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Abstract

We study the attitude of decision makers to skewed noise. For a binary lottery that yields the better 
outcome with probability p, we identify noise around p with a compound lottery that induces a distribution 
over the exact value of the probability and has an average value p. We propose and characterize a new 
notion of skewed distributions, and use a recursive non-expected utility to provide conditions under which 
rejection of symmetric noise implies rejection of negatively skewed noise, yet does not preclude acceptance 
of some positively skewed noise, in agreement with recent experimental evidence. In the context of decision 
making under uncertainty, our model permits the co-existence of aversion to symmetric ambiguity (as in 
Ellsberg’s paradox) and ambiguity seeking for low likelihood “good” events.
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1. Introduction

Standard models of decision making under risk assume that individuals obey the reduction 
of compound lotteries axiom, according to which a decision maker is indifferent between any 
multi-stage lottery and the simple lottery that induces the same probability distribution over 
final outcomes. Experimental and empirical evidence suggest, however, that this axiom is often 
violated.1 Individuals may have preferences over the timing of resolution of uncertainty, or they 
may distinguish between the source of risk in each stage and thus perceive risk as a multi-stage 
prospect, or they may care about the number and order of lotteries in which they participate.

The effect of such violations of the reduction axiom on behavior depends on the compound 
lotteries under consideration. Halevy (2007) and Miao and Zhong (2012), for example, consider 
preferences over two-stage lotteries and demonstrate that individuals are averse to the introduc-
tion of symmetric noise, that is, symmetric mean-preserving spread into the first-stage lottery. 
On the other hand, Boiney (1993) found a significant effect of skewed noise, where majority of 
the subjects in his experiments opted for positively skewed noise, but rejected negatively skewed 
noise. Specifically, his subjects had to choose one of three prospects, in all of which the overall 
probability of success (which results in a prize x) is p, and with the remaining probability x < x

is received. In Option A the probability p was given. Prospect B (resp., C) represents a nega-
tively (positively) skewed distribution around p in which it is very likely that the true probability 
slightly exceeds (falls below) p but it is also possible, albeit unlikely, that the true probability 
is much lower (higher). Boiney’s main finding is that most subjects prefer C to A and A to B . 
Moreover, these preferences are robust to different values of x > x and p.

In Boiney’s experiment, the underlying probability of success p was the same in all options. In 
recent experiments, Abdellaoui et al. (2013) and Abdellaoui et al. (2015) found strong evidence 
that aversion to compound risk (i.e., noise) is an increasing function of p. In particular, their 
results are consistent with a greater aversion to negatively skewed noise around high probabilities 
than to positively skewed noise around small probabilities.

In this paper we propose a model that can accommodate the behavioral patterns discussed 
above. For a binary lottery (x, p; x, 1 − p) with x > x, we identify noise around p with a 
two-stage lottery that induces a distribution over the exact value of the probability and has an 
average value p. We introduce and characterize a new notion of skewness, and use a version of 
Segal’s (1990) recursive non-expected utility model to outline conditions under which a decision 
maker who always rejects symmetric noise will also reject any negatively skewed noise but may 
seek some positively skewed noise.

We apply our model to the recently documented phenomenon of some ambiguity seeking in 
the context of decision making under uncertainty. The recursive model was first suggested by 
Segal (1987) as a way to analyze attitudes towards ambiguity. Under this interpretation, am-
biguity is identified as a two-stage lottery, where the first stage captures the decision maker’s 
subjective uncertainty about the true probability distribution over the states of the world, and 
the second stage determines the probability of each outcome, conditional on the probability dis-
tribution that has been realized. Our model permits the co-existence of aversion to symmetric 
ambiguity (as in Ellsberg’s (1961) famous paradox) and ambiguity seeking in situations where 
the decision maker anticipates a bad outcome, yet believes that there is a small chance that things 
are not as bad as they seem. Simple intuition, as well as some experimental evidence, suggests 

1 See, among others, Kahneman and Tversky (1979), Bernasconi and Loomes (1992), Conlisk (1989), and Harrison et 
al. (2012).
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that in this case the decision maker might not want to know the exact values of the probabilities, 
perhaps in order to “keep hope alive” despite the unfavorable odds.

The fact that the recursive evaluation of two-stage lotteries in Segal’s model is done using 
non-expected utility functionals is key to our analysis. It is easy to see that if the decision maker 
uses the same expected utility functional in each stage he will be indifferent to noise. In addition, 
a version of the model in which the two stages are evaluated using different expected utility func-
tionals (Kreps and Porteus, 1978, Klibanoff et al., 2005) cannot accommodate the co-existence 
of rejecting all symmetric noise while still accepting some positively skewed noise, that is, if 
the decision maker rejects symmetric noise, then he rejects all noise. Another related model is 
Dillenberger (2010), who analyzed a special form of the recursive model in which the two stages 
are evaluated by the same non-expected utility functional, and studied a property called prefer-
ences for one-shot resolution of uncertainty. In the language of our paper, this property means 
that the decision maker rejects all noise.2

This paper confines attention to the analysis of attitudes to noise related to the probability 
of success p in a binary prospect. In reality the decision maker may face lotteries with many 
outcomes and the probabilities of receiving each of them may be uncertain. We deal only with 
binary lotteries since when there are many outcomes their probabilities depend on each other and 
therefore skewed noise over the probability of one event may affect noises over other probabilities 
in too many ways. This complication is avoided when there are only two outcomes — whatever 
the decision maker believes about the probability of receiving x completely determines his beliefs 
regarding the probability of receiving x. Note that while the underlying lottery is binary, the noise 
itself (that is, the distribution over the value of p) may have many possible values or may even 
be continuous.

The rest of the paper is organized as follows: Section 2 describes the analytical framework 
and introduces notations and definitions that will be used in our main analysis. Section 3 defines 
and characterizes skewed distributions. Section 4 studies attitudes towards skewed noises and 
states our main behavioral results. Section 5 studies ambiguity aversion and seeking. All proofs 
are relegated to an appendix.

2. The model

Fix two monetary outcomes x > x. The underlying lottery we consider is the binary prospect (
x,p;x,1 − p

)
, which pays x with probability p and x otherwise. We identify this lottery 

with the number p ∈ [0,1] and analyze noise around p as a two-stage lottery, denoted by 
〈p1, q1; ...;pn, qn〉, that yields with probability qi the lottery 

(
x,pi;x,1 − pi

)
, i = 1, 2, ..., n, 

and satisfies 
∑

i piqi = p. Let

L2 = {〈p1, q1; ...;pn, qn〉 : pi, qi ∈ [0,1] , i = 1,2, ..., n, and
∑

i qi = 1
}
.

Let � be a complete and transitive preference relation over L2, which is represented by U :
L2 → �. Throughout the paper we confine our attention to preferences that admit the following 
representation:

U (〈p1, q1; ...;pn, qn〉) = V (c(p1), q1; ...; c(pn), qn) (1)

2 The class of functionals that, when applied recursively, display preferences for one-shot resolution of uncertainty is 
characterized in Cerreia Vioglio et al. (2015).
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where V is a functional over simple (finite support) one-stage lotteries over the interval 
[
x, x

]
and c is a certainty equivalent function (not necessarily the one obtained from V ).3 According to 
this model, the decision maker evaluates a two-stage lottery 〈p1, q1; ...;pn, qn〉 recursively. He 
first replaces each of the second-stage lotteries with its certainty equivalent, c(pi). This results 
in a one-stage lottery over the certainty equivalents, (c(p1), q1; ...; c(pn), qn), which he then 
evaluates using the functional V .4 We assume throughout that V is monotonic with respect to 
first-order stochastic dominance and continuous with respect to the weak topology.

There are several reasons that lead us to study this special case of U . First, it explicitly captures 
the sequentiality aspect of two-stage lotteries, by distinguishing between the evaluations made in 
each stage (V and c in the first and second stage, respectively). Second, it allows us to state our 
results using familiar and easy to interpret conditions that are imposed on the functional V , which 
do not necessarily carry over to a general U . Finally, the model is a special case of the recursive 
non-expected utility model of Segal (1990). This facilitates the comparison of our results with 
other models.

We identify simple lotteries with their cumulative distribution functions, denoted by capital 
letters (F, G, and H ). Denote by F the set of all cumulative distribution functions of simple 
lotteries over 

[
x, x

]
. We assume that V satisfies the assumptions below (specific conditions on c

will be discussed only in the relevant section). These assumptions are common in the literature 
on decision making under risk.

Definition 1. V is quasi concave if for any F, G ∈F and λ ∈ [0,1],

V (F) � V (G) =⇒ V (λF + (1 − λ)G) � V (G).

Quasi concavity implies preference for randomization among equally valued prospects. To-
gether with risk aversion (V (F) � V (G) whenever G is a mean preserving spread of F ), quasi 
concavity implies preference for portfolio diversification (Dekel, 1989), which is an important 
feature when modeling markets of risky assets.5

Following Machina (1982), we assume that V is smooth, in the sense that it is Fréchet differ-
entiable, defined as follows.

Definition 2. V : F → � is Fréchet differentiable if for every F ∈ F there exists a local utility 
function uF : [x, x

] → �, such that for every G ∈F ,

V (G) − V (F) =
∫

uF (x)d[G(x) − F(x)] + o(‖G − F‖)

where ‖ ·‖ is the L1-norm.

3 The function c : [0, 1] → � is a certainty equivalent function if for some W over one-stage lotteries, W (c(p),1) =
W

(
x,p;x,1 − p

)
.

4 The functional V thus represents some underlying complete and transitive binary relation over simple lotteries, which 
is used in the first stage to evaluate lotteries over the certainty equivalents of the second stage. To avoid confusion with 
the main preferences over L2, we will impose all the assumptions in the text directly on V .

5 The evidence regarding the validity of quasi concavity is supportive yet inconclusive: while the experimental literature 
that documents violations of linear indifference curves (see, for example, Coombs and Huang (1976)) found deviations 
in both directions, that is, either preference for or aversion to randomization, both Sopher and Narramore (2000) and 
Dwenger et al. (2013) found explicit evidence in support of quasi concavity.



348 D. Dillenberger, U. Segal / Journal of Economic Theory 169 (2017) 344–364
Fig. 1. Definition 4, η1(F, τ ) � η2(F, τ ).

To accommodate various types of systematic violations of the vNM independence axiom, 
Machina (1982) suggested the following assumption on the behavior of the local utility function, 
which he labeled Hypothesis II: If G first-order stochastically dominates F , then at every point x, 
the Arrow–Pratt measure of absolute risk aversion of the local utility uG is higher than that 
of uF .6 For the purpose of our analysis, we only need a weaker notion of Hypothesis II, which 
requires the property to hold just for degenerate lotteries (i.e., Dirac measures), denoted by δy . 
Formally,

Definition 3. The Fréchet differentiable functional V satisfies Weak Hypothesis II if for every x
and for every y > z,

−
u′′

δy
(x)

u′
δy

(x)
� −u′′

δz
(x)

u′
δz

(x)
.

3. Skewed distributions

Our aim is to analyze attitudes to noise that is not symmetric around its mean. For that we need 
first to formally define the notion of a skewed distribution, which is the natural generalization of 
the concept of noise considered in experiments. For a distribution F on [a, b] ⊂ � with expected 
value μ and for τ � 0, let η1(F, τ) = ∫ μ−τ

a
F (x)dx be the area below F between a and μ − τ

and η2(F, τ) = ∫ b

μ+τ
[1 − F(x)]dx be the area above F between μ + τ and b (see Fig. 1). Note 

that η1(F, 0) = η2(F, 0). If F is symmetric around μ, then for every τ these two values are the 
same. The following definition is based on the case where the left area is systematically larger 
than the right area.

Definition 4. The lottery X with the distribution F on [a, b] and expected value μ is negatively 
skewed if for every τ > 0, η1(F, τ) � η2(F, τ).

6 Graphically, Hypothesis II implies that for given x > y > z, indifference curves in the probability triangle 
{(z, p; y, 1 − p − q; x, q): (p, q) ∈ �2+ and p + q � 1} are “fanning out”, that is, they become steeper as the proba-
bility of the good outcome x rises and the probability of the bad outcome z falls.
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Similarly, positive skewness requires that η2(F, τ) � η1(F, τ) for every τ > 0.
The following characterization of skewed distributions will play a key role in the proof of our 

main behavioral results, which we state in Section 4.

Definition 5. Let μ be the expected value of a lottery X. Lottery Y is obtained from X by a 
negative symmetric split if Y is the same as X, except for that one of the outcomes x � μ of X
is split into x + α and x − α, each with half of the probability of x.

Theorem 1. If the lottery Y = (y1, p1; . . . ; yn, pn) with expected value μ is negatively skewed, 
then there is a sequence of lotteries Xi , each with expected value μ, such that X1 = (μ, 1), 
Xi → Y , and Xi+1 is obtained from Xi by a negative symmetric split. Conversely, any such 
sequence converges to a negatively skewed distribution.

The result for positively skewed distributions is analogues. The main difficulty in proving the 
first part of this theorem is the fact that whereas outcomes to the left of μ can be manipulated, 
any split that lands an outcome to the right of μ must hit its exact place according to Y , as we 
will not be able to touch it later again. To illustrate the constructive proof for a finite sequence, 
let X = (3, 1) and Y = (0, 14 ; 4, 34 ), and obtain X = (3, 1) → (2, 12 ; 4, 12 ) → (0, 14 ; 4, 14 + 1

2 ) = Y . 
For a sequence that does not terminate, let X = (5, 1) and Y = (0, 16 ; 6, 56 ). Here we obtain

X = (5,1) → (4, 1
2 ;6, 1

2 ) → (2, 1
4 ;6, 3

4 ) → (0, 1
8 ;4, 1

8 ;6, 3
4 ) → . . .

(0, 1
2

∑n
1

1
4i ;4, 1

2·4n ;6, 1
2 + ∑n

1
1
4i ) → . . . (0, 1

6 ;6, 5
6 ) = Y .

Before proceeding, we note that our definition of skewness is stronger than a possible al-
ternative according to which the distribution F with expected value μ is negatively skewed if ∫ x

x
(y − μ)3dF(y) � 0. In fact, we show in Proposition 1 in the appendix that if F is negatively 

skewed as in Definition 4, then for all odd n, 
∫ x

x
(y − μ)ndF(y) � 0.7

Another related concept is the notion of increasing downside risk, which is characterized in 
Menezes et al. (1980). Distribution F has more downside risk than distribution G if one can 
move from G to F in a sequence that combines a mean-preserving spread of an outcome below 
the mean followed by a mean-preserving contraction of an outcome above the mean, in a way 
that the overall result is a transfer of risk from the right to the left of a distribution, keeping 
the variance intact. Our characterization involves a sequence of only negative symmetric splits, 
starting in the degenerate lottery that puts all the mass on the mean. In particular, our splits are 
not mean-variance-preserving and occur only in one side of the mean.

4. Skewed noise

Recall our notation for two-stage lotteries of the form 〈p1, q1; . . . ; pm, qm〉, where pi stands 
for the simple lottery (x, pi; x, 1 − pi) and x > x. The following definitions of rejection of 
symmetric and skewed noise are natural.

7 The converse is false. Let F be the distribution of the lottery (−10, 1
10 ; −2, 12 ; 0, 4

35 ; 7, 27 ) with μ = 0. 
E 

[
(X − μ)3

]
= −6 < 0 and E 

[
(X − μ)2n+1

]
is decreasing with n, hence all odd moments of F are negative. Nev-

ertheless, the area below the distribution from −10 to −5 is 1
2 , but the area above the distribution from 5 to 10 is 4

7 > 1
2 , 

which means that F is not negatively skewed according to Definition 4.
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Definition 6. The relation � rejects symmetric noise if for all p, α, and ε,

〈p,1〉 � 〈p − α, ε;p,1 − 2ε;p + α, ε〉.

Definition 7. The relation � rejects negatively (resp., positively) skewed noise if for all p ∈
(0, 1), 〈p, 1〉 � 〈p1, q1; ...; pn, qn〉 whenever 

∑
i piqi = p and the distribution of (p1, q1; ...;

pn, qn) is negatively (resp., positively) skewed.

As before, we assume that � over L2 can be represented as in eq. (1) by U(〈p1, q1; ...;
pn, qn〉) = V ((c(p1), q1; ...; c(pn), qn)), where V is a functional over simple lotteries and c
is a certainty equivalent function, with c(p) being the certainty equivalent of (x, p; x, 1 − p). 
Denote the local utility of V around F by uF . The two results of this section establish a connec-
tion between the rejection of symmetric and skewed noises. In particular, they show how together 
with the assumptions of Section 2, rejection of symmetric noise implies rejection of negatively 
skewed noise (Theorem 2), yet such a rejection is consistent with acceptance of some positively 
skewed noise (Theorem 3).

Theorem 2. Suppose (i) V is quasi concave, Fréchet differentiable, and satisfies Weak Hypothe-
sis II, and (ii) the preference relation � rejects symmetric noise. Then � rejects negatively skewed 
noise.

Theorem 2 provides sufficient conditions for rejection of negatively skewed noise. The condi-
tions on V are familiar and, as we have pointed out in the introduction and will further discuss in 
Sections 4.1 and 5, rejection of symmetric noise is empirically supported. The intuition behind 
the proof of the theorem is the following. Let δc(p) be the degenerate two stage lottery that with 
probability one yields c(p). We show that in order to have a rejection of (a small) symmetric 
noise around p, the composition of uδc(p)

with the function c must be concave.

But what happens when the symmetric noise is added not to p, but to a probability p′ < p? If 
the probability that the true probability is p′ is (very) small, then we can still evaluate the noise 
using uδc(p)

. Now uδc(p′) is assumed to be concave enough at c(p′) to reject such a noise. Since 

p′ < p, Weak Hypothesis II implies that uδc(p)
is even more risk averse (or concave) at c(p′)

than uδc(p′) , hence the noise is bound to be rejected. Since, by Theorem 1, any negatively skewed 
noise Q around p can be obtained as the limit of negative symmetric splits, repeatedly applying 
Weak Hypothesis II implies that each such split will be rejected when evaluated using uδc(p)

and 

the result follows.8

The argument above depends on the assumption that uδc(p)
is more concave at c(p′) than 

uδc(p′) . But this relation reverses when p′ > p. By Weak Hypothesis II, it may now happen 

that the noise around p′ > p, evaluated using uδc(p)
, will be accepted as this local utility is less 

concave than uδc(p′) at c(p′). This is formalized in the following result, which provides sufficient 
conditions for acceptance of some positively skewed noise. It is this theorem that distinguishes 
our model from other known models that cannot accommodate rejections of all symmetric noise 
with acceptance of some positively skewed noise.

8 More precisely, by Fréchet differentiability, each such split will also be rejected by �. Quasi concavity then implies 
that 〈p, 1〉 � Q.
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Fig. 2. Inequality (2).

Theorem 3. Under the assumptions of Theorem 2, if for p′ > p

uδc(p)
(c(p′)) − uδc(p)

(c(p))

p′ − p
> u′

δc(p)
(c(p))c′(p) (2)

then for a sufficiently small ε > 0 and for p(ε) such that (1 − ε)p(ε) + εp′ = p, � accepts 
positively skewed noise of the form 〈p(ε), 1 − ε; p′, ε〉 around p. However, if for all p′ > p

eq. (2) is not satisfied, then all such noises will be rejected.

Graphically, inequality (2) requires the slope of the chord connecting the points p and p′ on 
the graph of the composition of uδc(p)

(the local utility of V around δc(p)) with c (the certainty 
equivalent function of the lottery (x, p; x, 1 − p)) to be steeper than the slope of this function 
at p (see Fig. 2). Note that if this composition is globally concave, then inequality (2) is never 
satisfied. The condition thus requires that this composition is at least somewhere convex, and as 
we assume rejection of symmetric noise around δc(p), we know that this convexity must occur 
for p′ sufficiently larger than p.

The shape of the local utility in Fig. 2 resembles the vNM utility suggested by Friedman 
and Savage (1948) to explain why decision makers may buy insurance, yet participate in lot-
teries with high potential prizes but with negative expected return. Our analysis shares some of 
this intuition. The lottery is not over monetary payoffs, but over the probability of success in a 
lottery over the possible outcomes x and x. But here too, decision makers holding the lottery 
(x, p; x, 1 − p) find the small likelihood of winning a high outcome (that is, a high probabil-
ity p′ of winning x) attractive, and agree that the alternative probability of winning goes down 
slightly below the original probability p so that on average the winning probability of winning x
remains intact. However, they are not willing to move in the opposite direction. They will reject 
a small likelihood to win x with a low probability p′, even though they are compensated such 
that the alternative probability goes up slightly above the original one, keeping the same average 
probability.
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Continuity of � and the reverse implication of Theorem 3 imply the following conclusion, 
establishing the link between properties of the local utility at p and acceptance of positively 
skewed noise.

Conclusion 1. If for all p′ > p inequality (2) is not satisfied, then for a sufficiently small ε > 0
and for all p1, . . . , pn > p, the decision maker will reject all positively skewed noise of the form 
〈p(ε), 1 − ε; p1, ε1; . . . ; pn, εn〉 where 

∑
εi = ε and (1 − ε)p(ε) + ∑

εipi = p.

It is left to verify that the conditions of Theorem 3 are not empty. Let V
(
cp1

, q1; . . . ; cpn
, qn

)
=

E[w(cp)] × E[cp], where w(x) = ζx−xζ

ζ−1 and c(p) = βp + (1 − β)pκ . For ζ = 1.024, β = 0.15, 
κ = 1.1, p = 0.0002, and q = 0.7, we show in Appendix B that all the assumptions of Theorem 3
are satisfied. We also show that for every p > 0, if q is sufficiently small, then with this V , the 
decision maker will prefer the noise 〈p, q; 0, 1 −q〉 over 〈pq; 1〉. To guarantee this property, it is 
enough to establish that the first non-zero derivative of V (c(pq), 1) − V (c(p), q; 0, 1 − q) with 
respect to q at q = 0 is negative.

4.1. Remarks

By Theorem 2, our model can rank any two lotteries over probabilities with the same mean 
that relate to one another by a sequence of negative symmetric splits (as in Definition 5), as long 
as the split in step n is done to an outcome below the certainty equivalent of the lottery obtained 
in step n − 1, so that Weak Hypothesis II can be invoked. A sufficient condition for this — which 
implies that our model ranks the two lotteries directly, and without any further assumptions — 
is that it is always the worst outcome (that is, the lowest second-stage probability of the good 
prize) in the support that we split in half. For example, the lottery 〈 1

2, 4
10 ; 9

10 , 6
10 〉 is preferred to 

〈 4
10 , 2

10 ; 6
10 , 2

10 ; 9
10 , 6

10 〉, which, in turn, is preferred to 〈 3
10 , 1

10 ; 12 , 1
10 ; 6

10 , 2
10 ; 9

10 , 6
10 〉, etc.

Theorems 2 and 3 do not restrict the location of the skewed distribution, but it is reasonable 
to find negatively skewed distributions over the value of the probability p when p is high, and 
positively skewed distributions when p is low. The theorems are thus consistent with the empir-
ical observation we mention below that decision makers reject negatively skewed distributions 
concerning high probability of a good event, but seek such distributions when the probability of 
the good event is low. Note that the two theorems do not rule out possible rejection of negatively 
skewed noise around low values of p or acceptance of positively skewed noise around high val-
ues of p. To the best of our knowledge there is no evidence for such behavior, but our main aim 
is to suggest a model that is flexible enough not to tie together attitudes towards the two different 
noises rather than to impose additional restrictions.

Our results can explain some of the findings in Abdellaoui et al. (2015). They consider an 
underlying binary lottery that yields e 50 with probability r and 0 otherwise. For different values 
of r and q , subjects report the number m such that 〈m, 1〉 ∼ 〈r, q; 0, 1 −q〉. For many values of r , 

subjects preferred the positively skewed noise 
〈
r, 1

3 ;0, 2
3

〉
over its reduced version, 

〈
r
3 ,1

〉
(that is, 

m > r
3 ). On the other hand, the results were less systematic for q = 2

3 , although most subjects 

reject the negatively skewed noise 
〈

1
2 , 2

3 ;0, 1
3

〉
.

There are other experimental findings that, while not directly covered by our main result, pro-
vide a supportive evidence to the idea that positively and negatively skewed noises are differently 
evaluated, with a clear indication that most subjects are more averse to the former, as well as for 
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the pattern of more compound-risk aversion for high probabilities than for low probabilities, and 
even for compound risk seeking for low probabilities (see, for example, Abdellaoui et al., 2013, 
Kahn and Sarin, 1988, Viscusi and Chesson, 1999, and Masatlioglu et al., 2015).

5. Ambiguity aversion and seeking

Ambiguity aversion is one of the most investigated phenomenon in decision theory. Ambi-
guity refers to situations where a decision maker does not know the exact probabilities of some 
events. The claim that individuals systematically prefer betting on events with known rather than 
with unknown probabilities (ambiguity aversion) was first suggested in a series of thought ex-
periments by Ellsberg (1961). Importantly, as we discuss below, the unknown probabilities in 
Ellsberg’s examples relate to events that are completely symmetric.

While Ellsberg-type behavior seems intuitive and is widely documented, there are situations 
where decision makers actually prefer not to know the probabilities with much preciseness. Sup-
pose a person suspects that there is a high probability that he will face a bad outcome (severe 
loss of money, serious illness, criminal conviction, etc.). Yet he believes that there is some (small) 
chance things are not as bad as they seem (Federal regulations will prevent the bank from taking 
possession of his home, it is really nothing, they won’t be able to prove it). These beliefs might 
emerge, for example, from consulting with a number of experts (such as accountants, doctors, 
lawyers) who disagree in their opinions; the vast majority of which are negative but some believe 
the risk is much less likely. Does the decision maker really want to know the exact probabilities 
of these events? The main distinction between the sort of ambiguity in Ellsberg’s experiment and 
the ambiguity in the last examples is that the latter is asymmetric and, in particular, positively 
skewed. On the other hand, if the decision maker expects a good outcome with high probability, 
he would probably prefer to know this probability for sure, rather than knowing that there is ac-
tually a small chance that things are not that good. In other words, negatively skewed ambiguity 
may well be undesired.

There is indeed a growing experimental literature that challenges the assumption of global am-
biguity aversion (see a recent survey by Trautmann and van de Kuilen, 2014). A typical finding 
is that individuals are ambiguity averse for moderate and high likelihood events, but ambiguity 
seeking for unlikely events. This idea was suggested by Ellsberg himself (see Becker and Brown-
son, 1964, fnt. 4) and was reported in Kocher et al. (2015) and Dimmock et al. (2013). Camerer 
and Weber (1992) pointed out that such pattern may be due to perceived skewness, which distorts 
the mean of the ambiguous distributions of high and low probabilities.

The recursive model was suggested by Segal (1987) as a way to capture ambiguity attitudes. 
Under this interpretation, ambiguity is identified as two-stage lotteries. The first stage captures 
the decision maker’s uncertainty about the true probability distribution over the states of the 
world (the true composition of the urn in Ellsberg’s example), and the second stage determines 
the probability of each outcome, conditional on the probability distribution that has been realized. 
Holding the prior probability distribution over states fixed, an ambiguity averse decision maker 
prefers the objective (unambiguous) simple lottery to any (ambiguous) compound one, while an 
ambiguity seeker displays the opposite preferences.

Our model is consistent with the co-existence of aversion to both symmetric ambiguity (as in 
Ellsberg’s paradox) and ambiguity seeking for low-probability events. To illustrate, consider (i) 
a risky urn containing n > 2 balls numbered 1 to n, and (ii) an ambiguous urn also containing n
balls, each marked by a number from the set {1, 2, . . . , n}, but in an unknown composition. Bet-
ting that a specific number will not be drawn from the risky urn corresponds to the simple lottery 
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with probability of success n−1
n

. While we don’t know what distribution over the composition of 
the ambiguous urn does the decision maker hold, it is reasonable to invoke symmetry arguments. 
Let (m1, . . . , mn) be a possible distribution of the numbers in the ambiguous urn, indicating that 
number i appears mi times (of course, 

∑
i mi = n). Symmetry arguments require that the deci-

sion maker believes that this composition is as likely as any one of its permutations. Unless the 
decision maker believes that there are at most two balls marked with the same number, the same 
bet over the ambiguous urn corresponds to a compound lottery that induces a negatively skewed 
distribution around n−1

n
.9 The hypotheses of Theorem 2 imply that the bet from the risky urn is 

preferred.
Consider now the same two urns, but the bet is on a specific number drawn from each of 

them. The new bet from the risky urn corresponds to the simple lottery with probability of suc-
cess 1

n
, while the new bet over the ambiguous urn corresponds to compound lottery that induces 

a positively skewed distribution around 1
n

. Our results permit preferences for the ambiguous bet, 
especially where n is large.

Lastly, note that if n = 2 then the two bets above are identical and correspond to Ellsberg’s 
famous two-urn paradox. In this case our model indeed predicts ambiguity aversion, that is, 
preferences for the bet from the risky urn.

Appendix A. Proofs

Proof of Theorem 1. Lemma 1 proves part 1 of the theorem for binary lotteries Y . After a 
preparatory claim (Lemma 2), the general case of this part is proved in Lemma 3 for lotteries Y
with FY (μ) � 1

2 , and for all lotteries in Lemma 4. That this can be done with bounded shifts is 
proved in Lemma 5. Part 2 of the theorem is proved in Lemma 6.

Lemma 1. Let Y = (x, r; z, 1 − r) with mean E[Y ] = μ, x < z, and r � 1
2 . Then there is a 

sequence of lotteries Xi with expected value μ such that X1 = (μ, 1), Xi → Y , and Xi+1 is 
obtained from Xi by a negative symmetric split. Moreover, if ri and r ′

i are the probabilities of x
and z in Xi , then ri ↑ r and r ′

i ↑ 1 − r .

Proof. The main idea of the proof is to have at each step at most five outcomes: x, μ, z, and up 
to two outcomes between x and μ. In a typical move either μ or one of the outcomes between x
and μ, denote it w, is split “as far as possible,” which means:

1. If w ∈ (x, x+μ
2 ], then split its probability between x and w + (w − x) = 2w − x. Observe 

that x < 2w − x � μ.
2. If w ∈ [ x+z

2 , μ], then split its probability between z and w − (z−w) = 2w − z. Observe that 
x � 2w − z < μ.

3. If w ∈ (
x+μ

2 , x+z
2 ), then split its probability between μ and w − (μ −w) = 2w −μ. Observe 

that x < 2w − μ < μ.

9 To see this, let F be the distribution of the decision maker’s beliefs. Note that F is non-decreasing and constant on 
[ i
n , i+1

n ) for i � n − 1. Since η1(F, 0) = η2(F, 0) (see Section 4) and Pr( n−k
n ) > 0 for some k with n � k > 2, it must 

be that 1 − Pr(1) − Pr( n−1 ) < Pr(1), from which the result readily follows.
n
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If r = 1
2 , that is, if μ = x+z

2 then the sequence terminates after the first split. We will therefore 
assume that r < 1

2 . Observe that the this procedures never split the probabilities of x and z hence 
these probabilities form increasing sequences. We identify and analyze three cases: a. For every i

the support of Xi is {x, yi, z}. b. There is k > 1 such that the support of Xk is {x, μ, z}. c. Case b

does not happen, but there is k > 1 such that the support of Xk is {x, wk, μ, z}. We also show 
that if for all i > 1, μ is not in the support of Xi , then case a prevails.

a. The simplest case is when for every i the support of Xi has three outcomes at most, x <

yi < z. By construction, the probability of yi is 1
2i , hence Xi puts 1 − 1

2i probability on x and z. 
In the limit these converge to a lottery over x and z only, and since for every i, E[Xi] = μ, this 
limit must be Y . For the former, let X = (3, 1) and Y = (0, 14 ; 4, 34 ) and obtain

X = (3,1) → (2, 1
2 ;4, 1

2 ) → (0, 1
4 ;4, 1

4 + 1
2 ) = Y .

For a sequence that does not terminate, let X = (5, 1) and Y = (0, 16 ; 6, 56 ). Here we obtain

X = (5,1) → (4, 1
2 ;6, 1

2 ) → (2, 1
4 ;6, 3

4 ) → (0, 1
8 ;4, 1

8 ;6, 3
4 ) → . . .

(0, 1
2

∑n
1

1
4i ;4, 1

2·4n ;6, 1
2 + ∑n

1
1
4i ) → . . . (0, 1

6 ;6, 5
6 ) = Y .

b. Suppose now that even though at a certain step the obtained lottery has more than three 
outcomes, it is nevertheless the case that after k splits we reach a lottery of the form Xk =
(x, pk; μ, qk; z, 1 −pk − qk). For example, let X = (17, 1) and Y = (24, 17

24 ; 0, 7
24 ). The first five 

splits are

X = (17,1) → (10, 1
2 ;24, 1

2 ) → (3, 1
4 ;17, 1

4 ;24, 1
2 ) →

(0, 1
8 ;6, 1

8 ;17, 1
4 ;24, 1

2 ) → (0, 3
16 ;12, 1

16 ;17, 1
4 ;24, 1

2 ) → (3)

(0, 7
32 ;17, 1

4 ;24, 17
32 )

By construction k � 2 and qk � 1
4 . Repeating these k steps j times will yield the lottery Xjk =

(x, pjk; μ, qjk; z, 1 − pjk − qjk) → Y as qjk → 0 and as the expected value of all lotteries is μ, 
pjk ↑ r and 1 − pjk − qjk ↑ 1 − r .

c. If at each stage Xi puts no probability on μ then we are in case a. The reason is that as 
splits of type 3 do not happen, in each stage the probability of the outcome between x and z is 
split between a new such outcome and either x or z, and the number of different outcomes is 
still no more than three. Suppose therefore that at each stage Xi puts positive probability on at 
least one outcome w strictly between x and μ (although these outcomes w may change from one 
lottery Xi to another) and at some stage Xi puts (again) positive probability on μ. Let k � 2 be 
the first split that puts positive probability on μ. We consider two cases.

c1. k = 2: In the first step, the probability of μ is divided between z and 2μ − z and in the 
second step the probability of 2μ − z is split and half of it is shifted back to μ (see for example 
the second split in eq. (3) above). In other words, the first split is of type 2 while the second is of 
type 3. By the description of the latter,

x + μ

2
< 2μ − z <

x + z

2
⇐⇒ 2

3
<

μ − x

z − x
<

3

4
(4)

The other one quarter of the original probability of μ is shifted from 2μ − z to

2μ − z − (μ − [2μ − z]) = 3μ − 2z � x + μ ⇐⇒ 4(z − x) � 5(μ − x)

2
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Which is satisfied by eq. (4). Therefore, in the next step a split of type 1 will be used, and one 
eighth of the original probability of μ will be shifted away from 2μ − z to x. In other words, in 
three steps 5

8 of the original probability of μ is shifted to x and z, one quarter of it is back at μ, 
and one eighth of it is now on an outcome w1 < μ. �

c2. k � 3: For example, X = (29, 1) and Y = (48, 29
48 ; 0, 19

48 ). Then

X = (29,1) → (10, 1
2 ;48, 1

2 ) → (0, 1
4 ;20, 1

4 ;48, 1
2 ) →

(0, 1
4 ;11, 1

8 ;29, 1
8 ;48, 1

2 ) → . . . (5)

After k splits 1
2k of the original probability of μ is shifted back to μ and 1

2k is shifted to another 
outcome w1 < μ. The rest of the original probability is split (not necessarily equally) between x
and z. �

Let � = max{k, 3}. We now construct inductively a sequence of cycles, where the length of 
cycle j is � + j − 1. Such a cycle will end with the probability distributed over x < wj < μ < z. 
Denote the probability of μ by pj and that of wj by qj . We show that pj + qj → 0. The 
probabilities of x and z are such that the expected value is kept at μ, and as pj + qj → 0, it 
will follow that the probabilities of x and z go up to r and 1 − r , respectively. In the example of 
eq. (5), � = 3, the length of the first cycle (where j = 1) is 3, and w1 = 11.

Suppose that we’ve finished the first j cycles. Cycle j + 1 starts with splitting the pj prob-
ability of μ to {x, w1, μ, z} as in the first cycle. One of the outcomes along this sequence may 
be wj , but we will continue to split only the “new” probability of this outcome (and will not 
yet touch the probability qj of wj ). At the end of this part of the new cycle, the probability is 
distributed over x, w1, wj , μ, and z. At least half of pj , the earlier probability of μ, is shifted to 
{x, z}, and the probabilities of both these outcomes did not decrease. Continuing the example of 
eq. (5), the first part of the second cycle (where j = 1) is

(0, 1
4 ;11, 1

8 ;29, 1
8 ;48, 1

2 ) → (0, 1
4 ;10, 1

16 ;11, 1
8 ;48, 9

16 ) →
(0, 9

32 ;11, 1
8 ;20, 1

32 ;48, 9
16 ) → (0, 9

32 ;11, 9
64 ;29, 1

64 ;48, 9
16 )

The second part of cycle j + 1 begins with j − 1 splits starting with w1. At the end of 
these steps, the probability is spread over x, wj, μ, and z. Split the probability of wj between 
an element of {x, μ, z} and wj+1 which is not in this set to get pj+1 and qj+1. In the above 
example, as j = 1 there is only one split at this stage to

(0, 45
128 ;22, 9

128 ;29, 1
64 ;48, 9

16 )

And w2 = 22. The first part of the third cycle (j = 2) leads to

(0, 91
256 ;11, 1

512 ;22, 9
128 ;29, 1

512 ;48, 73
128 )

The second part of this cycle has two splits. Of w1 = 11 into 0 and 22, and then of w2 = 22 into 
μ = 29 and w3 = 15.

→ (0, 365
1024 ;22, 73

1024 ;29, 1
512 ;48, 73

128 ) → (0, 365
1024 ;15, 73

2048 ;29, 77
2048 ;48, 73

128 )

We now show that for every j ,

pj+2 + qj+2 � 3
4 (pj + qj ) (6)

We first observe that for every j , pj+1 + qj+1 < pj + qj . This is due to the fact that the rest 
of the probability is spread over x and z, the probability of z must increase (because of the initial 
split in the probability of μ), and the probabilities of x and z cannot go down.
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When moving from (pj , qj ) to (pj+2, qj+2), half of pj is switched to z. Later on, half of qj

is switched either to x or z, or to μ, in which case half of it (that is, one quarter of qj ) will be 
switched to z on the move from pj+1 to pj+2. This proves inequality (6), hence the lemma. �
Lemma 2. Let X = (x1, p1; . . . ; xn, pn) and Y = (y1, q1; . . . ; ym, qm) where x1 � . . . � xn and 
y1 � . . . � ym be two lotteries such that X dominates Y by second-order stochastic dominance. 
Then there is a sequence of lotteries Xi such that X1 = X, Xi → Y , Xi+1 is obtained from Xi

by a symmetric (not necessarily always negative or always positive) split of one of the outcomes 
of Xi , all the outcomes of Xi are between y1 and ym, and the probabilities the lotteries Xi put 
on y1 and ym go up to q1 and qm, respectively.

Proof. From Rothschild and Stiglitz (1970, p. 236) we know that we can present Y as 
(y11, q11; . . . ;ynn, qnn) such that 

∑
j qkj = pk and 

∑
j qkj ykj /pk = xk , k = 1, . . . , n.

Let Z = (z1, r1; . . . ; z�, r�) such that z1 < . . . < z� and E[Z] = z. Let Z0 = (z, 1). One can 
move from Z0 to Z in at most � steps, where at each step some of the probability of z is split into 
two outcomes of Z without affecting the expected value of the lottery, in the following way. If

r1z1 + r�z�

r1 + r�
� z (7)

then move r1 probability to z1 and r ′
� � r� to z� such that r1z1 + r ′

�z� = z(r1 + r ′
�). However, if 

the sign of the inequality in (7) is reversed, then move r� probability to z� and r ′
1 � r1 probability 

to z� such that r ′
1z1 + r�z� = z(r ′

1 + r�). Either way the move shifted all the required probability 
from z to one of the outcomes of Z without changing the expected value of the lottery.

Consequently, one can move from X to Y in �2 steps, where at each step some probability 
of an outcomes of X is split between two outcomes of Y . By Lemma 1, each such split can be 
obtained as the limit of symmetric splits (recall that we do not require in the current lemma that 
the symmetric splits will be negative or positive splits). That all the outcomes of the obtained 
lotteries are between y1 and ym, and that the probabilities these put on y1 and ym go up to q1
and qm follow by Lemma 1. �
Lemma 3. Let Y = (y1, p1; . . . ; yn, pn), y1 � . . . � yn, with expected value μ be negatively 
skewed such that FY (μ) � 1

2 . Then there is a sequence of lotteries Xi with expected value μ
such that X1 = (μ, 1), Xi → Y , and Xi+1 is obtained from Xi by a negative symmetric split. 
Moreover, if ri and r ′

i are the probabilities of y1 and yn in Xi , then ri ↑ p1 and r ′
i ↑ pn.

Proof. Suppose wlg that yj∗ = μ (of course, it may be that pj∗ = 0). Since FY (yj∗) � 1
2 , 

it follows that t := ∑n
j=j∗+1 pj � 1

2 . As Y is negatively skewed, yn − μ � μ − y1, hence 
2μ − yn � y1. Let m = n − j∗ be the number of outcomes of Y that are strictly above the 
expected value μ. Move from X1 to Xm = (2μ − yn, pn; . . . ; 2μ − yj∗+1, pj∗+1; yj∗, 1 − 2t;
yj∗+1, pj∗+1; . . . ; yn, pn) by repeatedly splitting probabilities away from μ. All these splits are 
symmetric, hence negative symmetric splits.

Next we show that Y is a mean preserving spread of Xm. Obviously, E[Xm] = E[Y ] = μ. 
Integrating by parts, we have for x � μ

yn − μ =
yn∫

FY (z)dz =
x∫
FY (z)dz +

yn∫
FY (z)dz
y1 y1 x
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yn − μ =
yn∫

y1

FXm(z)dz =
x∫

y1

FXm(z)dz +
yn∫

x

FXm(z)dz

Since FY and FXm coincide for z � μ, we have, for x � μ, 
∫ x

y1
FXm(z)dz = ∫ x

y1
FY (z)dz and in 

particular, 
∫ x

y1
FXm(z)dz �

∫ x

y1
FY (z)dz.

For x < μ it follows by the assumption that Y is negatively skewed and by the construction 
of Xm as a symmetric lottery around μ that

x∫
y1

FXm(z)dz =
2μ−y1∫

2μ−x

[1 − FXm(z)]dz =
2μ−y1∫

2μ−x

[1 − FY (z)]dz �
x∫

y1

FY (z)dz

Since to the right of μ, Xm and Y coincide, we can view the left side of Y as a mean pre-
serving spread of the left side of Xm. By Lemma 2 the left side of Y is the limit of symmetric 
mean preserving spreads of the left side of Xm. Moreover, all these splits take place between y1
and μ and are therefore negative symmetric splits. By Lemma 2 it also follows that ri ↑ p1 and 
r ′
i ↑ pn. �

We now show that Lemma 3 holds without the restriction FY (μ) � 1
2 .

Lemma 4. Let Y with expected value μ be negatively skewed. Then there is a sequence of lotter-
ies Xi with expected value μ such that X1 = (μ, 1), Xi → Y , and Xi+1 is obtained from Xi by 
a negative symmetric split.

Proof. The first step in the proof of Lemma 3 was to create a symmetric distribution around μ
such that its upper tail (above μ) agrees with FY . Obviously this can be done only if FY (μ) � 1

2 , 
which is no longer assumed. Instead, we apply the proof of Lemma 3 successively to mixtures of 
FY and δμ, the distribution that yields μ with probability one.

Suppose that FY (μ) = λ < 1
2 . Let γ = 1/2(1 − λ) and define Z to be the lottery obtained 

from the distribution γFY + (1 − γ )δμ. Observe that

FZ(μ) = γFY (μ) + (1 − γ )δμ(μ) = λ

2(1 − λ)
+ 1 − 2λ

2(1 − λ)
= 1

2

It follows that the lotteries Z and (μ, 1) satisfy the conditions of Lemma 3, and therefore there 
is sequence of lotteries Xi with expected value μ such that X1 = (μ, 1), Xi → Z, and Xi+1 is 
obtained from Xi by a negative symmetric split. This is done in two stages. First we create a 
symmetric distribution around μ that agrees with Z above μ (denote the number of splits needed 
in this stage by t ), and then we manipulate the part of the distribution which is weakly to the 
left of μ by taking successive symmetric splits (which are all negative symmetric splits when 
related to μ) to get nearer and nearer to the second-order stochastically dominated left side of 
Z as in Lemma 2. Observe that the highest outcome of this part of the distribution Z is μ, and 
its probability is 1 − γ . By Lemma 2, for every k � 1 there is �k such that after �k splits of this 
second phase the probability of μ will be at least rk = (1 − γ )(1 − 1

k+1 ) and ‖Xt+�k
− Z‖ < 1

k
.

The first cycle will end after t + �1 splits with the distribution FZ1 . Observe that the probabil-
ities of the outcomes to the right of μ in Z1 are those of the lottery Y multiplied by γ . The first 
part of second cycle will be the same as the first cycle, applied to the rk conditional probability 
of μ. At the end of this part we’ll get the lottery Z′ which is the same as Z1, conditional on the 
1
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probability of μ. We now continue the second cycle by splitting the combination of Z1 and Z′
1

for the total of t + �1 + �2 steps. As we continue to add such cycles inductively we get closer and 
closer to Y , hence the lemma. �

Next we show that part 1 of the theorem can be achieved by using bounded spreads. The first 
steps in the proof of Lemma 3 involve shifting probabilities from μ to all the outcomes of Y to 
the right of μ, and these outcomes are not more than maxyi − μ away from μ. All other shifts 
are symmetric shifts involving only outcomes to the left of μ. The next lemma shows that such 
shifts can be achieved as the limit of symmetric bounded shifts.

Lemma 5. Let Z = (z − α, 12 ; z + α, 12 ) and let ε > 0. Then there is a sequence of lotteries Zi

such that Z0 = (z, 1), Zi → Z, and Zi+1 is obtained from Zi by a symmetric (not necessarily 
negative or positive) split of size smaller than ε.

Proof. The claim is interesting only when ε < α. Fix n such that ε > α
n

. We show that the 
lemma can be proved by choosing the size of the splits to be α

n
. Consider the 2n + 1 points 

zk = z + k
n

, k = −n, . . . , n and construct the sequence {Zi} where Zi = (z − α, pi,−n; z − n−1
n

α,

pi,−n+1; . . . ; z + α, pi,n) as follows.
THE INDEX i IS ODD: Let zj be the highest outcome in {z, . . . , z + n−1

n
α} with the highest 

probability in Zi−1. Formally, j satisfies:

• 0 � j � n − 1
• pi−1,j � pi−1,k for all k
• If for some j ′ ∈ {0, . . . , n − 1}, pi−1,j ′ � pi−1,k for all k, then j � j ′.

Split the probability of zj between zj − α
n

and zj + α
n

(i.e., between zj−1 and zj+1). That is, 
pi,j−1 = pi−1,j−1 + 1

2pi−1,j , pi,j+1 = pi−1,j+1 + 1
2pi−1,j , pi,j = 0, and for all k �= j − 1, j,

j + 1, pi,k = pi−1,k .
THE INDEX i IS EVEN: In this step we create the mirror split of the one done in the previous 

step. Formally, if j of the previous stage is zero, do nothing. Otherwise, split the probability 
of z−j between z−j − α

n
and z−j + α

n
. That is, pi,−j−1 = pi−1,−j−1 + 1

2pi−1,−j , pi,−j+1 =
pi−1,−j+1 + 1

2pi−1,−j , pi,−j = 0, and for all k �= −j − 1, −j, −j + 1, pi,k = pi−1,k .
After each pair of these steps, the probability distribution is symmetric around z. Also, the 

sequences {pi,−n}i and {pi,n} are non-decreasing. Being bounded by 1
2 , they converge to a 

limit L. Our aim is to show that L = 1
2 . Suppose not. Then at each step the highest probability 

of {pi−1,−n+1, . . . , pi−1,n−1 must be at least � := (1 − 2L)/(2n − 1) > 0. The variance of Zi is 
bounded from above by the variance of (μ −α, 12; μ +α, 12 ), which is α2. Splitting p probability 
from z to z − α

n
and z + α

n
will increase the variance by p(α

n
)2. Likewise, for k �= −n, 0, n, split-

ting p probability from z+ kα
n

to z + (k+1)α
n

and z − (k−1)α
n

will increase the variance by p
2 (α

n
)2. 

Therefore, for positive even i we have

σ 2(Zi) − σ 2(Zi−2) � 1 − 2L

2n − 1

(α

n

)2

If L < 1 , then after enough steps the variance of Zi will exceed α2, a contradiction. �
2
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That we can prove the theorem for all lotteries Y follows by the fact that a countable set 
of countable sequences is countable. To finish the proof of the theorem, we need the following 
result:

Lemma 6. Consider the sequence {Xi} of lotteries where X1 = (μ, 1) and Xi+1 is obtained 
from Xi by a negative symmetric split. Then the distributions Fi of Xi converge (in the L1

topology) to a negatively skewed distribution with expected value μ.

Proof. That such sequences converge follows from the fact that a symmetric split will increase 
the variance of the distribution, but as all distributions are over the bounded [x, x] segment of �, 
the variances of the distributions increase to a limit. Replacing (x, p) with (x − α, p2 ; x + α, p2 )

increases the variance of the distribution by

p

2
(x − α − μ)2 + p

2
(x + α − μ)2 − p(x − μ)2 = pα2

and therefore the distance between two successive distributions in the sequences in bounded by 
x − x times the change in the variance. The sum of the changes in the variances is bounded, 
as is therefore the sum of distances between successive distributions, hence Cauchy criterion is 
satisfied and the sequence converges.

Next we prove that the limit is a negatively skewed distribution with expected value μ. 
Let F be the distribution of X = (x1, p1; . . . ; xn, pn) with expected value μ be negatively 
skewed. Suppose wlg that x1 � μ, and break it symmetrically to obtain X′ = (x1 − α, p1

2 ;
x1 + α, p1

2 ; x2, p2; . . . ; xn, pn) with the distribution F ′. Note that E[X′] = μ. Consider the fol-
lowing two cases.

Case 1: x1 + α � μ. Then for all τ , η2(F, τ) = η2(F
′, τ). For τ such that μ − τ � x1 − α

or such that x1 + α � μ − τ , η1(F
′, τ) = η1(F, τ) � η2(F, τ) = η2(F

′, τ). For τ such that 
x1 − α < μ − τ � x1, η1(F

′, τ) = η1(F, τ) + [(μ − τ) − (x1 − α)]p1
2 > η1(F, τ) � η2(F, τ) =

η2(F, τ). Finally, for τ such that x1 < μ −τ < x1 +α ( � μ), η1(F
′, τ) = η1(F, τ) +[(x1 +α) −

(μ − τ)]p1
2 > η1(F, τ) � η2(F, τ) = η2(F

′, τ).
Case 2: x1 + α > μ. Then for all τ such that μ + τ � x1 + α, η2(F, τ) = η2(F

′, τ). For τ
such that μ −τ � x1 −α, η1(F

′, τ) = η1(F, τ) � η2(F, τ) = η2(F
′, τ). For τ such that x1 −α <

μ −τ � x1, η1(F
′, τ) = η1(F, τ) +[(μ −τ) −(x1 −α)]p1

2 � η2(F, τ) +[(μ −τ) −(x1 −α)]p1
2 �

η2(F, τ) + max{0, (x1 + α) − (μ + τ)}p1
2 = η2(F

′, τ). Finally, for τ such that μ − τ > x1, 
η1(F

′, τ) = η1(F, τ) + [(x1 + α) − (μ − τ)]p1
2 � η2(F, τ) + max{0, (x1 + α) − (μ + τ)}p1

2 =
η2(F

′, τ).
If Xn → Y , all have the same expected value and for all n, Xn is negatively skewed, then so 

is Y . �
Remark 1. The two parts of Theorem 1 do not create a simple if and only if statement, because 
the support of the limit distribution F in part 2 need not be finite. On the other hand, part 1 of 
the theorem does not hold for continuous distributions. By the definition of negative symmetric 
splits, if the probability of x > μ in Xi is p, then for all j > i, the probability of x in Xj must 
be at least p. It thus follows that the distribution F cannot be continuous above μ. However, it 
can be shown that if F with expected value μ is negatively skewed, then there is a sequence of 
finite negatively skewed distributions Fn, each with expected value μ, such that Fn → F . This 
enables us to use Theorem 1 even for continuous distributions.
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Proof of Theorem 2. The two-stage lottery 〈r − α, ε; r, 1 − 2ε; r + α, ε〉 translates in the re-
cursive model into the lottery (c(r − α), ε; c(r), 1 − 2ε; c(r + α), ε). Since the decision maker 
always rejects symmetric noise, it follows that the local utility uδc(r)

satisfies

uδc(r)
(c(r)) � 1

2uδc(r)
(c(r − α)) + 1

2uδc(r)
(c(r + α)).

By Weak Hypothesis II, for every p � r ,

uδc(p)
(c(r)) � 1

2uδc(p)
(c(r − α)) + 1

2uδc(p)
(c(r + α)). (8)

Consider first the lottery over the probabilities given by Q = 〈p1, q1; . . .; pm, qm〉 where ∑
qipi = p (we deal with the distributions with non-finite support at the end of the proof). 

If Q is negatively skewed, then it follows by Theorem 1 that there is a sequence of lotteries 
Qi = 〈pi,1, qi,1, . . . , pi,ni

, qi,ni
〉 → Q such that Q1 = 〈p, 1〉 and for all i, Qi+1 is obtained 

from Qi by a negative symmetric split. For each i, let Q̃i = (c(pi,1), qi,1; . . . ; c(pi,ni
), qi,ni

). 
Suppose pi,j is split into pi,j − α and pi,j + α. By eq. (8), as p > pi,j ,

E[uδp (Q̃i)] =
qi,j uδc(p)

(c(pi,j ) +
∑
m �=j

qi,muδc(p)
(c(pi,m) �

1
2qi,j uδc(p)

(c(pi,j − α)) + 1
2qi,j uδc(p)

(c(pi,j + α)) +
∑
m �=j

qi,muδc(p)
(c(pi,m)) =

E[uδc(p)
(Q̃i+1)].

As Qi → Q, and as for all i, uδc(p)
(c(p)) � E[uδp (Q̃i)], it follows by continuity that 

uδc(p)
(c(p)) � E[uδc(p)

(Q̃)]. By Fréchet Differentiability

∂

∂ε
V

(
εQ̃ + (1 − ε)δc(p)

)∣∣∣∣
ε=0

� 0.

Quasi-concavity now implies that V (δc(p)) � V (Q̃), or 〈p, 1〉 � Q. Finally, as preferences are 
continuous, it follows by that the theorem holds for all Q, even if its support is not finite (see 
Remark 1 at the end of the proof of Theorem 1). �
Proof of Theorem 3. Consider the two-stage lottery L(ε) = 〈p(ε), 1 − ε; q, ε〉 such that 
(1 − ε)p(ε) + εq = K and q > p := p(0) = K . That is, p(ε) = (K − εq)/(1 − ε). As before, 
c(r) is the certainty equivalent of (1, r; 0, 1 − r), and let v(ε) := V (c(p(ε)), 1 −ε; c(q), ε) be the 
value of L(ε). Let F(ε) be the distribution of (c(p(ε)), 1 − ε; c(q), ε), let F ∗ = F(0) = δc(p), 
and let uF ∗ be the local utility of V at F ∗. Observe that

‖F(ε) − F ∗‖ =
(1 − ε)[c(p) − c(p(ε))] + ε[c(q) − c(p)] =
−(1 − ε)[c′(p)p′(0)ε + o(ε)] + ε[c(q) − c(p)] =
[c(q) − c(p) − c′(p)p′(0)] ε + [c′(p)p′(0)] ε2 − (1 − ε)o(ε)

We get:
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v(ε) − v(0)

ε
=

V (c(p(ε)),1 − ε; c(q), ε) − V (c(p),1)

ε
=

(1 − ε)UF ∗(c(p(ε))) + εUF ∗(c(q)) − UF ∗(c(p))

ε
+ o(‖F(ε) − F ∗‖)

ε
=

UF ∗(c(p(ε))) − UF ∗(c(p))

ε
+ UF ∗(c(q)) − UF ∗(c(p(ε))) +

o(‖F(ε) − F ∗‖)
ε

−→
ε→0

U ′
F ∗(c(p))c′(p)p′(0) + UF ∗(c(q)) − UF ∗(c(p)) =

U ′
F ∗(c(p))c′(p)(p − q) + UF ∗(c(q)) − UF ∗(c(p)) > 0 ⇐⇒

UF ∗(c(q)) − UF ∗(c(p))

q − p
> U ′

F ∗(c(p))c′(p)

It follows by the last equivalence that if inequality (2) is never satisfied, then all the binary 
positively skewed noises of the theorem will be rejected. �
Proposition 1. If X with distribution F and expected value μ is negatively skewed as in Defini-
tion 4, then for all odd n, 

∫ x

x
(y − μ)ndF(y) � 0.

Proof of Proposition 1. Let the lottery Y be obtained from the lottery Z by a negative symmetric 
split and denote by x their common mean. Denote the distributions of Y and Z by F and G. Since 
for t < 0 and odd n, tn is a concave function, it follows that if zi + α � x, then

x∫
x

(t − x)ndF (t) −
x∫

x

(t − x)ndG(t) =

pi

2
[(zi − α − x)n + (zi + α − x)n] − pi(zi − x)n � 0 (9)

If zi + α > x, then let ξ = zi − x and obtain

pi

2
[(zi − α − x)n + (zi + α − x)n] − pi(zi − x)n =

pi

2
ξn + pi

2

n−1
2∑

j=1

(
n

2j − 1

)
ξ2j−1αn−2j+1 − pi

2

n−1
2∑

j=0

(
n

2j

)
ξ2jαn−2j +

pi

2
ξn + pi

2

n−1
2∑

j=1

(
n

2j − 1

)
ξ2j−1αn−2j+1 + pi

2

n−1
2∑

j=0

(
n

2j

)
ξ2jαn−2j − piξ

n =

pi

n−1
2∑(

n

2j − 1

)
ξ2j−1αn−2j+1 � 0
j=1
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Since X with expected value μ is negatively skewed it follows by Theorem 1 that it can be 
obtain as the limit of a sequence of negative symmetric splits. At δμ (the distribution of (μ, 1)), ∫ x

x
(y − μ)ndδμ = 0. The claim follows by the fact that each negative symmetric split reduces 

the value of the integral. �
Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2017.02.005.
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