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S.1 The Simple Model: Details and Derivations

In this appendix we provide the detailed derivations underlying Figure 1 in the main text.

For concreteness we give a concrete parametric example (which we use to draw the figure),

but its qualitative properties hold for any strictly concave utility function.

Let the period utility function is logarithmic, u(c) = log(c) and the endowment process

by given by h = 1+ ϵ and ℓ = 1− ϵ so that expected (average) income in society is E(y) = 1,

and ϵ measures the degree of income risk (the standard deviation of income). This is also the

parameterization analyzed in Krueger and Perri (2006), which allows us to readily compare

our results to theirs.

Direct calculations reveal that expected lifetime utility from the autarkic allocation,

the first-best insurance allocation (consuming 1 in every period of life), and a stationary

allocation with constant transfer x ∈ [0, ϵ] are given by

V A = V (x = 0) = log
[√

1− ϵ2
]
< 0,

V FB = V (x = ϵ) = 0, and

V (x) =
1

2
[log(1− ϵ+ x) + log(1 + ϵ− x)] = log

[√
1− (ϵ− x)2

]
≤ 0. (S.1)
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For the parametric example the parameter thresholds for autarky and first-best insurance

are available in closed form. Autarky is the only social norm for all discount factors β ≤
β = 2u′(h)/[u′(ℓ) + u′(h)] = 1− ϵ, independent of trust π.

At the other extreme, the trust threshold πFB for first-best insurance is given by

πFB = 1−
(
2(1− β)

β

)
[log(1 + ϵ)]

[− log(1− ϵ2)]
< 1. (S.2)

If, in addition, β < βFB := 2 log(1 + ϵ)/[2 log(1 + ϵ) − log(1 − ϵ2)] < 1, then first-best

insurance is not a social norm for any trust π ∈ [0, 1]. Note that β < βFB, that is, there

exist β ∈ (β, βFB) such that the constrained efficient social norm is non-autarkic but also

does not exhibit first-best insurance for any π ∈ [0, 1].

We can also analytically characterize the maximally attainable ex-ante lifetime utility

(i.e., lifetime utility before being in a coalition) F , the trust threshold at which this lifetime

utility is attained π (and above which no fixed point to the operator T exists) and the

transfer x̄ that implements this value. These are given by

x̄ = ϵ+ β − 1, (S.3)

F =
1− β

β
log

[
2− β

1 + ϵ

]
+

1

2
log [β(2− β)] (S.4)

π = 1−
(
2(1− β)

β

)(
log(1 + ϵ)− log(2− β)

log(β(2− β))− log(1− ϵ2)

)
. (S.5)

As long as β > β = 1 − ϵ (otherwise autarky is the only social norm for all π) we have

that x̄ > 0 and πFB < π < 1, since then both the numerator and denominator in the last

fraction are positive. It is straightforward to see that π is strictly decreasing in income risk

ϵ. The larger is income risk, the smaller is the set of trusts π for which a fixed point exists,

and the larger is the set of trusts for which utility needs to be burned to dissuade the high-

income agent from leaving the arrangement. Direct calculations also reveal that F is strictly

decreasing in ϵ and strictly increasing in β.

Figure 1 in the main text plots the value Γ(x) of a high-income agent from being in a

coalition, and the value Ψ(x; π) of a high-income agent from deviating from the coalition,

against the stationary transfer x. For the parametric example these are given explicitly by

Γ(x) = (1− β) log(1 + ϵ− x) + βV (x) and

Ψ(x; π) = (1− β) log(1 + ϵ) + β
[
πV (x) + (1− π)V A

]
= (1− β) log(1 + ϵ) + βF (x),
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Figure S.1: The functions V , Γ, and Ψ when β < β: a graphical representation of autarky.

where V (x) was given in equation (S.1) and

F (x) = πV (x) + (1− π)V A.

Figure 1 in the main text was drawn for parameter values for which first-best insurance

is never attainable (πFB < 0), yet partial insurance is feasible β > β. In this appendix,

for concreteness we depict the two complementary cases. First, assume β ≤ β = 1 − ϵ.

Then the value of being a currently high-income agent in a coalition with no risk sharing,

Γ(x = 0) = (1−β) log(1+ϵ)+βV A, exceeds that of first-best insurance, V FB, and is declining

in x. Since the value of deviating at x = 0 is Ψ(x = 0; π) = Γ(x = 0) is increasing in x,

Figure S.1 shows that the only allocation satisfying the incentive constraint is autarky, and

this is the only social norm (and a fixed point). Now assume that β > β = 1− ϵ, and thus

some social norms with positive risk sharing exist. The main text displayed this scenario

under the assumption that β ∈ (β, βFB) and thus πFB < 0, that is, constrained-efficient

social norms always exhibit only partial insurance.

Here we complement the analysis in the main text by displaying, in Figure S.2 the

constrained-efficient stationary allocation when β > βFB, and thus πFB ≥ 0 in equation
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Figure S.2: The functions V , Γ, and Ψ when βFB < β.

(S.2). In this case, for sufficiently low levels of trust π the constrained-efficient social norm

displays full consumption insurance.

Figure S.2 traces out how the unique constrained-efficient stationary allocation changes

with trust π, as only the outside option Ψ(x; π) changes with π. Specifically, this outside

option tilts upward as π increases from 0 to 1, around the point (x = 0,Γ(x = 0)) for all

π ∈ [0, 1].

1. For all π ∈ [0, πFB] the full-insurance allocation x(π) = ϵ satisfies the incentive con-

straint since the Γ(x)-curve lies above the Ψ(x; π)-curve at x = ϵ. The value of being

in a coalition is maximal, at V (ϵ), and the ex-ante value of being in the unmatched

pool, F (π) = πV FB+(1−π)V A is strictly increasing in π, starting from V A for π = 0.1

Graphically, πFB obtains when the Ψ(x; π)-curve has just tilted upward enough so that

Γ(ϵ) = Ψ(ϵ; πFB).

2. As π increases further to a π ∈ (πFB, π) and the Ψ(x; π)-curve tilts further upward,

the incentive constraint becomes binding, and the constrained-efficient transfer x(π) is

1For π = 0, there is first-best insurance inside a coalition, but since coalitions never form, F (π = 0) = V A.
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determined by the intersection between the Ψ(x; π)-curve and the Γ(x)-curve:[
1− β(1 + π)

2

]
log

(
1 + ϵ

1 + [ϵ− x(π)]

)
=

β

2
(1− π) log

(
1− [ϵ− x(π)]

1− ϵ

)
(S.6)

The risk-sharing transfer x(π) is strictly decreasing in π and the ex ante value F (π) ≡
F (x(π)) can be read off from the y-axis and is strictly increasing in π, even though

expected utility of being matched in a coalition, V (x(π)) is strictly decreasing in π.

3. As π reaches π given in equation (S.5) the intersection of the Ψ(x; π)-curve and the

Γ(x)-curve occurs at x̄ = ϵ + β − 1 and the maximally attainable ex ante utility of

being unmatched is given by F given in equation (S.4).

4. Finally, as π increases further beyond π, say to π̂ ∈ (π, 1], the Ψ(x; π̂)-curve and the

Γ(x)-curve intersect, but at an x̂ < x̄, with associated ex-ante value F̂ , and thus

the allocation x̂ satisfies the incentive constraint if the outside option is given by F̂ .

However, a coalition faced with this outside option F̂ will choose allocation x̂′ with

implied value F̂ ′ > F̂ , and thus (x̂, F̂ ) is not a fixed point for π̂. For such high

trust π̂ > π, the full model analysis will show that the ex-ante value will remain at

F < πV (x̄) + (1 − π)V A, and will be implemented by a non-stationary allocation

(which cannot be depicted in the figure) that “burns” utility relative to the better

social norm x̄ which, however, if implemented, would result in an outside option so high

that the coalition itself is left with an empty set of resource- and incentive-compatible

allocations.

S.2 Model Extensions

In this appendix we discuss two extensions of our model. In the first we consider a more

general model of temporary delays to agreement after an initial failure to successfully form

a coalition. In the second we extend out model to allow for production.

S.2.1 Temporary Delay

We have assumed that a deviating coalition succeeds with probability π and is in permanent

autarky with complementary probability. We now assume that a failure to form a coalition is

followed by T ≥ 1 periods of autarky before another attempt can be made (so that if T = 1,

a new attempt can be made in the next period after a failure). Under this assumption, after

a deviation, coalition formation always eventually occurs. For fixed trust π a reduction of T
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increases the outside option. We now argue that the extension with a delay of T is equivalent

to our original model with trust

π† :=
π

1− (1− π)βT
.

Suppose c
† is an efficient allocation in the model with T -period delay. Then, the value of

the outside option after deviating satisfies

W d = πW 0(c†) + (1− π)[(1− βT )V A + βTW d],

that is,

W d = π†W 0(c†) + (1− π†)V A.

It is easy to verify that since c† is an efficient allocation in the model with T -period delay,

it must also be an efficient allocation in our original model for trust π†.

With finite exclusion, all agents are eventually in a risk-sharing arrangement, irrespective

of the level of trust. However, the level of risk-sharing is declining in trust.

S.2.2 Risk Sharing and Production

We now briefly discuss how to extend our model to a production economy where output

is produced and consumption is allocated within coalitions we will call production clubs,

or firms for short. Output yt produced by agent at time t depends upon idiosyncratic

productivity et ∈ E = {eℓ, eh} and labor effort lt.

yt = etlt

Individual preferences are given by

(1− β)E
{ ∞∑

t=1

βtU(ct, lt)
}
,

and labor effort is bounded by the unit interval, so lt ∈ [0, 1]. All other aspects of the

environment are the same as in the endowment economy studied thus far.

As before, risk-sharing incentives lead to continuum-sized firms being efficient, just as in

our endowment economy. Since this implies that there is no aggregate output risk within a

firm, an allocation within a continuum-sized firm are sequences of consumption and labor

effort, both functions of the individual productivity history, {ct(et), lt(et)}.
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In the special case in which labor is inelastically supplied at 1, and preferences are sepa-

rable in consumption and labor, the efficient allocation of our model becomes essentially the

same as in the endowment case, with endowment income y ∈ {ℓ, h} replaced by production

income y ∈ {eℓ × 1, eh × 1}. This is the content of the next proposition.

Proposition S.1 Suppose flow utility U(ct, lt) = u(ct)−v(lt) is separable between consump-

tion and labor, (eℓ, eh) = (ℓ, h), and u′(yh)yℓ ≥ v′(1).

1. There exists an efficient allocation with a consumption allocation that is identical to

that in the endowment economy with c(et) = c(yt) and labor equal to lt(e
t) = 1.

2. The payoff to forming a firm is the same as in the coalition payoff in the endowment

economy, net of the cost of labor effort:

(1− β)E
{ ∞∑

t=1

βt[u(ct(e
t))− v(lt(e

t))
}
= W 0(c)− v(1).

3. The largest probability of successfully forming a firm for which there is a fixed point

is still π from the endowment economy, however the associated highest feasible outside

option is F − v(1).

This proposition follows from the fact that the rankings of consumption sequences is

unaffected by subtracting a constant labor cost in each period. For π > π utility-burning

needs to occur in an efficient allocation, and while this can be done just as in the endowment

case, richer possibilities involving the labor allocation emerge in the production economy.

The key to the previous proposition is that the within-firm consumption-labor allocation

can be solved sequentially. In a first step the optimal labor allocation is determined, and in a

second step the consumption risk-sharing allocation is chosen, taking as given the stochastic

income process from the first stage. For a general utility function where labor is interior

both consumption and labor are determined jointly.

An exception are utility functions without income effects on labor supply. For example,

suppose households have Greenwood, Hercowitz, and Huffman (1988) preferences of the form

U(c, l) =
1

1− γ

{
c−Ψ

l1+θ

1 + θ

}1−γ

then the optimal labor allocation is determined by lt(e
t) = (et/Ψ)1/θ if Ψ is sufficiently large

relative to et so that lt(e
t) < 1. Now idiosyncratic income is given as y(et) =

e
1+1/θ
t

Ψ1/θ and is

efficiently shared within the firm as before, leading to a consumption allocation similar to
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the endowment economy. However, now we need to adjust the payoffs to take account of

the differential labor utility costs. For example, the decay condition (23) in Proposition 3

becomes (
c(et)− (et/Ψ)(1+θ)/θ

)−γ

(
c(et+1)− (et+1/Ψ)(1+θ)/θ)

)−γ = δt+1.

Finally, it is easy to accommodate the notion that firms can realize increasing returns to

scale, up to a point, in the size of its workforce, and that the production coalitions we model

partially form not only for risk sharing purposes, but also for production efficiency purposes.

Suppose that individual output within a firm is now given by

yt = zetlt

where z = z(x) is a positive and weakly increasing function of the size x of the workers

of the firm, with z(x) = 1 for x ≥ X. That is, for firms larger than size X < ∞, which

include those with an infinite number or a continuum of members, z(x) = 1. When z(0) < 1,

then producing in autarky involves not only a loss in consumption smoothing but also a

reduction in productivity. This again leads to a consumption allocation that has the same

characteristics as in the endowment economy, but with a reduction in the value of autarky.

With period utility that is separable and CRRA in consumption the utility from autarky

is scaled to u(z(0))V A(y).2 Scaling down the utility from autarky raises πFB and π, the

trust at which first-best insurance can be sustained and the threshold trust for which the

fixed-point exists and utility burning is unnecessary. Thus, while the qualitative features of

the analysis are unaffected by productivity benefits of large coalitions, quantitatively such

production coalitions can provide better insurance when formed.

Our model of production clubs can qualitatively account for a number of well known

features of the data. In the context of the literature on trust, Fukuyama (1995, p. 309, 312)

asserts that while “there continues to be a steady proliferation of interest groups of all sorts

in American life ... communities of shared values whose members are willing to subordinate

their private interests for the sake of larger goals of the community ... have become rarer.”

This is consistent with the prediction of our model that more coalitions forming goes hand in

hand with shallower cooperation within coalitions. On the issue of risk sharing within a firm,

2If the disutility of labor such that it is always efficient to supply a unit of labor in autarky for all levels
of idiosyncratic productivity, then this simply shifts down the autarky payoff in the production economy
relative to the endowment economy and is given by

(1− β)[u(z(0)y)− v(1)] + βEy′ [u(z(0)y′)− v(1)] = u(z(0))V A(y)− v(1).
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Guiso, Pistaferri, and Schivardi (2005) find that while temporary shocks are well-insured,

permanent ones are not. This is consistent with our model, since a permanent shock to a

worker’s income would rescale their outside option and hence lead to a permanently different

consumption ladder.3

S.3 Numerical Examples and Comparative Statics

In this section we provide numerical examples illustrating, in Subsection S.3.1, how the trust

threshold for utility burning π̄ changes with patience β away from β, and, in Subsection

S.3.2, how the dynamics of strong social norms evolves towards the limit stationary ladder.

Subsection S.3.3 provides the details of the computational algorithm employed to derive

these numerical results.

S.3.1 Insurance Possibilities and Trust Thresholds πFB and π̄

We first numerically characterize the threshold trust values for full insurance, πFB and

for the existence of strong social norms (and thus for the absence of utility burning), π̄.

These calculations complement the third part of Proposition 4 in the main text where we

proved that near β, the threshold π̄ is less than one and thus utility burning must occur for

sufficiently high values of trust.

Figure S.3 plots the threshold values for πFB and π̄ against the discount factor β, for an

income process with h = 1.25 and ℓ = 0.75, and logarithmic period utility, u(c) = log(c).

This parameterization implies that β = u′(h)/u′(ℓ) = 0.75/1.25 = 0.6.

The figure demonstrates that for discount factors β ≤ β the constrained-efficient alloca-

tion is autarkic independent of trust π. For values of β > β, in contrast, the constrained-

efficient allocation changes qualitatively as trust π increases. Take β = 0.9 for concrete-

ness: for low values π ≤ πFB first-best insurance can be sustained, for intermediate val-

ues π ∈ (πFB, π] there is partial risk sharing but no utility burning, and for π > π the

constrained-efficient social norm requires utility burning. Importantly, this numerical exam-

ple shows that for all β < 1, the threshold trust level π(β) above which utility burning needs

to occur as part of the constrained-efficient allocation is always less than one, a feature that

we have robustly found through many parameterizations we have explored.

3With homothetic preferences, a permanent multiplicative shock to productivity for a (positive measure)
subset of agents would simply scale these agents’ consumption allocation by the permanent shock, since these
agents with the positive shock can always secede and guarantee themselves the scaled consumption process.
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Figure S.3: Insurance possibilities as a function of (β, π), for h = 1.25, ℓ = 0.75, u = log.

S.3.2 The Dynamics of Strong Social Norms

In this subsection we present results for an illustrative set of examples to convey the quali-

tative properties of strong social norms. Throughout this section we assume a CRRA period

utility function. This functional form implies that equation (23) characterizing strong social

norms can be written as

∀yt, c(ytℓ) > cℓ(F ) =⇒ c(yt)−γ

c(ytℓ)−γ
= δt+1,

for some δt+1 < 1. Since δt+1 < 1, and defining gt+1 := (δt+1)
1/γ < 1,

∀yt, c(ytℓ) > cℓ(F ) =⇒ c(ytℓ) = gt+1c(y
t).

By Proposition 3 strong social norms have the form of a sequence of consumption ladders (as

defined in Definition 8), where the period t-ladder is determined by an initial consumption

after the high income y = h realization, ct(h), and then a decreasing sequence of lower

consumptions gt+1ct(h), gt+1gt+2ct(h), . . . , until the lower bound cℓ(F ) is reached (after L−1
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realizations of ℓ). The strong social norm converges to a stationary ladder and associated

constant decay rate gt = gt+1 = g.

With these observations from our theoretical results in hand, the computation of strong

social norms with associated outside option F ∈ (V A, F ] (and thus for trust π associated

with that outside option) proceeds as follows.4 The algorithm first computes a stationary

consumption ladder and associated consumption decay rate g that satisfies the h-incentive-

feasibility constraint associated with F with equality (as well as the resource constraint

and the ℓ-incentive-feasibility constraint with equality for those at the very bottom of the

ladder). It then determines the full dynamic strong social norm by imposing convergence to

the stationary ladder in finite (but potentially long) time.

Figure S.4 plots the dynamics of the efficient consumption allocation with u(c) = log(c),

incomes are (ℓ, h) = (0.75, 1.25), and the discount factor is chosen as β = 0.9. The level

of trust is set to π = π = 0.41 so that the value of the outside option is given by F = F .

Table 1 provides additional summary statistics for the allocation in this parameterization,

as well as for alternative values of (β, γ) to display the comparative statics of the model with

respect to its preference parameters (the values of F and π changes with (β, γ)).

From Figure S.4 we observe that as the transition unfolds, consumption spreads out over

time, and eventually converges to the stationary ladder, which for this parameterization has

five consumption steps. Consumption insurance worsens over time but remains positive:

for high income agents the outside option is binding, but they consume substantially less

than their income h (indicated by the upper dashed line) and thus provide insurance to low-

income agents. Initially low income agents consume significantly more than their income

(lower dashed line), and also more than implied by a binding outside option, cℓ(F ). Over

time those with continuously low income see their consumption drift down until the outside

option binds and c = cℓ(F ). This occurs in period four of the transition.

The strong social norm can generate high initial consumption insurance because the

allocation does not inherit any implicit promises to past high income types. As time evolves,

the consumption level of c(ℓt) declines as the burden of efficient smoothing of consumption to

past high income types makes consumption scarcer. The allocation also becomes statically

inefficient since agents with the same current income receive different consumption levels.

Finally, the figure shows that although we do not force convergence to the stationary ladder

until period 10 (the last period of the transition phase prior to imposing a stationary ladder)

in this example, effectively allocations have converged to the stationary ladder by period

four of the transition. Expanding the length of the transition yields utility gains that are

indistinguishable from zero. Thus, although theoretically convergence to the stationary

4The details of the computational procedure are described in Subsection S.3.3
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Figure S.4: Consumption allocation along transition, with ℓ = 0.75 (indicated by lower
dashed horizontal line), h = 1.25 (upper dashed horizontal line), β = 0.9, π = 0.41, and
γ = 1.

ladder is only asymptotic, our example suggest that numerically convergence occurs very

rapidly; an observation shared by all examples we have computed.

Table 1 contains summary statistics of strong social norms along the transition for alter-

native parameterizations of the model. Focus first on the benchmark case in the first column:

we observe that the consumption allocation a coalition can implement improves significantly

(worth 0.94% of consumption) on the outside option, by providing insurance to initially poor

agents, but also needs to leave significant insurance opportunities unexploited (worth 0.63%

of consumption relative to first-best insurance). Insurance gets worse over time as expected

period utility falls and consumption dispersion rises over time.5 As households become more

patient (higher β) and more risk-averse (higher γ), the strong social norm gets closer to

first-best insurance, but the gains from coalition risk sharing relative to the outside option

become smaller. The stationary ladder has more steps and the support of the consumption

distribution tightens. We also observe that increased patience (higher β), elevates the gains

of coalition risk sharing (compared to the outside option) mostly through an improvement

of the stationary ladder. An increase in risk aversion (larger γ), in contrast, leads to better

5We only display the first two periods, relative to the stationary ladder.
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γ = 1 γ = 2
Statistic β = 0.9 β = 0.95 β = 0.9 β = 0.95

V FB/V (F ) in % 0.63% 0.22% 0.45% 0.12%
V (F )/F in % 0.94% 0.71% 1.24% 0.80%
π 0.41 0.66 0.69 0.85
cℓ(F ) 0.761 0.767 0.776 0.782
ch 1.092 1.049 1.050 1.025
Steps 5 8 7 12
EU(c1)
EU(c∞)

in % 0.28% 0.11% 0.25% 0.07%
EU(c2)
EU(c∞)

in % 0.05% 0.05% 0.11% 0.03%

V ar(c∞) 0.01 0.004 0.004 0.001
V ar(c1)
V ar(c∞)

0.62 0.55 0.55 0.52
V ar(c2)
V ar(c∞)

0.94 0.81 0.81 0.77

Table 1: Summary Statistics of the Transition

Notes: Ratios of (lifetime) utilities are converted into consumption equivalent variation and give the percent-
age increase in consumption (uniform across all states or histories) required to equalize period (or lifetime)
utility across the two alternatives. The first two lines measure the welfare loss from imperfect consumption
insurance relative to first-best insurance, and the welfare gain of coalition allocations relative to the outside
option. The second panel provides summary statistics of the stationary ladder, and the third and forth
panels show how expected utility and consumption insurance declines over time.

risk sharing both because of an improved stationary ladder and longer initial insurance and

thus slower convergence to the ladder.

S.3.3 Computational Details for Section S.3

In this subsection we provide the details of how we compute strong social norms. Sec-

tion S.3.3.1 describes how to compute a stationary ladder that delivers an outside option

F ∈ (V A, F ). Section S.3.3.2 describes how to determine the value of F (and the associated

threshold trust value π̄) together with the stationary ladder attaining it. Finally, Section

S.3.3.3 describes the calculation of an entire dynamic efficient consumption allocation con-

verging to a stationary ladder.

S.3.3.1 Stationary Ladder

For a fixed F, a stationary ladder c∗ = (c∗(h), gc∗(h), g
2c∗(h), . . . , cℓ) that satisfies feasibility

and F -incentive compatibility for high income individuals (henceforth h-incentive compati-

bility) with equality as well as F -incentive compatibility for individuals at the bottom of the

stationary ladder (henceforth ℓ-incentive compatibility) with equality is fully characterized
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by the upper and lower bound of consumption (c∗(h), cℓ), the decay rate g and the length of

the ladder L. These values, all functions of a given F ∈ (V A, F ), are calculated as follows:

1. Determine the unique consumption floor cℓ = cℓ(F ) from Lemma 8, i.e.,

u(cℓ(F )) = u(ℓ) + β
(
F − V A

)
and recall the value of the outside option for the high income agents is

W F (h) := (1− β)u(h) + βF.

2. A stationary ladder attaining F is then determined by three equations in the three

unknowns c∗(h), g, L from

L = max
{
k : gk−1c∗(h) > cℓ(F )

}
, (S.7)

1

2

L−1∑
t=0

(
1

2

)t

c∗(h)g
t +

(
1

2

)L

cℓ(F ) = ȳ, (S.8)

and, using W (h, c∗) = W F (h) in equation (26) characterizing lifetime utility from a

stationary consumption ladder,

W F (h) =

(
1− β

2

)[
L−1∑
k=0

(
β

2

)k

u(c∗(h)g
k)

]
+

(
β

2

)L

u(cℓ(F )). (S.9)

This system of equations can be reduced to one non-linear equation in the unknown

decay rate g ∈ [ℓ/h, 1]. Use equation (S.7) to solve for the unique length of the ladder

L(g, c∗(h)) given g, and then equation (S.8) to solve for the unique entry level consumption

c∗(h) (exploiting the fact that the period utility function is of CRRA variety), and insert

both entities into equation (S.9) to obtain one equation in the unknown consumption decay

rate g. The result of solving this one-dimensional nonlinear equation in g is a stationary

ladder summarized by (c∗(h)(F ), g(F ), L(F )) as a function of the outside option F .

In general the stationary ladder associated with an outside option F need not be unique,

although it is for F = F , as we have seen in Section 7 of the main text. Computationally, since

g must be bounded between g = 1 (no consumption decay, as in the full-insurance allocation)

and g = ℓ/h (the consumption decay in the autarkic allocation), it is straightforward to

determine all solutions to this one-dimensional nonlinear equation.
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However, to better understand conceptually the potential multiplicity of stationary lad-

ders and to determine which of the potentially several ladders is the relevant limit stationary

ladder of the strong social norm (for the given F ), it is instructive to proceed as follows.

Instead of calculating the consumption decay rate g (and the associated (c∗(h), L)) as a

function of F, in step 2 above we reverse the order and calculate, for a given stationary

consumption ladder decay rate g ∈ (ℓ/h, 1) , the outside option F (g) attained by this g (and

the associated consumption ladder) and plot F against g ∈ [ℓ/g, 1].

Numerically, we find that the mapping F ( · ) is hump-shaped with a maximum at ḡ :=

β1/γ < 1 that delivers the maximum value F .6 That the decay rate at F = F is given by

ḡ = β1/γ can easily be shown theoretically and follows directly from the first-order condition

of the program defining in F in (29) of the main text. The reason for the hump-shape of

F ( ·) is as follows. Start at g = 1, and thus a constant consumption allocation with first-best

insurance, and now lower g infinitesimally. Individuals with current income y = h strictly

prefer a more front loaded consumption allocation even though it entails more consumption

risk in the future. As g initially falls from g = 1, both W (h, c∗) and c∗(h) increase, which in

turn leads the outside option F (g) to increase as g falls. At g = β1/γ the optimal front loading

is attained from the perspective of the current h types; by reducing g further the associated

increased future consumption risk more than offsets the higher current consumption c∗(h)

chosen to satisfy the resource constraint. Thus W (h, c∗) and F (g) decline as g falls beyond

g = β1/γ.

We cannot prove that F (g) is hump-shaped in g but always found this to be the case

in our numerical examples. This implies, in particular, that for any F < F there are two

associated stationary ladders that deliver the same outside option F, one with little risk

sharing (g < ḡ) and one with more risk sharing (g > ḡ). Since the algorithm for computing

a dynamic strong social norm is based on the convergence of the allocation to a stationary

ladder, it is important to know which ladder to pick, for a given F < F.

In Lemma 15 we have shown that although there might be multiple candidate stationary

ladders, the one the strong social norm converges to asymptotically is the one with the

smallest entry level of consumption c∗(h) and thus the slowest consumption decay and the

largest extent of risk sharing. Thus, for the purpose of the computation of dynamic strong

social norms we restrict attention to stationary ladders with decay rates g ∈ [ḡ, 1].

6This result accords well with the results in the simple model where the outside option F from a stationary
allocation was also hump-shaped in the extent of consumption insurance (which in the simple model was
measured by the size of the transfer x), with the maximum F attained at x̄.
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S.3.3.2 Determination of the Outside Option F

To determine F we proceed as follows: At F = F , Proposition 6 implies that there is a

unique stationary ladder satisfying h-incentive compatibility and this ladder solves (29), so

we know that the consumption decay rate is given by

g(F ) = β1/γ.

In effect, F is the peak of the F ( · ) map discussed above, and is reached at g = ḡ. Since the

value of F itself is unknown, we have to determine the lower consumption floor cℓ = cℓ(F )

jointly with F , c∗(h), and L. The relevant equations, with g = g(F ) = β1/γ are

u(cℓ) = u(ℓ) + β
(
F − V A

)
, (S.10)

ȳ =
1

2

L−1∑
t=0

(
1

2

)t

c∗(h)g
t +

(
1

2

)L

cℓ, (S.11)

L = max{k : gk−1c∗(h) > cℓ}, and (S.12)

(1− β)u(h) + βF =

(
1− β

2

)[
L−1∑
k=0

(
β

2

)k

u(c∗(h)g
k)

]
+

(
β

2

)L

u(cℓ). (S.13)

The algorithm to determine F is then a slightly modified version of the procedure from

the previous subsection, with F replacing g as the unknown to be computed, and are identical

to the computations we carry out when solving for F (g) for a given g ̸= ḡ.

1. Guess F ∈ (V A, V FB).

2. For a given F :

(a) Solve for cℓ from (S.10).

(b) Jointly solve for (c∗(h), L) from (S.11) and (S.12).

(c) Calculate the right side of (S.13).

3. Solve F such that (S.13) holds.

Finally, once F is computed, we can determine π̄ from equation (24).

S.3.3.3 Computation of the Transition

As discussed at the beginning of this section, the computational procedure solves for the

strong social norm for a given F , imposing the stationary ladder from an exogenously spec-

ified period T . We now describe the computation of the allocations for fixed T and fixed
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outside option F ∈ [V A, F ]. We take as given the stationary ladder associated with F ,

summarized by (c∗(h)(F ), g(F ), L(F )), including the lifetime continuation utilities Vi,∗(F )

from being in step i of the stationary ladder, as described in the previous two subsections.7

As described at the beginning of this section, the algorithm calculates consumption in three

phases.

In the first t ≤ T periods the algorithm picks time-varying consumption of agents with

currently high income (and so have binding incentive constraints), (ct(h))
T
t=1 and uses the

resource constraints and the fact that agents without binding constraints have common

consumption decay rates (or consume the lower bound consume cℓ(F )) to pin down the

remainder of the consumption allocation. In a second phase, from t = T +1, ..., T +L(F ) the

allocation blends into the stationary ladder: all agents with high income consume according

to the stationary ladder, and all households with low income drift down from consumption

in the previous period at a common (across individuals, but time-varying) decay rate gt.

Finally, for all t > T + L(F ), the allocation coincides with the stationary ladder. More

precisely, the algorithm works as follows:

1. Guess (ct(h))
T
t=1 ∈ (ȳ, h)T .

2. Calculate the consumption allocation implied by this guess, imposing the characteriza-

tion of a strong social norm from Proposition 3: the h-incentive-feasibility constraint

holds with equality in every period, and all agents with low income either have non-

binding constraints and their consumption decays at a common rate or they consume cℓ.

The implied consumption allocations (ci,t)
t
i=0 for all t = 1, . . . , T, T + 1, . . . , T + L(F ),

are calculated as follows, where i again indicates the position on the consumption

ladder:

(a) Set

c0,t = ct(h) for t = 1, . . . , T,

and c0,t = c∗(h)(F ) for t = T + 1, . . . , T + L(F ).

(b) For t = 1, determine c1,1 from

1

2
[c0,1 + c1,1] = ȳ.

7The only part that distinguishes the calculations for F < F and F = F is the calculation of the stationary
ladder(s), and in case of F < F, the selection of the “right” ladder.
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(c) For t = 2, . . . , T , determine the consumption decay rates (gt)
T
t=2 recursively (be-

ginning with t = 2) as follows:

The consumption decay gt solves

1

2

t−1∑
i=0

(
1

2

)i

ci,t +

(
1

2

)t

ct,t = ȳ,

where for all i = 1, . . . , t,

ci,t = max{gtci−1,t−1, cℓ(F )}.

For each t, gt is determined by one equation. The equations are solved forward

in time since the allocations {ci,t} require knowledge of allocations {ci−1,t−1}.

(d) For t = T + 1, . . . , T + L(F ), part of the consumption allocations are on the

stationary ladder. For each t = T + 1, . . . , T + L(F ), the consumption decay gt

solves
1

2

t−1∑
i=0

(
1

2

)i

ci,t +

(
1

2

)t

ct,t = ȳ,

where

ci,t =

 gich(F ), for i = 1, . . . , t− T − 1,

max{gtci−1,t−1, cℓ(F )}, for i = t− T, . . . , t.

3. For a given guess (ct(h))
T
t=1, the previous step delivers the entire allocation (ci,t)

t
i=0

for periods t = 1, . . . , T, T + 1, . . . , T + L(F ). From date t = T + L(F ) + 1 on the

consumption allocation coincides, by assumption, with the stationary ladder. Now we

need to determine (ct(h))
T
t=1. These values must yield a consumption allocation that

delivers the outside option W F (h) for all t = 1, . . . , T . Construct the lifetime utility

in period t after the history yt−1−ihℓi, Vi,t, from the consumption allocation computed

in the previous step. This can be done recursively, going backward in time. Lifetime

utilities are given by, for each t = T + L, . . . , 1 (working backwards in time) and all

i = 0, . . . , t,

Vi,t = (1− β)u(ci,t) +
β

2
[V0,t+1 + Vi+1,t+1.]

Note that these calculations are the same before and in the blended phase, because V0,t

is a function of Vi,t+i for i = 1, . . . , L, with VL,T+L = (1− β)u(ℓ) + βF and t ≤ T + L.

The only role the consumption levels from the stationary ladder play is in step 2 above

in determining ci,t via feasibility.

S.18



Finally we need to check whether the entry consumption levels (ct(h))
T
t=1 are such that

the resulting consumption allocation hits the outside option for each t = 1, . . . , T

V0,t = (1− β)u(h) + βF.

If yes, we are done. If not, go back to step 1 and adjust the guess for (ct(h))
T
t=1.
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