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Abstract Behavior is stable if the ex ante ranking of two acts that differ only on some
event / coincides with their ex post ranking upon learning /. We identify the largest
class of information structures for which the behavior of a Bayesian expected utility
maximizer is stable. We call them generalized partitions and characterize the learning
processes they can accommodate. Often, the information structure is not explicitly part
of the primitives in the model, and so becomes a subjective parameter. We propose a
way to identify how the individual plans to choose contingent on learning an event, and
establish that for a Bayesian expected utility maximizer, stable behavior—formulated
in terms of this indirectly observed contingent ranking—is a tight characterization of
subjective learning via a generalized partition.
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1 Introduction

Consider a standard dynamic problem of decision making under uncertainty, where
given a space of payoff-relevant states of nature, S, a Bayesian expected utility
maximizer anticipates obtaining some information (in the form of signals that are
statistically related to the true state) before taking an action.! It is well known that if
the underlying information structure is a partition of S, where a signal corresponds to
an event / that contains the true state s € S, then the individual will update his prior
by excluding all states that are not in /, keep the relative weights of any two states in /
fixed, and choose according to the resulting posterior. In this case, the ex ante ranking
of acts that differ only on event / coincides with their ex post ranking contingent on
actually learning 7. We will refer to this behavioral property as stable behavior.

An important property of Bayesian decision making is that it is dynamically con-
sistent, in the sense that the ex ante comparison of alternatives contingent on receiving
a certain signal is the same as the ex post comparison of those alternatives after the
realization of the signal in question. Stable behavior is commonly associated with
dynamic consistency and is often referred to as such (see, for example, Ghirardato
2002). The implicit assumption in identifying the two as equivalent is that the follow-
ing two rankings coincide: (i) the ex ante comparison of alternatives contingent on
learning that s € 7 and (ii) the ex ante ranking of acts that differ only on event /. But
there are many information structures on S for which the two differ. For example, if for
two states s, s’ € S the information structure is such that conditional on the true state
being s the decision maker (henceforth DM) will be told that event {s, s’} occurs, but
ifitis s” then either {s"} or {s, s’} will be randomly reported, then Bayes’ law implies
that beliefs should shift toward s upon learning {s, s’ } Consequentially, if initially
the DM is indifferent between betting on s versus betting on s/, then conditional on
learning {s, s} he will strictly prefer betting on s.

In this paper, we first identify the largest class of information structures for which
the behavior of a Bayesian expected utility maximizer is stable (Theorem 1), meaning
that (ii) is indeed an appropriate substitute for (i), in case the latter is unobserved. We
call this class generalized partitions and show that it can accommodate many plausible
learning processes.

Second, we analyze contexts where information is not explicitly stated as part of
the primitives. This may be because the analyst does not know how information is
generated. Alternatively, the analyst may know, but the true information structure has
not been communicated to the DM. In either situation, the information structure the DM
perceives is subjective, so that the analyst is unaware which information the DM reads
into different signals. We propose a way to identify—from observable behavior—how
the DM plans to choose contingent on subjectively learning event I (i.e., contingent
on ruling out all states outside of I and retaining all those in /). Our main result,
Theorem 2, shows that for a Bayesian expected utility maximizer, stable behavior is a
tight characterization of subjective learning via a generalized partition.

1 We assume that the space of payoff-relevant states is exogenously given to the analyst. For example,
when analyzing a specific data set, the collection of alternative actions accounted for, and with it the space
of payoff-relevant states, is given. See also the remark at the end of Sect. 3.
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Stable behavior and generalized partition

The literature often imposes stable behavior for all possible events I C S, without
explicitly mentioning the underlying information structure and without discussing
how one could elicit the collection of ex post preferences for all I C S.> Our results
suggest how (at least for any event / the DM can foresee learning) the analyst can elicit
preferences contingent on learning /, denoted >, from ex ante behavior without any
knowledge of the underlying information structure. Our main theorem then implies
that the behavior of a Bayesian expected utility maximizer is stable for this family
of contingent preferences, if and only if it is generated by a generalized partition.
Importantly, the class of generalized partitions includes information structures that
support all events,? so that it may be possible to elicit >; for all I C S. In other
words, stable behavior for all / C § is indeed compatible with Bayesian decision
making when the information structure is subjective, but restricts it to be a generalized
partition with full support.

In order to identify >; from observed behavior, we follow the approach in Dil-
lenberger et al. (2014, henceforth DLST) and take as primitive a preference relation
over sets (or menus) of acts, defined over a given space of payoff-relevant states.*
In Theorem 2, we derive a generalized-partition representation, which is interpreted
as follows: the DM behaves as if he (i) has prior beliefs over the state space and (ii)
perceives a particular type of stochastic rule, namely a generalized partition, that deter-
mines which event he will learn contingent on the true state. Upon learning an event,
the DM calculates posterior beliefs using Bayes’ law, which leads him to exclude
all states that are not in that event, keeping the relative weights of the remaining
states fixed. He then chooses from the menu the act that maximizes the corresponding
expected utility. The prior and the generalized partition are uniquely identified.

As the name suggests, generalized partition extends the notion of a set partition,
according to which the DM learns which cell of a partition contains the true state. In
the case of a set partition, signals are deterministic; that is, for each state there is only
one possible event that contains it.> Another example of a generalized partition is a
random partition, where one of multiple partitions is randomly drawn and then an event
in it is reported. A situation that may give rise to a random partition is an experiment
with uncertainty about its precision. Alternatively, DM may be unsure about the exact
time at which he will have to choose an act from the menu, and different partitions
may simply correspond to the information the DM expects to have at different points
in time. A sequential elimination of candidates, say during a recruiting process, may

2 An experimenter in the laboratory might have at his disposal different partitions and be able to commit
prior to the realization of the state which one of those to use for generating a signal. In that case, eliciting
>y forall I C S may be possible. In many situations, the analyst cannot commit to different partitions, in
particular if the information structure is unknown to him or has not been communicated to the DM.

3 While obviously there is no partition that supports all / C S, a randomization over all bi-partitions
{1 1€ ] is a generalized partition with this property.

4 The interpretation is that the DM initially chooses among menus and subsequently chooses an act from
the menu. If the ultimate choice of an act takes place in the future, then the DM may expect information
to arrive prior to this choice. Analyzing preferences over future choice situations allows one to identify the

anticipated future choice behavior without observing ex post preferences and to interpret it in terms of the
information the DM expects to receive.

5 The special case of partitional learning is analyzed in DLST.
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also lead to learning via a generalized partition; if k candidates out of n are to be
eliminated in the first stage, then the resulting collection of events the DM might learn
is the set of all (n — k)-tuples. Theorem 3 characterizes all types of learning processes
that can be accommodated by a generalized partition.

2 Stable behavior and generalized partition

Let S = {s1, ..., sx} be a finite state space. An act is a mapping f : S — [0, 1]. We
interpret payoffs in [0, 1] to be in utils; that is, we look directly at utility acts, assuming
that the cardinal utility function over outcomes is known and payoffs are stated in its
units.% For any number ¢ € [0, 1], we simply denote by ¢ the constant act that yields
c in every state. Let F be the set of all acts.

We model a DM who expects to receive a signal prior to choosing an act from
some feasible set. Let ¥ be the set of all signals and let r : S x ¥ — [0, 1], with
Y sexs(0) = 1forall s € S, be the information structure the DM faces, where
rs (o) denotes the probability of learning signal o € X given s € S. The following
class of information structures will play a central role in our analysis.

Definition 1 A function p : 25 — [0, 1]is a generalized partition of S if forany s € §
ifsel

p (1) .
and I € 25, p, defined by p; (1) = {0 ifs ¢l satisfies ) ;oo (I) = 1.

A generalized partition induces an information structure where = C 25 and py (I)
is the probability of event / € X being reported contingent on the state being s.
(When there is no danger of confusion, we simply refer to p itself as an information
structure.) The special case of a set partition corresponds to p taking only two values,
zero and one. In that case, for every s € S there exists a unique I; € 25 with s € I,
and ps (Iy) = 1. Furthermore, s” € I; implies that Iy = Iy, that is, py (I5) = 1 for all
s’ e I;.

We assume throughout that the DM is a Bayesian expected utility maximizer. We
divide the analysis below into two parts. In the next subsection, we study the case
of observable information where the analyst can observe both ex ante and ex post
preferences (after a signal has been received) over acts. We link stable behavior to
learning via generalized partition. We then proceed to study the case of subjective
learning.

2.1 Observable information

Suppose the analyst is aware of the information structure » faced by the DM. In this
section, we assume that the DM’s preferences over acts prior to receiving information,

6 Our analysis can be easily extended to the case where, instead of [0, 1], the range of acts is a more
general vector space. In particular, it could be formulated in the Anscombe and Aumann (1963) setting.
Since our focus is on deriving the DM’s subjective information structure, we abstract from deriving the
utility function (which is a standard exercise) by looking directly at utility acts instead of the corresponding
Anscombe—Aumann acts.
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>, as well as his ex post preferences contingent on learning o € X, >, are observed.
When signals can take values in the space of all events, ¥ C Z :={I C S|l # ¢},
stable behavior can be formulated as follows:

Axiom 1 (Stable behavior) If I € £ C Z and f, g € F with f (s) # g (s) only if
s €1, then

f>lge f>=7g.

That is, behavior is stable if the ex ante ranking of acts that differ only on event /
coincides with the ex post ranking after / was reported.

Definition 2 The DM is a Bayesian expected utility maximizer given the information
structure r, if there is a prior u with supp (1) = S, such that prior to the arrival of
information he maximizes an expected utility according to u (i.e., evaluates an act f
by > sesf () i (), and upon receiving signal o € X he replaces u with its Bayesian
posterior, Pr (- o).

Theorem 1 For information structure r with ¥ C Z, the following statements are
equivalent for a Bayesian expected utility maximizer.

1. The rankings =° and {5(1)}162 satisfy Axiom 1.
2. There is a generalized partition p such that ry = p;.

Proof See “Appendix B” O

To see why the theorem holds, note that Bayes’ law states that Pr(s|/) =
re (I (s) /u (I). For s, s” € I this immediately implies that

Prisil) _ ry(p(s)
Pr(s"[1)  ry (I)p(s')

The key observation is that ry = p, for some generalized partition p, if and only if
rs (I) = ry (I) fors, s’ € I. Hence, relative weights of all states in  do not shift upon
learning 7,

Pr(sil) _ p(s)
Pr(s|I) (s

if and only if ry = p, for some generalized partition p. That is, non-shifting-weights
are equivalent to statement (2) in the theorem.

In terms of behavior, changes in relative weights are solely responsible for any
changes in the DM’s ranking of acts that differ only on event /. Conversely, relative
weights do not shift if and only if that ranking remains fixed. That is, relative weights
on / do not shift when learning /, if and only if > and {:?} satisfy Axiom 1,
which is statement (1) in the theorem.

Iex

7 Where supp (n) = {s |u(s) > 0}.
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2.2 Subjective information

We now consider an environment where the information structure r is subjective and
ex post preferences are not observable. We adopt the menu choice approach, with
the interpretation that preferences over menus of acts reflect the DM’s anticipated,
signal-contingent preferences. Let K (F) be the set of all non-empty compact subsets
of F. Capital letters denote sets, or menus, and small letters denote acts. For example,
atypical menuis F = {f, g, h, ...} € K (F). Let > be a binary relation over /C (F).
The symmetric and asymmetric parts of > are denoted by ~ and >, respectively. Let
flg € Fbetheactthatagrees with f € Fonevent ] and with g € F outside /, thatis,

| fe) sel
flg(s)—{g(s) oy

2.2.1 Anticipated stable behavior

In order to capture stable behavior in terms of preferences over menus, we start by
defining the class of irreducible events. According to Definition 3, event I € 25 is
irreducible if and only if abet on 7, {c10}, cannot be perfectly substituted by the option
to bet on any of its strict subsets, {cl ‘0 ’I cl }.8 Intuitively, event [ is irreducible if
and only if the DM considers all states in / possible and can foresee learning at least
one signal o that does not rule out any of those states.

Definition 3 Event [ C S is irreducible if for any ¢ > 0,
{c10} = {cI'0|I' C 1}.

Note that contingent on any signal o with rg (o) = 0, the act ¢ (1\ {s}) O is as good
as c10. Consequently, if for every foreseen signal o there is at least one state s € I with
rg (0) = 0,then {cI0} ~ {CI'O |I’ cl }.Thatis, {cI’O |I’ cl } is a perfect substitute
for {c10}. Conversely, if the DM considers all states in / possible and can foresee a
signal o with 7, (0) > 0 for all s € I.° then contingent on learning o, the act ¢/0
does strictly better than any actin {c/’0 |I’ C I}, and thus {cI0} > {cI'0|I' C I}.

Let Fr :={f € F|f (s) > Oforall s € S} be the collection of acts with strictly
positive payoffs in all states. Under very mild assumptions, it is sufficient to impose our
main axiom only for acts in F, since F is dense in F with respect to the Euclidean
metric (viewing acts as vectors in [0, 1]'5). Confining attention to F, is convenient
in writing Definition 4 and Axiom 2.

8 Throughout the paper, C (resp., C) denotes weak (resp., strict) set inclusion. The support of any function
is denoted by supp(-).

9 Formally, all states in / should not be null in the sense of Savage (1954), i.e., for every s it is not the case
that { f} ~ {g {s} f} forall f and g. Clearly, if s € [ is null, then ¢ (/\ {s}) O is as good as ¢/0, and hence
{c10} ~ {cI'0 [I'c1 }. that is, {c1’0 |[I'c1 } is a perfect substitute for {c/0}.
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Definition 4 For an irreducible event I and acts f, g € F with f (s) # g (s) only
if s € I, define >; by

fzrge{f.gb~{f1U{0{s}gls el}.

According to Definition 4, f >; g describes the property that the DM is willing to
commit to choose f over g as long as no state in I has been ruled out. To see this, note
that g € F and hence for any signal o and s € I such thatr (o) > 0, g is better than
0{s} g. Therefore, the DM will be indifferent between { f, g} and { f}U{0{s} g |s € I}
upon learning o only if he expects to choose f from { f, g}. At the same time, for any
signal o such that r; (0) = 0 for some s € I, the DM will be indifferent between
choosing from { f, g} and choosing from { f} U {0 {s} g}.

Axiom 2 (Anticipated stable behavior) For any irreducible event I and acts f, g € F4+
with f (s) £ g (s)onlyifs €I,

f1zlgt=r=zr¢

Axiom 2 captures the idea of Axiom 1 in the subjective environment: the ranking
of two acts that differ only on event I does not change as long as no state in / has been
ruled out.'?

2.2.2 Generalized-partition representation

The following utility function over menus incorporates the notion of a generalized
partition.

Definition 5 The pair (u, p) is a generalized-partition representation if i) u : § —
(0, 1] is a probability measure with supp (1) = S; (ii) p : 25 > [0, 1]isa generalized
partition of S; and (iii)

V(F)=21es max [Xserf () )] o)

represents >.

According to Definition 5, the DM behaves as if he (i) holds prior beliefs p with full
support on the state space S and (ii) perceives a generalized partition that determines
which event he will learn contingent on the true state.!! Upon learning event /, the DM
calculates posterior beliefs using Bayes’ law, which leads him not to shift weights; he
excludes all states that are not in / and keeps the relative likelihood of the remaining

10 1t is worth mentioning that Axiom 2 is consistent with the possibility that the DM has strict preference
for flexibility, in the sense that it does not preclude the ranking { f, g} > {f} > {g}. That is, while given
the DM would prefer f to g when no states in / have been ruled out, it may well be that for some o with
rs (0) = 0 for some s € I, g is better than f.

T We could allow supp (u) = S’ C S, where p is a generalized partition of S’. For ease of notation we
omit this conceptually straightforward generalization.
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states fixed. He then chooses from the menu the act that maximizes the corresponding
expected utility.

The two parameters of the generalized-partition representation, the prior © on S
and the generalized partition p, are independent, in the sense that the definition places
no joint restriction on the two. In other words, a generalized-partition representation
accommodates any prior beliefs the DM might have about the objective state space,
combined with any information structure that can be described as a generalized par-
tition. It is evident from the description of the model that the information structure
in Definition 5 is not objectively given. Instead, the generalized partition should be
derived from choice behavior.

To investigate the behavior of a Bayesian expected utility maximizer in this context,
we take as a starting point preferences that have a subjective-learning representation,
introduced in DLST

Definition 6 A subjective-learning representation is a function V : K (F) — R, such
that

vie = [ma (Y f©r0)dpe, (M)

A(S)

where p (-) is a probability measure on A (S), the space of all probability measures
on S.

The interpretation of a subjective-learning representation is that the DM behaves
as if he expects to learn information that will lead him to update his prior, thereby
inducing ex ante beliefs over the possible posterior distributions that he might face
at the time of choosing from the menu. For each posterior 7 € A (S), he expects to
choose from the menu the act that maximizes the corresponding expected utility. This
DM can always be though of as Bayesian; this is the case since the DM’s evaluation of
singletons reveals his prior beliefs 1, and, according to (1), u (s) = f AT (s)dp ()
forany s € S. As established by DLST (Theorem 1 in their paper), the axioms that are
equivalent to the existence of a subjective-learning representation are familiar from the
literature on preferences over menus of lotteries—Ranking, vNM Continuity, Nontriv-
iality, and Independence—adapted to the domain /C (F), in addition to Dominance,
which implies monotonicity in payoffs, and Set Monotonicity, which captures pref-
erence for flexibility. The prior © has support S if all states s € § are non-null (see
Footnote 9). DLST show that the function p (-) in (1) is unique.

Theorem 2 Suppose that the relation > admits a subjective-learning representation
[as in (1)]. Then > satisfies Axiom 2 if and only if it has a generalized-partition
representation, (i, p). Furthermore, the pair (i1, p) is unique.

Proof See “Appendix C”. O

For a Bayesian expected utility maximizer, stable behavior tightly characterizes
learning via a generalized partition. Obviously, generalized partition is consistent
with the familiar set partition where signals are deterministic contingent on the state,
but it also accommodates many other plausible learning processes. In the next sec-
tion, we provide examples, as well as a characterization, of those learning processes
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that give rise to generalized partitions. In terms of behavior, the following is a sim-
ple example of a pattern which our axioms and representation accommodate, but
would be precluded if anticipated signals were deterministic. Consider the state space
{s1, s2} and the menu {(1,0), (0, 1), (1 —e, 1 — )}, which contains the option to
bet on either state, as well as an insurance option that pays reasonably well in both
states. A DM who is uncertain about the information he will receive by the time
he has to choose from the menu may strictly prefer this menu to any of its subsets
(for ¢ small enough). For instance, an investor may value the option to make a risky
investment in case he understands the economy well, but also value the option to
make a safe investment in case uncertainty remains unresolved at the time of mak-
ing the investment choice. Our model accommodates this ranking. In contrast, such
a ranking of menus is ruled out if signals are deterministic. If the DM expects to
learn the true state, then preference for flexibility stems exclusively from the DM’s
prior uncertainty about the true state and the insurance option is irrelevant, that is,
{1,0),0,1),(1—¢,1=2)} ~{(1,0), (0, D}. And if the DM does not expect to
learn the true state, then, for ¢ small enough, he anticipates choosing the insurance
option with certainty, that is, {(1,0), (0, 1), (1 —¢&, 1 —¢&)} ~ {(1 —e, 1 —&)}.12

3 A characterization of generalized partitions

Compared to the information structures permitted by a subjective-learning represen-
tation [as captured by the function p (-) in (1)] a generalized partition (Definition 1
) rules out information structures in which two distinct states can generate the same
signal but with different probabilities. For example, consider a defendant who is on a
trial. Generalized partition is inconsistent with a setting in which there are two states
of nature, guilty (G) or innocent (), and two signals, guilty (g) and innocent (i), such
that Pr(g|G) > Pr(g|/) >0andPr(i|/) > Pr(i|G) > 0.

In this section, we characterize the types of learning processes that can give rise to a
generalized partition, by identifying all sets of events that support such an information
structure. Formally, we characterize the set

{\If c2s ’there is a generalized partition p : 25 - 10, 1] with supp (p) = ¥ ] .

It is worth mentioning that the analysis in this section does not have any decision
theoretical aspect and it also does not depend on the distinction between observable
information and unobservable information.

Definition 7 A collection of events ¥ C 25 is a uniform cover of S, if (i) S =
U, <yl and (ii) there is a function 8 : W — Z, and a constant k > 1, such that
Zlew‘selﬂ (I) =kforalls € S.

To better understand the notion of a uniform cover, consider the following exam-
ple. Suppose S = {s1, 52, s3}. Any partition of S, for example {{s1}, {s2, s3}}, is a

12 “Appendix A” provides a formal behavioral comparison between our model and one with deterministic
signals.
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uniform cover of S (with k = 1). A set that consists of multiple partitions, for example
{{s1}, {52, 53}, {51, 52, s3}}, is a uniform cover of § (in this example with k = 2). The
set W = {{s2, 53}, {51, 52, 53}} is not a uniform cover of S, because Zlmelﬂ I <
Z”szel B (I)forany B : ¥ — Z_,. The set {{s2, 53}, {51}, {52}, {s3}}, however, is a
uniform cover of § with

2 it ={s1}
A = { 1 otherwise
Lastly, the set {{sy, 2}, {s2, 53}, {51, s3}} is a uniform cover of S (with k = 2), even
though it does not contain a partition.

An empirical situation that gives rise to a uniform cover consisting of two partitions
is an experiment that reveals the state of the world if it succeeds and is completely
uninformative otherwise. For a concrete example that gives rise to a uniform cover
that does not contain a partition, consider the sequential elimination of n candidates,
say during a recruiting process. If k candidates are to be eliminated in the first stage,
then the resulting uniform cover is the set of all (n — k)-tuples.

Theorem 3 A collection of events W is a uniform cover of S if and only if there is a
generalized partition p : 25 — [0, 1] with supp (p) = W.13

Proof See “Appendix D” O

The ‘only if” part in the proof of Theorem 3 amounts to finding a solution to a sys-
tem of linear equations, showing that any uniform cover can give rise to a generalized
partition. To illustrate the idea, consider the collection {{s1}, {s2, 53}, {51, 52, s3}} dis-
cussed above, which consists of multiple partitions and is a uniform cover with k = 2.
An information structure r that can be described as a generalized partition

o {{s1}, {s2, 53}, {s1, 52, 53}} = (0, 1]

should satisfy two conditions. First, ry (I)—the probability of receiving the signal 1
given state s—should be positive and identical for any s € I, that is,

ra (1) =1 p{s1}) >0
rs, ({82, 83}) = rsy ({52, 53}) =: p ({s2,53}) > 0
rs; ({81, 52, 83)) = 1, ({51, 52, 83}) = rgy ({51, 52, 53}) =: p ({51, 52, 53}) > 0

and 0 otherwise. Second, each ry (-) must be a probability measure, that is,

rsy ({s1h) +rg ({51, 52,53} =1
rsy ({82, 83}) + 1, ({51, 52, 83}) =1
sy ({82, 83)) + 1oy ({51, 52,53} =1

13 The notion of uniform cover is closely related to that of balanced collection of weights, which Shapley
(1967) introduces in the context of cooperative games. Similarly, a generalized partition formally resembles
a cooperative game with unit Shapley value.
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The solutions of this system are given by p ({s1,s2,53}) = « and p ({s1}) =
o ({s2,53}) =1 —«, forany a € (0, 1).

Theorem 3 characterizes the types of learning that can be accommodated by a
generalized partition. To illustrate it, let us consider a specific example. An oil company
is trying to learn whether there is oil in a particular location. Suppose the company can
perform a test drill to determine accurately whether there is oil, s = 1, or not, s = 0.
In that case, the company learns the uniform cover W = {{0}, {1}} that consists of a
partition of the state space, and p ({0}) = p ({1}) = 1 provides a generalized partition.
Now suppose that there is a positive probability that the test may not be completed
(for some exogenous reason, which is not indicative of whether there is oil or not).
The company will either face the trivial partition {{0, 1}}, or the partition {{O}, {1}},
and hence ¥ = {{0, 1}, {0}, {1}}. Suppose the company believes that the experiment
will succeed with probability ¢g. Then p ({0, 1}) = 1 — g and p ({0}) = p ({1}) = ¢
provides a generalized partition.

We can extend the previous example and suppose the company is trying to assess the
size of an oil field by drilling in / proximate locations, which means that the state space
is now {0, 1}*. As before, any test may not be completed, independently of the other
tests. This is an example of a situation where the state consists of / different attributes
(i.e., the state space is a product space), and the DM may learn independently about
any of them. Such learning about attributes also gives rise to a uniform cover that
consists of multiple partitions and can be accommodated.

To find a generalized partition based on (i) a uniform cover W of a state space S,
for which there is a collection IT of partitions whose union is ¥ and (ii) a probability
distribution g on IT, one can set p (1) = ZPenue’P q (P). We refer to the pair (¢, IT)
as a random partition.

A different situation in which the DM effectively faces a random partition, (g, IT),
is one where learning is governed by a given filtration of S, but the speed of learning
is uncertain. In that case, distinct partitions in IT simply correspond to the information
the DM might have at the time of choice and should thus be ordered by fineness. In
that case, ¢ (P) captures the probability of arriving at P by the time of choice.

Lastly, reconsider the example of sequential elimination of candidates outlined
above. Suppose that one out of three candidates will be selected. Write the cor-
responding state space as § = {si, 52, s3}. If one candidate will be eliminated in
the first round, then the uniform cover of events the DM might learn is given by
U = {{s1, 2}, {s2, 83}, {51, s3}}. Suppose that, contingent on person i being the best
candidate, the DM considers any order of elimination of the other candidates as equally
likely. This corresponds to the generalized partition with p (/) = 0.5 forall / € ¥
and p (1) = 0 otherwise.

Each of the generalized partitions discussed in this section can be coupled with any
prior beliefs p to generate a generalized-partition representation (i, p).

Remark 1 If the state space is defined via the value of all random variables the DM
might observe, then it gives rise to an information structure that is a partition. Con-
versely, any information structure can always be described via a partition, if the state
space is made sufficiently large. To attain a state space that is surely large enough, one
could follow Savage and postulate the existence of a grand state space that describes
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all conceivable sources of uncertainty. Identification of beliefs on a larger state space,
however, generally requires a much larger collection of acts, which poses a serious
conceptual problem, as in many applications the domain of choice (the available acts)
is given. In that sense, acts should be part of the primitives of the model.'* Our
approach instead identifies a behavioral criterion for checking whether a given state
space (e.g., the one acts are naturally defined on in a particular application) is large
enough: behavior satisfies a version of stable behavior (either Axiom 1 or Axiom 2)
if and only if the resolution of any subjective uncertainty corresponds to an event in
the state space. Our results demonstrate that this does not require a state space on
which learning generates a partition. To emphasize our point, reconsider the drilling
example, with § = {0, 1} and a probability ¢ for the test to be completed successfully.
This is a random partition with Pr ({0}, {1}) = ¢ and Pr ({0, 1}) = 1 —¢q. Suppose we
enlarge the state space to be S x X, where X = {success, failure}. While on this state
space the DM’s learning is described by a partition, acts that condition on X may not
be available: it is plausible that the payoff of drilling rights does not depend on the
success or failure of the test drill, but only on the presence of oil. Under our assump-
tions, the domain of acts that are defined on § is sufficient to allow the description of
expected information as events.

4 Related literature

Our model builds on a general subjective-learning representation of preferences over
menus of acts, which identifies signals with posterior distributions over states (Defi-
nition 6 in Sect.2.2.2). Such representation was first derived in DLST. They further
derived a partitional learning representation, in which signals correspond to events that
partition the state space. Partitional learning is also studied in De Oliveira et al. (2016),
who adopt the same menu choice approach but, unlike us, allow the DM to choose
his information structure, and in Lu (2016), who uses the random choice approach to
elicit information. A dynamic version of partitional learning appears in Dillenberger
et al. (2017).

In terms of generality, the generalized-partition representation lies in between the
two extreme cases studied in DLST. For a Bayesian DM, a salient feature of partitional
learning is that the relative weights of states in the learned event do not shift. In this
paper, we show that this non-shifting-weights property corresponds to stable behavior,
which links ex ante and (anticipated) ex post rankings of acts. We then identify the
least restrictive model with this property. Sections 2.2.2 and 3 demonstrate the merit
of the generality permitted by our model (over partitional learning). In “Appendix A,”

14 Gilboa et al. (2009, 2012) point out the problems involved in using an analytical construction, according
to which states are defined as functions from acts to outcomes, to generate a state space that captures all
conceivable sources of uncertainty. First, since all possible acts on this new state space should be considered,
the new state space must be extended yet again, and this iterative procedure does not converge. Second,
the constructed state space may include events that are never revealed to the DM, and hence, some of the
comparisons between acts may not even be potentially observable. A related discussion appears in Gilboa
(2009, Section 11.1).
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we show how one can strengthen our main axiom to give a different characterization
of partitional learning than the one provided in the aforementioned papers.

Theorem 1 studies stable behavior, which directly links ex ante and actual ex post
preferences. Breaking this requirement into two parts, violations of the axiom might
emerge from either (i) a violation of dynamic consistency (i.e., a discrepancy between
ex ante preferences and anticipated ex post preferences), or (ii) a difference between
anticipated ex post preferences and actual ex post preferences. Siniscalchi (2011), for
example, explicitly focuses on (ii).!> In contrast, we start with a Bayesian (and hence
dynamically consistent) expected utility maximizer and investigate the discrepancy
in (i). Theorem 2 establishes it arises if the underlying information structure is not a
generalized partition.

Appendices
A. Comparison with partitional learning

We now show how Axiom 2 can be modified to capture the idea of deterministic signals
and thereby to characterize partitional learning. The axiomatization here is different
than the one provided in DLST.

Axiom 3 (Partition) For any two acts f, g € F4 and irreducible event I C S,
{f10} = {g10} = {f 10,810} ~ {f10}.

In the words of Kreps (1979), Axiom 3 can be viewed as a requirement of strategic
rationality given an event. Recall thatif [ is irreducible, then the DM can foresee learn-
ing an event J that (weakly) contains /. If signals are deterministic and [ is irreducible,
then there is no I’ C I the DM also foresees learning. It is thus obvious why for a
Bayesian DM partitional learning satisfies this property; /0 and g/0 agree outside
I, and if f10 does better on /, it will do better on any superset of /. Conversely, if
information in the subjective-learning representation of Definition 6 is not partitional,
then there are two posteriors 7, 7’ € supp(p), such that supp(z) = I, supp(n’) =1,
I #I',andINI # ¢.Let f = cand g = ¢+ &. Without loss of generality, suppose
INI # 1.1f ¢ > 0 and small enough, then {f10} > {g (I N 1/) O} while, since
g (1N 1) 0 does better than f10 conditional on I’, { f10, g (1 N 1) 0} = {£10}.

Since larger sets are better (preference for flexibility), { f 10} U {gI’0 ‘I cl } >
{£10} . Further, by payoff domination, { £ 10, g10} = { f10}U{g1'0 ‘I’ C I}.There-
fore, Axiom 3 implies Axiom 2, while, as is obvious from our results, the converse is
false.

B. Proof of Theorem 1

Let & C 25. We say that r satisfies the non-shifting-weights property, if for s, s’ €
leXx,

15 Siniscalchi (2011) refers to anticipated ex post preferences as conjectural ex post preferences.
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pGs) _ Prsil)
pw(s’y Pr(s’|1)
The DM’s ex ante preferences on acts, >°, are represented by V(f) =

Zses f (s) u(s), and his ex post preferences, :‘;, are represented by V(f|I) =
2. f&)Pr(s|).

sel
To see that the non-shifting-weights property is equivalent to statement (1) in the

Prlﬁ;lé ) Tt follows from Eq. (2) that

@)

theorem, fix s’ € I and set k :=

Y LGP =6 f)pls).

sel

Consider f,g € F and I € X such that f(s) # g(s) only if s ¢ I. Then

[z0geVHzV@e ) fOrE =) g@un

seS seS
Y FEOrE =) g@ps) ) [ ) =ry gls) s

sel sel sel sel

Y FOPGINZY gOPGIN S VI =VEI & f=9g

To see that the non-shifting-weights property is equivalent to statement (2) in the
theorem, note that for information structure r with ¥ C 25, Bayes’ law implies that
forany s, s’ €I,

Prisil) _ re@Dp(s)/n)
Pr(s"[I)  ry ()p(s") /(D)

independently of /. Hence, the non-shifting-weights property holds if and only if
:S,((II)) = 1foralls,s” € I.If there is a generalized partition p such that r; = p;, then
this holds by definition, as ry (I) = ry (I) = p (I). Conversely, if the information
structure r is not a generalized partition, then there exist a signal o € ¥ and two states
s, s’ withrg (0) > 0 and ry (o) > 0, such that ry (o) # ry (o) . For these two states,

the non-shifting-weights property does not hold.

C. Proof of Theorem 2

Necessity Suppose > admits a generalized partition representation (u, p), that is,
VF) =3 e max Yoo, f ) )] p D)

represents >.

Claim 1 Event I C S is irreducible if and only if p (J) > 0 for some J 2 I.
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Proof This follows immediately from the following two observations:

1. Forany J withJ NI # 1,

max Y f O u)] =X i () =2 e c0(s) p(s);

fefel’0ll’'cl)

2. Because supp (1) = S, J 2 I implies that

max  [Yio, F )] <X emls) =D c,cI0(s) pu(s).

fefel’ol’'cl}
O

Consider an irreducible event /I and two acts f,g € JFy. According to the
generalized-partition representation,

{F10) = {10} &3/ [f () i () X gesps (D] = 2o [8 () i () X gesps (D]

Since p is a generalized partition, Zlgsps (I) =1forall s € S, and hence { f10} >

{g10}y & Y o, f()m(s) = Y ;8 (s)m(s). Therefore, { f10} > {gI0} implies
both (i) that for any event J D I with J esupp(p) we have

max [, () p(s)] =max [Y o, f () p(s), Xerg () ()] =

f'elf10,810}
=Zself(s)M(S)=f [Zsejf/(s)ﬂ(s)];

max
e fI0}U{gl'0|I'CI }
and (ii) that for any event J esupp(p) with J NI # I we have

[ sesf ) ()] = [Cie/ ) ()]

max max
f'e(f10,g10) fe(fI0)U(gI'0|I'CT }
Therefore, { 10} = {gI0} = {f10, g10} ~ {fI0}U {gI'0|I' C I}.

Sufficiency Suppose that > admits a subjective-learning representation and satisfies
Axiom 2. Foreachs € S, let u (s) = fsupp(p)n (s)dp () . Since the measure p over
A (S) in a subjective-learning representation is unique, so is x. It is easy to see that p
is a probability measure and that foreach g, f € F,{f} > {g} & > cgf () (s) >
Y es8 (8) 1 (9).

Let:

3s,s” € supp (r) with —— #

Iy := {7‘[
T ()" (s

T(s) , p(s) }

and fore > 0

3s, s’ € supp (7w) with > (14¢)

I, := {JT
7 (s") w(s")

7 (s) w(s) }
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Finally, for any s, s’ € S let

s, s’ € supp (7r) and

> (1+¢)

[ 56 i= {77 =
o 7 (s) (s’

7 (s) e (s) }

Claim 2 If p (Ilp) > O, then there exists, s’ € Sande > 0, such that p (HM/,S) > 0.

Proof First note that there exists ¢ > 0 such that p (IT;) > 0. If it was not the case,
then there would be (g;,) | 0 such that

p ({n 3. 5" € supp (7) with 7 (s) ¢ ((1 — &) () 1+ &) w(s) ) }) =0

7 (s) w(s)’ w (s’
for all n. But for any s, s we would have((l —en) L8 (1 4 &) “(S)) — L6) 4nd

nis’y’ (s nis"
therefore p (ITp) = 0, which is a contradiction.

Second, since S is finite we can write p (IT;) = >, s'esxsP (l'[s,s/,g) . This imme-
diately implies that at least for one pair s, s" we must have p (l'[ 5., 8) > 0. O

Now fix s, s" such that p (l'ls,s/’s) > 0. Let f := %, and for y, B > 0 such that

B (s) (s)
y € (/t(s/)’ (1+¢) u(s’)) , define an act g by

%-ﬁ-y S=s
g = - B s=5
3 otherwise
Note that for any I with s, s’ € I
1
neHS)s/‘g:>§<Zg(§)n(§);and (31)
sel
1 PNIGTIG) (3ii)
- > IAGHE i
5 gls)p

sel

Let g ¢ ¢ () 1= fr{. . 7w (s)dp (7). We now argue that there exists an irreducible
I Csupp(ii,y e ) such that

@ f#1g:
(b) {f10} > {gI0}.

First, s, s" esupp(r) for every w € Il ¢ .. Because S is finite, I, ¢ . can be
partitioned into finitely many sets of posteriors, where 7 and 7’ are in the same cell
of the partition if and only if they have the same support. At least one of these cells
must have positive weight under p. Choose [ to be the support of the posteriors in
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such a cell. By (3i), we have { £ 10, g10} > {f10}U{gI'0|I’ C I}, or f #; g. This
establishes part (a). Part (b) is immediately implied by (3ii).

The combination of (a) and (b) constitutes a violation of Axiom 2. Therefore,
p (ITp) = 0, that is, for all but a measure zero of posteriors, 7 €supp(p) and I C S
imply that

“8% sel

M .
0 otherwise

T (s) =

Note that this result implies that if 7z, 7’ €supp (p) are such that 7 # 7’ then
supp () ;ésupp(n’ ) Therefore, we can index each element w esupp(p) by its
support supp(w) € 25 and denote a typical element by 7 (- |1 ), where 7w (s |[1) = 0 if
s ¢ I € 25 There is then a unique measure p such that for all F € K (F)

V(F)=Y ;s max [Ysesf O m(s1D]p ), A3)

and 11 (s) = X15; 7 (5 11) P (D).

We have already established that 7 (s |/) = 583 for all s € I esupp(p) . Define

p ()= % and substitute w (s) p (I) for 7 (s |[1) p (1) in (3). Bayes’ law implies
that

[p) ifsel
ps(”“{o ifs ¢l

is indeed a probability measure for all s.

D. Proof of Theorem 3

(if) Let ¥ be a uniform cover of S, where 8 and k satisfy Definition 7. Set p (1) = @
forall I € .

(only if) Suppose that p : 25 — [0, 1] is a generalized partition, with supp(p) = W.
In addition to p (1) = 0 for I ¢ W, the conditions that p should satisfy can be written
1 sel
0 sé¢l
|V |-dimensional vector with entries (o (/));cy, and 1 is a | S|-dimensional vector of
ones.

Suppose first that p (1) € Q N (0, 1] for all I € W. Rewrite the vector py by
expressing all entries using the smallest common denominator, & € N_. Then W is
a generalized partition of size &. To see this, let 8 (1) := &p([) for all I € W. Then
Liewpser BU) = X jcujser §p (1) = § foralls € S.

It is thus left to show that if py € (0, 1]"1" solves Apy = 1, then there is also
Pl € [Q N (0, 111! such that Apj, = 1.

as Apy = 1, where A is a |S| x |W| matrix with entries a; ; = , Py is a
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Let P be the set of solutions for the system Apy = 1. Then, there exists X € R¥
(W1th k < |¥]) and an affine function f : X — RI"I such that oy € P implies
ow = f (x) for some x € X. We first make the following two observations:

(1) There exists f as above, such that x € QF implies f(x)e Q
(i1) There exists an open set X C RF such that f (x) € Pforall x € X

To show (1), apply the Gauss elimination procedure to get f and X as above. Using
the assumption that A has only rational entries, the Gauss elimination procedure (which

. . koo
involves a sequence of elementary operations on A) guarantees that x € QQ implies

feq”. R

To show (ii), suppose first that p* € P N (0, D"l and o Q'"!. By construction,
py = f (x*), for some x* € X. Since py, € (0, D% 'and f is affine, there exists an
open ball B, (x*) C R¥ such that £ (x) € P N (0, )Y for all x € B, (x*), and in
particular for x’ € B, (x*) N Q" (# ¢). Then oy = f (x') € [@QN (0, 11]"]. Lastly,
suppose that p(’l‘, e PN (0, 1]"1" and that there are 0 < [ < |¥| sets I € W, for which
p (I is uniquely determined to be 1. Then set those / values to 1 and repeat the above
procedure for the remaining system of || —/ linear equations.
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