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We propose a class of dynamic models that capture subjective (and, hence, unob-
servable) constraints on the amount of information a decision maker can acquire,
pay attention to, or absorb via an information choice process (ICP). An ICP spec-
ifies the information that can be acquired about the payoff-relevant state in the
current period and how this choice affects what can be learned in the future. In
spite of their generality, wherein ICPs can accommodate any dependence of the
information constraint on the history of information choices and state realiza-
tions, we show that the constraints imposed by them are identified up to a dy-
namic extension of Blackwell dominance. All the other parameters of the model
are also uniquely identified.

Keywords. Dynamic preferences, information choice process, dynamic Black-
well dominance, rational inattention, subjective Markov decision process.
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1. Introduction

In a typical dynamic choice problem, a decision maker (henceforth DM) must choose
an action that, contingent on the evolving state of the world, determines a payoff for the
current period as well as the collection of actions available in the next period. Faced with
such a problem, the DM wants to acquire information about the state of the world, but
often is constrained by the amount of information he can acquire, pay attention to, or
simply absorb. For example, consumers cannot always be aware of relevant prices at all
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possible retailers and firms have limited resources they can expend on market analysis.
While accounting for such information constraints can significantly change theoretical
predictions (see, for instance, Geanakoplos and Milgrom (1991), Stigler (1961), Persico
(2000), and the literature on rational inattention pioneered by Sims (1998, 2003)), an
inherent difficulty in modeling them, as well as the actual choice of information, is that
they are often private and unobservable.

In this paper, we provide and fully identify a class of dynamic models that incorpo-
rate intertemporal information constraints. These constraints have the property that in-
formation choice in one period can directly affect the set of feasible information choices
in the future. Moreover, and unlike intertemporal budget constraints, they need not be
linear and can accommodate many patterns, such as developing expertise in processing
information or feeling fatigued after paying a lot of attention. Indeed, our information
constraints can encode arbitrary history dependence. Our framework unifies behavioral
phenomena that arise in the presence of such constraints, regardless of their nature; that
is, it applies whether the constraints are cognitive, so that individuals have limited abil-
ity to take into account available information, or physical, where they reflect the scarcity
of information.

To fix ideas, suppose in each period the DM can manage his portfolio by choosing
from a set of possible investments. Depending on the current state of the economy,
each choice of investment results in an instantaneous payoff (e.g., a dividend) and a
new realization of the monetary value of the portfolio, which determines the contin-
uation investment problem for the next period. Further suppose that to improve his
portfolio choice, the DM can acquire information about the state in a way that may also
determine what information can be acquired in the future. For instance, it may be that
the DM is subject to fatigue and so can acquire information only if he did not do so in
the last period. Alternatively, he may gain expertise, so that acquiring a particular piece
of information in one period makes it easier to acquire that same information in sub-
sequent periods. These information constraints may become increasingly complicated
as the length of the DM’s history of past choices grows. The difficulty for the analyst is
that while the actual portfolio choice is, in principle, observable, the DM’s information
choice, and its impact on the feasibility of subsequent information plans, is typically
not. A natural question is, “can (unobservable) information constraints be identified
from the DM’s preferences and if so, what type of data are needed to achieve this identi-
fication?”

Our main result (Theorem 1) shows that the class of dynamic consumption choice
problems we consider is sufficiently rich to identify the entire set of (subjective) parame-
ters governing the DM’s preferences. In particular, observable choice is between menus
of acts, each of which results in a state-dependent lottery over current consumption and
a continuation problem for the next period, and the parameters are (i) a utility function
over consumption, (ii) a Markov process that governs the evolution of the state of the
world, (iii) the discount factor, and (iv) the information choice process (ICP), which is
an information constraint that is identified up to a dynamic extension of Blackwell in-
formativeness.
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Formally, our model is a Markov decision process for the DM with a state variable
(which governs the feasible information choices) that cannot be verified by the analyst;
from her point of view, the process is subjective with partially unknown transitions and
partially unobservable actions and states. The full identification of this partially subjec-
tive Markov decision process in Theorem 1 is our main conceptual contribution.

Understanding ICPs can be useful in a variety of settings. To illustrate this, we now
briefly discuss the relevance of expertise and fatigue in organizational and personnel
economics.

It is widely accepted that information overload among workers, which is tightly
linked to fatigue,1 emerges as a result of an imbalance between the worker’s process-
ing capacity and his processing requirements. While the worker’s processing capacity
(his ICP) is subjective, the processing requirement is determined by his employer. It is
thus in the interest of the employer to understand the worker’s ICP so that she can avoid
overloading the worker with information.

Organizations typically expect their employees to continue developing expertise
(understood here as the ability to make good decisions) either through on-the-job learn-
ing or through formal education (see, for instance, Pastorino (2021)). From an organi-
zational perspective, it is then useful to understand the mechanism by which different
types of workers can acquire expertise (which is captured by their ICPs). This may de-
termine how well the firm can (re-)match different types of workers to different tasks,
choose between on-the-job training and formal education, use its organizational struc-
ture to incentivize skill acquisition, or avoid turnover by generating firm-specific exper-
tise (as opposed to general human capital).

The paper is organized as follows. Section 2 presents examples of ICPs. Section 3
introduces the analytical framework, states our utility representation, and describes the
notion of comparative informativeness for ICPs. Section 4 establishes a duality between
the set of ICPs and our choice domain, and uses it to illustrate our identification result.
Section 5 behaviorally characterizes expertise and fatigue. Section 6 surveys the most
related literature. All proofs are provided in the Appendices.

2. Examples of ICPs

An ICP is a subjective controlled process that specifies how future information con-
straints depend on past choices of information. Formally, given a state space S, from
which the payoff-relevant state of the world realizes each period, an ICP is parametrized
by an additional subjective information state θ, which encodes how today’s choice of in-
formation affects information constraints in the future, a function �(θ) that determines
a set of feasible partitions of S, and an operator τ that governs the transition of θ in re-
sponse to the choice of partition and the realization of s ∈ S. A trivial ICP, where �(θ)
is always a singleton, corresponds to the DM facing a particular stream of information,

1One explanation for the “social media fatigue,” that is, the reduced interest in social media among U.S.
consumers, is that users are experiencing information overload: the amount of information to be processed
has become overwhelming for consumers, leading them to be more selective about their media exposure
and involvement; see Greenfield (2018).
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and so our framework subsumes the standard model of dynamic decision making with-
out information choice. Another special case is where �(θ) is independent of θ and is
nontrivial, so that the set of available signals is constant over time.

The novelty in our theory is that ICPs can accommodate arbitrary history depen-
dence. We now describe a few simple ICPs that feature expertise and fatigue. Intuitively,
expertise is the idea that past information choices facilitate the choice of the same or
similar information in the future, while fatigue is the notion that learning more initially
reduces the ability to learn and process information later. We will return to these exam-
ples in Section 5, where we formally define and behaviorally characterize expertise and
fatigue.

Example 1. As has been proposed in the literature on managerial decision making,
suppose a manager is constrained in the accumulation of human capital or expertise.2

Specifically, the manager faces N different sources of information, where each source i
corresponds to a partition Pi of S. Suppose further that the manager has the resources
to gain expertise in processing one new source of information every period. This might
involve hiring a new expert, purchasing access to new data, or learning how to interpret
a particular type of real world data. Once the manager gains that expertise, she can pro-
cess the now familiar source of information indefinitely. The manager’s information in
a given period is then the coarsest refinement of all the partitions that correspond to
previously chosen information sources. With θ= (θ1, � � � , θN ) ∈ {0, 1}N as the subjective
information state, let

Pθi :=
{
Pi if θi = 1

{S} if θi = 0.

The information constraint is then

�(θ) = {
P : P = Pθ1 ∨ · · · ∨ PθN ∨ Pi with i ∈ {1, � � � ,N }

}
and the state transitions so that the new jth component is given by

τ(Pθ1 ∨ · · · ∨ PθN ∨ Pi, θ)j :=
{

1 if j = i
θj otherwise. ♦

Example 2. The DM is subject to fatigue, in that he cannot acquire or process infor-
mation in two consecutive periods: If he has learned a nontrivial partition of S in the
previous period, he cannot afford to learn anything (i.e., he can only learn the trivial
partition of S) in the current one. This example suggests that periods in which individ-
uals pay careful attention are usually followed by periods in which they should rest.3 In

2See, for instance, Geanakoplos and Milgrom (1991). We refer here exclusively to expertise that improves
an individual’s ability to make the right decision, rather than the ability to execute that decision. See Currie
and MacLeod (2017) for a discussion of the two types of expertise in the context of medical decision making.

3In addition to the cognitive interpretation of fatigue, this type of constraint could also capture advice
from an expert who can only be approached infrequently. Alternatively, the acquisition of information may
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this case, we may set �= {0, 1}, some θ0 ∈� as the initial information state, and

�(θ) :=
{

{S} if θ= 0

P if θ= 1
and τ(P ) :=

{
0 if P �= {S}

1 if P = {S},

where P is the collection of all partitions of S. Note that here τ is independent of θ
and s. ♦

Our next two examples also capture fatigue and expertise, respectively, and build on
the entropy-based constraints found in the literature on rational inattention.

Example 3. The mental exertion of processing an overload of information in one pe-
riod results in fatigue that negatively impacts the DM’s capacity to process information
in the subsequent period. Let c(P ) measure the amount of information from partition
P . For example, c(P ) =Hμ(P ), the entropy of P calculated using some probability dis-
tribution μ over S (where μ may evolve as information arrives; for instance, if past state
realizations become known and states are correlated over time, then μ will depend on
those past states). When rested, the DM can process an amount K, and she begins each
period rested as long as she processed less than κ <K in the previous period. Processing
more than κ in one period amounts to information overload, and her ability to process
information in the next period will be reduced from K by the amount of overload. In
that case, her per-period information capacity k can serve as the subjective informa-
tion state. Formally, with attention capacity k, any partition P ∈ �(k) = {P : c(P ) ≤ k}
can be chosen, whereupon the stock transitions to K if c(P ) ≤ κ and to K − c(P ) + κ

otherwise. This ICP is parametrized by (K, κ, c). If c is an entropy cost, then the case
with κ = K corresponds to a typical per-period constraint in the literature on rational
inattention. ♦

Example 4. To capture expertise instead of fatigue in an environment similar to that
of the previous example, suppose that the DM has capacity K to process new informa-
tion every period. In particular, if partition Q was chosen in the previous period, then
the cost of learning P now is c(P|Q) = Hμ(P|Q), where, given a probability μ over S,
Hμ(P|Q) is the relative entropy of P with respect to Q. Note that Hμ(P|P ) = 0. That
is, while learning P initially costs Hμ(P ), learning P again in the subsequent period is
free. Thus, by changing his choice of information, the DM can gain expertise in one area
while losing it in another. ♦

The starkness of the examples above is useful in separating the notions of fatigue
and expertise, as we will analyze in Section 5. In general, however, ICPs can accommo-
date any dependence of the information constraint on the history of past information
choices and state realizations, and our identification result in Section 4 applies to this

consume time or physical resources and thus crowd out the completion of other essential tasks; those tasks
then have to be performed in consecutive periods, when they, in turn, crowd out further acquisition of
information.
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very general class of constraints. There are many ways to generalize the last two exam-
ples. One way is just to combine them, in which case fatigue and expertise are both
present and either may dominate. One could also accommodate partial expertise via
the cost function c(P|Q) = bHμ(P ) + (1 − b)Hμ(P|Q) for b ∈ (0, 1).

3. Representation with information choice processes

3.1 Domain

Let S be a finite set from which the payoff-relevant (objective) state realizes each period.
For any compact metric space Y , we denote by �(Y ) the space of Borel probability mea-
sures over Y , by F (Y ) the set of acts that map each s ∈ S to an element of Y , and by
K(Y ) the space of closed and nonempty subsets of Y .

There are T > 1 periods. Let C be a compact metric space representing consump-
tion. A one-period consumption problem is x1 ∈ X1 := K(F (�(C ))). It consists of a
menu of Anscombe–Aumann acts, each of which results in a state-dependent lottery
over instantaneous consumption prizes. Then the space of two-period consumption
problems is X2 := K(F (�(C × X1 ))), so that each two-period problem consists of a
menu of acts, each of which results in a lottery over consumption and a one-period
problem for the next period. Proceeding inductively, we define t-period problems as
Xt := K(F (�(C ×Xt−1 ))) for all t = 2, � � � , T . For any x, y ∈Xt , where t = 1, � � � , T , and
for any α ∈ [0, 1], we let αx+ (1 − α)y := {αf + (1 − α)g : f ∈ x, g ∈ y} ∈Xt .

Our domain XT consists of T -period dynamic choice problems (henceforth, choice
problems or menus). We analyze the DM’s preference relation � overXT .4

A consumption stream is a degenerate menu that does not involve choice at any
point in time. Let L1 := F (�(C )) and for each t > 1, define Lt := F (�(C ×Lt−1 )). Thus,
each 
 ∈Lt is an act that yields a state-dependent lottery over instantaneous consump-
tion and a length-(t − 1) continuation consumption stream (an 
′ ∈Lt−1).

The spaceXT subsumes some previously studied domains. For instance, if S is a sin-
gleton, XT reduces to the domain in Kreps and Porteus (1978), which is extended to an
infinite horizon in Gul and Pesendorfer (2004). The subspace of consumption streams,
where all choices are degenerate, is also a subspace of the (finite horizon version of the)
domain in Krishna and Sadowski (2014).

3.2 ICP representation

The DM chooses a partition in every period. Let P be the space of all partitions of S. The
DM’s choice of partition is constrained by an information choice process (ICP). Formally,
an ICP is a tuple M = (�, �, τ, θ0 ), where � is a set of subjective information states, the
mapping � :�→ 2P \∅ specifies the set of feasible partitions in any information state θ,
the transition operator τ : P ×�× S →� determines the transition of the information
state θ, given a particular choice of partition and the realization of an objective state, and

4We focus on the finite horizon for expositional clarity. Extending our model and results to the infinite
horizon is conceptually straightforward, but formally a bit involved.
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Figure 1. Time line.

θ0 is the initial information state. Let M be the space of ICPs. Note that the definition of
M does not take into account the finite horizon T , but it should be clear that for choice
fromXT , only the first T periods of an ICP are relevant.

In addition, let u be a real-valued, nonconstant, and continuous function on C, and
let δ ∈ (0, 1) be a discount factor.5 Let� be the transition operator for a Markov process
on S, where�(s, s′ ) =: πs(s′ ) is the probability of transitioning from state s to state s′, and
�(s, s′ )> 0 for all s, s′ ∈ S, i.e., the process is fully connected. It is notationally convenient
to let 0 /∈ S be an auxiliary state and to denote by π0 the unique invariant measure of �.

Our model suggests the following timing of events and decisions, as illustrated in
Figure 1. The DM enters a period facing a menu x ∈ Xt , while being equipped with a
prior belief πs over S and an information state θ. He first chooses a partition P ∈ �(θ).
For any realization of a cell I ∈ P , which includes the (previously determined) true state,
the DM updates his beliefs using Bayes’ rule to obtain πs(·|I ), and then chooses an act
f ∈ x. At the end of the period, the true state s′ is revealed and the DM receives the
lottery f (s′ ), which determines current consumption c and continuation menu y ∈Xt−1

for the next period. Concurrently, a new θ′ = τ(θ, P , s′ ) obtains and a new belief πs′ is
determined for the next period.

The DM’s objective is to maximize expected utility, which consists of a consumption
utility and the discounted continuation value, as we now define.

Definition 1. A preference � on XT has an ICP representation (u, δ,�, M) if there is
a collection of functions Vt : Xt × � × (S ∪ {0}) → R for t = 1, � � � , T , such that each Vt
satisfies

Vt(xt , θ, s)

= max
P∈�(θ)

∑
J∈P

[
max
f∈xt

∑
s′∈J

Ef (s′ )[u(c) + δVt−1
(
xt−1, τ

(
P , θ, s′

)
, s′

)]
πs

(
s′|J

)]
πs(J )

(1)

with V0 = 0, and VT (·, θ0, 0) represents �.

In the representation above, for each s′ ∈ S, f (s′ ) ∈ �(C ×Xt−1 ) is a probability mea-
sure over C ×Xt−1, so that Ef (s′ ) is the expectation over possible realizations (c, xt−1 ).
Note that t in the representation does not index the time period, but rather the number
of periods remaining until T .6

5For simplicity we assume that u is independent of the state s, but all our results can be extended to the
case of state-dependent utilities.

6One of the central properties of dynamic choice is dynamic consistency, which requires the DM’s ex post
preferences to agree with his ex ante preferences over plans involving the contingency in question. Because
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A dynamic information plan prescribes a choice of P ∈ �(θ) for each tuple (xt , θ, s)
(where s is the realized state in the previous period). Thus, an ICP describes the set of
feasible information plans available to the DM. Since �(θ) is finite, the representation
(1) implies that an optimal dynamic information plan exists.

Before proceeding, we discuss two restrictions that the ICP representation in Defini-
tion 1 imposes. First, observed preferences over menus are according to the stationary
(i.e., ergodic) distribution, π0, of the Markov process that governs the evolution of states.
This property is implied if preferences are stationary on the subdomain of consumption
streams, because the same beliefs are used for the evaluation of future consumption
acts (those acts that have no continuation values beyond their instantaneous payoffs in
a certain period), independently of the date of consumption.7 The interpretation is that
the DM does not learn the state in the period prior to the observed choice and aggre-
gates state-dependent preferences accordingly, using π0 as his prior belief. One could
instead assume that the DM does learn the realization of the state in the period prior
to his initial choice. Formally, this would simply mean replacing our primitive � with a
state-dependent family of initial preferences {�s }. Since induced preferences in future
periods are already state dependent, aggregated ex ante preferences can be thought of
as an expositionally convenient summary of state-dependent preferences starting in the
second period.8

Second, learning in our model is via partitions of the space of payoff-relevant states,
that is, signals are deterministic contingent on the true state. In general, signals could
be noisy, and since the state space is given, it is not without loss of generality to restrict
the class of permissible information structures. Deterministic signals are not essential
for our results, but for technical reasons we rely on the DM choosing from finite sets of
finite-valued information structures; while this finiteness can be imposed in a variety of
ways, partitional learning is a parsimonious way to achieve it.

3.3 Comparative informativeness of ICPs

As noted in Section 3.2, an ICP can be viewed as circumscribing the set of available dy-
namic information plans. We now show that the space of ICPs has a natural order.

our primitive is ex ante choice between menus, we cannot investigate dynamic consistency directly in terms
of behavior. However, our representation describes behavior as the solution to a dynamic programming
problem with state variables (xt , θ, s), so that implied behavior is dynamically consistent contingent on
those state variables. The new aspect is that the state θ is controlled by the DM and is not observed by the
analyst.

7Stationarity means that c � c′ if and only if for any c0 ∈ C, we have (c0, c) � (c0, c′ ), where c means
receiving c in every period (and in every state s) until T .

8Formally, if {�s } is a family of preference relations over XT−1, each of which admits a representation as
in (1), then our identification result applies to each such �s . To see how � can be used to summarize {�s },
note that � induces state-dependent preferences overXT−1 as follows. Say that x�s x′ if {fx} � {fx′ }, where
the act fx yields some arbitrary but fixed consumption c in all states s and for all future periods, except in
state s where it yields x as a continuation problem. In general, continuation preferences will depend on the
unobservable initial choice of information. To sidestep this complication, suppose that �(θ0 ) = {S}, so that
only the realization of the previous state is learned in the first period. Then {�s } will have a representation
as in (1), where the initial information state now depends on s.
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Partitions can be compared in terms of fineness, which coincides with Blackwell’s
comparison of informativeness. To extend this idea to ICPs, first consider only how two
ICPs M and M′ differ in the first period. Notice that as far as dynamic information plans
are concerned, all that matter are the partitions each ICP permits. This suggests the fol-
lowing one-period order: M one-period Blackwell-dominates M′ if for every P ′ ∈ �′(θ′

0 ),
there exists P ∈ �(θ0 ) such that P is finer than P ′.

In turn, this suggests a natural extension to two periods: M two-period Blackwell-
dominates M′ if for every P ′ ∈ �′(θ′

0 ), there exists P ∈ �(θ0 ) such that (i) P is finer than P ′
and (ii) for all s ∈ S and for everyQ′ ∈ �′(τ′(P ′, θ′

0, s)), there existsQ ∈ �(τ(P , θ0, s)) such
that Q is finer than Q′. Thus, for any information plan in M′, there is another plan in M

that is more informative in every period and state.
To extend our construction to more periods, we note that requirement (ii) above

amounts to the continuation ICP (�, τ(P , θ0, s), �, τ) one-period Blackwell-dominating
(�′, τ′(P , θ′

0, s), �′, τ′ ). Similarly, we inductively define an order extending Blackwell
dominance to t periods, whereby one ICP t-period Blackwell-dominates another if for
each information plan from the latter, there is another plan from the former that is more
informative in the first period and, for any state realization s in the first period, leads to
a more informative (t − 1)-period plan starting in the second period.

To illustrate, consider two ICPs, M and M′, for which the left and right panels of
Figure 2 display the respective first two periods. Both ICPs allow the DM to commit at
the outset to learn either partition P orQ for two successive periods, where P andQ are
not ordered in terms of fineness. In the left panel (depicting M) the DM can alternatively
postpone the choice of partition until the second period—at the cost of not learning
anything (i.e., learning {S}) in the first period. It follows that M two-period Blackwell-
dominates M′, but not vice versa. To see this, note that every two-period information
plan available on the right is also feasible on the left, while only the constraint on the
left allows the following plan: Pick {S} in the first period, wait for the second-period
consumption problem to realize, and then choose one of the partitions P orQ.

As another example, consider two of the ICPs introduced in Example 3: Mi for
i = a, b, which differ only in the costs of acquiring information, that is, they can be
parametrized by (K, κ, ci ). It is easy to see that Ma one-period Blackwell-dominates Mb

if and only if ca ≤ cb (i.e., ca(P ) ≤ cb(P ) for all P ∈ P ). Similarly, Ma t-period Blackwell-
dominates Mb if and only if ca ≤ cb.

The t-period Blackwell order is reflexive and transitive. We say that M strictly t-
period Blackwell-dominates M′ if M t-period Blackwell-dominates M′, but not vice

Figure 2. Two-period ICPs, M and M′.



538 Dillenberger, Krishna, and Sadowski Theoretical Economics 18 (2023)

versa, and that they are t-period Blackwell equivalent if each dominates the other. Two
Blackwell equivalent ICPs may differ because dominated information plans may be per-
mitted by one but not the other. In addition, two ICPs that dominate each other may
differ in terms of the parameters (�, �, τ, θ0 ), but in Appendix A.3 we introduce the
space of canonical ICPs, which abstracts from this arbitrariness in the parametriza-
tion. Blackwell dominance is consistent across periods in the sense that if M strictly t-
period Blackwell-dominates M′, then for t ′ > t, M′ cannot (weakly) t ′-period Blackwell-
dominate M (see Lemma 3). We can, thus, define the dynamic Blackwell order over
the space of ICPs as follows: M dominates M′ in the dynamic Blackwell order if, for all
t ∈ N, M t-period Blackwell-dominates M′. It is important to note that M and M′ may
be t-period Blackwell equivalent for all t ≤ T , even though M dynamically Blackwell-
dominates M′. As a consequence, we will be able to identify the ICP only up to T -period
Blackwell equivalence.

Greenshtein (1996) provides another dynamic extension of the static Blackwell or-
der that is further analyzed in de Oliveira (2018). That extension compares (state-
dependent) sequences of signals and so does not take into account information choice
as we do. That our approach is well suited to our problem is demonstrated by our main
identification result, Theorem 1, in the next section.

4. Unique identification

Our main result states that all the parameters of our model are, essentially, uniquely
identified.

Theorem 1. Let (u, δ,�, M) be an ICP representation of �. Then the function u is unique
up to a positive affine transformation, δ and � are unique, and M is unique up to T -
period Blackwell equivalence.9

All the results in this section are proved in Appendix C. On the subdomain LT , VT
satisfies independence (that is, for any 
, 
′, 
̂ ∈LT and any α ∈ (0, 1), 
� 
′ if and only if
α
+ (1 − α)
̂� α
′ + (1 − α)
̂) as it is independent of M, and is thus completely charac-
terized by the parameters (u, δ,�). By adapting the arguments in Krishna and Sadowski
(2014, Corollary 5), it can be shown that such a representation on LT is unique up to the
addition of constants and a common scaling of u. Our challenge is to identify the ICP
M. In Section 4.1 we discuss our identification strategy.

An immediate benefit of identifying all the parameters is that it allows a meaningful
comparison of decision makers. The next result demonstrates that dynamic Blackwell
dominance plays the same role in our environment as does Blackwell dominance in a
static setting.

Consider two decision makers with preferences � and �†, respectively. We say that �
has a greater affinity for dynamic choice than �† if for all x ∈X and 
 ∈L, x�† 
 implies

9In other words, for any additional representation of � with parameters (u†, δ†,�†, M† ), it is the case
that δ† = δ, �† = �, u† = au + b for some a > 0 and b ∈ R, and M and M† dominate each other in the
T -period Blackwell order.
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x� 
.10 The comparison in the definition implies that � and �† have the same ranking
over consumption streams in LT .11 While consumption streams require no choice of
information, a typical choice problem xmay allow the DM to wait for information to ar-
rive over multiple periods before making a choice. This option should be more valuable
the more information plans the DM’s ICP renders feasible. The uniqueness established
in Theorem 1 allows us to formalize this intuition.

Proposition 1. Let (u, δ,�, M) and (u†, δ†,�†, M† ) be ICP representations of � and
�†, respectively. The preference � has a greater affinity for dynamic choice than �† if and
only if �=�†, δ= δ†, u and u† are identical up to a positive affine transformation, and
M T -period Blackwell-dominates M†.

Proposition 1 connects a behavioral comparison of preferences to dynamic Black-
well dominance of ICPs, which is independent of preferences, and, hence, of utilities
and beliefs. This indicates a duality between our domain of choice and the information
constraints that can be generated by ICPs, a theme we will formalize and use repeatedly
in the subsequent sections. A useful corollary of Proposition 1 is the following charac-
terization of the dynamic Blackwell order: M T -period Blackwell-dominates M† if and
only if every discounted expected utility maximizer facing an arbitrary T -period menu
prefers to have the ICP M instead of M†.12

4.1 Intuition for identification of the ICP

We now illustrate the main idea behind the identification of the ICP. To simplify matters,
suppose for the rest of this section that consumption is in the set C = [0, 1] and u is
strictly increasing, with u(0) = 0 and u(1) = 1. Rather than providing a general, more
abstract intuition, we will base our discussion first on a static example, and then on an
ICP that allows nontrivial information acquisition only in the first two periods; the same
ideas extend to any finite horizon.

We start with identification in the static setting. For each J ⊂ S, define the simple act
f1,J by

f1,J(s) :=
{

(1, 1) if s ∈ J
(0, 0) if s /∈ J,

where, as before, c means receiving c ∈ C in every period until T , independently of the
state. To test if the DM is able to learn some partition that is weakly finer than P , con-
sider the menu x1(P ) := {f1,J : J ∈ P }. Contingent on cell J ∈ P , the act f1,J delivers

10This definition is the analogue of notions of “greater preference for flexibility” in the dynamic settings
of Higashi, Hyogo, and Takeoka (2009) and Krishna and Sadowski (2014).

11That is, 
� 
′ if and only if 
�† 
′ for all 
, 
′ ∈L. This follows from Lemma 34 in Appendix F of Krishna
and Sadowski (2014), and since both � and �† satisfy independence on LT .

12This result thus generalizes the seminal characterization of the standard Blackwell order for partitions,
according to which P is finer than Q if and only if every decision maker prefers P to Q regardless of the
(static) choice problem.
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permanent consumption 1 with certainty. Therefore, upon learning a cell in a parti-
tion Q that is weakly finer than P , the optimal consumption strategy will guarantee the
same consumption, so that V1(x1(P );Q) = 1 = V1(x1(P ); P ). Conversely, ifQ is not finer
than P , then with positive probability, the DM will learn a cell I that is not a subset of
any J ∈ P . In that case, any choice of act from x1(P ) will generate consumption 0 with
positive probability, and, hence, V1(x1(P );Q)< 1 = V1(x1(P ); P ).

To extend this intuition to two periods, recall the two ICPs, M and M′, respectively,
in the left and right panels of Figure 2 (Section 3.3). Suppose the analyst believes the
DM’s information constraint is either M or M′. How can she verify it is M and not
M′? To answer this, consider the act f2,{S}(s) := (1, Unif{x1(P ), x1(Q)}) and the menu
x2({S}, M) = {f2,{S}}. Note that x2({S}, M) requires no choice in the first period, but in-
stead offers the bet Unif{x1(P ), x1(Q)} that provides choice from either x1(P ) or x1(Q)
in the second period. To guarantee consumption of 1, the DM must, therefore, have the
option to choose in the second period whether to learn (at least) P or Q, which is not
feasible under M′. Therefore, V2(x2({S}, M); M) = 1> V2(x2({S}, M); M′ ).

To fully identify M, we also need to distinguish it from ICPs other than M′. For in-
stance, to test whether the DM can learn the partition P twice in a row, let f2,J be the
act that pays f2,J(s) = (1, x1(P )) if s ∈ J and (0, 0) otherwise, and define the two-period
choice problem x2(P ) := {f2,J : J ∈ P }. An analogous construction for learningQ twice in
a row yields x2(Q). It is easy to see that for any y ∈ {x2(P ), x2(Q), x2({S})}, V2(y, M) = 1.
Moreover, for any ICP M′′, we have that M′′ dynamically Blackwell-dominates M if and
only if V2(y; M′′ ) = 1 for all y ∈ {x2(P ), x2(Q), x2({S})}. In essence, each such y amounts
to a betting game, where in each period the DM is told a random and history-dependent
partition and is asked to bet on the correct event in it to receive payoff 1 and stay in
the game, rather than exiting the game and receiving 0 indefinitely. Such a betting
game generates the same value as a constant stream of 1 if and only if the DM can
learn the relevant partition in each period. We will say that the collection of menus
{x2(P ), x2(Q), x2({S})} is aligned with the ICP M.

Indeed, an analogous construction of an aligned set of menus is possible for any ICP,
as we demonstrate in Section 4.2 below, where we show that the intuition for identifica-
tion above is a special case of the general result on aligned menus in Proposition 2.

Consider, finally, two ICPs that do not T -period Blackwell-dominate each other, and
the two corresponding sets of betting games. At least one of the two sets contains a game
in which it will be possible to stay until T with certainty under the ICP the set is aligned
with (generating the same value as consuming 1 until T ) but not under the other ICP
(generating a lesser value). In other words, the ICP in our model is identified up to the
horizon T and up to T -period Blackwell dominance.

4.2 Aligned menus

We now describe a duality between ICPs and a class of simple choice problems, which
we call aligned menus. Aligned menus play a central role in our identification technique.
To understand the intuition behind such menus, let us consider one-period problems.
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Fix a partition P . For each cell J ∈ P , define

f1,J,P (s) :=
{
c+ if s ∈ J
c− otherwise

and x1(P ) := {f1,J,P : J ∈ P },

where c+ and c− are, respectively, a u-best and a u-worst consumption choice. Notice
that the menu x1(P ) consists only of acts that are binary-valued. Moreover, f1,J,P , and
hence x1(P ), do not depend on any other features of the utility function u.

The menu x1(P ) represents a collection of bets such that any individual who has
access to any partition at least as fine asP will be able to choose the act that gives him the
highest payoff. In other words, any individual with the partition P or finer, when faced
with x1(P ), effectively faces no uncertainty at all, as if he were able to make omniscient
bets where he knows the payoff-relevant events before choosing an act.

We can extend this construction, recursively, for ICP M = (�, �, τ, θ) and partition
P ∈ �(θ). To start, let x1(P , M) = x1(P ). Let c denote the consumption stream that pro-
vides c ∈ C in every period until T , independently of the state, and for P ∈ �(θ0 ) and
t > 1 recursively define

�t−1(P , M, s) := {
xt−1(Q, M) :Q ∈ �(

θ′), θ′ = τ(θ, P , s)
}

and

ft,J,P (s) :=
{

Unif
((
c+,�t−1(P , M, s)

))
if s ∈ J

c− otherwise,

where Unif(·) denotes the uniform distribution over a set. Let

xt(P , M) = {ft,J,P : J ∈ P } ∈Xt .
Just as with the one-period menu x1(P ), the menu xt(P , M) represents a collection

of multi-period bets such that any individual who has access to the ICP M, or any ICP
that Blackwell-dominates it for the remaining t − 1 periods following the choice of P in
the first period, again faces no uncertainty at all and can bet as if he were omniscient.13

Let

MP := {
(P , M) ∈ P × M : M = (�, �, τ, θ0 ), P ∈ �(θ0 )

}
denote an ICP with an initial feasible choice of partition. Note that xT (P , M) defines a
mapping xT : MP →XT , which is an embedding of MP inXT . There is a similar embed-
ding of any t-period ICP with initial choice of partition intoXt .

Define now the mapping ϕT : M → 2XT whereby

ϕT (M) := {
xT (P , M) : M = (�, �, τ, θ0 ), P ∈ �(θ0 )

}
.

13Instead of the uniform lotteries in the construction of ft,J,P , the realization of the state s ∈ J itself could
be used for randomization. However, since for three or more states the cardinality of P exceeds that of S,
and hence of J ∈ 2S , additional randomization in the form of lotteries may be needed for full identification
of the ICP.
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Given an ICP M = (�, �, τ, θ0 ), we say that M and ϕT (M) are aligned. For partition
P ∈ �(θ0 ), we also say that (P , M) and xT (P , M) are aligned. Let VT (y, θ0, 0; M) be the
value of menu y under ICP M as in the representation (1). (For ease of notation, we will
often suppress the arguments θ0 and auxiliary state 0, and write this value as VT (y; M).)
Notice that fixing (u, δ,�), each M ∈ M defines a functional on XT . Conversely, each
y ∈XT defines a functional on M, both via the evaluation functional VT . The following
result formalizes our notion of alignment.

Proposition 2. For any (P , M), (P ′, M′ ) ∈ MP ,

VT
(
xT (P , M); M

) = VT
(
c+; ·) ≥ VT

(
xT

(
P ′, M′); M

)
.

Furthermore, the inequality is satisfied with equality for all P ′ with (P ′, M′ ) ∈ MP if and
only if M T -period Blackwell-dominates M′.

The proposition makes alignment in the sense of duality precise: for each (P , M) ∈
MP there is a minimal menu (a menu where the payoff in every state is either c+ or
c−), namely xT (P , M), that gives the DM the highest possible payoff. To see the duality
between P and x1(P , M) = x1(P ) in the static setting, notice that the following relation-
ships hold:

• V1(x1(P ); P ) = V1(c+; ·)
• V1(x1(P ); P ) ≥ V1(y1; ·) for all y1 ∈X1

• V1(x1(P ); P ) ≥ V1(x1(P );Q) for all partitions Q, with an equality if and only if Q is
finer than P .

4.3 Inference from limited data

Our identification strategy suggests that inference about the ICP can be made from a
small number of observations. In particular, inference benefits from three of its features.
First, identification of the ICP is (almost) independent of the other preference parame-
ters, as it only uses the best and worst outcomes c+ and c− (1 and 0 in the example
discussed in Section 4.1).

Second, while identification of the ICP relies on randomization over continuation
problems, the exact probabilities used in this randomization are not important; for ex-
ample, we could replace the uniform distribution in the proof of Theorem 1 with any
distribution with the same support (see footnote 13).

Finally, Proposition 2 implies that it only takes finitely many comparisons to deter-
mine whether or not the DM’s ICP T -period Blackwell-dominates a particular ICP M′,
and the number of comparisons required is |{(P ′, M′ ) : (P ′, M′ ) ∈ MP }| (i.e., the number
of feasible first-period partitions available in M′). Furthermore, to verify whether the
DM can follow a particular information plan, the analyst need only observe one appro-
priate binary choice—between the best consumption stream and a choice problem that
is strongly aligned with the plan in question. For instance, to establish as a lower bound
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whether the DM is able to follow the information plan that chooses {S} in the first period
and from {P ,Q} in the second period, as in the ICP M in Figure 2, it is enough to offer the
DM a choice between the betting game x2({S}, M) and the consumption stream 1. In-
difference is observed if and only if the DM can follow that information plan (or a more
informative one). The last observation, in particular, can be useful in many applications.
The example of job screening in Section 5.2 serves as an illustration.

5. Characterizing expertise and fatigue

In this section, we formally define and behaviorally characterize the notions of exper-
tise and fatigue we described in Sections 1 and 2, making use of the concept of aligned
menus from Section 4.2 and, in particular, Proposition 2.

5.1 Behavioral characterization

Roughly speaking, fatigue occurs when the ability to learn decreases with previous
choice of information. Given ICP M = (�, �, τ, θ0 ) for which (P1, s1, � � � , Pt ) is part of an
information plan that is undominated, we abuse notation and write �(P1, s1, � � � , Pt , st )
to denote the ICP that the DM faces after the realizations of states (s1, � � � , st ) and the
choice of partitions (P1, � � � , Pt ). We write Q ∈ �(P1, s1, � � � , Pt , st ) if that continuation
ICP allows the choice of partitionQ next. We formally define fatigue as follows.

Definition 1. ICP M displays pure fatigue if for any t and sequence of states (s1, � � � , st ),
and any two sequences of partitions (P1, � � � , Pt ) and (P ′

1, � � � , P ′
t ), where (i) Pt ′ Blackwell-

dominates P ′
t ′ for all t ′ ∈ {1, � � � , t}, and (ii) (P1, s1, � � � , Pt , st ) and (P ′

1, s1, � � � , P ′
t , st ) are

each part of information plans that are undominated in M, the following statement
holds: If Q ∈ �(P1, s1, � � � , Pt , st ), then there is Q′ ∈ �(P ′

1, s1, � � � , P ′
t , st ) that Blackwell-

dominatesQ.

The ICPs in Examples 2 and 3 display pure fatigue. In both examples, only the infor-
mation choice of the previous period matters for the information constraint. For Exam-
ple 2, comparing two histories of information choices as in the definition, (P1, � � � , Pt )
and (P ′

1, � � � , P ′
t ), there are three relevant cases: (i) Pt and P ′

t are not trivial and both
make subsequently learning any nontrivial Q impossible; (ii) both Pt and P ′

t are trivial,
Pt = P ′

t = S, and any partition can subsequently be learned; (iii) P ′
t is trivial, but Pt is not,

in which caseQ can be learned after (P ′
1, � � � , P ′

t ), but not after (P1, � � � , Pt ). In Example 3,
if Pt Blackwell-dominates P ′

t , then it incurs a higher entropy cost and, hence, leads to a
weakly tighter information constraint in the next period.

Turning to expertise, we first introduce some notation. For any state s and partition
P , denote by Ps the cell in P that contains s. Let ϒ(P ) = {(s, s′ ) ∈ S × S : Ps = P ′

s}, that is,
the set of all pair of states that are indistinguishable under P . Intuitively, ϒ(P ) measures
the ignorance of the agent with partition P , and the larger it is, the more ignorant the
agent is: If ϒ(P ) ⊂ ϒ(P ′ ), then P ′ is a coarsening of P and the agent is more ignorant
with partition P ′ than with P . More generally, the difference ϒ(P ′ ) − ϒ(P ), which we
refer to as the new information of P over P ′, collects all the pairs between which P can
distinguish while P ′ cannot, even if the latter is not a coarsening of the former.
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Definition 2. ICP M displays pure expertise if for any t, any given sequence of parti-
tions and states (P1, s1, � � � , Pt , st ) that is part of an undominated information plan in
M, and any partitions Q and Q′ with ϒ(Pi ) − ϒ(Q) ⊃ ϒ(Pi ) − ϒ(Q′ ) for all i ≤ t, if Q ∈
�(P1, s1, � � � , Pt , st ), then there isQ′′ ∈ �(P1, s1, � � � , Pt , st ) that Blackwell-dominatesQ′.

To see the intuition behind the definition, suppose that t = 2 and the DM needs
to choose between learning Q and learning Q′, neither of which dominates the other.
Which one will be “easier” to learn depends on how much information those two parti-
tions contain that is not also contained in P1, measured by the differences between the
corresponding ϒ sets; the smaller the difference, the easier it is for the DM to exploit the
expertise he obtains from previously leaning P1. In the extreme case where Q′ = P1, the
DM can automatically afford learningQ′.

The ICPs in Examples 1 and 4 display pure expertise. In Example 1, given the re-
alized sequence of partitions and states (P1, s1, � � � , Pt , st ), the continuation constraint
allows choosing one of a fixed number of refinements of the meet of P1, � � � , Pt . Clearly,
if ϒ(Pi ) − ϒ(Q) ⊃ ϒ(Pi ) − ϒ(Q′ ) for all i ≤ t, then if Q can be learned, so can Q′. In Ex-
ample 4, similar reasoning applies, but here only the last partition, Pt , matters for the
availability ofQ versusQ′.

In general, expertise and fatigue may occur simultaneously. For instance, fatigue
may always occur, but may be overcompensated, fully compensated, or partially com-
pensated by expertise when information is similar between periods; the extent to which
expertise and fatigue interact depends on the particular ICP. In the definitions above,
“pure fatigue” implies that expertise can never overcompensate fatigue and “pure exper-
tise” implies that fatigue cannot overcompensate expertise. Those definitions, therefore,
allow us to focus on the clear cut cases where either expertise or fatigue must be occur-
ring.

We now characterize pure fatigue and pure expertise in terms of behavior. To this
end, it is useful to consider menus that can be described via an ICPs they are aligned
with. In what follows, we rely on the labels introduced in Definitions 1 and 2, respec-
tively. Turning first to fatigue, let M∗ be an ICP that allows initially learning the se-
quence (P1, s1, P2, � � � , Pt , st ,Q) followed by the coarsest partition {S} forever thereafter.
Let M′ allow initially learning the sequence (P ′

1, s1, � � � , P ′
t ), and construct M′′ from M′ by

adding the option to continue the sequence (P ′
1, s1, � � � , P ′

t , st ) with learning Q and then
nothing thereafter. Note that this option may be dominated by some option already
available under M′.

Proposition 3. Suppose the preference � has an ICP representation. Then � displays
pure fatigue if and only if for all M∗, M′, and M′′ as defined above, xT (P1, M∗ ) ∼ c+
and xT (P ′

1, M′′ ) � c+ imply that either (i) xT (P ′
1, M′ ) � c+ or (ii) there is M′′′ that strictly

dominates M′ following the choice of partition P ′
1 with xT (P ′

1, M′′′ ) ∼ c+.

The proofs of all the results in this section are provided in Appendix D. In essence, if
(P ′

1, M′′ ) is not a feasible strategy, then neither is (P ′
1, M′ ) and, hence, xT (P ′

1, M′ ) cannot
be in the set of menus that is strongly aligned with the true ICP M.
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Turning to pure expertise, let M∗ be as above, but now let M′ allow initially learning
the sequence (P1, s1, � � � , Pt ) and construct M′′ from M′ by adding the option to continue
the sequence (P1, s1, � � � , Pt , st ) with learningQ′ and then nothing thereafter.

Proposition 4. Suppose the preference � has an ICP representation. Then � displays
pure expertise if and only if xT (P1, M∗ ) ∼ c+ and xT (P1, M′′ ) � c+ imply that either
(i) xT (P1, M′ ) � c+ or (ii) there is M′′′ that strictly dominates M′ following the choice of
partition P ′

1 with xT (P1, M′′′ ) ∼ c+.

In the context of the proposition, betting on Q is more familiar than betting on Q′
after previously betting on (P1, s1, � � � , Pt , st ), and according to the proposition, the DM
will thus weakly prefer to bet on Q. More generally, expertise can lead to a “locked-in”
phenomenon, where the DM is reluctant to switch away from familiar choice problems,
even in favor of options that are deemed superior in the absence of familiarity.14

5.2 An example of job screening

We now illustrate how expertise and fatigue can influence behavior in a simple two-
period example of job choice, and how this can be used by an employer to successfully
screen candidates for different kinds of tasks.

Consider a two-dimensional state space, S := H × V, with vertical component V :=
{u, d} and horizontal component H := {
,m, r}. Suppose again that u(1) > u(0), and
simplify notation by writing fJ instead of f1,J,P for the act that pays 1 on event J ⊂ S and
0 otherwise.

There are three types of individuals who differ in their two-period ICPs.

Type I. The first group consists of individuals who are able to concentrate and per-
form very highly over a short period of time, after which some rest (or play) is
needed. In our model, this can be captured by agents being able to learn the state
perfectly in any one period, but subsequently needing a period without learning
anything, as in Example 2; see Figure 3. These individuals display pure fatigue
according to Definition 1.

Figure 3. ICP for Type I individuals.

14It has been argued that home bias in portfolio choice among investors who manage their own port-
folio (rather than use index funds) is driven by informational advantages; see Coeurdacier and Rey (2013).
Evidence that this bias persists in favor of the old home even after a move to a new location (see Massa and
Simonov (2006)) nicely illustrates this locked-in phenomenon.
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Figure 4. ICP for Type II individuals.

Type II. The second group engages in “learning by doing.” In our model, this can be
captured by agents who can gain the expertise to precisely identify the h compo-
nent of the state by first coarsely learning the h component in the previous period,
in line with Example 1; see Figure 4. These individuals display pure expertise in the
sense of Definition 2.

Type III. The third group describes the generalists: individuals who have broad but
limited skills. In our model, this can be captured by agents who can learn a bi-
partition of either V or H in any period, independent of the previous information
choice; see Figure 5. These agents display neither fatigue nor expertise.

Note that none of these three ICPs can be ranked in terms of the dynamic Blackwell
order.

Consider a firm that wants to hire employees for three different types of jobs. Each
job requires making different types of (possibly trivial) decisions in the two periods; the
correctness of decisions is measurable in S. Suppose the firm offers performance wages:
it rewards correct decisions by paying 1 and does not reward wrong decisions.

• Managers must make one fully informed decision, which is equally likely to occur in
either period 1 or 2, but not both. The performance wageM for this job corresponds
to a uniform lottery over two two-period problems15

M = Unif
{(

{fs }s∈S , 1
)
,
(
1, {fs}s∈S

)}
.

• Engineers are concerned only with the vertical dimension (V) and must make a
coarse binary decision in period 1 followed by a precise decision in period 2, such
that their performance wage amounts to the two-period problem

E = (
{f
, f{m,r}}, {f
, fm, fr }

)
.

• Administrators are presented each period with a binary decision that may depend
on either the V or the H dimension, but not on both, such that their performance

Figure 5. ICP for Type III individuals.

15Recall that 1 represents the constant act that always pays 1 and 1 denotes the constant stream that
pays 1 in each of the two periods.



Theoretical Economics 18 (2023) Subjective information choice processes 547

wage amounts to the two-period problem

A= (
Unif

{
{fu, fd }, {f
, f{m,r}}

}
, Unif

{
{fu, fd }, {f
, f{m,r}}

})
.

These performance wages will allow the firm to perfectly screen individuals for the
respective positions, as individuals of Type I select management positions, where they
always make the correct decision,16

M ∼I 1 �I E,A,

while individuals of Type II choose to become engineers,17

E ∼II 1 �II M ,A,

and Type III individuals opt to become administrators

A∼III 1 �III M , E.

While screening models where types are ordered (say by the value of a single param-
eter) have nice properties, solving multi-dimensional screening models where types are
not naturally ranked is more difficult and often does not provide robust insights. While
ICPs can be very complicated (high-dimensional objects), the example in this section
illustrates that there is an analogy between the inequalities that derive lower bounds on
the information an individual can process from their valuation of aligned menus and
the collection of incentive compatibility constraints that can be used to screen different
ICPs.

6. Related literature

There are negative results in the econometric literature about the identifiability of sub-
jective Markov decision processes. For instance, Rust (1994) and Magnac and Thes-
mar (2002) show that in a general Markov decision processes, where utilities depend
on the Markov state and choice affects the stochastic evolution of that state, observing
(stochastic) choice is insufficient to identify the evolution of shocks or other parameters
of the model. The latter proceed to provide structural assumptions that allow identifica-
tion. More recently, Hu and Shum (2012) provide structural assumptions under which
it is possible to identify a Markov process with a discrete set of unobservable state vari-
ables from panel choice data under the maintained assumption that all control variables

16To see how this behavior aligns with the prediction of Proposition 3, let M∗ be the ICP in Figure 3,
with P1 = {s}s∈S and Q = {S}, and let M′ be the ICP in Figure 4 with P ′

1 = {
, {m, r}}, so that P1 Blackwell-
dominates P ′

1. Note that M′′ is again just the ICP in Figure 4, as Q is dominated by {
,m, r}. We have
x2(P1, M∗ ) =M ∼I 1 and x2(P ′

1, M′′ ) �I 1, but trivially also x2(P ′
1, M′ ) =E �I 1.

17To see how this behavior aligns with the prediction of Proposition 4, let M∗ be the ICP in Figure 4, with
P1 = {
, {m, r}} andQ= {
,m, r}, let M′ be the ICP in Figure 5, and letQ′ = {{
,m}, r}. Then M′′ is the ICP in
Figure 5 with the addition that learningQ′ is now possible following P1. Note that x2(P1, M∗ ) = E ∼I 1 and
x2(P1, M′′ ) �I 1, but also x2(P1, M′ ) =A�I 1.
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are observable by the analyst, as, for instance, in the job matching model of Miller (1984)
or the real option (optimal stopping) problem in Pakes (1986).

Recall that the Markov state in our model is (x, θ, s). In some sense, our identifica-
tion problem is more ambitious than those mentioned above, because we have unob-
servable control variables: θ cannot be observed by the analyst, and the set of available
information choices given θ as well as the transition of θ as a function of the informa-
tion choice are both unknown. Crucially for us, the set of available observable actions in
Markov state (x, θ, s) depends only on x, and the analyst can effectively observe choice
from all possible continuation problems for the same combination of s and θ. This con-
trasts with the aforementioned econometric literature where the analyst does not have
access to a rich set of trade-offs at a given state. For instance, even though in Magnac
and Thesmar (2002) the evolution of the Markov state is observable by the analyst, the
distribution of (independent and identically distributed (iid)) taste shocks cannot be
identified because the DM always has the same set of actions to choose from. Simi-
larly, in Rust (1994), the set of feasible actions is completely determined by the Markov
state and, therefore, precludes observations from a rich set of continuation problems in
a given Markov state. It is this ability to observe choices from a rich set of alternatives at
any state that is essential for identification. We note that this feature is orthogonal to the
fact that we consider deterministic ex ante menu choice instead of choice frequencies
over time. That in principle it may be possible to make inferences about unobserved
random variables either by looking at choice frequencies from enough choice sets or
by looking at ex ante menu choice was first observed in a static context by Gul and Pe-
sendorfer (2006).

In the decision theoretic literature, de Oliveira, Denti, Mihm, and Ozbek (2017) pro-
vide an identification result for static information constraints in the face of subjective
uncertainty.18 A dynamic extension of their model, in which the DM faces the same
information constraint each period (independent of past information choices), corre-
sponds to an ICP representation where the ICP M has a degenerate (singleton) subjec-
tive state space �= {θ0}. Since this representation is a special case of the ICP represen-
tation, our identification result obviously applies. In fact, identifying this representation
does not rely on continuation choice problems in periods t > 1. To see this, recall that
the parameters (u, δ,�) can be identified from preference over consumption streams

 ∈ LT . Further note that, as in de Oliveira et al. (2017), identifying the fixed set of par-
titions up to Blackwell equivalence requires nontrivial choice only in one period, for
instance, in t = 1.

Krishna and Sadowski (2014) identify the subjective flow of information in a dynamic
model in which the DM is uncertain about a subjective state, but takes the flow of infor-
mation as given, rather than facing a constrained choice. Their recursive domain con-
sists of acts that yield a menu of lotteries over consumption and a new act for the next
period. When all menus are degenerate, their domain reduces to the set of consump-
tion streams LT , as does ours. The key difference between the two domains lies in the

18de Oliveira et al. (2017) permit more general information structures than partitions and also allow for
explicit costs of acquiring information.
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timing of events: Instead of acts over menus of lotteries as they do, we consider menus
of acts over lotteries, which are appropriate for our dynamic extension of de Oliveira
et al. (2017). Finally, Piermont, Takeoka, and Teper (2016) identify a different type of dy-
namic information constraint, where a decision maker learns about his uncertain, but
time invariant, consumption taste (only) through consumption.

The decision theoretic literature has also provided testable behavioral foundations
for models related to ours. In a static environment, Dillenberger, Lleras, Sadowski, and
Takeoka (2014) show that uncertainty about future beliefs about the objective state of
the world corresponds to preference for flexibility over menus of acts. de Oliveira et al.
(2017) model subjective uncertainty that is not fixed but a hidden choice variable by
replacing the independence axiom in Dillenberger et al. (2014) with aversion to ran-
domization. In a dynamic context, Krishna and Sadowski (2014) provide axioms for the
model where the flow of information about the subjective state of the world is taken
as given by the DM. In a companion paper, Dillenberger, Krishna, and Sadowski (2021)
build on this literature to provide an axiomatic foundation for a fully recursive infinite
horizon extension of our model, where the DM controls the flow of information over
time. Due to the intertemporal information constraint, preferences are interdependent
across time and do not satisfy the stationarity assumptions of Krishna and Sadowski
(2014). To deal with this complication, Dillenberger, Krishna, and Sadowski (2021) rely
on a recursive application of their axioms, which can be compared to standard station-
arity assumptions: Stationarity requires instantaneous and continuation preferences to
be identical, while the recursive axiomatization merely requires them to be of the same
class. Importantly, since the Markov state in our model is not directly observable, the ax-
iomatization must be based on inferring this state from preferences. Loosely speaking,
this relies on the identification strategy developed in this paper, which can be extended
to the infinite horizon.

Appendix A: Preliminaries

Appendix A.1 describes the relevant metric on the space of probability measures. Ap-
pendix A.2 describes our (recursive) domain of finite horizon dynamic choice prob-
lems. Appendix A.3 describes canonical ICPs and shows that every ICP is isomorphic
to a canonical ICP.

A.1 Metrics on probability measures

Let (Y , dY ) be a metric space and let �(Y ) denote the space of probability measures
defined on the Borel σ-algebra of Y . For a function ϕ ∈ R

Y , the Lipschitz seminorm is
defined by ‖ϕ‖L := supy �=y ′ |ϕ(y ) − ϕ(y ′ )|/dY (y, y ′ ) and the supremum norm is ‖ϕ‖∞ :=
supy |ϕ(y )|. This allows us to define the bounded Lipschitz norm ‖ϕ‖BL := ‖ϕ‖L + ‖ϕ‖∞.

Then BL(Y ) := {ϕ ∈R
Y : ‖ϕ‖BL <∞} is the space of real-valued, bounded, and Lipschitz

functions on Y .
For α, β ∈ �(Y ), define dD(α, β) := 1

2 sup{|∫ ϕdα− ∫
ϕdβ| : ‖ϕ‖BL ≤ 1}, which is the

Dudley metric on �(Y ). Theorem 11.3.3 in Dudley (2002) says that for separable Y , dD
induces the topology of weak convergence on �(Y ). The role of the factor 1

2 is solely to
ensure that for all α, β ∈ �(Y ), dD(α, β) ≤ 1.
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A.2 Recursive domain

LetX1 := K(F (�(C ))) be the space of menus of acts that pay out lotteries over C. Intu-
itively,X1 consists of all one-period Anscombe–Aumann (AA) choice problems. For acts
f 1, g1 ∈ F (�(C )), define the metric d(1) on F (�(C )) by d(1)(f 1, g1 ) := maxs dD(f 1(s),
g1(s)) ≤ 1. For any f 1 ∈ F (�(C )) and x1 ∈X1, the distance of f 1 from x1 is d(1)(f 1, x1 ) :=
ming1∈x1

d(1)(f 1, g1 ) (where the minimum is achieved because x1 is compact).

Define the Hausdorff metric d(1)
H onX1 as

d(1)
H (x1, y1 ) := max

{
max
f 1∈x1

d(1)(f 1, y1
)
, max
g1∈y1

d(1)(g1, x1
)} ≤ 1.

Now define recursively, for t > 1,Xt := K(F (�(C×Xt−1 ))). The metric on C×Xt−1

is the product metric, that is, dC×Xt−1 ((c, xt−1 ), (c′, x′
t−1 )) = max[dC(c, c′ ), d(t−1)(xt−1,

x′
t−1 )]. This induces the Dudley metric on �(C ×Xt−1 ).

We then define the distance between any two acts f t , gt ∈ F (�(C × Xt−1 )) as
d(t )(f t , gt ) := maxs dD(f t(s), gt(s)) and the Hausdorff metric d(t )

H onXt as

d(t )
H (xt , yt ) := max

{
max
f t∈xt

d(t )(f t , yt), max
gt∈yt

d(t )(gt , xt)}.

Here,Xt consists of all t-period AA choice problems. The agent faces a menu of acts that
pay off in lotteries over consumption and (t − 1)-period AA choice problems that begin
the next period. Setting t = T gives us the domainXT .

A.3 Canonical information choice processes

As mentioned in Section 3.3, in terms of behavior, all that is relevant about the ICP M

is the set of partitions that are available at each moment in time. We, therefore, identify
ICPs that permit the same choice of partition after every history as indistinguishable
(see below), which allows us to (pseudo-) metrize the set of all ICPs M and to provide a
canonical space of ICPs.

Two ICPs M and M′ are indistinguishable if they afford the same choices of parti-
tion in the first period and, for any choice in the first period, the same state-contingent
choices in the second period, and so on. Intuitively, indistinguishable ICPs differ only
up to a relabeling of the information states and up to the addition of information states
that can never be reached under any information plan, given the initial state θ0. This
definition of indistinguishability is formalized below and leads to the recursive charac-
terization described in Lemma 2.

Let M = (�, �, τ, θ0 ) and M′ = (�′, �′, τ′, θ′
0 ) be two ICPs in M. A choice of P ∈ �(θ0 )

and a realization of state s results in a new ICP (�, �, τ, τ(θ0, P , s)). To simplify notation,
we denote this new ICP by M(τ(θ0, P , s)). Further abusing notation, M(θ) denotes the
ICP (�, �, τ, θ) with initial state θ. Define D : M × M → R as

D
(
M(θ0 ), M′(θ′

0

))
:= max

{
dH

(
�(θ0 ), �′(θ′

0
))

, 1
2 max
P∈�(θ0 ),s∈S

D
(
M

(
τ(θ0, P , s)

)
, M′(τ′(θ′

0, P , s
)))}

.
(2)
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We endow � with the discrete metric, which means that the Hausdorff distance
dH(A, B) ≤ 1 for all A, B ⊂ �. The function D captures the discrepancy between M

and M′. In what follows, let B(M × M) denote the space of real-valued bounded func-
tions defined on M × M with the supremum norm.

Lemma 1. There is a unique function D ∈ B(M × M) that satisfies (2).

Proof. Consider the operator T : B(M × M) → B(M × M) defined as

TD′(M(θ0 ), M′(θ′
0
))

:= max
{
dH

(
�(θ0 ), �′(θ′

0
))

, 1
2 max
P∈�(θ0 ),s∈S

D′(M(
τ(θ0, P , s)

)
, M′(τ′(θ′

0, P , s
)))}

for all D′ ∈ B(M × M). Observe that T is monotone in the sense that D1 ≤ D2 implies
TD1 ≤ TD2. It also satisfies discounting, i.e., T(D+a) ≤ TD+ 1

2a for all a≥ 0. This implies
that T has a unique fixed point in B(M × M), which satisfies (2).

We can now define an isomorphism between ICPs. In terms of the discrepancy func-
tion D, two ICPs M and M′ are indistinguishable if D(M(θ0 ), M′(θ′

0 )) = 0. The definition
of D immediately implies the following recursive characterization of indistinguishability
whose proof is omitted.

Lemma 2. Let M, M′ ∈ M. Then M and M′ are indistinguishable if and only if (i) �(θ0 ) =
�′(θ′

0 ), and (ii) for all P ∈ �(θ0 ) ∩�′(θ′
0 ) and s ∈ S, the ICP M(τ(θ0, P , s)) is indistinguish-

able from the ICP M′(τ′(θ′
0, P , s)).

We now construct a set of canonical ICPs. Recall that P is the space of all partitions
of S, where a typical partition is P . Then (P , d) is a metric space, where d is the discrete
metric.

For metric spaces X and Y , we denote by K�(X × Y ) the space of all nonempty
closed subsets of X × Y with the property that a subset contains distinct (x, y ) and
(x′, y ′ ) only if x �= x′.

Let �1 := K(P ) and define recursively, for n > 1, �n := K�(P × �Sn−1 ). Set �′ :=×∞
n=1�n. A typical member of �n is ωn, while ωn = (ωn,s )s∈S denotes a typical member

of �Sn.
Let ψ1 : P × �S1 → P be given by ψ1(P , ω1 ) = P and define �1 : �2 → �1 as

�1(ω2 ) := {ψ1(P , ω1 ) : (P , ω1 ) ∈ ω2}. Now define recursively, for n > 1, ψn : P ×�Sn →
P ×�Sn−1 as ψn(P , ωn ) := (P , (�n−1(ωn,s ))s ), and define the function (because �n is a
space of sets)�n :�n+1 →�n by�n(ωn+1 ) := {ψn(P , ωn ) : (P , ωn ) ∈ωn+1}.

An ω ∈�′ is consistent if ωn−1 =�n−1(ωn ) for all n > 1. The set of canonical ICPs �
is the set of all consistent elements of �′:

� := {
ω ∈�′ :ω is consistent

}
.

Notice that �1 is a compact metric space when endowed with the Hausdorff met-
ric. Then, inductively, P ×�Sn−1 with the product metric is a compact metric space, so
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that endowing �n with the Hausdorff metric in turn makes it a compact metric space.
Thus, � endowed with the product metric is a compact metric space. (Moreover, � is
isomorphic to the Cantor set, i.e., it is separable and completely disconnected.)

It follows that forω,ω′ ∈�, whereω := (ωn )∞n=1 andω′ := (ω′
n )∞n=1,ω �=ω′ if and only

if there is a smallestN ≥ 1 such that for all n <N , ωn =ω′
n but ωN �=ω′

N .

Theorem 2. The set � is homeomorphic to K�(P ×�S ).

We write�� K�(P ×�S ). The theorem is not proved, but this can be done by adapt-
ing the arguments in Mariotti, Meier, and Piccione (2005).

The homeomorphism �� K�(P ×�S ) suggests a recursive way to think of �: Each
ω ∈ � describes the set of feasible partitions available for choice in the first period,
and how a choice of partition P and the realized state s determine a new ω′

s ∈ � in the
next period. That is, ω can be identified with a finite collection of pairs (P , ω′ ), where
ω′ = (ω′

s )s∈S . To see that every ω ∈ � is indeed an ICP, set �∗(ω) = {P : (P , ω′ ) ∈ ω}
and τ∗(ω, P , s) = ω′

s to obtain the ICP Mω = (�, �∗, τ∗,ω), which is indistinguishable
from ω. Also note that for ω,ω′ ∈�, ω �=ω′ implies D(ω,ω′ )> 0.

Proposition 5. The space M of ICPs is isomorphic to � in the following sense.

(a) Every M ∈ M is indistinguishable from a unique ωM ∈�.

(b) Every ω ∈� induces an Mω ∈ M that is indistinguishable from ω.

Proof. To show (a), let M = (�, �, τ, θ0 ) be an ICP. Recall the definition of the space�n
and define the maps �n :�→�n as follows. Let

�1(θ) := �(θ)

�2(θ) := {(P , (�1(τ(P , θ, s)))s∈S ) : P ∈ �(θ)}

...

�n+1(θ) := {(P , (�n(τ(P , θ, s)))s∈S ) : P ∈ �(θ)}

It is easy to see that for each θ ∈�, �n(θ) ∈�n, i.e., �n is well defined.
Now, given θ0, set �n(θ0 ) =: ωn ∈ �n. It can be verified that the sequence (ω1,ω2,

� � � ,ωn, � � � ) ∈×n∈N�n is consistent in the sense described above. Therefore, there exists
ω ∈� such thatω= (ω1,ω2, � � � ,ωn, � � � ), i.e., the ICP M corresponds to a canonical ICP
ω. Observe that ifω′ ∈� is indistinguishable from M, then it must also be indistinguish-
able from ωM (because D is a metric), which proves that ωM =ω.

To show (b), letω ∈�. A partition P is supported byω if there exists ω′ ∈�S such that
(P , ω′ ) ∈ ω. Now set � = �, θ0 = ω, �∗(θ) = {P : P is supported by θ}, and τ∗(P ,ω, s) =
ω′
s , where ω′ ∈�s is the unique collection of canonical ICPs such that (P , ω′ ) ∈ω. This

results in the ICP Mω = (�, �∗, τ∗, θ0 =ω) that is uniquely determined by ω.
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Appendix B: T -period dynamic Blackwell order

In this section, we construct the T -period dynamic Blackwell order for canonical ICPs.
Appendix A.3 exhibits an isomorphism between canonical ICPs and ICPs. It is immedi-
ate to verify that the isomorphism induces the T -period dynamic Blackwell order on M,
the space of ICPs, as defined in the text.

Let ω̂ ∈� denote the canonical ICP that delivers the coarsest partition in each period
in every state. Define �̂0 := K�(P × {ω̂}) and inductively define �̂n+1 := K�(P × �̂n ) for
all n ≥ 0. Notice that for all n ≥ 0, �̂n ⊂ �̂n+1. We now define an order �0 on �̂0 as
follows: ω0 �0 ω

′
0 if for all (P ′, ω̂) ∈ω′

0, there exists (P , ω̂) ∈ω0 such that P is finer than

P ′. This allows us to define inductively, for all n ≥ 1, �n on �̂n: For all ωn,ω′
n ∈ �̂n,

ωn �n ω′
n if for all (P ′, ω′

n−1 ) ∈ω′
n, there exists (P , ωn−1 ) ∈ωn such that (i) P is finer than

P ′ and (ii) ωn−1,s �n−1 ωn−1,s for all s ∈ S.
It is easy to see that �n is reflexive and transitive for all n. There is a natural sense in

which �n+1 extends �n, as we show next.

Lemma 3. For all n≥ 0, �n+1 extends �n, i.e., �n+1 |
�̂n

=�n.

Proof. As observed above, �̂n ⊂ �̂n+1 for all n. First consider the case of n= 0 and recall
that by construction ω̂ ∈ �̂0. Let ω0 �0 ω

′
0. Then, for (P ′, ω̂) ∈ ω′

0, there exists (P , ω̂) ∈
ω0 such that P is finer than P ′. Moreover, because �0 is reflexive, ω̂ �0 ω̂. However,
this implies ω0 �1 ω

′
0. Conversely, let ω0 �1 ω

′
0. Then, for all (P ′, ω̂) ∈ ω′

0, there exists
(P , ω̂) ∈ ω0 such that (i) P is finer than P ′ and (ii) ω̂ �0 ω̂ for all s ∈ S. However, this
implies ω0 �0 ω

′
0, which proves that �n+1 |

�̂n
= �n when n= 0.

As our inductive hypothesis, we suppose that �n |
�̂n−1

= �n−1. Let ωn �n ω′
n. Then,

for all (P ′, ω̃′
n−1 ) ∈ ω′

n, there exists (P , ω̃n−1 ) ∈ ωn such that (i) P is finer than P ′ and
(ii) ω̃n−1,s �n−1 ω̃

′
n−1,s for all s ∈ S. However, by the induction hypothesis, this is equiva-

lent to ω̃n−1,s �n ω̃′
n−1,s for all s ∈ S, which implies that ωn �n+1 ω

′
n.

Conversely, let ωn �n+1 ω
′
n. Then, for all (P ′, ω̃′

n−1 ) ∈ ω′
n, there exists (P , ω̃n−1 ) ∈

ωn such that (i) P is finer than P ′ and (ii) ω̃n−1,s �n ω̃′
n−1,s for all s ∈ S. However, the

induction hypothesis implies ω̃n−1,s �n−1 ω̃
′
n−1,s for all s ∈ S, proving thatωn �n ω′

n and,
therefore, �n+1 |

�̂n
=�n.

The T -period dynamic Blackwell order on M is �T as defined above, where we set
n= T .

Appendix C: Identification and behavioral comparison: Proofs from

Section 4

Based on the previous results and notation, we first establish two lemmas that will be
used to prove Theorem 1, Proposition 1, and Proposition 2.

In accordance with the discussion in Section 4.1, x is aligned with ω if (i) VT (x;ω) ≥
VT (x;ω′ ) for all ω′ ∈ � and (ii) ω′ does not dynamically Blackwell-dominate ω implies
VT (x;ω) > VT (x;ω′ ). We say that P is supported by ω if there exists ω′ ∈ �S such that
(P , ω′ ) ∈ω.
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Recall that c+ and c− are the best and worst consumption streams, respectively, that
deliver c+ and c− in any period and state. For a partition P with generic cell J, define the
act

f1,J(s) :=
{

c+ if s ∈ J
c− if s /∈ J

and for each P that is supported by ω, define x1(P ) := {f1,J : J ∈ P }.
Now proceed inductively, and for t ≥ 2, suppose we have the menu xt−1(P , ω′ ) for

each (P , ω′ ) ∈ω and define, for each cell J ∈ P , the act

ft,J(s) :=
{(
c+, Unift−1

({
xt−1(Q, ω̃) : (Q, ω̃) ∈ω′

s

}))
if s ∈ J

c− if s /∈ J.

Then, given (P , ω′ ) ∈ω, we have the menu xt(P , ω′ ) defined as

xt
(
P , ω′) := {ft,J : J ∈ P }. (�)

Note that

VT
(
c+;ω

) = VT
(
xT

(
P , ω′);ω

) ≥ VT
(
xT

(
P , ω′), ω̃

)
for all ω̃ ∈ �, with equality if ω̃ dynamically Blackwell-dominates ω. This amounts to
the first part of Proposition 2, as well as the “if” direction of the second part. The “only
if” part is established by the sequence of Lemmas 4 and 5 below.

Lemma 4. Let P ,Q ∈ P and suppose Q is not finer than P . Then, for any ω, ω′ ∈ �S ,
VT (xT (P , ω); (P , ω))> VT (xT (P , ω); (Q, ω′ )).

Proof. Fix (P , ω) ∈ � and consider the menu xT (P , ω) defined in (�). As noted
above, for all ω′, we have VT (xT (P , ω); (P , ω)) = VT (xT (P , ω′ ); (P , ω′ )). Moreover,
it must be that for all (Q, ω′ ) (even for Q = P), we have VT (xT (P , ω); (P , ω)) ≥
VT (xT (P , ω′ ); (Q, ω′ )), and in the case where Q is not finer than P and Q �= P ,
VT (xT (P , ω′ ); (P , ω′ )) > VT (xT (P , ω′ ); (Q, ω′ )) by construction of the menu xT (P , ω′ ).
(This is a version of Blackwell’s theorem on comparison of experiments; see Theorem 1
on page 9 of Laffont (1989).)

Lemma 5. Suppose ω2 does not dynamically Blackwell-dominate ω1. Then, for some
(P , ω̃) ∈ ω1, the menu x(P , ω̃) defined in (�) is such that VT (xT (P , ω̃);ω1 ) =
VT (xT (P , ω̃); (P , ω̃))> VT (xT (P , ω̃);ω2 ).

Proof. Supposeω2 does not t-period dynamically Blackwell-dominateω1. Then there
exists a smallest n≥ 1 such that for allm< n, ω2 �m ω1, while ω2 � �n ω1.

It follows from Lemma 3 that there exist finite sequences (Pk ) and (P ′
k ) of parti-

tions, and (sk ) of states, such that �∗(τ∗(t )(ω2, (P ′
k ), (sk ))) does not setwise Blackwell-

dominate the set �∗(τ∗(t )(ω1, (Pk ), (sk ))), where (i) τ∗(t )(θ0, (Pk ), (sk )) represents the
t-stage transition following the sequence of choices (Pk ) and states (sk ), (ii) ωit−k =
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τ∗(ωit−k+1, Pk, sk ), where Pk ∈ �∗(ωit−k+1 ), and (iii) �∗(ω1
1 ) does not setwise Blackwell-

dominate �∗(ω2
1 ).

Let (P1, ω̃) ∈ω1 be the unique first period choice underω1 that makes the sequence
(Pk ) feasible. Then xT (P1, ω̃) defined in (�) is aligned with (P1, ω̃). That is, after n
stages of choice and a certain path of states, we can appeal to Lemma 4, which completes
the proof.

Proof of Theorem 1. For the case of finitely many prizes (i.e., when C is a finite set),
Corollary 5 of Krishna and Sadowski (2014) establishes that the collection (u,�, δ) is
unique in the sense of the theorem. While we cannot directly appeal to their result,
judicious and repeated applications of their corollary allow us to reach the same con-
clusion for a compact set of prizes. Now define FT ,ω := {xT (P , ω̃) : (P , ω̃) ∈ω}. It follows
immediately from Lemma 5 that FT ,ω is aligned with ω.

This allows us to characterize the T -period Blackwell order in terms of the instru-
mental value of information.

Corollary 1. Let ω,ω′ ∈�. Then the following statements are equivalent.

(a) The canonical ICP ω T -period Blackwell-dominatesω′.

(b) For any (u,�, δ) that induces ω �→ VT (·;ω), VT (x;ω) ≥ VT (x;ω′ ) for all x ∈XT .

Proof. That (b) implies (a) is merely the contrapositive to Lemma 5. To see that (a) im-
plies (b), note first that the claim holds when T = 1 by Theorem 1 of Laffont (1989, p. 59).
Intuitively, in a static optimization problem, more information (via a finer partition) is
better. Now pick any information plan from ω′. By assumption, there is an information
plan in ω such that the partition chosen in any period is finer than the partition chosen
under ω′. However, this implies that any consumption strategy for the menu x using
the information plan from ω′ is also feasible under the information plan from ω. Be-
cause information only has instrumental value, it follows that VT (x;ω) ≥ VT (x;ω′ ) for
all x ∈XT .

We are now in a position to prove Proposition 1.

Proof of Proposition 1. We first show the “only if” part. On LT , we have 
�† 
′ im-
plies 
 � 
′. This implies, by Lemma 34 of Krishna and Sadowski (2014), that �† |LT =
� |LT . Together with the uniqueness of the recursive Anscombe–Aumann (RAA) repre-
sentation (see Corollary 5 in Krishna and Sadowski (2014)), this implies that (u, δ,�) =
(u†, δ†,�† ) after a suitable (and behaviorally irrelevant) normalization of the utilities.
Thus, part (b) of Corollary 1 holds, which establishes the claim.

The “if” part follows immediately from Corollary 1.

We now prove Proposition 2.
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Proof of Proposition 2. That VT (xT (P , M); M) = VT (c+; ·) ≥ VT (xT (P ′, M′ ); M) fol-
lows from the definition of c+ and xT (P , M). All that remains to be shown is that the
inequality holds as an equality for all P ′ with (P ′, M′ ) ∈ MP if and only if M T -period
Blackwell-dominates M′.

To see the “only if” part, suppose that M does not T -period Blackwell-dominate M′.
Then, by Lemma 5, it follows that for some P ′ with (P ′, M′ ) ∈ MP , we have

VT
(
xT

(
P ′, M′); M′) = Vt

(
c+; ·)> VT (

xT
(
P ′, M′); M

)
which establishes the contrapositive.

To see the “if” part, suppose M T -period Blackwell-dominates M′. Then, for every
information plan in M′ and every P ′ with (P ′, M′ ) ∈ MP , there is another information
plan in M with a finer partition after every realization of menu, state, and date. Follow-
ing this information plan gives the DM the same utility as consuming c+ for sure.

Appendix D: Proofs from Section 5.1

Proof of Proposition 3. We first show that the behavioral comparison in the propo-
sition implies fatigue as in Definition 1. Given the true underlying ICP M, take
(s1, � � � , st ), and two sequences of partitions (P1, � � � , Pt ) and (P ′

1, � � � , P ′
t ) as in the def-

inition of fatigue, so that Q ∈ �(P1, s1, � � � , Pt , st ). Let M∗ be the ICP that allows learn-
ing (P1, s1, � � � , Pt , st ,Q) and nothing else. Then xT (P1, M∗ ) ∼ c+. Let M′ = M. By as-
sumption, M allows learning (P ′

1, s1, � � � , P ′
t ), so that the behavioral comparison applies.

Note that xT (P ′
1, M′ ) ∼ c+ and there is no M′′′ that strictly dominates M′ after P ′

1 with
xT (P ′

1, M′′′ ) ∼ c+. Construct M′′ from M′ by adding the option to continue the sequence
(P ′

1, s1, � � � , P ′
t , st ) with learning Q. Now suppose that there is no Q′ ∈ �(P ′

1, s1, � � � , P ′
t , st )

such that Q′ Blackwell -ominates Q. Then xT (P ′
1, M′′ ) � c+, a contradiction. Hence,

there isQ′ ∈ �(P ′
1, s1, � � � , P ′

t , st ) that dominatesQ.
We now show that fatigue as in Definition 1 implies the behavioral comparison in

the proposition. For the ICPs in the definition, xT (P1, M∗ ) ∼ c+ implies that a path that
pointwise Blackwell-dominates (P1, s1, P2, � � � , st ,Q) can be learned initially. There are
three cases to consider:

(a) ICP M′ and the true ICP M dynamically Blackwell-dominate each other. Then by
fatigue M′′ must also be dominated by M and, hence, xT (P ′

1, M′′ ) ∼ c+, a contra-
diction to the assumption that xT (P ′

1, M′′ ) � c+. This rules out the first case.

(b) ICP M does not dynamically Blackwell-dominate M′ and, hence, xT (P ′
1, M′ ) � c+,

which is property (i) in the behavioral comparison.

(c) ICP M strictly dynamically Blackwell-dominates M′. In that case, xT (P ′
1, M) ∼ c+,

which is property (ii) of the behavioral comparison for M′′′ = M.

Because the three cases are exhaustive, the proposition is proved.

Proof of Proposition 4. We first show that the behavioral condition in Proposition 4
implies expertise as in Definition 2. Given the true ICP M in the representation, take
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(s1, � � � , st ), a sequences of partitions (P1, � � � , Pt ), and partitionsQ andQ′ as in the defi-
nition of expertise, so thatQ ∈ �(P1, s1, � � � , Pt , st ). Let M∗ be an ICP that corresponds to
learning (P1, s1, � � � , Pt , st ,Q) and nothing else. Then xT (P1, M∗ ) ∼ c+. Let M′ = M. By
assumption, M allows learning (P1, s1, � � � , Pt ), so that the behavioral comparison ap-
plies. Note that xT (P1, M′ ) ∼ c+ and there is no M′′′ that strictly dominates M′ after P1

with xT (P1, M′′′ ) ∼ c+. Construct M′′ from M′ by adding the option to continue the se-
quence (P1, s1, � � � , Pt , st ) with learning Q′ and then nothing thereafter. Now suppose
that there is no Q′′ ∈ �(P1, s1, � � � , Pt , st ) such that Q′′ Blackwell-dominates Q′. Then
xT (P1, M′′ ) � c+, a contradiction. Hence, there is Q′′ ∈ �(P1, s1, � � � , Pt , st ) that domi-
natesQ′.

We now show that expertise in Definition 2 implies the behavioral condition in the
proposition. For the ICPs in the definition, xT (M∗, P1 ) ∼ c+ implies that a path that
pointwise Blackwell-dominates (P1, s1, P2, � � � , st ,Q) can be learned initially. There are
three cases to consider:

(a) ICP M′ and the true ICP M dynamically Blackwell-dominate each other. Then
by expertise, M′′ must also be dominated by M and, hence, xT (P1, M′′ ) ∼ c+, a
contradiction to the assumption that xT (P1, M′′ ) � c+. This rules out the first case.

(b) ICP M does not dynamically Blackwell-dominate M′ and, hence, xT (P1, M′ ) � c+,
which is property (i) in the behavioral comparison.

(c) ICP M strictly dynamically Blackwell-dominates M′. In that case, xT (P1, M) ∼ c+,
which is property (ii) of the behavioral comparison for M′′′ = M.

Because the three cases are exhaustive, the proposition is proved.
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