and an appropriate choice of functional forms (and relaxing additivity), one 
could replicate our predictions.

2. Framework

In this section we describe the essential components of our model of history-dependent risk 
attitude (HDRA). Section 2.1 describes the domain of T-stage lotteries. Section 2.2 introduces 
the notion of history assignments. Section 2.3 discusses the recursive evaluation of compound 
lotteries. Section 2.4 introduces the key requirement of internal consistency, and formally defines 
the HDRA model.

2.1. Multi-stage lotteries: definitions and notations

Consider an interval of prizes [w, b] ⊂ R. The choice domain is the set of T -stage simple 
lotteries over [w, b]. For any set X, let L (X) be the set of simple (i.e., finite support) lotteries 
over X. The set L 1 = L ([w, b]) is the set of one-stage simple lotteries over [w, b]. The set 
L 2 = L (L 1) is the set of two-stage simple lotteries – that is, simple lotteries whose outcomes 
are themselves one-stage lotteries. Continuing in this manner, the set of T -stage simple lotteries 
is L T = L (L T −1). A T -stage lottery could capture, for instance, an investment that resolves 
gradually, or a collection of monetary risks from different sources that resolve at different points 
in time.

We indicate the length of a lottery by its superscript, writing pt , qt , or rt for an element of L t . 
A typical element pt of L t has the form pt = 〈α1, p

t−1
1 ; . . . ; αm, pt−1

m 〉, which means that each 
(t − 1)-stage lottery pt−1

j occurs with probability αj . This notation presumes the outcomes are 
all distinct, and includes only those with αj > 0. For brevity, we sometimes write only pt =
〈αi, p

t−1
i 〉i for a generic t -stage lottery. One-stage lotteries are denoted by p, q and r , or simply 

by 〈αi, xi〉i . At times, we use p(x) to describe the probability of a prize x under the one-stage 
lottery p. For any x ∈ X, δ�

x denotes the �-stage lottery yielding the prize x after � riskless stages. 
Similarly, for any pt ∈ L t , δ�

pt denotes the (t + �)-stage lottery yielding the t -stage lottery pt

after � riskless stages.
For any t < t̂ , we say that the t -stage lottery pt is a sublottery of the t̂-stage lottery pt̂ if there 

is a sequence (p�)t̂−1
�=t+1 such that p� is in the support of p�+1 for each � ∈ {t, . . . , ̂t − 1}. In the 

case t̂ = t + 1, this simply means that pt is in the support of pt̂ . By convention, we consider pT

a sublottery of itself. For any pT ∈ L T , we let S(pT ) be the set of all of its sublotteries.4

2.2. History assignments

Given a T -stage lottery pT , the DM classifies each possible resolution of risk that leads from 
one sublottery to another as elating or disappointing. The DM’s initial history is empty, denoted 
as 0. If a sublottery pt is degenerate – i.e., it leads to a given sublottery pt−1 with probability 
one – then the DM is not exposed to risk at that stage and his history is unchanged. If a sublottery 

4 Note that the same t -stage lottery pt could appear in the support of different (t + 1)-stage sublotteries of pT ; 
keeping this possibility in mind, but in order to economize on notation, throughout the paper we implicitly identify a 
particular sublottery pt by the sequence of sublotteries leading to it. Viewed as a correspondence, we then have S :
L T → P(

⋃T ×t L �), where P is the power set.
t=1 �=T
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Fig. 1. In panel (a), a three-stage lottery p3 and a history assignment. The first step of recursive evaluation yields the 
two-stage lottery in (b). The next step yields the one-stage lottery in (c).

pt is nondegenerate, then the DM may be further elated (e) or disappointed (d) by the possible 
realizations. For any sublottery of pT , the DM’s history assignment is given by his preceding 
sequence of elations and disappointments. Formally, the set of all possible histories is given by

H = {0} ∪
T −1⋃
t=1

{e, d}t . (1)

The DM’s history assignment is a collection a = {a(·|pT )}pT ∈L T , where for each pT ∈ L T , 
the function a(·|pT ) : S(pT ) → H assigns a history h ∈ H to each sublottery of pT , with the 
following restrictions. First, a(pT |pT ) = 0. Second, the history assignment is sequential, in the 
sense that if pt+1 is a sublottery having pt in its support, then a(pt |pT ) ∈ {a(pt+1|pT )} ×{e, d}
if pt+1 is nondegenerate, and a(pt |pT ) = a(pt+1|pT ) when pt+1 yields pt with probability one.

Throughout the text we write het (or hdt ) to denote the concatenated history whereby e (or d) 
occurs t times after the history h. More generally, given two histories h and h′, we denote by 
hh′ the concatenated history whereby h′ occurs after h. These notations, wherever they appear, 
implicitly assume that the length of the resulting history is at most T (that is, it is still in H ).

Example 1. Fig. 1(a) considers the case T = 3, showing an example of a three-stage lottery 
p3 and a history assignment. In the first stage of p3 = 〈.5, p2; .5, δq〉, there is an equal chance 
to get either δq = 〈1, q〉 or p2 = 〈.25, p1; .5, p2; .25, p3〉. The history assignment shown says 
a(δq |p3) = a(q|p3) = d , a(p2|p3) = e, a(p1|p3) = a(p2|p3) = ed and a(p3|p3) = ee.

2.3. Recursive evaluation of multi-stage lotteries

The DM evaluates multi-stage lotteries recursively, using history-dependent utility functions. 
Before describing the recursive process, we need to discuss the set of utility functions over one-
stage lotteries (that is, the set L 1) that will be applied. Let V = {Vh}h∈H be the DM’s collection 
of utility functions, where each Vh : L 1 → R can depend on the DM’s history. In this paper, we 
confine attention to utility functions Vh in the betweenness class: these are continuous, monotone 
with respect to first-order stochastic dominance, and satisfy the following betweenness property 
(Dekel [11], Chew [8]):

Definition 1 (Betweenness). The function Vh satisfies betweenness if for all p, q ∈ L 1 and 
α ∈ [0, 1], Vh(p) = Vh(q) implies Vh(p) = Vh(αp + (1 − α)q) = Vh(q).
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Betweenness is a weakened form of the vNM-independence axiom: it implies neutrality to-
ward randomization among equally-good lotteries, which retains the linearity of indifference 
curves in expected utility theory, but relaxes the assumption that they are parallel. This allows for 
a broad class of one-stage preferences which includes, besides expected utility, Gul’s [15] model 
of disappointment aversion and Chew’s [8] weighted utility. For each Vh, continuity and mono-
tonicity ensure that any p ∈ L 1 has a well-defined certainty equivalent, denoted by CEh(p). 
That is, CEh(p) uniquely satisfies Vh(δCEh(p)) = Vh(p).

The DM recursively evaluates each pT ∈ L T as follows. He first replaces each terminal, 
one-stage sublottery p with its history-dependent certainty equivalent CEa(p|pT )(p). Observe 
that each two-stage sublottery p2 = 〈αi, pi〉i of pT then becomes a one-stage lottery over 
certainty equivalents, 〈αi, CEa(pi |pT )(pi)〉i , whose certainty equivalent itself can be evaluated 
using CEa(p2|pT )(·). We now formally define the recursive certainty equivalent of any t -stage 
sublottery pt , which we denote by RCE(pt |a, V , pT ) to indicate that it depends on the history 
assignment a and the collection V . In the case t = 1, the recursive certainty equivalent of p is 
simply its standard (history-dependent) certainty equivalent, CEa(p|pT )(p). For each t = 2, . . . , T

and sublottery pt = 〈αi, p
t−1
i 〉i of pT , the recursive certainty equivalent RCE(pt |a, V , pT ) is 

given by

RCE
(
pt

∣∣a,V ,pT
) = CEa(pt |pT )

(〈
αi,RCE

(
pt−1

i

∣∣a,V ,pT
)〉

i

)
. (2)

Observe that the final stage gives the recursive certainty equivalent of pT itself.

Example 1 (continued). Fig. 1(b–c) shows how the lottery p3 from (a) is recursively evaluated 
using the given history assignment. As shown in (b), the DM first replaces p1, p2, p3 and q with 
their recursive certainty equivalents (which are simply the history-dependent certainty equiva-
lents). This reduces p2 to a one-stage lottery, p̃ = 〈.25, CEed(p1); .5, CEed(p2); .25,CEee(p3)〉; 
and reduces δq to δCEd (q). Following Eq. (2), the recursive certainty equivalent of p2 is CEe(p̃); 
and the recursive certainty equivalent of δq is CEd(δCEd (q)) = CEd(q). These replace p̃ and 
δCEd (q), respectively, in (c). The resulting one-stage lottery is then evaluated using CE0(·) to find 
the recursive certainty equivalent of p3.

2.4. A model of history-dependent risk attitude

Recall that at each step of the recursive process described above, the DM is evaluating 
only one-stage lotteries, the outcomes of which are recursive certainty equivalents of contin-
uation lotteries. The HDRA model requires the history assignment to be internally consis-
tent in each step of this process. Roughly speaking, for the DM to consider pt

j an elating 

(or disappointing) outcome of its parent lottery pt+1 = 〈αi, pt
i 〉i , the recursive certainty equiv-

alent of pt
j , RCE(pt

j |a, V , pT ), must fall above (below) a threshold level that depends on 

〈αi, RCE(pt
i |a, V , pT )〉i . Note that in the recursive process, the threshold rule acts on folded-

back lotteries (not ultimate prizes). To formalize this, let H̄ be the set of non-terminal histories 
in H , that is, taking the union only up to T − 2 in Eq. (1). Allowing the threshold level to depend 
on the DM’s history-dependent risk attitude, a threshold rule is a function τ : H̄ × L 1 → [w, b]
such that for each h ∈ H̄ , τh(·) is continuous, monotone, satisfies betweenness (see Definition 1), 
and has the feature that for any x ∈ [w, b], τh(δx) = x.
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Definition 2 (Internal consistency). The history assignment a = {a(·|pT )}pT ∈L T is internally 
consistent given the threshold rule τ and collection V if for every pT , and for any pt

j in the 

support of a nondegenerate sublottery pt+1 = 〈αi, pt
i 〉i , the history assignment a(·|pT ) satisfies 

the following property: if a(pt+1|pT ) = h ∈ H̄ and a(pt
j |pT ) = he (hd), then5

RCE
(
pt

j

∣∣a,V ,pT
) ≥ (<)τh

(〈
α1,RCE

(
pt

1

∣∣a,V ,pT
); . . . ;αn,RCE

(
pt

n

∣∣a,V ,pT
)〉)

.

We consider two types of threshold-generating rules different DMs may use: an exogenous
rule (independent of preference) and an endogenous, preference-based specification:

Exogenous threshold. For some f from the betweenness class, the threshold rule τ is independent 
of h and implicitly given for any p ∈ L 1 by f (p) = f (δτh(p)). For example, if f is an expected 
utility functional for some increasing u : [w, b] → R, then τ(p) = u−1(

∑
u(x)p(x)). If u is also 

linear, then τ(p) = E(p). In this case we refer to τ as an expectation-based rule.

Note that an exogenous threshold rule τh(·) is independent of the collection V , even though it 
ultimately takes as an input lotteries that have been generated recursively using V . For example, 
in the case of expectation-based rule the DM compares the certainty equivalent of a sublottery to 
his expected certainty equivalent.

Endogenous, preference-based threshold. The threshold rule τ is given by τh(·) = CEh(·). In this 
case, the DM’s history-dependent risk attitude affects his threshold for elation and disappoint-
ment, and the condition for internal consistency reduces to comparing the recursive certainty 
equivalent of pt

j with that of its parent sublottery pt+1. (The reason for the name “endogenous” 
is that the threshold depends on the DM’s current preference, which is itself determined endoge-
nously.)

To illustrate the difference between the two types of threshold rules, consider a one-stage 
lottery giving prizes 0, 1, . . . , 1000 with equal probabilities. If the DM is risk averse and uses the 
(endogenous) preference-based threshold rule, then he may be elated by prizes smaller than 500, 
where the cutoff for elation is his certainty equivalent for this lottery. By contrast, if he uses 
the exogenous threshold rule, then only prizes exceeding 500 are elating. That is, exogenous 
threshold rules separate the classification of disappointment and elation from preferences.

We now present the HDRA model, which determines a utility function U(·|a, V , τ) over L T

using the recursive certainty equivalent from Eq. (2).

Definition 3 (History-dependent risk attitude, HDRA). An HDRA representation over T -stage 
lotteries consists of a collection V := {Vh}h∈H of utilities over one-stage lotteries from the be-
tweenness class, a history assignment a, and an (endogenous or exogenous) threshold rule τ , such 
that the history assignment a is internally consistent given τ and V , and we have for any pT ,

U
(
pT

∣∣a,V , τ
) = RCE

(
pT

∣∣a,V ,pT
)
.

We identify a DM with an HDRA representation by the triple (a, V , τ) satisfying the above.

5 We assume a DM considers an outcome of a nondegenerate sublottery elating if its recursive certainty equivalent is 
at least as large as the threshold of the parent lottery. Alternatively, it would not affect our results if we instead assume 
an outcome is disappointing if its recursive certainty equivalent is at least as small as the threshold, or even introduce a 
third assignment, neutral (n), which treats the case of equality differently than elation or disappointment. In any case, 
a generic nonempty history consists of a sequence strict elations and disappointments.
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It is easy to see that the HDRA model is ordinal in nature: the induced preference over L T

is invariant to increasing, potentially different transformations of the members of V . This is 
because the HDRA model takes into account only the certainty equivalents of sublotteries after 
each history.

The definition of HDRA contains some simplifying modeling assumptions. In particular, the 
DM’s risk attitudes depend on the prior sequence of disappointments and elations, but not on the 
“intensity” of those experiences (e.g., whether he was slightly disappointed or very disappointed). 
This binary categorization is conceptually related to the notions of elation and disappointment 
for one-stage lotteries suggested in Gul’s [15] model of disappointment aversion. In Gul’s work, 
a prize x is an elating outcome of a lottery p if it is preferred to p itself, and is a disappointing 
outcome otherwise. Lotteries are evaluated by calculating their “expected utility,” except that dis-
appointing outcomes get a greater (or smaller) weight depending on the sign of the coefficient of 
disappointment aversion.6 While the additional weight assigned to all disappointing (or elating) 
outcomes is uniform within each category, the magnitude and likelihood of each outcome deter-
mine its overall effect on the value of the lottery. Similarly, while classifications in our model are 
also binary, the probabilities and magnitudes of realizations affect both the threshold for elation 
and the overall utility of a lottery. The key conceptual difference is that Gul uses the notion of an 
elation-disappointment decomposition to determine a lottery’s value, while we use the concept 
to recursively determine the history assignment of sublotteries in a multi-stage setting. Further, 
the threshold rule for elation and disappointment in our model need not be the value of the lot-
tery itself, nor need that value arise from Gul’s model, although those specifications are natural 
special cases, as noted in Section 3.

By permitting risk attitude to depend only on prior elations and disappointments, this speci-
fication allows us to study endogenously evolving risk attitudes under a parsimonious departure 
from history independence. Behaviorally, this restriction on histories can be thought of as a cog-
nitive limitation on the part of the DM. It captures a DM for whom keeping track of the exact 
intensity of disappointment and elation for every realization – which is itself a compound lot-
tery – is difficult, leading him to classify his impressions into discrete categories: sequences of 
elations and disappointments. Remember that the DM’s risk aversion is assumed to be unchanged 
whenever no risk resolves; that is, he is unaffected by the mere passage of time. The resolution 
of risk, however, leads to either elation or disappointment. The categorical classification in the 
HDRA model thus implies that the DM treats a period which is completely riskless differently 
than a period in which any amount of risk resolves. Hence, receiving a lottery with probability 
one is treated discontinuously differently than receiving a “nearby” sublottery with elating and 
disappointing outcomes.7

Before proceeding to characterize the HDRA model in Section 3, we return to Example 1 to 
illustrate the model’s internal consistency requirement.

6 Formally, the value of a lottery p, V (p; β, u), is the unique v solving

v =
∑

{x|u(x)≥v} p(x)u(x) + (1 + β)
∑

{x|u(x)<v} p(x)u(x)

1 + β
∑

{x|u(x)<v} p(x)
, (3)

where u : X → R is increasing and β ∈ (−1, ∞) is the coefficient of disappointment aversion.
7 This stylization may be descriptively plausible in situations as described above, where the DM only recalls whether 

he was disappointed, elated, or neither (since he was not exposed to any risk). Alternatively, this may relate to situations 
where emotions are triggered by the mere possibility of risk (see a discussion of the phenomenon of “probability neglect” 
in Sunstein [35]).
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Example 1 (continued). Suppose the DM uses an expectation-based exogenous threshold rule 
τh(·) = E(·) and the assignment from Fig. 1(a). To verify that it is internally consistent to have 
a(p1|p3) = a(p2|p3) = ed and a(p3|p3) = ee, one must check that

CEee(p3) ≥ E
(〈
.25,CEed(p1); .5,CEed(p2); .25,CEee(p3)

〉)
> CEee(p1),CEee(p2),

since the recursive certainty equivalents of p1, p2, p3 are given by the corresponding stan-
dard certainty equivalents. Next, recall that the recursive certainty equivalent of p2 is given by 
CEe(p̃), where p̃ = 〈.25, CEed(p1); .5, CEed(p2); .25, CEee(p3)〉. To verify that it is internally 
consistent to have a(p2|p3) = e and a(δq |p3) = d , one must check that

CEe(p̃) ≥ E
(〈
.5,CEe(p̃); .5,CEd(q)

〉)
> CEd(q).

Observe that internal consistency imposes a fixed point requirement that takes into account 
the entire history assignment for a lottery. In Example 1, even if p1, p2, p3 have an internally 
consistent assignment within p2, this assignment must lead to a recursive certainty equivalent 
for p2 that is elating relative to that of δq . We next explore the implications internal consistency 
has for risk attitudes.

3. Characterization of HDRA

In this section, we investigate for which collections of single-stage preferences V and thresh-
old rules τ can an HDRA representation (a, V , τ) exist. In the case that the single-stage prefer-
ences are history independent (say, Vh = V for all h ∈ H ), an internally consistent assignment 
can always be constructed, because the recursive certainty equivalent of a sublottery is indepen-
dent of the assigned history.8 To study what happens when risk attitudes are shaped by prior 
experience, and for the sharpest characterization of when an internally consistent history assign-
ment exists in this case, we consider collections V for which the utility functions after each 
history are (strictly) rankable in terms of their risk aversion.

Definition 4. We say that Vh is strictly more risk averse than Vh′ , denoted by Vh >RA Vh′ , if for 
any x ∈ X and any nondegenerate p ∈ L 1, Vh(p) ≥ Vh(δx) implies that Vh′(p) > Vh′(δx).

Definition 5. We say that the collection V = {Vh}h∈H is ranked in terms of risk aversion if for 
all h, h′ ∈ H , either Vh >RA Vh′ or Vh′ >RA Vh.

Examples of V with the rankability property are a collection of expected CRRA utilities, 
V = {E( x1−ρh

1−ρh
|·)}h∈H , or a collection of expected CARA utilities, V = {E(1 − e−ρhx |·)}h∈H , 

with distinct coefficients of risk aversion (i.e., ρh �= ρh′ for all h, h′ ∈ H ). Our leading non-
expected utility example is a collection of Gul’s [15] disappointment aversion preferences, with 
history-dependent coefficients of disappointment aversion, βh. Gul shows that the DM becomes 
increasingly risk averse as the disappointment aversion coefficient increases, holding the utility 
over prizes fixed. An admissible collection is thus V = {V (·; βh, u)}h∈H , where V (·; βh, u) is 
given by (3) and the coefficients βh are distinct. In all these examples, history-dependent risk 

8 The assignment can be constructed by labeling a sublottery elating (disappointing) whenever its fixed, history-
independent recursive certainty equivalent is greater than (resp., weakly smaller than) the corresponding threshold.
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aversion is captured by a single parameter. Under the rankability condition (Definition 5), we 
now show that the existence of an HDRA representation implies regularity properties on V that 
are related to well-known cognitive biases; and that these properties imply the existence of an 
HDRA representation.

3.1. The reinforcement and primacy effects

Experimental evidence suggests that risk attitudes are reinforced by prior experiences. They 
become less risk averse after positive experiences and more risk averse after negative ones. This 
effect is captured in the following definition.

Definition 6. V = {Vh}h∈H displays the reinforcement effect if Vhd >RA Vhe for all h.

A body of evidence also suggests that individuals are affected by the position of items in a 
sequence. One well-documented cognitive bias is the primacy effect, according to which early 
observations have a strong effect on later judgments. In our setting, the order in which elations 
and disappointments occur affect the DM’s risk attitude. The primacy effect suggests that the 
shift in attitude from early realizations can have a lasting and disproportionate effect. Future 
elation or disappointment can mitigate, but not overpower, earlier impressions, as in the following 
definition.

Definition 7. V = {Vh}h∈H displays the primacy effect if Vhdet >RA Vhedt for all h and t .

The reinforcement and primacy effects together imply strong restrictions on the collection V , 
as seen in the following observation. We refer below to the lexicographic order on histories of 
the same length as the ordering where h̃ precedes h if it precedes it alphabetically. Since d comes 
before e, this is interpreted as “the DM is disappointed earlier in h̃ than in h.”

Observation 1. V displays the reinforcement and primacy effects if and only if for h, h̃ of 
the same length, V

h̃
>RA Vh if h̃ precedes h lexicographically. Moreover, under the additional 

assumption Vhd >RA Vh >RA Vhe for all h ∈ H , V displays the reinforcement and primacy effects 
if and only if for any h, h′, h′′, we have Vhdh′′ >RA Vheh′ .

The content of Observation 1 is visualized in Fig. 2. The first statement corresponds to the 
lexicographic ordering within each row. Under the additional assumption Vhd >RA Vh >RA Vhe , 
which says an elation reduces (and a disappointment increases) the DM’s risk aversion relative to 
his initial level, one obtains the vertical lines and consecutive row alignment. Observe that along 
a realized path, this imposes no restriction on how current risk aversion compares to risk aversion 
two or more periods ahead when the continuation path consists of both elating and disappointing 
outcomes: e.g., one can have either Vh <RA Vhed or Vh >RA Vhed .

We are now ready to state the main result of the paper.

Theorem 1 (Necessary and sufficient conditions for HDRA). Consider a collection V that is 
ranked in terms of risk aversion, and an exogenous or endogenous threshold rule τ . An HDRA 
representation (a, V , τ) exists – that is, there exists an internally consistent assignment a – if 
and only if V displays the reinforcement and primacy effects.
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Fig. 2. Starting from the bottom, each row depicts the risk aversion rankings >RA of the Vh for histories of length 
t = 1, 2, 3, . . . , T − 1. The reinforcement and primacy effects imply the lexicographic ordering in each row. The vertical 
boundaries and consecutive row alignment would be implied by the additional assumption Vhd >RA Vh >RA Vhe for all 
h ∈ H .

Observe that the model takes as given a collection of preferences V that are ranked in terms 
of risk aversion, but does not specify how they are ranked. Theorem 1 shows that internal con-
sistency places strong restrictions on how risk aversion evolves with elation and disappointment. 
The proof of Theorem 1 appears in Appendix A. We sketch the main ideas below.9

For sufficiency, we provide an algorithm for finding an internally consistent assignment when 
V displays the reinforcement and primacy effects. For simplicity, suppose that T = 2 and 
consider the two-stage lottery 〈α1, p1; α2, p2; α3, p3〉. Suppose p1, p2, p3 are non-degenerate 
and such that p1 has the highest CEe(·) among all three, while p3 has the lowest CEd(·)
among the remaining ones (that is, CEd(p2) ≥ CEd(p3)). The reinforcement effect implies that 
CEe(p1) > CEd(p2). The algorithm initially sets p1 to be elating and sets both p2 and p3 to 
be disappointing. Let’s suppose that this assignment is not internally consistent, since we would 
otherwise be done. By monotonicity, CEe(p1) must be above, while CEd(p3) must be below, the 
threshold value of 〈α1, CEe(p1); α2, CEd(p2); α3, CEd(p3)〉. Since internal consistency fails, it 
must be that CEd(p2) is higher than the threshold value. But then switching p2 to be elating 
would result in an internally consistent assignment if CEe(p2) is higher than the threshold value 
arising under the new assignment. We show that the latter property is implied by betweenness: if 
a prize is elating in a one-stage lottery, and that prize is increased (resulting in a modified lottery), 
then the increased prize is also elating in the modified lottery. This algorithm can be generalized 
to any two-stage lottery, as well as more stages.

To see why the reinforcement effect is necessary in the case T = 2, assume by contradiction 
that Ve >RA Vd . Then, for any nondegenerate p ∈ L 1, CEd(p) > CEe(p). Consider the lottery 
p2 = 〈α, p; 1 − α, δx〉. For p to be elating in p2, internal consistency requires CEe(p) > x; for 
p to be disappointing in p2, internal consistency requires CEd(p) < x. But then there cannot 
be an internally consistent history assignment for p2 whenever x ∈ (CEe(p), CEd(p)). Note 
that this argument depends only on monotonicity with respect to prizes. To sketch the argument 
for necessity of the primacy effect in the case T = 3, consider a three-stage lottery of the form 
p3 = 〈α, p2; 1 − α, δ2

x〉. Assume by contradiction that Ved >RA Vde . Hence CEed(q) < CEde(q)

9 The requirement that the threshold rule satisfies betweenness plays an important role. In the case of an endogenous 
threshold rule, this is tantamount to having all the utility functions in V satisfy betweenness. If one restricts attention to 
the case of exogenous threshold rules, however, then the theorem would still hold so long as the members of V satisfy 
continuity and monotonicity.
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Fig. 3. A representative lottery in (a) L T
u and (b) M T

u , with p,q ∈ L 1 and zi ∈ {b,w} for all i.

for any nondegenerate q ∈ L 1. Extending the idea from the proof of the reinforcement effect, 
a contradiction to internal consistency would arise if for every internally consistent assignment 
of p2, the certainty equivalent of p2 after elation is smaller than that after disappointment. By 
the properties of the betweenness class,10 we can construct p2, with q in its support, such that: 
(1) q must be elating when p2 is disappointing, (2) q must be disappointing when p2 is elat-
ing, and (3) given that CEde(q) > CEed(q), the probability of q within p2 is sufficiently high 
so that CEd(pd) > CEe(pe), where pd (pe) is the one-stage, folded-back version of p2 under 
the history d (respectively, e). Then, no internally consistent assignment of p3 can exist when-
ever x ∈ (CEe(pe), CEd(pd)). Essentially, if the primacy effect does not hold, then an elating 
outcome received after a disappointment may overturn the assignment of the initial outcome as 
a disappointment. The arguments for the necessity of the reinforcement and primacy effects can 
be extended to any number of stages T .

4. Eliciting the components of the HDRA model

In this section, we study how to recover the primitives (a, V , τ) from the choice behavior 
of a DM who applies the HDRA model. Let 
 denote the DM’s observed preference ranking 
over L T .

First, the utility functions in V may be elicited using only choice behavior over the simple 
subclass of lotteries illustrated in Fig. 3(a) and defined as follows. Let

L T
u =

{ 〈α1, 〈α2, · · · 〈αT −1,p;1 − αT −1, δzT −1〉 · · · ;1 − α2, δ
T −2
z2

〉;1 − α1, δ
T −1
z1

〉
such that p ∈ L 1, zi ∈ {b,w}, and αi ∈ [0,1]

}

be the set of lotteries where in each period, either the DM learns he will receive one of the ex-
treme prizes b or w for sure, or he must incur further risk (which is ultimately resolved by p if an 
extreme prize has not been received). For lotteries in the class L T

u the history assignment is un-
ambiguous. The DM is disappointed (elated) by any continuation sublottery received instead of 
the best prize b (resp., the worst prize w). To illustrate how the class L T

u allows elicitation of V , 

10 The construction uses the following implication of betweenness: given a lottery 〈α1, x1; α2, x2; α3, x3〉 with x1 >

x2 > x3, checking whether x2 is a disappointing or elating outcome amounts to checking whether the value of δx2 is 
smaller or larger than the value of the lottery 〈 α1

α1+α3
, x1; α3

α1+α3
, x3〉. In our context, the prizes are the corresponding 

history-dependent certainty equivalents.
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consider a history h = (h1, . . . , ht ) of length t ≤ T −1; as a convention, the length t of the initial 
history h = 0 is zero. Pick any sequence α1, . . . , αt ∈ (0, 1) and take αi = 1 for i > t . (Note that 
anytime the continuation probability αi is one, the history is unchanged). Construct the sequence 
of prizes z1, . . . , zt such that for every i ≤ t , zi = b if hi = d , and zi = w if hi = e. Finally, 
define �h : L 1 → L T

u by �h(r) ≡ 〈α1, 〈α2, · · · 〈αt , δT −t−1
r ; 1 − αt , δT −t

zt
〉 · · · ; 1 − α2, δT −2

z2
〉;

1 − α1, δT −1
z1

〉 for any r ∈ L 1, with the convention that δ0
r = r . It is easy to see that the history 

assignment of r must be h. Moreover, under the HDRA model, Vh(p) ≥ Vh(q) if and only if 
�h(p) 
 �h(q). Note that only the ordinal rankings represented by the collection V affect choice 
behavior.

We may also elicit the DM’s (endogenous or exogenous) threshold rule τ from his choices. To 
do this, it again suffices to examine the DM’s rankings over a special class of T -stage lotteries. 
Similarly to the class L T

u defined above, we can define the class M T
u of T -stage lotteries having 

the form illustrated in Fig. 3(b): in the first t ≤ T − 2 stages, the DM either receives an extreme 
prize or faces additional risk, which is finally resolved by a two stage lottery of the form

m(p,q) =
〈

1

2
,p; q(x1)

2
, δx1; . . . ,

q(xn)

2
, δxn

〉
, (4)

where p, q ∈ L 1, with the notation q = 〈q(x1), x1; . . . ; q(xn), xn〉. Moreover, similarly to the 
construction of �h(·), we may define for any history h = (h1, . . . , ht ) ∈ H̄ the function mh :
L 1 × L 1 → M T

u as follows. For any nondegenerate p, q ∈ L 1,

mh(p,q) ≡ 〈
α1,

〈
α2, · · ·

〈
αt , δ

T −t−2
m(p,q) ;1 − αt , δ

T −t
zt

〉 · · · ;1 − α2, δ
T −2
z2

〉;1 − α1, δ
T −1
z1

〉
,

where the continuation probabilities (αi)
t
i=1 ∈ (0, 1) and extreme prizes (zi)

t
i=1 ∈ {w, b} are 

selected so that the history assignment of m(p, q) is precisely h.
We can determine how a prize z compares to the threshold value of a one-stage lottery 

q as follows. Suppose for the moment that there exists a nondegenerate p ∈ L 1 satisfying 
CEhe(p) = z and for which mh(p, q) ∼ mh(δz, q). We claim that the history assignment of p in 
mh(p, q) cannot be hd . Indeed, CEhd(p) < CEhe(p) = z implies that mh(p, q) ∼ mh(δz, q) �
mh(δCEhd (p), q), where the strict preference follows because a two-stage lottery of the form 
m(δx, q) is isomorphic to the one-stage lottery 〈 1

2 , x; q(x1)
2 , x1; . . . q(xn)

2 , xn〉, to which mono-
tonicity of Vh then applies. Therefore, the history assignment of p in mh(p, q) must be he, 
which means, by internal consistency, that

z = CEhe(p) ≥ τh

(〈
1

2
,CEhe(p); q(x1)

2
, x1; . . . , q(xn)

2
, xn

〉)
. (5)

The one-stage lottery 〈 1
2 , z; q(x1)

2 , x1; . . . , q(xn)
2 , xn〉 is a convex combination of the sure prize z

and the lottery q . Since τh satisfies betweenness, Eq. (5) holds if and only if z ≥ τh(q). Similarly, 
if for some nondegenerate p ∈ L 1 satisfying CEhd(p) = z, mh(p, q) ∼ mh(δz, q), then z <

τh(q). So far we have only assumed that a p with the desired properties exists whenever z ≥
(<)τh(q); we show in Appendix A that this is indeed the case. Thus, we can represent τh’s 
comparisons between a lottery q and a sure prize z through the auxiliary relation 
τh

, defined 
by δz 
τh

q (q �τh
δz) if there is a nondegenerate p ∈ L 1 such that mh(p, q) ∼ mh(δz, q) and 

CEhe(p) = z (resp., CEhd(p) = z). Proposition 2 in Appendix A shows how to complete this 
relation using choice over lotteries in M T

u , and proves that it represents the threshold τh.
Finally, to recover the history assignment of a T -stage lottery, one needs to iteratively ask the 

DM what sure outcomes should replace the terminal lotteries to keep him indifferent. Generically, 
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his chosen outcome must be the certainty equivalent of the corresponding sublottery under his 
history assignment a.11

5. Other properties of HDRA

Optimism and pessimism. An HDRA representation is identified by the triple (a, V , τ). Given 
a threshold rule τ and a collection V satisfying the reinforcement and primacy effects, Theorem 1
guarantees that an internally consistent history assignment exists. There may in fact be more 
than one internally consistent assignment for some lotteries, meaning that it is possible for two 
HDRA decision makers to agree on V and τ but to sometimes disagree on which outcomes are 
elating and disappointing. For a simple example, consider T = 2 and suppose that CEe(p) > z >

CEd(p); then it is internally consistent for p to be called elating or disappointing in 〈α, p; 1 −
α, δz〉. Therefore a is not a redundant primitive of the model. We can think of some plausible 
rules for generating history assignments. For example, given the pair (V , τ), the DM may be 
an optimist (pessimist) if for each pT he selects the internally consistent history assignment a
that maximizes (minimizes) the HDRA utility of pT . We can then say that if the collections 
V A and V B are ordinally equivalent and τA = τB , then (aA, V A, τA) is more optimistic than 
(aB, V B, τB) if U(pT |aA, V A, τA) ≥ U(pT |aB, V B, τB) for every pT . Suppose we define a 
comparative measure of compound risk aversion by saying that DMA is less compound-risk 
averse than DMB if for any pT ∈ L T and x ∈ [w, b], U(pT |aB, V B, τB) ≥ U(δT

x |aB, V B, τB)

implies U(pT |aA, V A, τA) ≥ U(δT
x |aA, V A, τA). It is immediate to see that if one DM is more 

optimistic than another, then he is less compound-risk averse. As pointed out in Section 1.2, the 
multiplicity of possible internally consistent history assignments, and the use of an assignment 
rule to pick among them, resembles the multiplicity of possible beliefs in Köszegi and Rabin 
[19], and their use of the “preferred personal equilibrium” criterion.

Statistically reversing risk attitudes. A second implication of Theorem 1, in the case of an 
endogenous threshold rule, is statistically reversing risk attitudes. (This feature does not arise 
under exogenous threshold rules.) When the threshold moves with preference, a DM who has 
been elated is not only less risk averse than if he had been disappointed, but also has a higher 
elation threshold. In other words, the reinforcement effect implies that after a disappointment, 
the DM is more risk averse and “settles for less”; whereas after an elation, the DM is less risk 
averse and “raises the bar.” Therefore, the probability of elation in any sublottery increases if that 
sublottery is disappointing instead of elating.12 Moreover, the “mood swings” of a DM with an 
endogenous threshold need not moderate with experience, even under the additional assumption 
shown in Fig. 2 that Vhd >RA Vh >RA Vhe for all h. Indeed, suppose the DM’s risk aversion is 
described by a collection of risk aversion coefficients {ρh}h∈H . For any fixed T , the parameters 
need not satisfy |ρed − ρe| ≥ |ρede − ρed | ≥ |ρeded − ρede| · · ·.

11 Since H is finite, if there is pT such that two assignments yield the same value, then there is an open ball around pT

within which every other lottery has the property that no two assignments yield the same value.
12 The psychological literature, in particular Parducci [26] and Smith, Diener and Wedell [36], provides support for this 
prediction regarding elation thresholds. Summarizing these works, Schwarz and Strack [32] observe that “an extreme 
negative (positive) event increased (decreased) satisfaction with subsequent modest events.... Thus, the occasional ex-
perience of extreme negative events facilitates the enjoyment of the modest events that make up the bulk of our lives, 
whereas the occasional experience of extreme positive events reduces this enjoyment.”
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Preferring to lose late rather than early: the “second serve” effect. A recent New York Times 
article13 documents a widespread phenomenon in professional tennis: to avoid a double fault 
after missing the first serve, many players employ a “more timid, perceptibly slower” second 
serve that is likely to get the ball in play but leaves them vulnerable in the subsequent rally. In 
the article, Daniel Kahneman attributes this to the fact that “people prefer losing late to losing 
early.” Kahneman says that “a game in which you have a 20 percent chance to get to the second 
stage and an 80 percent chance to win the prize at that stage....is less attractive than a game in 
which the percentages are reversed.” Such a preference was first noted in Ronen [29].

To formalize this, take α ∈ (.5, 1) and any two prizes H > L. How does the two-stage lottery 
p2

late = 〈α, 〈1 − α, H ; α, L〉; 1 − α, δL〉, where the DM has a good chance of delaying losing, 
compare with p2

early = 〈1 − α, 〈α, H ; 1 − α, L〉; α, δL〉, where the DM is likely to lose earlier? 

(For simplicity we need only consider two stages here, but to embed this into L T we may 
consider each of p2

late and P 2
early as a sublottery evaluated under a nonterminal history h ∈ H̄ , 

similarly to the construction in M T
u .) Standard expected utility predicts indifference over p2

late
and p2

early, because the distribution over final outcomes is the same. To examine the predictions 
of the HDRA model for the case that each Vh ∈ V is from the expected utility class, let uh

denote the Bernoulli utility corresponding to utility Vh. In both lotteries, reaching the final stage 
is elating, since H > L. The HDRA value of p2

late is higher than the value of p2
early starting from 

history h if and only if

αuh

(
u−1

he

(
(1 − α)uhe(H) + αuhe(L)

)) + (1 − α)uh(L)

> (1 − α)uh

(
u−1

he

(
αuhe(H) + (1 − α)uhe(L)

)) + αuh(L). (6)

Proposition 1. The DM prefers losing late to losing early (that is, Eq. (6) holds for all H > L, 
α ∈ (.5, 1) and h ∈ H̄ ) if and only if Vhe <RA Vh.

The proof appears in Appendix A, where we show that Eq. (6) is equivalent to uh being a 
concave transformation of uhe. Similarly, one also can show the equivalence between preferring 
to win sooner rather than later, and Vhd >RA Vh.

Nonmonotonic behavior: thrill of winning and pain of losing. A DM with an HDRA rep-
resentation may violate first-order stochastic dominance for certain compound lotteries. For 
example, again for the case T = 2, if α is very high, the lottery 〈α, p; 1 −α, δw〉 may be preferred 
to 〈α, p; 1 −α, δb〉; in the former, p is evaluated as an elation, while in the latter, it is evaluated as 
a disappointment. Because the prizes w and b are received with very low probability, the “thrill 
of winning” the lottery p may outweigh the “pain of losing” the lottery p. This arises from the 
reinforcement effect on compound risks. While monotonicity with respect to compound first-
order stochastic dominance may be normatively appealing, the appeal of such monotonicity is 
rooted in the assumption of consequentialism (that “what might have been” does not matter). As 
Mark Machina points out, once consequentialism is relaxed, as is explicitly done in this paper, 
violations of monotonicity may naturally occur.14 In our model, violations of monotonicity arise 
only on particular compound risks, in situations where the utility gain or loss from a change in 

13 See “Benefit of Hitting Second Serve Like the First,” August 29, 2010, available for download at http://www.nytimes.
com/2010/08/30/sports/tennis/30serving.html?pagewanted=all.
14 As discussed in Mas-Colell, Whinston and Green [25], Machina offers the example of a DM who would rather 
take a trip to Venice than watch a movie about Venice, and would rather watch the movie than stay home. Due to the 

http://www.nytimes.com/2010/08/30/sports/tennis/30serving.html?pagewanted=all
http://www.nytimes.com/2010/08/30/sports/tennis/30serving.html?pagewanted=all
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risk attitude outweighs the benefit of a prize itself. The idea that winning is enjoyable and losing 
is painful may also translate to nonmonotonic behavior in more general settings. For example, 
Lee and Malmendier [22] show that forty-two percent of auctions for board games end at a price 
which is higher than the simultaneously available buy-it-now price.

6. Extension to intermediate actions, and a dynamic asset pricing problem

In this section, we extend our previous results to settings where the DM may take intermediate 
actions while risk resolves. We then apply the model to a three-period asset pricing problem to 
examine the impact of history-dependent risk attitude on prices.

6.1. HDRA with intermediate actions

In the HDRA model with intermediate actions, the DM categorizes each realization of a 
dynamic (stochastic) decision problem – which is a choice set of shorter dynamic decision prob-
lems – as elating or disappointing. He then recursively evaluates all the alternatives in each choice 
problem based on the preceding sequence of elations and disappointments.

Formally, for any set Z, let K (Z) be the set of finite, nonempty subsets of Z. The set of one-
stage decision problems is given by D1 = K (L (X)). By iteration, the set of t -stage decision 
problems is given by D t = K (L (D t−1)). A one-stage decision problem D1 ∈ D1 is simply a 
set of one-stage lotteries. A t -stage decision problem Dt ∈ D t is a set of elements of the form 
〈αi, D

t−1
i 〉i , each of which is a lottery over (t − 1)-stage decision problems. Note that our ear-

lier domain of T -stage lotteries can be thought of as the subset of DT where all choice sets are 
degenerate.

The admissible collections of one-stage preferences V = {Vh}h∈H and threshold rules are 
unchanged. The set of possible histories H is also the same as before, with the understanding 
that histories are now assigned to choice nodes. For each DT ∈ DT , the history assignment 
a(·|DT ) maps each choice problem within DT to a history in H that describes the preceding 
sequence of elations and disappointments. The initial history is empty, i.e. a(DT |DT ) = 0,

The DM recursively evaluates each T -stage decision problem DT as follows. For a terminal 
decision problem D1, the recursive certainty equivalent is simply given by RCE(D1|a, V , DT ) =
maxp∈D1 CEa(D1|DT )(p). That is, the value of the choice problem D1 is the value of the ‘best’ 
lottery in it, calculated using the history corresponding to D1. For t = 2, . . . , T , the recursive 
certainty equivalent is

RCE
(
Dt

∣∣a,V ,DT
) = max

〈αi ,D
t−1
i 〉i∈Dt

CEa(Dt |DT )

(〈
αi,RCE

(
Dt−1

i

∣∣a,V ,DT
)〉)

.

This is analogous to the definition of the recursive certainty equivalent from before, with the ad-
dition of the max operator that indicates that the DM chooses the best available continuation 
problem. The history assignment of choice sets must be internally consistent. Given a deci-
sion problem DT , if Dt

j is an elating (disappointing) outcome of 〈α1, Dt
1; . . . ; αn, Dt

n〉 ∈ Dt+1, 

then it must be that RCE(Dt
j |a, V , DT ) ≥ (<)τa(Dt+1|DT )(〈α1, RCE(Dt

1|a, V , DT ); . . . ; αn,

RCE(Dt
n|a, V , DT )〉). The definition of HDRA imposes the same requirements as before, but 

over this larger choice domain.

disappointment he would feel watching the movie in the event of not winning the trip itself, Machina points out that the 
DM might prefer a lottery over the trip and staying home, to a lottery over the trip and watching the movie.
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Definition 8 (HDRA with intermediate actions). An HDRA representation over T -stage decision 
problems consists of a collection V := {Vh}h∈H of utilities over one-stage lotteries from the be-
tweenness class, a history assignment a, and an (endogenous or exogenous) threshold rule τ , such 
that the history assignment a is internally consistent given τ and V , and we have for any DT ,

U
(
DT

∣∣a,V , τ
) = RCE

(
DT

∣∣a,V ,DT
)
.

Observe that the DM is “sophisticated” under HDRA with intermediate actions. From any 
future choice set, the DM anticipates selecting the best continuation decision problem. That 
choice leads to an internally consistent history assignment of that choice set. When reaching a 
choice set, the single-stage utility he uses to evaluate the choices therein is the one he anticipated 
using, and his choice is precisely his anticipated choice. Internal consistency is thus a stronger 
requirement than before, because it takes optimal choices into account. However, our previous 
result extends.

Theorem 2 (Extension to intermediate actions). Consider a collection V that is ranked in terms 
of risk aversion, and an exogenous or endogenous threshold rule τ . An HDRA representation with 
intermediate actions (a, V , τ) exists – that is, there exists an internally consistent assignment a – 
if and only if V displays the reinforcement and primacy effects.

6.2. Application to a three-period asset pricing problem

We now apply the model to study a three-period asset-pricing problem in a representative 
agent economy. We confine attention to three periods because it is the minimal time horizon T
needed to capture both the reinforcement and primacy effects. We show that the model yields pre-
dictable, path-dependent prices that exhibit excess volatility arising from actual and anticipated 
changes in risk aversion.

In each period t = 1, 2, 3, there are two assets traded, one safe and one risky. At the end of the 
period, the risky asset yields ỹ, which is equally likely to be High (H) or Low (L). The second is 
a risk-free asset returning R = 1 +r , where r is the risk-free rate of return. Asset returns are in the 
form of a perishable consumption good that cannot be stored; it must be consumed in the current 
period. Each agent is endowed with one share of the risky asset in each period. The realization of 
the risky asset in period t is denoted by yt . In the beginning of each period t > 1, after a sequence 
of realizations (y1, . . . , yt−1), each agent can trade in the market, at price P(y1, . . . , yt−1) for 
the risky asset, with the risk-free asset being the numeraire. At t = 1, there are no previous 
realizations and the price is simply denoted by P . At the end of each period, the agent learns 
the realization of ỹ and consumes the perishable return. The payoff at each terminal node of 
the three-stage decision problem is the sum of per-period consumptions.15 In each period t , the 
agent’s problem is to determine the share α(y1, . . . , yt−1) of property rights to retain on his unit 
of risky asset given the asset’s past realizations (y1, . . . , yt−1). The agent is purchasing additional 
shares when α(y1, . . . , yt−1) > 1, and is short-selling when α(y1, . . . , yt−1) < 0. At t = 1, there 
are no previous realizations and his share is simply denoted by α.

15 Alternatively, one could let the terminal payoff be some function of the consumption vector, in which case the DM is 
evaluating lotteries over terminal utility instead of total consumption.
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The agent has HDRA preferences with underlying CARA expected utilities; that is, the 
Bernoulli function after history h is uh(x) = 1 − e−λhx . Notice that none of the results in this 
application depend on whether the DM employs an exogenous or endogenous threshold rule (as 
there are only two possible realizations, High or Low, of the asset in each stage). The CARA 
specification of one-stage preferences means that our results will not arise from wealth effects. 
For this section, we use the following simple parametrization of the agent’s coefficients of abso-
lute risk aversion. Consider a, b satisfying 0 < a < 1 < b and λ0 > 0. In the first period, elation 
scales down the agent’s risk aversion by a2, while disappointment scales it up by b2. In the 
second period, elation scales down the agent’s current risk aversion by a, while disappointment 
scales it up by b. In summary, λe = a2λ0, λd = b2λ0, λee = a3λ0, λed = a2bλ0, λde = b2aλ0, 
and λdd = b3λ0. This parametrization satisfies the reinforcement and primacy effects, and has the 
feature that λh ∈ (λhe, λhd) for all h. As can be seen from our analysis below, if the agent’s risk 
aversion is independent of history and fixed at λ0 at every stage, then the asset price is constant 
over time. By contrast, in the HDRA model, prices depend on past realizations of the asset, even 
though past and future realizations are statistically independent. The following result formalizes 
the predictions of the HDRA model.

Theorem 3. Given the parametrization above, the price responds to past realizations as follows:

(i) P(H, H) > P(H, L) > P(L, H) > P(L, L) at t = 3.
(ii) P(H) > P(L) at t = 2.

(iii) Price increases after each High realization: P(H, H) > P(H) > P and P(L, H) > P(L).
(iv) P , P(L), and P(L, L) are all below the (constant) price under history independent risk 

aversion λ0.

Theorem 3 is illustrated in Fig. 4, which depicts the simulated price path for the specification 
R = 1, λ0 = .005, b = 1.2, a = .8, H = 20, and L = 0.16 In that case, the price also decreases 
after each Low realization: P > P(L) > P(L, L) and P(H) > P(H, L).17 In general, this need 
not be true. Notice that the DM faces one fewer stage of risk each time there is a realization 
of the asset. Nonetheless, price is constant with history-independent CARA preferences. With 
history-dependent risk aversion, a compound risk may become even riskier due to the fact that 
the continuation certainty equivalents fluctuate with risk aversion. That is, expected future risk 
aversion movements introduce an additional source of risk, causing price volatility. The price af-
ter each history is a convex combination of H and L, with weights that depend on the product of 
current risk aversion and the spread between the future certainty equivalents (as seen in Table 1). 
Depending on how much risk aversion fluctuates, there may be an upward trend in prices, simply 
from having fewer stages of risk left. Elation (High realizations) reinforces that trend, because 
the agent is both less risk averse and faces fewer stages of risk. However, there is tension between 

16 Estimates of CARA coefficients in the literature are highly variable, ranging from .00088 (Cohen and Einav [10]) to 
.0085 to .14 (see Saha, Shumway and Talpaz [31] for a summary of estimates). Using λ0 = .005, b = 1.2 and a = .8
yields CARA coefficients between .0025 and .00864.
17 Barberis, Huang and Santos [4] propose and calibrate a model where investors have linear loss aversion preferences 
and derive gain-loss utility only over fluctuations in financial wealth. In our model, introducing consumption shocks 
would induce shifts in risk aversion. They assume that the amount of loss aversion decreases with a statistic that depends 
on past stock prices. In their calibration, this leads to price increases (decreases) after good (bad) dividends and high 
volatility.
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Fig. 4. The predicted HDRA price path when R = 1, λ0 = .005, a = .8, b = 1.2, H = 20, and L = 0. The price in the 
standard model is given by P̄ in Eq. (7) below.

these two forces after disappointment (Low realizations), because the agent is more risk averse 
even though he faces a shorter horizon. One can find parameter values where the upward trend 
dominates, and Low realizations yield a (quantitatively very small) price increase – while main-
taining the rankings in Theorem 3. Intuitively, this occurs when disappointment has a very weak 
effect on risk aversion (b ≈ 1) but elation has a strong effect, because then expected variability in 
future risk aversion (hence expected variability in utility) prior to a realization may overwhelm 
the small increase in risk aversion after a Low realization occurs.

The proof of Theorem 3 is in Appendix A. There, we show how the agent uses the HDRA 
model to rebalance his portfolio. We first solve the agent’s optimization problem under the recur-
sive application of one-stage preferences using an arbitrary history assignment. We later find that 
the only internally consistent assignment has the DM be elated each time the asset realization is 
High, and disappointed each time it is Low. The conditions from portfolio optimization pin down 
prices given a history assignment, since in equilibrium the agent must hold his share of the asset.

To better understand the implications of HDRA for prices, it is useful to first think about the 
standard setting with history-independent risk aversion. If risk aversion were fixed at λ0, then the 
price P̄ in the standard model (the dotted line in Fig. 4) would simply be constant and given by

P̄ = 1

R

(
1

1 + exp(λ0(H − L))
H + exp(λ0(H − L))

1 + exp(λ0(H − L))
L

)
, (7)

as can be seen from Eqs. (A.1)–(A.3) in Appendix A. In the HDRA model, however, the asset 
price depends on y1 and y2, not only through current risk aversion, but also through the impact on 
future certainty equivalents. Let h(y1, . . . , yt−1) be the agent’s history assignment after the real-
izations y1, . . . , yt−1. Thus the agent’s current risk aversion is given by λh(y1,...,yt−1). To describe 
how prices evolve with risk aversion, we introduce one additional piece of notation. Given a 
one-dimensional random variable x̃ and a function φ of that random variable, we let Γx̃(λ, φ(x̃))

denote the certainty equivalent of φ(x̃) given CARA preferences with coefficient λ. That is,

Γx̃

(
λ,φ(x̃)

) = −1

λ
lnEx̃

[
exp

(−λφ(x̃)
)]

.
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Table 1
The weighting function f (y1, . . . , yt−1) for prices.

Realizations Weight f (y1, . . . , yt−1)

0 λ0(H − L + Γỹ2
(λe, ỹ2 + Γỹ3

(λh(H,ỹ2), ỹ3)) − Γỹ2
(λd , ỹ2 + Γỹ3

(λh(L,ỹ2), ỹ3)))

y1 λh(y1)(H − L + Γỹ3
(λh(y1)e, ỹ3) − Γỹ3

(λh(y1)d , ỹ3))

y1, y2 λh(y1,y2)(H − L)

Then, our analysis in Appendix A shows that the asset price in period t takes the form

P(y1, . . . , yt−1) = 1

R

(
1

1 + exp(f (y1, . . . , yt−1))
H + exp(f (y1, . . . , yt−1))

1 + exp(f (y1, . . . , yt−1))
L

)
, (8)

where the weighting function f is given by Table 1.
As can be seen from Eq. (8), an increase in f (y1, . . . , yt−1) decreases the weight on H

and thus decreases the price of the asset. All the price comparisons in Theorem 3 follow from 
Eq. (8) and Table 1, with some comparisons easier to see than others. For instance, the rank-
ing P(H, H) > P(H, L) > P(L, H) > P(L, L) in Theorem 3(i) follows immediately from 
the reinforcement and primacy effects and the fact that H > L. The ranking P(H) > P(L)

in Theorem 3(ii) is proved in Lemma 6 in Appendix A. To see why some argument is re-
quired, notice that λe < λd is not sufficient to show that P(H) > P(L) unless we know some-
thing more about how the difference in the certainty equivalents of period-three consumption, 
Γỹ3(λh(y1)e, ỹ3) − Γỹ3(λh(y1)d , ỹ3), compares after y1 = H versus y1 = L. To see how the rank-
ings P(H, H) > P(H) and P(L, H) > P(L) in Theorem 3(iii) follow from Table 1 above, two 
observations are needed. First, the parameterization implies λee < λe, and λde < λd . Moreover, 
the term Γỹ3(λh(y1)e, ỹ3) − Γỹ3(λh(y1)d , ỹ3) is positive, as will be shown in our argument for in-
ternal consistency. An additional step of proof, given in Lemma 7 of Appendix A, is needed to 
show that P(H) > P . Similarly, Theorem 3(iv) follows from λdd > λd > λ0 combined with the 
fact that λh always multiplies a term strictly larger than H − L. Hence the prices P , P(L), and 
P(L, L) all fall below the price P̄ in the standard model with constant risk aversion λ0.

7. Concluding remarks

We propose a model of history-dependent risk attitude which has tight predictions for how 
disappointments and elations affect the attitude to future risks. The model permits a wide class of 
preferences and threshold rules, and is consistent with a body of evidence on risk-taking behavior. 
To study endogenous reference dependence under a minimal departure from recursive history 
independent preferences, HDRA posits the categorization of each sublottery as either elating 
or disappointing. The DM’s risk attitudes depend on the prior sequence of disappointments or 
elations, but not on the “intensity” of those experiences.

It is possible to generalize our model so that the more a DM is “surprised” by an outcome, the 
more his risk aversion shifts away from a baseline level. The equivalence between the generalized 
model and the reinforcement and primacy effects remains (Appendix A regarding this extension 
is available upon request). Extending the model requires introducing an additional component 
(a sensitivity function capturing dependence on probabilities) and parametrizing risk aversion in 
the one-stage utility functions using a continuous real variable. By contrast, allowing the size of 
risk aversion shifts to depend on the magnitude of outcomes would be a more substantial change. 
Finding the history assignment involves a fixed point problem which would then become quite 
difficult to solve. The testable implications of such a model depend on whether it is possible to 
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identify the extent to which a realization is disappointing or elating, as that designation depends 
on the extent to which other outcomes are considered elating or disappointing.

Finally, this paper considers a finite-horizon model of decision making. In an infinite-horizon 
setting, our methods extend to prove necessity of the reinforcement and primacy effects.18 How-
ever, our methods do not immediately extend to ensure the existence of an infinite-horizon 
internally consistent history assignment. One possible way to embed the finite-horizon HDRA 
preferences into an infinite-horizon economy is through the use of an overlapping generations 
model.
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Appendix A

Proof of Theorem 1. We first prove a sequence of four lemmas. The first two lemmas relate to 
necessity of the reinforcement and primacy effects. The last two lemmas relate to sufficiency.

Lemma 1. Suppose an internally consistent history assignment exists. Then, for any h and t , and 
any h′ with length t , we have Vhdt >RA Vhh′ >RA Vhet .

Proof. For simplicity and without loss of generality, we assume h = 0 because one can append 
the lotteries constructed below to a beginning lottery where each stage consists of getting a con-
tinuation lottery or a prize z ∈ {b, w}. In an abuse of notation, if we write a lottery or prize as 
an outcome when there are more stages left than present in the outcome, we mean that outcome 
is received for sure after the appropriate number of riskless stages (e.g., x instead of δ�

x ). We 
proceed by induction. For t = 1, this is the reinforcement effect. Suppose it is not the case that 
Vd >RA Ve . Since V is ranked, this means that Ve >RA Vd , or CEe(p) < CEd(p) for any non-
degenerate p. Pick any nondegenerate p and take x ∈ (CEe(p), CEd(p)). Then 〈α, p; 1 − α, x〉
has no internally consistent assignment. Now assume the claim holds for all s ≤ t − 1, and sup-
pose by contradiction that Vdt is not the most risk averse. Then there is h′ of length t such that 
Vh′ >RA Vdt . It must be that h′ = eh′′ where h′′ has length t − 1, otherwise there is a contradic-
tion to the inductive step using h = d . By the inductive step, Veh′′ is less risk averse than Vedt−1 , 
so Vedt−1 >RA Vdt . Thus for any nondegenerate p, CEedt−1(p) < CEdt (p). Iteratively define 
the lottery pt−1 by p2 = 〈α, p; 1 − α, b〉, and for each 3 ≤ s ≤ t − 1, ps = 〈α, ps−1; 1 − α, b〉. 
Finally, let pt = 〈β, pt−1; 1 − β, x〉, where x ∈ (CEedt−1(p), CEdt (p)). Note that the assign-
ment of p must be dt−1 within pt−1 and that for α close to 1, the value of pt−1 is either 
close to CEedt−1(p) (if pt−1 is an elation) or close to CEdt (p) (if pt−1 is a disappointment). 

18 Unlike the case of a finite horizon, where the DM’s swings in risk aversion need not dampen over time (see the dis-
cussion on statistically reversing risk attitudes in Section 5), the fluctuations would dampen in an infinite horizon setting 
with bounded risk aversion under the additional assumption in Fig. 2 (i.e., an elation reduces, while a disappointment 
increases, the DM’s risk aversion relative to his initial level). These conditions would thus rule out steady-state fluctua-
tions in risk aversion for a representative agent model. This is in contrast to some macroeconomic models of changing 
risk aversion, such as Gordon and St-Amour [12], which achieve fluctuations by assuming a Markov process over a finite 
number of risk-aversion states.
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But then for α close enough to 1, there is no consistent decomposition given the choice of x. 
Hence Vdt is most risk averse. Analogously, to show that Vet is least risk averse, assuming it 
is not true implies CEdh′′(p) > CEet (p), and a similar construction with w instead of b in pt , 
x ∈ (CEet (p), CEdh′′(p)) and α close to 1, yields a contradiction. �
Lemma 2. Suppose an internally consistent history assignment exists. Then, for any h and t , we 
have Vhdet >RA Vhedt .

Proof. We use the same simplifications as the previous lemma (without loss of generality), and 
proceed by induction. For t = 1, suppose by contradiction that Ved >RA Vde. Consider a non-
degenerate lottery p with w /∈ suppp (where supp denotes the support). For any β ∈ (0, 1), let 
p3 = 〈β, p2; 1 − β, x〉, where p2 = 〈ε(1 − α), w; εα, p; 1 − 2ε, q〉 and ε, α, q, x are chosen as 
follows. We want q to necessarily be elating (disappointing) if p2 is disappointing (elating). 
Consider the conditions

CEdd(q) > τd

(〈
α,CEde(p);1 − α,w

〉)
,

CEee(q) < min
{
τe

(〈
α,CEee(p);1 − α,w

〉)
,CEed(p)

}
.

Observe that τd(〈α, CEde(p); 1 − α, w〉) < τe(〈α, CEee(p); 1 − α, w〉) for each choice of α, β . 
This is because the lottery on the RHS first-order stochastically dominates that on the LHS, and, 
by Lemma 1, is evaluated using a (weakly) less risk-averse threshold function (τe(·) = τd(·) in the 
exogenous threshold case). By monotonicity of τh in α, choose α such that τe(〈α, CEee(p); 1 −
α, w〉) < CEed(p). Choose any nondegenerate q such that

suppq ⊆ (
τd

(〈
α,CEde(p);1 − α,w

〉)
, τe

(〈
α,CEee(p);1 − α,w

〉))
.

Using betweenness, this condition on q implies that it must be elating (disappointing) when p2 is 
disappointing (elating). For ε sufficiently small, the value of p2 is either close to CEed(q) (when 
p2 is elating) or close to CEde(q) (when p2 is disappointing). Pick x ∈ (CEed(q), CEde(q)) and 
notice that p3 has no internally consistent history assignment.

Assume the lemma is true for s ≤ t − 1. We prove it for s = t by first proving Vdet >RA

Vedt−1e. Suppose Vedt−1e >RA Vdet by contradiction. Define, for any p1, . . . , pt−1 ∈ L 1, and 
s ∈ {2, . . . , t},

as(α) := τdet−s

(〈
α,CEdet−s e(ps−1);1 − α,w

〉)
,

bs(α) := τedt−s

(〈
α,CEedt−sd (ps−1);1 − α,w

〉)
.

Pick y, ȳ such that w < y < ȳ < b and ensure α is sufficiently small that τedt−1(〈α, ȳ; 1 −
α, w〉) < y. Take a nondegenerate p1 ∈ L 1 where {ȳ, y} ⊆ suppp1 ⊆ [y, ȳ]. Let a(α) :=
a1(α). Now construct a sequence p2, . . . , pt−1 where suppps = suppp1 and as(α) = a

for each s, as follows. To construct p2, compare τdet−3(〈α, CEdet−3d(p1); 1 − α, w〉) with 
τdet−2(〈α, CEdet−2d(p1); 1 − α, w〉). If the latter (resp., former) is the smaller of the two, con-
struct p2 by a first-order reduction (reps., improvement) in p1 by mixing with δy (reps., δȳ ) 
using the appropriate weight, which exists because τh satisfies betweenness. Similarly construct 
the rest of the sequence. By the inductive step, as(α) < bs(α) for each s ∈ {2, . . . , t} and the 
sequence of ps above, as(α) = a(α). Therefore,

t⋂(
as(α), bs(α)

) =
(
a(α), min

s∈{2,...,t}bs(α)
)

�= ∅.
s=2
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Let q be a nondegenerate lottery with suppq ⊆ (a(α), mins∈{2,...,t} bs(α)). Construct the lottery 
q2 = 〈1 − ε, q; ε, w〉 and for each s ∈ {3, . . . , t + 1}, define

qs = 〈
ε(1 − α),w; εα,ps−2;1 − ε, qs−1〉.

Finally, define qt+2 = 〈γ, qt+1; 1 − γ, x〉 where x ∈ (CEedt−1e(q), CEdet (q)). Using Lemma 1
and the choice of q’s support in the interval above, each sublottery qs (for 2 ≤ s ≤ t ) is disap-
pointing (elating) if qt+1 is elating (disappointing). For ε sufficiently small, the value of qt+1 is 
either very close to CEedt−1e(q) when it is elating or CEdet (q) when it is disappointing. But by 
the choice of x, there is no internally consistent history assignment.

To complete the proof, assume by contradiction that Vedt >RA Vdet . Recall as, bs and the 
sequence p1, . . . , pt−1, constructed so as(α) = a(α) for every s ∈ {2, . . . , t}. Define, for any p0,

a1(α) := τdet−1

(〈
α,CEdet−1e(p0);1 − α,w

〉)
,

b1(α) := τedt−1

(〈
α,CEedt−1e(p0);1 − α,w

〉)
.

Notice that a1 < b1 by the claim we just proved and the inductive hypothesis applied to τh (that 
is, τdet−1 is weakly more risk averse than τedt−1 ). Construct p0 with the same support as p1 such 
that a1(α) = a. By the choice of α, notice that b1 < CEedt−1d(p0). Let q̃ ∈ L 1 be nondegenerate, 
with supp q̃ ⊆ (a(α), mins∈{1,...,t} bs(α)). For each s ∈ {2, . . . , t + 1}, define

q̃s = 〈
ε(1 − α),w; εα,ps−2;1 − ε, q̃s−1〉.

Finally, define q̃ t+2 = 〈γ, q̃ t+1; 1 − γ, x〉 where x ∈ (CEedt−1e(q̃), CEdet (q̃)). For ε sufficiently 
small, the certainty equivalent of q̃ t+1 is either very close to CEedt−1e(q̃) when it is elating or 
CEdet (q̃) when it is disappointing. But then q̃ t+1 has no internally consistent assignment. �
Lemma 3. For any V : L 1 → R, define, for any p ∈ L 1, e(p) := {x ∈ suppp | V (δx) > V (p)}
and d(p) := {x ∈ suppp | V (δx) < V (p)}. Take lotteries p = 〈α1, x1; α2, x2; . . . ; αm, xm〉 and 
p′ = 〈α1, x′

1; α2, x2; . . . ; αm, xm〉 with the same (αi)
m
i=1 and (xi)

m
i=2, but x1 �= x′

1. For V satisfy-
ing betweenness: (1) if x1 /∈ d(p) and x′

1 > x1 then x′
1 ∈ e(p′); and (2) if x1 /∈ e(p) and x′

1 < x1
then x′

1 ∈ d(p′).

Proof. We prove statement (1), since the proof of (2) is analogous. If x1 /∈ d(p) then δx1 
 p, 
where 
 represents V . Note that p can be written as the convex combination of the lotteries δx1

(with weight α1) and p−1 = 〈 α2
1−α1

, x2; . . . ; αm

1−α1
, xm〉 (with weight 1 − α1). By betweenness, 

δx1 
 p−1. Since x′
1 > x, monotonicity implies δx′

1
� δx1 
 p−1, and thus that δx′

1
� p−1. But 

then again by betweenness and the fact that α1 ∈ (0, 1), x ′
1 is strictly preferred to the convex 

combination of δx′
1

(with weight α1) and p−1 (with weight 1 − α1), which is simply p′. Hence 
x′

1 ∈ e(p′). �
Lemma 4. Consider T = 2, any (endogenous or exogenous) threshold rule, and suppose that 
Vd >RA Ve . Then any nondegenerate p2 ∈ L 2 has an internally consistent history assignment 
(using only strict elation and disappointment for nondegenerate lotteries in its support).

Proof. Consider p2 = 〈α1, p1; . . . ; αm, pm〉. Suppose for simplicity that all pi are nondegen-
erate (if pi = δx is degenerate, then CEe(pi) = CEd(pi), so the algorithm can be run on 
the nondegenerate sublotteries, with the degenerate ones labeled ex-post according to inter-
nal consistency). Without loss of generality, suppose that the indexing in p2 is such that 
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p1 ∈ arg maxi=1,...,m CEe(pi), pm ∈ arg mini=2,...,m CEd(pi), and CEe(p2) ≥ CEe(p3) ≥ · · · ≥
CEe(pm−1). Initialize the algorithm by a1(p1|p2) = e and a1(pj |p2) = d for all i > 1. 
Let τ 1 be the threshold value of p2 when it is folded back under a1; if the assignment of 
p2 under a1 is consistent given τ 1, the algorithm and proof are complete. If not, consider 
i = 2. If CEd(p2) ≥ τ 1, then set a2(p2|p2) = e and a2(pi |p2) = a1(pi |p2) for all i �= 2
(if CEd(p2) < τ 1, let a2(pi |p2) = a1(pi |p2) for all i). Let τ 2 be the resulting threshold 
value of p2 when it is folded back under a2. If the assignment of p2 under a2 is consistent 
given τ 2, the algorithm and proof are complete. If not, move to i = 3, and so on, so long as 
i ≤ m − 1. Since the threshold rule is from the betweenness class, Lemma 3 implies that if 
CEd(pi) ≥ τ i−1, then CEe(pi) > τi . Moreover, notice that if CEe(pi) > τi , then for any j < i, 
CEe(pj ) ≥ CEe(pi) > τ i , so previously switched assignments remain strict elations; also, be-
cause τ i ≥ τ i−1 for all i, previous disappointments remain disappointments. If the final step of 
the algorithm reaches i = m − 1, notice that CEd(pm) is the smallest disappointment certainty 
equivalent, hence the smallest in {CEam−1(pj )(pj )}j=1,...,m. The final assignment of p2 under 

am−1 is thus consistent given τm−1. �
We now complete the proof of Theorem 1. The reinforcement and primacy effects are nec-

essary by Lemmas 1 and 2. By Lemma 4 and the reinforcement effect, an internally consistent 
(strict) history assignment exists for any nondegenerate p ∈ L 2, using any initial Vh. By induc-
tion, suppose that for any (t − 1)-stage lottery an internally consistent history assignment exists, 
using any initial Vh. Now consider a sublottery pt = 〈α1, p

t−1
1 ; . . . ; αm, pt−1

m 〉. The algorithm in 
Lemma 4 for L 2 only requires CEe(p) > CEd(p) for any nondegenerate p ∈ L 1. The same 
algorithm constructs an internally consistent assignment within pt if for any pt−1 ∈ L t−1 such 
that pt−1 �= δt−1

x for some x, the recursive certainty equivalent of pt−1 is strictly higher under 
elation than disappointment. While there may be multiple consistent assignments within pt−1, 
the primacy and reinforcement effects ensure this strict comparison given any history assignment. 
Starting with Vhe, the lottery is folded back using higher certainty equivalents per sublottery, and 
using a (weakly) less risk averse threshold, as compared to starting with the more risk averse Vhd . 
In the case pt−1 = δt−1

x for some x, the assignment can be made ex-post according to what is 
consistent. �
Proof of Proposition 1. Rearrange Eq. (6) to

uh(u
−1
he ((1 − α)uhe(H) + αuhe(L))) − uh(L)

1 − α

>
uh(u

−1
he (αuhe(H) + (1 − α)uhe(L))) − uh(L)

α
.

We may write uh = f ◦uhe for some f ; hence u−1
he = u−1

h ◦f . Dividing by uhe(H) −uhe(L) > 0,

f (uhe(L) + (1 − α)(uhe(H) − uhe(L))) − f (uhe(L))

(1 − α)(uhe(H) − uhe(L))

>
f (uhe(L) + α(uhe(H) − uhe(L))) − f (uhe(L))

α(uhe(H) − uhe(L))
.

These are slopes of segments joining f ’s graph. As α > .5 ⇔ α(uhe(H) − uhe(L)) > (1 −
α)(uhe(H) − uhe(L)), the above holds for all α ∈ (.5, 1) and H > L if and only if f is con-
cave, or Vhe <RA Vh. �
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Threshold elicitation. We define 
τh
based on the DM’s preference 
 over L T as follows. 

For x ∈ X and q ∈ L 1, we say δx �τ q (resp., q �τ δx ) if there is x′ < x (resp., x′ > x) and a 
nondegenerate p ∈ L 1 such that �he(δx′) ∼ �he(p) (resp., �hd(δx′) ∼ �hd(p)) and mh(p, q) ∼
mh(δx′ , q). For any p, q ∈ L 1, we say p �τh

q if there is x ∈ X such that p �τh
δx �τh

q . We 
say p ∼τh

q if p �τh
q and q �τh

p

Proposition 2. τh(p) > τh(q) if and only if p �τh
q .

Proof. If τh(p) > τh(q), then take x′ > x > x′′ such that τh(p) > τh(δx′) = x′ > τh(δx) =
x > τh(δx′′) = x′′ > τh(q). By the assumptions on Vh, we can pick α′, α′′ ∈ (0, 1) such 
that r ′ = 〈α′, x′; 1 − α′, x′′〉 and r ′′ = 〈α′′, x′; 1 − α′′, x′′〉 satisfy CEhd(r ′) = CEhe(r

′′) = x. 
Thus, �hd(r ′) ∼ �hd(δx) and �he(r

′′) ∼ �he(δx). Either mh(r
′, p) ∼ mh(δx, p) or mh(r

′, p) ∼
mh(δCEhe(r

′), p) must hold, and the latter is impossible because x < x′ < τh(p) implies 
CEhe(r

′) < x′ < τh(p). Thus, by definition, p �τh
δx . An analogous argument proves δx �τh

δq , 
which means that p �τh

q .
Now, suppose p �τh

q . Hence there is x such that p �τh
δx �τh

q , and so there exists 
x′ > x such that p �τh

δx′ and x′′ < x such that δx′′ �τh
q . Since mh(r, p) ∼ mh(δx′ , p)

for some nondegenerate r such that CEhd(r) = x′, internal consistency implies τh(δx′) <
τh(〈.5, x′; .5p(x1), x1; . . . ; .5p(xn), xn〉), which by betweenness means that τh(δx′) < τh(p). 
Similarly, from δx′′ �τh

q , we have τh(δx′′) > τh(q). Since x′′ < x′, this concludes the proof. �
Proof of Theorem 2. The proof of necessity is analogous to that of Theorem 1. The proof of 
sufficiency is analogous as well, with two additions of note. First, since the reinforcement and 
strong primacy effects imply the certainty equivalent of each decision problem in a choice set 
increases when evaluated as an elation, the certainty equivalent of the choice set (the maximum 
of those values) also increases when viewed as an elation (relative to being viewed as a disap-
pointment). Second, if the certainty equivalent of a choice set is the same when viewed as an 
elation and as a disappointment, the best option in both choice sets must be degenerate. Then its 
history assignment may be made ex-post according to internal consistency. �
Proof of Theorem 3. The proof proceeds in steps.

Step 1: The agent’s optimization problem given a history assignment
We solve the agent’s problem by backward induction, denoting by h(y1, . . . , yt−1) the agent’s 

history assignment after the sequence of realizations (y1, . . . , yt−1) and later solving for the right 
assignment. After the realizations (y1, y2) but before learning y3, the agent solves the problem:

max
α(y1,y2)

Eỹ3

[
uh(y1,y2)

(
c(y1) + c(y2|y1) + α(y1, y2)ỹ3 + (

1 − α(y1, y2)
)
P(y1, y2)R

)]
,

where c(y1) = αy1 + (1 − α)PR denotes the realized consumption in period 1 and c(y2|y1) =
α(y1)yt + (1 − α(y1))P (y1)R denotes the realized consumption in period 2. Using the CARA 
form, the first-order condition at t = 3 given y1 and y2 simplifies to

P(y1, y2)R = 1

1 + exp(λh(y1,y2)α(y1, y2)(H − L))
H

+ exp(λh(y1,y2)α(y1, y2)(H − L))
L. (A.1)
1 + exp(λh(y1,y2)α(y1, y2)(H − L))
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Let α∗(y1, y2) be the optimal choice and let c∗(ỹ3|y1, y2) = α∗(y1, y2)ỹ3 + (1 − α∗(y1,

y2))P (y1, y2)R denote the optimal consumption plan for t = 3 given y1 and y2. Using the nota-
tion Γx̃(λ, φ(x̃)) from the text, and the CARA functional form, the recursive certainty equivalent 
RCE(y1, y2) of the choice problem in t = 3 after the realizations (y1, y2) is then:

RCE(y1, y2) = c(y1) + c(y2|y1) + Γỹ3

(
λh(y1,y2), c

∗(ỹ3|y1, y2)
)
,

which is the sum of period-1 consumption, period-2 consumption, and the certainty equivalent 
of period-3 optimal consumption given risk aversion λh(y1,y2). Proceeding backwards, after ob-
serving y1 but before learning y2, the agent solves the problem19

max
α(y1)

Eỹ2

[
uh(y1)

(
RCE(y1, ỹ2)

)]
,

where RCE(y1, y2), defined above, is a function of α(y1) through c(y2|y1). Using the CARA 
form, the first-order condition at t = 2 given y1 simplifies to

P(y1)R = 1

1 + exp(λh(y1)(RCE(y1,H) − RCE(y1,L)))
H

+ exp(λh(y1)(RCE(y1,H) − RCE(y1,L)))

1 + exp(λh(y1)(RCE(y1,H) − RCE(y1,L)))
L. (A.2)

Let α∗(y1) be the optimal choice and denote by c∗(ỹ2|y1) = α∗(y1)ỹ2 + (1 −α∗(y1))P (y1)R the 
agent’s optimal consumption plan for t = 2 given y1. The recursive certainty equivalent RCE(y1)

of the choice problem in t = 2 after the realization y1 is then:

RCE(y1) = c(y1) + Γỹ2

(
λh(y1), c

∗(ỹ2|y1) + Γỹ3

(
λh(y1,ỹ2), c

∗(ỹ3|y1, ỹ2)
))

.

The random variable c∗(ỹ2|y1) + Γỹ3(λh(y1,ỹ2), c
∗(ỹ3|y1, ỹ2)), which is a function of ỹ2, is the 

sum of period-2 optimal consumption and the certainty equivalent of period-3 optimal consump-
tion given risk aversion λh(y1,ỹ2). The term RCE(y1) is simply the certainty equivalent of this 
random variable given risk aversion λh(y1).

Should the agent choose to hold an initial share α of the risky asset, the value of the decision 
problem the agent faces at t = 1 is given by Eỹ1[u0(RCE(ỹ1))], where RCE(y1) depends on α
through c(y1). The agent then chooses the optimal initial share α∗:

max
α

Eỹ1

[
u0

(
RCE(ỹ1)

)]
.

Using the CARA form, and letting P be the initial price of the risky asset in period t = 1 prior 
to any realizations, the first-order condition at t = 1 simplifies to

PR = 1

1 + exp(λ0(RCE(H) − RCE(L)))
H

+ exp(λ0(RCE(H) − RCE(L)))

1 + exp(λ0(RCE(H) − RCE(L)))
L. (A.3)

19 Note that the t = 1, 2 problems fix future histories regardless of the choice of α and α(y1). Because period-3 prices 
will be such that the agent holds the asset at some positive coefficient of risk aversion given (y1, y2), we know that 
P(y1, y2) < 1

R
H+L

2 . In period 3, the agent is thus willing to hold some amount of the asset at any level of risk aversion. 
This means that in periods t = 1, 2, even if the agent were hypothetically not to hold the asset, he would still be exposed 
to risk at t = 1, 2 due to the influence on period-3 prices; hence the agent’s history is as specified.
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In view of Eqs. (A.1), (A.2), and (A.3) and the fact that exp(·) ≥ 0, we conclude that all the 
P(y1, . . . , yt−1)R’s are a convex combination of H and L, where the weights depend on the 
agent’s risk aversion after the realizations y1, . . . , yt−1. To determine those levels of risk aversion, 
we use the equilibrium condition that the representative agent must optimally hold his per-period 
endowment of one share of risky asset after any realization and given his history assignment. 
That is, we plug α∗(y1, y2) = α∗(y1) = α∗ = 1 into the formulas for RCE(y1, y2) and RCE(y1)

and look for an internally consistent history assignment in order to deduce the equilibrium prices.

Step 2: Verifying internal consistency of the history assignment
We now check that it is internally consistent for the agent to consider each High realiza-

tion elating and each Low realization disappointing (Lemma 5 below shows that this is also 
the unique internally consistent history assignment). We proceed recursively, fixing a realization 
y1 ∈ {L, H }. Being elated by y2 = H and disappointed by y2 = L is internally consistent if the 
resulting certainty equivalents for the t = 3 choice problems satisfy

RCE(y1,H) ≥ τh(y1)

(〈
1

2
,RCE(y1,H); 1

2
,RCE(y1,L)

〉)
> RCE(y1,L).

But this holds if and only if RCE(y1, H) > RCE(y1, L), which in turns holds if and only if

H + Γỹ3(λh(y1)e, ỹ3) > L + Γỹ3(λh(y1)d , ỹ3). (A.4)

As λ increases, risk aversion increases and the certainty equivalent μỹ3(λ, ỹ3) decreases. Hence 
the reinforcement effect, or λh(y1)e < λh(y1)d , implies that Eq. (A.4) must hold.

Proceeding backwards, observe that being elated by y1 = H and disappointed by y2 = L is 
internally consistent if, similarly to our previous calculation, the resulting recursive certainty 
equivalents for the t = 2 choice problems satisfy RCE(H) > RCE(L). In turn, this holds if and 
only if

H + Γỹ2

(
λe, ỹ2 + Γỹ3(λh(H,ỹ2), ỹ3)

)
> L + Γỹ2

(
λd, ỹ2 + Γỹ3(λh(L,ỹ2), ỹ3)

)
, (A.5)

where the history assignments above are h(H, H) = ee, h(H, L) = ed , h(L, H) = de, and 
h(L, L) = dd . Using this, it is easy to compare the certainty equivalent Γỹ3(λh(y1,ỹ2), ỹ3) on 
each side of Eq. (A.5). By the primacy and reinforcement effects, λee < λed < λde < λdd . Thus, 
given any realization of ỹ2, the random variable ỹ2 +Γỹ3(λh(y1,ỹ2), ỹ3) takes a larger value when 
y1 = H than when y1 = L. Moreover, due to the reinforcement effect, the random variable is also 
evaluated using a less risk-averse coefficient when y1 = H than when y1 = L. Hence Eq. (A.5)
must also hold, and our proposed history assignment is internally consistent. The next lemma 
shows that it is the unique internally consistent assignment.

Lemma 5. The history assignment is unique.

Proof. If it were internally consistent after y1 for H to be disappointing and L to be elating, 
that would mean L + Γỹ2(λh(y1)e, ỹ2) > H + Γỹ2(λh(y1)d , ỹ2), or H − L < Γỹ2(λh(y1)e, ỹ2) −
Γỹ2(λh(y1)d , ỹ2). Notice that Γỹ2(λh(y1)e, ỹ2) < 1

2H + 1
2L (the boundary case λh(y1)e = 0) and 

Γỹ2(λh(y1)d , ỹ2) > L (the case λh(y1)d = ∞). Thus, H −L < Γỹ2(λh(y1)e, ỹ2) −Γỹ2(λh(y1)d , ỹ2) <
1
2H − 1

2L, a contradiction.
Suppose by contradiction that in the first period, H is disappointing and L is elating. Internal 

consistency requires L +Γỹ2(λe, ỹ2 + Γỹ3(λh(L,ỹ2), ỹ3)) > H + Γỹ2(λd, ỹ2 + Γỹ3(λh(H,ỹ2), ỹ3)). 
But since this is also the certainty equivalent of a (more complex) random variable, we have 
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the bound Γỹ2(λd, ỹ2 + Γỹ3(λh(H,ỹ2), ỹ3)) > L + Γỹ3(λdd, ỹ3) > 2L. Similarly, we also have 
the bound Γỹ2(λe, ỹ2 + Γỹ3(λh(L,ỹ2), ỹ3)) < 1

2 (H + L + Γỹ3(λee, ỹ3) + Γỹ3(λed, ỹ3)) < H + L. 
But then we have a contradiction H − L < Γỹ2(λe, ỹ2 + Γỹ3(λh(L,ỹ2), ỹ3)) − Γỹ2(λd, ỹ2 +
Γỹ3(λh(H,ỹ2), ỹ3)) < H − L. �
Step 3: Implications for prices

Given Steps 1 and 2, the asset price in period t depends on the sequence of realizations 
y1, . . . , yt−1 and is given by Eq. (8) and Table 1. Given the discussion in the text of how the 
price comparisons follow, it remains to prove two lemmas.

Lemma 6. P(H) > P(L).

Proof. Using (A.2), we know P(H) > P(L) if and only if the following function is negative:

G(λ0,H,L) := λ0(H − L)
(
a2 − b2)

+ λ0
(
a2(Γỹ3

(
a3λ0, ỹ3

) − Γỹ3

(
a2bλ0, ỹ3

)) − b2(Γỹ3

(
b2aλ0, ỹ3

) − Γỹ3

(
b3λ0, ỹ3

)))
,

where ỹ3 is H or L with probability 1/2. By pulling out the term exp(−λL), note that 
Γỹ3(λ, ỹ3) = L − 1

λ
ln( 1

2 exp(−λ(H − L)) + 1
2 ). Hence

G(λ0,H,L) = λ0(H − L)
(
a2 − b2) + 1

b
ln

(
1

2
exp

(−λ0a
2b(H − L)

) + 1

2

)

− 1

a
ln

(
1

2
exp

(−λ0a
3(H − L)

) + 1

2

)

− 1

b
ln

(
1

2
exp

(−λ0b
3(H − L)

) + 1

2

)

+ 1

a
ln

(
1

2
exp

(−λ0ab2(H − L)
) + 1

2

)
.

We want to show that ∂G
∂H

(λ0, H, L) < 0, implying G(λ0, H, L) would be maximized at H = L, 
where it has value zero. The derivative of G with respect to H is given by

∂G

∂H
(λ0,H,L) = λ0

(
a2(1 + g

(
a3) − g

(
a2b

)) − b2(1 − g
(
b3) + g

(
ab2))),

using the definition g(x) = exp(−λ0x(H−L))
exp(−λ0x(H−L))+1 . Note that g′(x) = −λ0x(H−L) exp(λ0x(H−L))

x(1+exp(λ0x(H−L)))2 . More-

over, − 1
x

< g′(x) < 0 for all x ≥ 0. Negativity of g′(x) is clear. To see the left bound, simply 
observe that λ0x(H − L) exp(λ0x(H − L)) ≤ (exp(λ0x(H − L)))2. The mean value theorem 
says that for some c1 ∈ (a3, a2b) we have g(a3) − g(a2b) = a2(a − b)g′(c1). Similarly, for 
some c2 ∈ (ab2, b3) we have g(ab2) − g(b3) = b2(a − b)g′(c2). Then,

∂G

∂H
(λ0,H,L) = λ0

(
a2 − b2 + a4(a − b)g′(c1) − b4(a − b)g′(c2)

)

< λ0

(
a2 − b2 + a4(a − b)

(
− 1

ab2

))
,

which equals λ0(a − b)(a + b − a3

b2 ). This is negative as desired, since 0 < a < 1 < b. �
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Lemma 7. P(H) > P .

Proof. Since a < 1, it suffices to show that a2(Γỹ3(a
3λ0, ỹ3) − Γỹ3(a

2bλ0, ỹ3)) is smaller than 
Γỹ2(a

2λ0, ỹ2 + Γỹ3(λh(H,ỹ2), ỹ3)) − Γỹ2(b
2λ0, ỹ2 + Γỹ3(λh(L,ỹ2), ỹ3)). To show this,20 define 

Γ̂ (λ, m, n) ≡ Γx̃(λ, x̃) for the random variable x̃ which gives each of m and n with probabil-
ity one-half. Also, we define the notation μ = Γ̂ (a3λ0, H, L) and ν = Γ̂ (a2bλ0, H, L). Because 
Γ̂ (λ, m, n) is a certainty equivalent, it is increasing in both m, n and decreasing in λ. Because 
b2λ0 > ab, b2a > a3, and b3 > a2b, it suffices to show Γ̂ (a2λ0, H + μ, L + ν) − Γ̂ (abλ0, H +
μ, L + ν) > a2(μ − ν), which is stronger. Letting γ (λ, m, n) = −λ2 ∂Γ̂

∂λ
(λ, m, n), we note γ sat-

isfies three properties: (i) ∂γ
∂λ

> 0; (ii) if m > n, ∂γ
∂m

> 0; and (iii) γ (λ, m + c, n + c) = γ (λ, m, n)

for all c > 0. To see this, observe that

γ (λ,m,n) = −λm exp(−λm) − λn exp(−λn)

exp(−λm) + exp(−λn)
− ln

(
exp(−λm) + exp(−λn)

2

)
.

Property (iii) then follows from simple algebra. Property (i) follows from the fact that

∂γ

∂λ
(λ,m,n) = λ(m − n)2 exp(−λ(m + n))

(exp(−λm) + exp(−λn))2
> 0.

Using p = exp(−λm), q = exp(−λn) in γ , observe that the derivative of p ln p+q ln q
p+q

− ln(
p+q

2 )

with respect to p is q(ln p−ln q)

(p+q)2 < 0, since p < q . Property (ii) follows by dp
dm

< 0. To complete 
the proof,

Γ̂
(
a2λ0,H + μ,L + ν

) − Γ (abλ,H + μ,L + ν) =
abλ0∫

a2λ0

−∂Γ̂

∂λ
(x,H + μ,L + ν)dx

(by definition) =
abλ0∫

a2λ0

1

x2
γ (x,H + μ,L + ν)dx

(by property (iii) of γ ) =
abλ0∫

a2λ0

1

x2
γ (x,H + μ − ν,L)dx

(by μ > ν,a < 1, and properties (i)–(ii) of γ ) >

abλ0∫

a2λ0

1

x2
γ (ax,H,L)dx

(changing variables to y = ax) =
a2bλ0∫

a3λ0

1

(
y
a
)2

γ (y,H,L)
1

a
dy

20 We thank Xiaosheng Mu for providing the argument showing this inequality.
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(by definition) = a

a2bλ0∫

a3λ0

−∂Γ̂

∂λ
(y,H,L)dy

(since a < 1) > a2(Γ̂ (
a3λ0,H,L

) − Γ̂
(
a2bλ0,H,L

))
. �

This completes the proof of Theorem 3. �
References

[1] Alberto Alesina, Nicola Fuchs-Schündeln, Good bye Lenin (or not?): the effect of communism on people’s prefer-
ences, Amer. Econ. Rev. 97 (2007) 1507–1528.

[2] Norman Anderson, Primacy effects in personality impression formation using a generalized order effect paradigm, 
J. Pers. Soc. Psychol. 2 (1965) 1–9.

[3] Jane Baird, Robert Zelin II, The effects of information ordering on investor perceptions: an experiment utilizing 
presidents letters, J. Finan. Strateg. Decis. 13 (3) (2000) 71–80.

[4] Nicholas Barberis, Ming Huang, Tano Santos, Prospect theory and asset prices, Quart. J. Econ. 116 (2001) 1–53.
[5] Lisa Cameron, Manisha Shah, Do natural disasters shape risk attitudes? Mimeo, 2010.
[6] John Campbell, John Cochrane, By force of habit: a consumption-based explanation of aggregate stock market 

behavior, J. Polit. Economy (1999) 205–251.
[7] Andrew Caplin, John Leahy, Psychological expected utility theory and anticipatory feelings, Quart. J. Econ. 116 

(2001) 55–79.
[8] Soo Hong Chew, Axiomatic utility theories with the betweenness property, Ann. Oper. Res. 19 (1989) 273–298.
[9] Alain Cohn, Jan Engelmann, Ernst Fehr, Michel Maréchal, Evidence for countercyclical risk aversion: an experi-

ment with financial professionals, Amer. Econ. Rev. (2015), forthcoming.
[10] Alma Cohen, Liran Einav, Estimating risk preferences from deductible choice, Amer. Econ. Rev. 97 (3) (2007) 

745–788.
[11] Eddie Dekel, An axiomatic characterization of preferences under uncertainty: weakening the independence axiom, 

J. Econ. Theory 40 (1986) 304–318.
[12] Stephen Gordon, Pascal St-Amour, A preference regime model of bull and bear markets, Amer. Econ. Rev. 90 

(2000) 1019–1033.
[13] Luigi Guiso, Paola Sapienza, Luigi Zingales, Does local financial development matter?, Quart. J. Econ. 119 (2004) 

929–969.
[14] Luigi Guiso, Paola Sapienza, Luigi Zingales, Time varying risk aversion, NBER Working Paper, 2013.
[15] Faruk Gul, A theory of disappointment aversion, Econometrica 59 (1991) 667–686.
[16] Eran Hanany, Peter Klibanoff, Updating preferences with multiple priors, Theoretical Econ. 2 (2007) 261–298.
[17] Markku Kaustia, Samuli Knupfer, Do investors overweight personal experience? Evidence from IPO subscriptions, 

J. Finance 63 (6) (2008) 2679–2702.
[18] Brian Knutson, Stephanie Greer, Anticipatory affect: neural correlates and consequences for choice, Philos. Trans. 

R. Soc. B 363 (2008) 3771–3786.
[19] Botond Köszegi, Matthew Rabin, Reference-dependent consumption plans, Amer. Econ. Rev. 99 (2009) 909–936.
[20] David M. Kreps, Evan L. Porteus, Temporal resolution of uncertainty and dynamic choice theory, Econometrica 46 

(1978) 185–200.
[21] Camelia Kuhnen, Brian Knutson, The impact of anticipatory affect on beliefs, preferences, and financial risk taking, 

J. Finan. Quant. Anal. 46 (2011) 605–626.
[22] Young Han Lee, Ulrike Malmendier, The Bidder’s curse, Amer. Econ. Rev. 101 (2011) 749–787.
[23] Mark J. Machina, Dynamic consistency and non-expected utility models of choice under uncertainty, J. Econ. Lit. 

27 (1989) 1622–1668.
[24] Ulrike Malmendier, Stefan Nagel, Depression babies: do macroeconomic experiences affect risk-taking?, Quart. J. 

Econ. 126 (1) (2011) 373–416.
[25] Andreu Mas-Colell, Michael Whinston, Jerry Green, Microeconomic Theory, Oxford University Press, USA, 1995.
[26] Allen Parducci, Happiness, Pleasure, and Judgment: The Contextual Theory and Its Applications, Lawrence Erl-

baum Associates, New Jersey, 1995.
[27] Thierry Post, Martijn van den Assem, Guido Baltussen, Richard Thaler, Deal or no deal? Decision making under 

risk in a large-payoff game show, Amer. Econ. Rev. 98 (2008) 38–71.

http://refhub.elsevier.com/S0022-0531(15)00031-9/bib616C6573696E61s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib616C6573696E61s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib7072696D616379s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib7072696D616379s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib696E766573746F726C6574746572s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib696E766573746F726C6574746572s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib626873s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib63616D7062656C6Cs1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib63616D7062656C6Cs1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib6361706C696Es1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib6361706C696Es1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib63686577s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib66656872s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib66656872s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib45696E6176s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib45696E6176s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib64656B656Cs1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib64656B656Cs1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib62756C6C62656172s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib62756C6C62656172s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib7A696E67616C6573s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib7A696E67616C6573s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib7A696E67616C657332s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib47756Cs1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib6B6C6962s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib49504Fs1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib49504Fs1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib4B6E7574736F6E38s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib4B6E7574736F6E38s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib4B52706C616E73s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib6B70s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib6B70s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib4B6E7574736F6Es1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib4B6E7574736F6Es1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib4D616C6D656E646965722D61756374696F6Es1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib6D616368696E6132s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib6D616368696E6132s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib4E4D64657072657373696F6Es1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib4E4D64657072657373696F6Es1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib4D5747s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib50617264756363693935s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib50617264756363693935s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib6465616Cs1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib6465616Cs1


D. Dillenberger, K. Rozen / Journal of Economic Theory 157 (2015) 445–477 477
[28] Neal Roese, James Olson (Eds.), What Might Have Been: The Social Psychology of Counterfactual Thinking, 
Lawrence Erlbaum Associates, Mahwah, New Jersey, 1995.

[29] Joshua Ronen, Effects of some probability displays on choices, Organ. Behav. Hum. Perform. 9 (1973) 1–15.
[30] Kareen Rozen, Foundations of intrinsic habit formation, Econometrica 78 (2010) 1341–1373.
[31] A. Saha, C. Shumway, H. Talpaz, Joint estimation of risk preference structure and technology using expo-power 

utility, Amer. J. Agr. Econ. 76 (1994) 173–184.
[32] Norbert Schwarz, Fritz Strack, Reports of subjective well-being: judgmental processes and their methodological 

implications, in: D. Kahneman, E. Diener, N. Schwarz (Eds.), Well-Being: The Foundations of Hedonic Psychology, 
Russell Sage Foundation, New York, 1998.

[33] Uzi Segal, Two-stage lotteries without the reduction axiom, Econometrica 58 (1990) 349–377.
[34] Robert Shiller, Do stock prices move too much to be justified by subsequent changes in dividends?, Amer. Econ. 

Rev. 71 (3) (1981) 421–436.
[35] Cass Sunstein, Probability neglect: emotions, worst cases, and law, Yale Law J. 112 (2002) 61–107.
[36] Richard Smith, Ed Diener, Douglas Wedell, Intrapersonal and social comparison determinants of happiness: a range-

frequency analysis, J. Pers. Soc. Psychol. 56 (1989) 317–325.
[37] Richard Thaler, Eric Johnson, Gambling with the house money and trying to break even: the effects of prior out-

comes on risky choice, Manag. Sci. 36 (1990) 643–660.
[38] Mahmud Yesuf, Randall Bluffstone, Poverty, risk aversion, and path dependence in low-income countries: experi-

mental evidence from Ethiopia, Amer. J. Agr. Econ. 91 (4) (2009) 1022–1037.

http://refhub.elsevier.com/S0022-0531(15)00031-9/bib636F756E7465726661637475616C626F6F6Bs1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib636F756E7465726661637475616C626F6F6Bs1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib526F6E656Es1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib526F7A656Es1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib53616861s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib53616861s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib536368776172747A53747261636Bs1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib536368776172747A53747261636Bs1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib536368776172747A53747261636Bs1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib736567616Cs1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib5368696C6C6572s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib5368696C6C6572s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib53756E737465696Es1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib736D6974682D6469656E65722D776564656C6C3839s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib736D6974682D6469656E65722D776564656C6C3839s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib544As1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib544As1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib657468696F706961s1
http://refhub.elsevier.com/S0022-0531(15)00031-9/bib657468696F706961s1

	History-dependent risk attitude
	1 Introduction
	1.1 Evidence for the reinforcement and primacy effects
	1.2 Relations to the literature

	2 Framework
	2.1 Multi-stage lotteries: deﬁnitions and notations
	2.2 History assignments
	2.3 Recursive evaluation of multi-stage lotteries
	2.4 A model of history-dependent risk attitude

	3 Characterization of HDRA
	3.1 The reinforcement and primacy effects

	4 Eliciting the components of the HDRA model
	5 Other properties of HDRA
	6 Extension to intermediate actions, and a dynamic asset pricing problem
	6.1 HDRA with intermediate actions
	6.2 Application to a three-period asset pricing problem

	7 Concluding remarks
	Acknowledgments
	References


