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1 Introduction

In this paper, we provide a fully micro-founded, analytically tractable general equilibrium
macroeconomic model of neoclassical investment, production, and the cross-sectional con-
sumption distribution in which the limits to insurance of idiosyncratic income risk are ex-
plicitly derived from a limited commitment friction.

This model seeks to integrate two foundational literatures on macroeconomics with
household heterogeneity. The first strand has developed the standard incomplete mar-
kets (SIM) model with uninsurable idiosyncratic income shocks and neoclassical produc-
tion, see Bewley (1986), Imrohoroglu (1989), Uhlig (1990), Huggett (1993) and Aiyagari
(1994). In that model, agents can trade assets to self-insure against income fluctuations,
but the payout of these assets by assumption is not contingent on an agent’s individual
income realization, thereby ruling out explicit insurance against income risk. The second
branch is the broad literature on endogenously incomplete markets, and recursive contracts
to solve them, that permit explicit insurance but the extent of it is restricted by informational
or contract enforcement frictions. Specifically, we follow Alvarez and Jermann (2000)
and Krueger and Uhlig (2006) and allow agents to trade assets that pay out contingent on
agent-specific shocks but are subject to limited commitment: whereas the financial inter-
mediaries (e.g., insurance companies) selling these assets are fully committed to making
state-contingent payments, the agent is not. As a consequence and the assumed lack of pun-
ishment from default agents cannot sell these assets short, limiting the degree of insurance
they can obtain. As in our previous paper, the contracts are front-loaded: when income is
high, the agent purchases insurance that finances consumption in excess of income down
the road should income change. Here we integrate this friction in a continuous time, general
equilibrium neoclassical production economy and fully characterize stationary equilibria.

The result is a macroeconomic model with agent heterogeneity that links the accumu-
lation of the aggregate capital stock to the insurance contracts of agents.1 We assume that
agents have CRRA utility in consumption. Given the aggregate interest rate r and im-
plied wage w, we analytically characterize the optimal consumption and capital allocation
choices and the resulting aggregate capital supply when income follows a general N -state
Poisson process. We show how to calculate the equilibrium interest rate by solving a one-

1In practice, capital held for financing insurance commitments is a substantial part of the capital stock. In
our model, we make the extreme assumption that this accounts for all of it. We would argue that SIM models
also assume that (self-)insurance against idiosyncratic income fluctuations accounts for the entire holdings of
capital: agents with constant income and the same discount factor would not accumulate capital.
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dimensional nonlinear equation in r after normalizing capital supply and demand by the
aggregate wage. For the special case of two income states, one of which is zero, we char-
acterize the equilibrium interest rate and all equilibrium entities in closed form, including
comparative statics with respect to the model parameters determining income risk, prefer-
ences, and technology. We use this special case throughout to illustrate how the general
theory works and to show how a unique, or multiple-state equilibria can arise.

Our results for the special two-income state case and the full characterization of the
resulting equilibrium can be seen as the counterpart to the characterization of the two-
state continuous-time SIM model in Achdou et al. (2022). Like us, they characterize the
equilibrium by two key differential equations: one governing the optimal solution of the
consumption (self-)insurance problem and one characterizing the associated stationary dis-
tribution. They derive an analytical characterization of the wealth distribution, given the
savings function. The latter cannot be determined in closed form there (although partially
characterized); for the two-state case, we achieve a full characterization of the stationary
distribution in this paper and thus can proceed all the way to provide closed-form solu-
tions for all equilibrium objects. Methodologically, the papers complement each other by
characterizing equilibria in the same physical environment but under two fundamentally
different market structures. Our results for the N-state case and the full analytical charac-
terization, given the equilibrium interest rate, go beyond Achdou et al. (2022). They open
the door to quantitative applications in a rich environment but with considerable analytical
transparency regarding the solution and limited needs for numerical solutions. We then
study one special case analytically and one quantitatively to showcase our approach. Thus,
the paper provides a quantitative workhorse model and alternative to the celebrated SIM.

Our paper builds on the substantial literature on limited commitment, including Thomas
and Worrall (1988), Kehoe and Levine (1993), Phelan (1995), Kocherlakota, Broer (2013),
Golosov et al. (2016), Abraham and Laczo (2018), Sargent et al. (2021), and specifically
shares insights with the theoretical analyses in Krueger and Perri (2006, 2011), Zhang
(2013), Grochulski and Zhang (2012), and Miao and Zhang (2015), but for a general N -
state continuous time Poisson process. Our approach is related in spirit to recent work by
Dàvila and Schaab (2023), Alvarez and Lippi (2022), and Alvarez, Lippi and Souganidis
(2022). We provide a general equilibrium treatment, as do Hellwig and Lorenzoni (2009),
Martins-da-Rocha and Santos (2019), and Gottardi and Kubler (2015).

Our theory complements recent advances regarding the empirical properties of house-
hold consumption. There is now considerable evidence that individual consumption smooth-
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ing is larger than what standard approaches of self-insurance via asset savings would gen-
erate. In a benchmark contribution, Blundell, Pistaferri and Preston (2008) have shown
that there is very considerable consumption insurance even of permanent income shocks,
a finding that is difficult to rationalize within the standard SIM, see Kaplan and Violante
(2011). Using improved methods and data as well as alternative approaches, these results
have been largely confirmed by the more recent literature such as Arellano, Blundell and
Bonhomme (2017), Eika et al. (2020), Chatterjee, Morley and Sigh (2020), Braxton et al.
(2021), Commault (2022), and Balke and Lamadon (2022) for the labor market, as well as
Hofmann and Browne (2013), Ghili, Handel, Hendel and Whinston (2023) and Atal, Fang,
Karlsson and Siebarth (2023) for the private health insurance market. Thus, alternatives to
the conventional self-insurance approach are needed, which our paper provides.

As in Harris and Holmstrom (1982), one interpretation of the consumption insurance
allocation in this paper is that firms insure workers against idiosyncratic productivity fluc-
tuations. This perspective is pursued in Guiso, Pistaferri, and Schivardi (2005) and Balke
and Lamadon (2022). Saporta-Eksten (2016) shows that wages are lower after a spell of
unemployment, which he interprets as a loss in productivity. In the context of our model,
this observation can be rationalized as part of optimal consumption insurance.

2 The Model

Time is continuous, and the economy is populated by a continuum of infinitely lived in-
dividuals of mass 1. These individuals value consumption streams. Aggregate output is
produced with capital and labor and can be used for consumption and investment.

2.1 Technology

The unique final output good is produced by a perfectly competitive sector of firms that
use labor and capital as input. The production function F (K,L) for K ≥ 0, L ≥ 0 is
assumed to be strictly concave, have constant returns to scale, be strictly increasing in
each argument, satisfy F (0, 0) = 0 and be twice continuously differentiable. Production
firms seek to maximize profits, taking as given the market spot wage w per efficiency unit
of labor and the market rental rate per unit of capital. Capital accumulation is linear, and
capital depreciates at rate δ. There is a resulting equilibrium rate of return (equal to the real
interest rate) r for investing in capital. We drop time subscripts t to economize on notation
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whenever possible since we shall concern ourselves only with stationary equilibria in which
aggregate variables such as the factor prices (w, r) are constant and where w > 0.

2.2 Preferences and Endowments

Agents have a strictly increasing, strictly concave, twice continuously differentiable CRRA
period utility function u(c), with risk aversion parameter σ, and discount the future at rate
ρ > 0. The expected lifetime utility of a newborn agent is given by

E

[∫ ∞

0

e−ρt c
1−σ
t

1− σ
dt

]
.

where it is understood that σ = 1 represents the log-case.
Individuals face idiosyncratic income risk. Specifically, each agent can be in one of N

states x ∈ X = {1, . . . , N}, with associated idiosyncratic labor productivity level z(x) ≥
0.2 For a fixed aggregate equilibrium wage w per labor efficiency units, individual labor
income in state x is then wz(x), and we will use the terms (labor) productivity and income
interchangeably. Let αx,x′ be the transition rate from x to x′, with αx,x = −

∑
x′ ̸=x αx,x′

and collect the transition rates in the N × N matrix A. We assume that for every x′,
there is some x ̸= x′, so that αx,x′ ̸= 0, i.e., every state can be reached from some other
state. Transitions are assumed to be independent across individuals. Associated with A is
a stationary distribution µ̄ = [µ̄1, . . . , µ̄N ]

′, an N × 1-dimensional vector satisfying

A′µ̄ = 0 and
∑
x∈X

µ̄(x) = 1 (1)

We also assume that the stationary distribution is unique, that all individuals draw their
initial productivity from µ̄ and that the idiosyncratic shock process satisfies∑

x∈X

z(x)µ̄(x) = 1 (2)

so that aggregate labor input is equal to L = 1 in every period.3

2We denote real-valued functions of x with round brackets, while subscript-x denotes vectors of length
x−1 or matrices of size (x−1)×(x−1). For example, zx is the (x−1)-dimensional vector [z(1), . . . , z(x−
1)]′. We use function-of-x notation to denote entries of a vector, as in this example, as well as entries of a
matrix, except denoting αx,x′ using sub-indices. We also use sub-index notation to denote functions of time.

3Uniqueness of µ̄ can be assured under standard assumptions on A, for example, that all elements of
A are strictly positive. The assumption that all states can be reached assures that µ̄(x) > 0 for all x.The
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2.3 Financial Markets

Households seek insurance against their idiosyncratic risk. For motivation, we envision a
competitive sector of intermediaries who are willing to provide insurance at actuarially fair
rates. These intermediaries will invest the insurance payments in agent-specific accounts
in units of capital k, earning the market interest rate r. They will then make payments
from this capital account in the insurance case, i.e., if the current state x of the agent state
changes to a new state x′ and consumption exceeds income. This may require changing the
account amount from k to k(x′). We, therefore, need to keep track of the capital account
and its relation to consumption and income. It is given by the budget constraint

c+ k̇ +
∑
x′ ̸=x

αx,x′(k(x′)− k) = rk + wz(x) (3)

This constraint takes into account that insurance is actuarially fair so that the outlay for
the account change k(x′) − k equals αx,x′(k(x′) − k). In contrast to a SIM model, capital
is contingent on the agent-specific state. While we imagine the intermediaries to be fully
committed to making the necessary payments, we assume that the commitment by the
agent is limited and that they are free to switch intermediaries at any point and without any
penalty for not making promised payments. Therefore, agents cannot spend based on such
promises. This results in the constraint

k(x′) ≥ 0 (4)

Furthermore, we need to ensure that capital does not become negative in the absence of a
state transition. This is achieved by requiring that

k̇ ≥ 0 if k = 0 (5)

Competition among intermediaries results in agent utility maximization, subject to these
constraints. The agent Hamilton-Jacobi-Bellman equation can then be stated as

ρU(k, x) = max
c≥0,k̇,(k(x′))x′∈X

{
u(c) + U ′(k, x)k̇ +

∑
x′ ̸=x

αx,x′(U(k(x′), x′)− U(k, x))

}
(6)

idiosyncratic productivity states z(x) can always be scaled such that (2) is satisfied.
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where the maximization is subject to the budget constraint (3) and the limited commitment
constraints (4) and (5). A direct interpretation is that agents maximize utility when trading
claims contingent on the agent-specific states at actuarially fair prices, subject to these
constraints. We take this formulation to be the starting point of our analysis.4

3 The Optimal Consumption-Asset Allocation

3.1 General Properties of Optimal Allocations

We now characterize the optimal consumption-saving allocation. To that end, it is helpful
to move from recursive to time domain since the time dependence of allocation comes
through the evolution of the individual capital account k and the state x when focusing on
steady states (and thus on constant wages and interest rates). Written as a function of time,
the budget constraint (3) reads

ct + k̇t +
∑
x′ ̸=x

αx,x′(kt(x
′)− kt) = rkt + wz(x) (7)

where kt(x
′) is the date-t state-contingent capital stock going forward from state x′. It is

also equal to the expected net present value of the future consumption stream net of income
when the current state is x′.

Intuitively, agents with positive capital and no state transitions obey a standard complete
markets Euler equation, and consumption is continuous when a state transition occurs.
Consumption might jump upon a state transition, but only if the associated state-contingent
capital k′(x′) is zero (i.e. if the limited commitment constraint binds). For a given rate of

4An alternative and (as shown in Krueger and Uhlig, 2006) equivalent formulation of the limited commit-
ment friction without punishment for default is to explicitly introduce competitive cost-minimizing financial
intermediaries that offer long-term consumption insurance contracts. These contracts stipulate full income-
history contingent consumption payments in exchange for delivering all labor income to the intermediaries.
One-sided limited commitment then means that intermediaries can fully commit to long-term contracts, but
individuals cannot. That is, in every instant, after having observed current labor productivity, the individual
can leave her current contract and sign up with an alternative intermediary at no punishment, obtaining in
equilibrium the highest lifetime utility contract that allows an intermediary to break even. Here, we focus
on formulating the model with financial markets in the spirit of Alvarez and Jermann (2000). The tight bor-
rowing constraints at zero are precisely the borrowing limits they call “not too tight”, given that there is no
punishment from default here. As a third alternative, we could also motivate ours as an intermediate model
located in between the SIM model with tight borrowing constraints and the complete markets model with a
full set of state-contingent claims and natural state contingent borrowing constraints.
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return r on capital, define the growth rate g = g(r) per

g =
ρ− r

σ
(8)

This growth rate g will be the common growth rate of consumption of all agents whose
limited commitment constraint is not binding. Formally:

Proposition 1. Let w > 0 and r be given. A solution to the HJB equation has the following

properties:

1. For a agent with k > 0, (6) implies

ċt
ct

= g. (9)

If k′(x′) > 0, then consumption after the state transition is unchanged,

c(k′(x′), x′) = c(k, x). (10)

If k′(x′) = 0, then

c(k′(x′), x′) ≥ c(k, x) (11)

2. The decision rules for consumption c(k;x) is strictly increasing in k. The decision

rule for k(x′; k, x) is weakly increasing in k and strictly increasing wherever it is

positive.

3. U(k, x) is strictly concave in k.

4. For k = 0, the HJB equation (6) implies

k̇t = 0 and ċt = 0 (12)

Proof. See Appendix A.

3.2 Explicit Characterization of the Optimal Consumption and Capi-
tal Allocation

On the basis of the previous proposition, we can provide a full characterization of the
optimal consumption allocation under the assumption that r ≤ ρ. The next proposition
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characterizes the optimal consumption contract by N consumption levels c(x), x ∈ X , so
that consumption either drifts down at rate g or jumps up to c(x′), if a state transition to x′

occurs and c(x′) is higher than the pre-jump consumption level.
If consumption is higher than labor income, it needs to be financed with capital (in-

come). In particular, suppose that ct = c(x). Capital reserves kx(x
′) > 0 have to be

created for all transitions from state x to states x′ with c(x′) < c(x), while an upward
jump in consumption resets the allocation at zero capital (and the limited commitment con-
straint is binding).5 For a given current state x, the state-contingent capital stocks for states
x′ < x form an x − 1-dimensional vector kx = [kx(1), . . . , kx(x − 1)]′ which we need to
characterize as part of the optimal allocation. This characterization proceeds by first calcu-
lating the amount of capital dx = [dx(1), . . . , dx(x−1)]′ needed to finance the gap between
consumption and labor income until the endogenous time T (x) when consumption drifting
down from c(x) at rate g reaches the next consumption level c(x − 1). The total capital
saved to insure for a state transition to x′ < x is then the appropriately discounted sum of
these capital differences. For a given g = g(r), a full solution of the agent problem is then
determined by (c(x), T (x), dx, kx) for all x ∈ X . The following proposition provides a
complete and explicit characterization of these entities.

We need the following notation. Let αmin = minx<N αx,N be the minimum hazard rate
across states x < N of escaping to the highest state N . Let 1x be the (x− 1)-dimensional
vector with only 1’s, let 0x be the (x − 1)-dimensional vector with only 0’s, let Ix be the
(x − 1) × (x − 1)-dimensional identity matrix, let zx be the (x − 1)-dimensional vector
[z(1), . . . , z(x− 1)]′ and let αx = [αx,1, . . . , αx,x−1]

′ ∈ IRx−1 be a vector of length6 x− 1.
Define the (x− 1)× (x− 1)-dimensional matrices Ax, Bx and Cx by Ax(x̃, x

′) = αx̃,x′ for
x̃, x′ ∈ {1, . . . , x− 1}, Bx = rIx−Ax and Cx = (r+ g)Ix−Ax. We require the following
additional technical condition. It is satisfied if the matrix Ax has only positive entries off
the diagonal. It is closely related to the concept of irreducibility.

Assumption 1. For every x there is some ϵ̄ > 0 with the property that e−Bxϵ has only

nonzero entries for all 0 < ϵ < ϵ̄.

Proposition 2. Let w > 0 and r be given. Suppose that −αmin < r ≤ ρ. Let assumption

1 be satisfied. For each state x ∈ X , let c = c(x) be the solution to the HJB equation (6)

5Since the enumeration of states has no intrinsic importance, we can relabel them such that c(x) is an
increasing sequence.

6Conventionally, the (x− 1)× (x− 1)-dimensional identity matrix is denoted by Ix−1. For tightness of
notation, we instead use the subscript x here, as well as for other (x− 1)× (x− 1)-dimensional matrices.
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with k = 0. Without loss of generality, suppose that the exogenous states are ordered such

that c(x) ≤ c(x′) when x < x′.7 For each x ∈ X , the consumption levels c(x), wait times

T (x) ∈ IR+ and contingent capital stocks kx ∈ IRx−1
+ and capital differences dx ∈ IRx−1

+

for x = 1 are given by the initialization c(1) = wz(1) and the empty vectors d1 = k1 = [ ],

and for all states x > 1 solve the system of equations8

T (x) =
log(c(x))− log(c(x− 1))

g
∈ [0,∞] (13)

dx = c(x)C−1
x

(
Ix − e−CxT (x)

)
1x −B−1

x

(
Ix − e−BxT (x)

)
wzx (14)

kx = dx + e−BxT (x)

[
kx−1

0

]
(15)

c(x) = wz(x)− αxkx (16)

Proof. See Appendix A

Note that the proof establishes that the expressions in (14) and (15) are also well-defined
for T (x) = ∞, which is important for the case r = ρ and also for the example considered in
the next subsection. Also note that the system of equations (13)-(16) is block-recursive in
x and thus can be solved recursively by starting with the allocation for x = 1 and iterating
forward in x.

Proposition 3. The solution is unique.

Proof. See Appendix A

3.3 An Example

In this subjection, we provide an example intended to serve two purposes. First, it clarifies
how to use the notation and characterization in Proposition 2 and allows us to give an
intuition for the optimal solution based on closed-from formulas. Second, this example

7Since the enumeration of states has no intrinsic importance, we can relabel them such that c(x) is an
increasing sequence. For a recursive algorithm, set x = 1 be the state resulting in the lowest income z(x).
Suppose the sequence of states x = 1, . . . , n and their associated consumption levels and capital reserves
have already been found. Try each of the remaining states as a candidate for the state resulting in the next
lowest c(x) and solve equations (13) to (16). Among all these candidates, pick that state x, which results in
the lowest c(x).

8Note that d1 and k1 have dimension zero. Thus, for x = 2,
[

kx−1

0

]
= [0] and k2 = d2 in equation

(15) which is another way of starting the recursion.
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delivers a closed-form solution not only of the optimal agent consumption-capital process
but will also exhibit a closed-form solution for the equilibrium consumption distribution
and the law of motion for the aggregate capital stock, making a complete closed-form
characterization of the entire equilibrium feasible.

To this end, now assume that X = {1, 2} and z(1) = 0. We can interpret the state
x = 2 as being employed and state x = 1 as being unemployed. Also, denote the Poisson
intensity of losing a job as ξ = α2,1 > 0 and the Poisson intensity of finding a job by
ν = α1,2 > 0. Now consider x = 2. The ingredients for the characterization in Proposition
2, for state x = 2 are as follows. All x−1 entities are simply numbers (rather than vectors or
matrices), and Ax = α1,1 = −α1,2 = −ν since all rows of the transition rate matrix A sum
to zero. Then Bx = r−α1,1 = r+ν, Cx = r+g−α1,1 = r+g+ν, αx = α2,1 = ξ, 1x = 1,
zx = 0. For this two-state example, c(1) = 0 and T (2) = ∞, that is, consumption drifts
down from c(2) to c(1) = 0 at rate g asymptotically.9 Now (15) implies that d2(1) = k2(1)

and (16) and (14) read, respectively, as

c(2) = wz(2)− ξk2(1) (17)

k2(1) =
c(2)

r + g + ν
(18)

Note that (18) requires r + g + ν > 0 in order for the expression to make sense. This
is assured by the assumption that −min{ξ, ν} = −αmin < r of Proposition 2. The two
equations above can be easily solved explicitly as

c(2) =
r + g + ν

r + g + ν + ξ
wz(2) < wz(2) (19)

k2(1) =
1

r + g + ν + ξ
wz(2) (20)

We also note that for r = ρ or for log-utility (σ = 1) and thus g = ρ− r we have

c(2) =
ρ+ ν

ρ+ ν + ξ
wz(2) (21)

k2(1) =
1

ρ+ ν + ξ
wz(2) (22)

and thus both the share of income in the high state devoted to consumption c(2) as well as

9In the case r = ρ, which is encompassed in the analysis, consumption remains constant and does not
drift down at all.
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to the capital bought as insurance for the low state k2(1) are independent of the equilibrium
interest rate r. Note that the total expense for insurance is ξ × k2(1), which is strictly
increasing in the intensity ξ with which the agent becomes unemployed (and declines with
the intensity ν of finding a new job).

A visual representation of the optimal consumption dynamics is provided in Figure 1.
The left panel represents the case r = ρ, and the right panel displays the case r < ρ in which
agents are impatient and, absent constraints, prefer a downward-sloping consumption time
path.

0 2 4 6 8 10
time

0

0.5

1

1.5

go
od

s/
w

Optimal contract sample path, -r=0.0

productivity
consumption

0 2 4 6 8 10
time
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1

1.5
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w
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productivity
consumption

Figure 1: These two figures show the optimal consumption dynamics for given a sample
path for productivity. If the agent always had zero productivity in the past, the agent will
also consume zero and hold zero contingent capital. Upon the first instance of high produc-
tivity, the agent uses the labor income to finance a jump in consumption to c(2), but also to
acquire the state-contingent capital position k2(1) which finances the optimal consumption
path in the absence of labor income (i.e., then productivity falls to z(1)). When r = ρ as
in the left panel, consumption is constant forever. While productivity is high, consumption
is also constant for r < ρ as shown in the right panel, and when productivity switches to
zero, consumption follows the standard continuous-time Euler equation and falls at rate g
asymptotically to zero.

4 The Invariant Consumption Distribution

In the previous section, we have derived the optimal agent consumption allocation and
shown that it is characterized by N consumption thresholds c(x) and wait times T (x)

for all x ∈ X , as well as a common downward consumption drift −g(r) = −ρ−r
σ

≤ 0

whenever the limited commitment constraint is not binding. In this section, we will first
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derive the unique stationary distribution associated with this consumption process for the
general case and then continue our two-state example for which a closed-form calculation
of the distribution can easily be given.

4.1 Theoretical Characterization of the Distribution

Assume now that αmin < r < ρ. Let µ(x) be the mass of agents in state x and at consump-
tion level c(x). Let fx,x̃(t) be the density of agents with current state x̃ whose consumption
has been drifting down t ∈ [0, T (x)] periods from c(x), starting at t = 0. For these t,
consumption is equal or higher than c(x−1).10 We collect the mass points and densities as

D = ((µ(x))x∈X , (fx,x̃(t))x,x̃∈X,t≥0) (23)

and call it the stationary distribution if its mass integrates to unity and it is a solution
to the state and consumption transitions implied by the Markov process for the states de-
termined by the matrix A and the consumption evolution characterized in Proposition 2.
Thus, these point masses µ(x) and densities fx,x̃ satisfy a list of conditions implied by the
Kolmogorov forward equations given in Proposition 12 of Appendix B.In particular, let
fx(t) = [fx,1(t), . . . , fx,x−1(t)]

′. This vector of densities satisfies the matrix ODE

ḟx(t) = A′
xfx(t). (24)

They give rise to the following complete characterization of the stationary distribution D
of decay times t.

Proposition 4. Let µ̄ be the unconditional stationary distribution across states, solving

0 = A′µ̄ and
∑

x µ̄(x) = 1 and assumed to be unique. Assume that αx,x < 0 for all x and

that µ̄N > 0.11 12 Let fx(t) = [fx,1(t), . . . , fx,x−1(t)]
′. Then the stationary distribution D

is unique and can be calculated recursively as follows.

1. µN = µ̄N

10For t > T (x), consumption has drifted below c(x− 1), and we let fx,x̃(t) = 0 for t > T (x) and count
the agents arriving at t = T (x) towards µ(x − 1) if x̃ = x − 1 or towards fx−1,x̃ if x̃ < x − 1. Note that
fx,x̃(t) = 0, if x̃ ≥ x, since agents in state x̃ ≥ x consume at least c(x).

11If αx,x = 0, the state x would be absorbing.
12It is easy to generalize the result to a case where µ̄N = . . . = µ̄x̄+1 = 0 in which case µ(x) = 0 and

fx,x′(t) = 0 for all x > x̄.
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2. For x = N, . . . , 2,

(a) calculate the x− 1-dimensional vector fx(0) = [fx,1(0), . . . , fx,x−1(0)]
′ per

fx,x̃(0) =

{
αx,x̃µ(x), if x = N

αx,x̃µ(x) + fx+1,x̃(Tx+1), if x < N
(25)

(b) calculate the solution fx(t) for t ∈ (0, T (x)] to (24) as13

fx(t) = exp (A′
xt) fx(0) (27)

(c) Finally,

µ(x− 1) =
−1

αx−1,x−1

(
fx,x−1(Tx) +

∑
x̃<x−1

αx̃,x−1

(
µ̄x̃ −

∑
x′>x−1

∫ Tx′

t=0

fx′,x̃(t)dt

))
(28)

The integral terms in (28) can be calculated explicitly as∫ Tx

t=0

fx(t)dt = (A′
x)

−1
(exp(A′

xT (x))− Ix)fx(0) (29)

Proof. See Appendix B

The conditions that a stationary distribution has to satisfy have the following interpre-
tation. Item 1. states that all individuals currently in the highest state x = N (with mass
µ̄N) are located at the mass point µN and thus will have the highest consumption level
c(x). The next condition, item 2.a, characterizes the density for the instant (i.e., t = 0)
an individual experiences a drop in the state from x to x̃ < x. Two groups of individuals
transit here: those at the mass point µ(x) that experience a transition to x̃, which hap-
pens at intensity αx,x̃, and those that have continued to drift down from state x + 1 and
thus consumption c(x + 1) for Tx+1 units of time and have passed through c(x) at this
very instant. From t ∈ (0, T (x)] on the vector-valued density follows a simple matrix
ordinary differential equation determined by the matrix of state transitions Ax whose so-
lution is given in (25). Finally, the last equation characterizes the next lower mass point

13In particular,
fx(T (x)) = exp (A′

xT (x)) fx(0) (26)
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µx−1,x−1 and states that in the stationary distribution the outflow from this mass point,
αx−1,x−1µ(x − 1) =

∑
x′ ̸=x−1 αx−1,x′µ(x − 1) is equal to its inflow. This inflow comes

from two sources, those that have drifted down from the consumption level c(x) for Tx

units of time (density fx,x−1(Tx)), and then those experiencing state transitions to x − 1

from states x̃ (which occur with intensity αx̃,x−1). The term in brackets gives the mass of
all individuals in current state x̃ which do not currently drift down from state even higher
than x− 1.14

Since there is a one-to-one mapping between the time t consumption has drifted down
from one of the thresholds c(x) upon a transition to a lower state and the level of consump-
tion at this time, the previous characterization of the decay time distribution then implies
the cross-sectional consumption distribution for a given interest rate r. We characterize this
distribution in the next proposition.

Proposition 5. For c ∈ (c(x − 1), c(x)), define t(c) = (log(c(x)) − log(c))/g. The

probability density ϕ(c) for consumption c ∈ [c(1), c(N)], permitting mass points, is given

by

ϕr(c) =

{
1
gc

∑
x′<x fx,x′(t(c)) if c ∈ (c(x− 1), c(x))

µ(x)δδδc if c = c(x)
(30)

where δδδc indicates a Dirac mass point at c.

For x ∈ X , define Dx = gIx − A′
x. Aggregate consumption is given by

C = c(1)µ1 +
∑
x>1

c(x)
(
µ(x) + 1′

xD
−1
x (Ix − exp(−DxT (x))) fx(0)

)
(31)

Proof. This is a direct consequence of the characterization of the distribution of consump-
tion decay times in Proposition 4 and a change of variables from t to c through the mapping
tc, see Appendix B for the details.

So far, we have treated r as a fixed parameter. We seek to understand how the solution
varies with r. All objects calculated in propositions 2, 4 and 5 are functions of r.15 In
particular, let us explicitly denote the dependence of aggregate consumption C(r) on r,
where C(r) = C is given in equation (31).

In the next subsection, we continue the two-state example from Section 3.3 to show
how Propositions 4 and 5 work in practice.

14The others simply continue to drift down upon making the state transition to x− 1 rather than enter the
mass point µ(x− 1).

15Proposition 3 guarantees that they are indeed functions, not correspondences.
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4.2 The Example Continued

For the two-state example from Section 3.3, the calculation of the stationary decay-time
and consumption distributions is straightforward and deliver the consumption distribution
in closed form. We can directly apply Proposition 4 with the highest state with a mass point
being N = 2, and thus item 1 of Proposition 4 implies

µ2 = µ̄2 =
ν

ξ + ν
. (32)

Thus, all individuals in state 2 consume c = c(2), per Proposition 5.
The remainder of the decay-time distribution f2(t) = f2,1(t) for x = 2 follows directly

from parts 2.a and 2.b of Proposition 4. Since for this example the matrix A2 = α1,1 = −ν

is just a number, α2,1 = ξ and T (2) = ∞ (see Section 3.3), we immediately have that

f2,1(0) = α2,1µ2 =
ξν

ξ + ν
(33)

f2,1(t) =
ξν

ξ + ν
e−νt, t ∈ (0,∞). (34)

Note that
∫∞
0

f2,1(t)dt =
ξ

ξ+ν
= µ̄1, and thus the decay-time distribution in (34) accounts

for the entire mass of low-productivity individuals.
Translated into the consumption distribution, equation (30) in Proposition 5 implies

that t(c) = (log(c(2))− log(c))/g and the consumption probability density function for all
c ∈ (0, c(2)) is given by

ϕr(c) =
1

gc

ξν

ξ + ν
e−νt(c) =

1

gc

ξν

ξ + ν
e−

ν
g
[log(c(2))−log(c)] =

ξνc(2)−
ν
g c

ν
g
−1

g(ξ + ν)
(35)

and thus the consumption distribution in this example has a mass point at c(2) and a Pareto
density with shape parameter ν

g
− 1 on the interval (0, c(2)) below it.

Part 2.c of Proposition 4 immediately implies that µ1 = 0, that is, there is no mass
point for state x = 1, which is intuitive since consumption reaches c = c(1) = 0 only
asymptotically. The normalization in equation (2), that aggregate labor L = µ̄2z(2) =
ν

ξ+ν
z(2) = 1 and z(1) = 0 implies z(2) = (ξ+ ν)/ν. Plug this into equation (19) to obtain

c(2) =
r + g + ν

r + g + ν + ξ

ξ + ν

ν
w

15



The last part of Proposition 5, with the matrix D2 = g + ν becoming a scalar, allows us to
calculate aggregate consumption as a function of the interest rate, as16

C(r) = 0 + c(2)

(
µ2 +

1

g + ν
f2,1(0)

)
= c(2)

ν

ξ + ν

(
g + ν + ξ

g + ν

)
=

(
1 +

rξ

(g + ν)(r + g + ν + ξ)

)
w (36)

For σ = 1 (log-utility, and thus g = ρ− r), aggregate consumption becomes

C(r) =

(
1 +

rξ

(ρ+ ν − r)(ρ+ ν + ξ)

)
w (37)

5 Stationary Equilibrium

Equipped with the solution of the agent problem and the associated stationary consumption
(and asset) distribution ϕr as well as aggregate consumption C(r) derived in the previous
section, we can now determine the general equilibrium interest rate and wage in the econ-
omy. In this economy, there are three markets: the labor market, the capital market, and
the goods market. Aggregate labor supply, the sum of labor efficiency units of all agents,
is exogenous and normalized to L = 1, and thus, the wage adjusts such that firms demand
that labor in stationary equilibrium, which we define next.

Definition 1. A stationary equilibrium consists of an equilibrium wage and interest rate

(w, r), aggregate capital K, and a stationary consumption probability density function

ϕ(c) such that

1. The interest rate and wage (r, w) satisfy

r = FK(K, 1)− δ (38)

w = FL(K, 1) (39)
16To see this, add and subtract ξ to and from the numerator of c(2), write

c(2)
ν

ξ + ν

(
g + ν + ξ

g + ν

)
=

(r + g + ν + ξ − ξ)(g + ν) + (r + g + ν)ξ

(r + g + ν + ξ)(g + ν)

and combine terms.
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2. The goods market and the capital markets clear

C(r) + δK = F (K, 1) (40)
C(r)− w × 1

r
= K. (41)

3. The stationary consumption probability density function ϕ(c) is consistent with the

dynamics of the optimal consumption allocation characterized in Proposition 2, that

is, it satisfies Proposition 4.

In the capital market clearing condition (41), the right-hand side K = Kd is the demand
for capital by the representative firm. The numerator on the left-hand side is the excess
consumption, relative to labor income, of all agents, that is, the aggregate capital income
required to finance that part of consumption that exceeds labor income. Dividing by the
return to capital r gives the capital stock that agents need to own to deliver the required
capital income. Thus we can think of

Ks(r) =
C(r)− w(r)

r
(42)

as the household sector’s supply of assets. By restating the capital market clearing condi-
tion as

Ks(r) = Kd(r)

where Ks(r) is defined in (42) and Kd(r) is defined through (38), we can provide an
analysis of the existence and uniqueness of the stationary equilibrium in the (K, r) space,
analogously to the well-known analysis familiar from Aiyagari (1994) for the standard
incomplete markets model.

As long as r ̸= 0, the usual logic of Walras’ law applies and one of the two market
clearing conditions is redundant. Equation (41) always implies (40), but the reverse is not
true for r = 0.17 Thus, we make use of the capital market clearing condition (41) rather than
the goods market clearing condition (40) for our ensuing analysis of stationary equilibria.

17From Euler’s theorem and equations (38) and (39) it follows that

w + rK = F (K, 1)− δK

Thus, (41) always implies (40). The reverse is true for r ̸= 0. Note that this issue is not unique to our model,
and is present in the Aiyagari model as well; see Proposition 7 in Auclert and Rognlie (2020).
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5.1 Equilibrium Existence

We seek to establish the existence of an equilibrium with partial insurance. We will impose
a simple condition ensuring that capital supply exceeds capital demand at r = ρ. One
would also like to find a simple condition so that capital demand exceeds capital supply at
some suitable lower bound. Suppose, say, that production is Cobb-Douglas, F (K,L) =

KθL1−θ. As r approaches −δ and thus r + δ approaches zero, equation (38) implies that
Kd(r) → ∞ and therefore w(r) = (1− θ)

(
Kd(r)

)θ → ∞. Hence, per Lemma 5, the total
asset supply associated with that wage then diverges, Ks(r) → ∞, thwarting this strategy.

We therefore adopt the more fruitful approach of examining capital supply and demand
(Kd(r), Ks(r)) normalized by the wage w(r) = FL(K

d(r), 1),

κs(r) =
Ks(r)

w(r)
and κd(r) =

Kd(r)

w(r)
. (43)

and characterize it in the following proposition.18 Define the following bounds r and r̄ for
the interest rate such that both (normalized) capital demand and supply are well-defined for
interest rates r ∈ (r, r̄) in between these bounds:

r = max{−αmin, lim
K→∞

FK(K, 1)− δ} and r̄ = min{ρ, lim
K→0

FK(K, 1)− δ} (44)

As we show in section 6, r will not exceed ρ, since capital supply becomes infinitely elastic
at r = ρ.

Proposition 6. Normalized capital supply κs(r) and normalized capital demand κd(r) are

well-defined, continuous and strictly positive functions of r ∈ (r, r̄).

Proof. For normalized capital supply κs(r), Lemma 5 in Appendix D.1 establishes that
aggregate consumption C(r) is differentiable and equal to w(r) at r = 0. The existence
and continuity of a well-defined κs(r) function follows from L’Hospital’s rule at r = 0 and
is straightforward otherwise. Thus κs(r) has the stated properties on (αmin, ρ) ⊇ (r, r̄).

For normalized capital demand κd(r), observe that the marginal product of capital is
a continuously differentiable and strictly decreasing function of K, mapping K ∈ (0,∞)

onto (limK→∞ FK(K, 1), limK→0 FK(K, 1)) ⊇ (r + δ, r̄ + δ). Since the marginal product

18We believe that this approach of analyzing the model is fruitful more generally for any model with
standard neoclassical production, including the Aiyagari (1994) model and the competitive equilibrium of
the standard representative agent model.
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of labor FL(K, 1) is positive and continuous for all positive K, the function κd(r) has the
properties stipulated in Proposition 6.

A rate of return r∗ gives rise to a stationary equilibrium if

κs(r∗) = κd(r∗) (45)

In order to ensure the existence of equilibrium, we need the following boundary condi-
tions.19

Assumption 2. Let lim infr→r κ
s(r) < lim supr→r κ

d(r) and lim supr→r̄ κ
s(r) > lim infr→r̄ κ

d(r).

The following proposition is then a trivial consequence of Proposition 6 and the inter-
mediate value theorem.

Proposition 7. Suppose assumption 2 is satisfied. Then, a stationary equilibrium with an

interest r∗ ∈ (−δ, ρ) exists.

Assumption 2 involves the endogenous entities (κs(r), (κd(r)) at the boundaries (r, r̄).
If one is willing to put further structure on the production function and agent preferences
and endowments, then it can be replaced with conditions on exogenous parameters only. In

particular, consider a CES production function F (K,L) =
(
θK1− 1

η + (1− θ)L1− 1
η

) η
η−1

with elasticity of substitution η ∈ (0,∞). This includes the Cobb-Douglas specification
F (K,L) = KθL1−θ as a special case for η = 1. We show in appendix C.2 that normalized
capital demand becomes

κd(r) =
θ

(r + δ)
[(

r+δ
θ

)η−1 − θ
] (46)

If the elasticity of substitution is as high or higher than in the Cobb-Douglas case, η ≥
1, then κd(r) is strictly decreasing and continuously differentiable. It is defined on r ∈
(θ

η
η−1 − δ,∞) for η > 1 and r = (−δ,∞) for η = 1, and diverges, as r approaches the

lower bound of that interval. If −αmin is lower than that lower bound, then the first half of
Assumption 2 is automatically satisfied.20

19The use of lim inf and lim sup in the assumption is sufficient for the existence result of Proposition 7
and avoids a discussion of the existence of the associated limits.

20For η ∈ (0, 1), normalized capital demand κd(r) is defined on r ∈ (−δ, θ
η

η−1 ). We show in appendix C.2
that in this case κd(r) has an upward-sloping part. Indeed, for the limit case of η = 0 (Leontieff production
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In the next subsection, we continue our example and show that for this example, the sec-
ond half of Assumption 2 can also be replaced by an assumption on exogenous parameters
characterizing the extent of income risk (and the other parameters of the model). Section 6
considers the case when the second inequality in Assumption 2 is reversed, and a stationary
equilibrium with full consumption insurance can emerge.

5.2 The Example Continued

The properties of normalized capital supply can be examined explicitly in the two-state
example of Sections 3.3 and 4.2. Equation (36) immediately implies that for this example

C(r)

w(r)
= 1 +

rξ

(g(r) + ν)(r + g(r) + ν + ξ)
(47)

where we recall that the growth rate g(r) (and thus the decay rate of consumption −g) is
given per equation (8) by g(r) = ρ−r

σ
. With a Cobb-Douglas production function and thus

equation (46), and with κs(r) = (C(r)/w(r)− 1)/r, the capital market clearing condition
can be stated explicitly as

κd(r) =
θ

(1− θ)(r + δ)
=

ξ(
− r

σ
+ ρ

σ
+ ν
) ((

1− 1
σ

)
r + ρ

σ
+ ν + ξ

) = κs(r) (48)

where we have now written out the growth rate g(r) = ρ−r
σ

. This is a quadratic equation
and can have no, one or two solutions in the interval (−δ, ρ).

It is easy to see that the following assumption, stated purely in terms of the exogenous
parameters of the model, implies Assumption 2 with r = −δ and r̄ = ρ.

Assumption 3. The production function takes a Cobb-Douglas form. The parameters char-

acterizing the production technology (θ, δ), agent preferences (ρ) and idiosyncratic risk

(ν, ξ) satisfy αmin = min{ν, ξ} > δ and

κd(ρ) =
θ

(1− θ)(ρ+ δ)
<

ξ

ν (ρ+ ν + ξ)
= κs(ρ) (49)

function), κd(r) is upward-sloping on the entire interval r ∈ (−δ, 1 − δ) where it is defined. In terms of
general properties outside the CES case, we establish in Appendix C.1 that κd(r) is strictly decreasing if FK

is strictly convex. Note that these results and issues arise in any models employing a neoclassical production
function, including the standard representative agent model as well as the Aiyagari (1994) model. This might
explain why the literature typically assumes that the production function is Cobb-Douglas.
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We will now show that if, in addition to this assumption, the intertemporal elasticity of
substitution 1/σ is sufficiently high (σ is sufficiently low), then capital supply is upward
sloping in the interest rate and the partial insurance steady state is unique. In contrast, if σ
is sufficiently large, then κs(r) can have downward-sloping segments and the possibility of
multiple partial insurance steady states emerges.

5.2.1 Logarithmic Utility (σ = 1): Uniqueness and Comparative Statics

If σ = 1, then the equilibrium condition (48) becomes linear in the interest rate, and the
unique partial insurance stationary equilibrium can be characterized in closed form.

Proposition 8. Suppose σ = 1.

1. Suppose Assumption 2 is satisfied and that normalized capital demand κd(r) is down-

ward sloping. Then the equilibrium is unique.

2. Now suppose Assumption 3 is satisfied. Then the unique equilibrium interest rate

r∗ ∈ (−δ, ρ) is given by

r∗ =
θ(ν + ρ+ ξ)(ν + ρ)− ξδ(1− θ)

ξ + θ(ν + ρ)
(50)

r∗ is strictly increasing in ρ + ν and θ and strictly decreasing in ξ and δ. The

equilibrium capital stock K∗ is strictly increasing in ξ and strictly decreasing in

ρ + ν and in δ. The stationary consumption distribution has a mass point and a

truncated Pareto distribution with Pareto coefficient κ = ν
ρ−r∗

− 1 below the mass

point.

Proof. With σ = 1, equation (47) implies that normalized capital supply is given by

κs(r) =
ξ

(ρ− r + ν)(ρ+ ν + ξ)
(51)

and is strictly increasing in r. Thus, the equilibrium must be unique. Equation (50) follows
from solving (the now linear) equation (48), when σ = 1. The comparative static properties
for the equilibrium interest rate follow directly from its closed-form expression, and the
comparative statics results for the equilibrium capital stock follow from the fact that it
is a decreasing function of r∗. The statements about the consumption distribution follow
directly from equation (35).
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The finding that the equilibrium capital stock increases and the interest rate falls with an
increase in the risk of income falling, ξ, indicates the presence of precautionary saving in
our model. To see this, note that the variance of income is given by V ar(z) = µ̄1(0−1)2+

µ̄2(ζ − 1)2 = ξ
ν

where we used the normalization µ̄2ζ = 1 that average labor productivity
equals 1. Increasing ξ, holding ν fixed and increasing ζ such that average productivity
remains at one therefore constitutes a mean-preserving spread increasing income risk. In
response agents save more individually21 and the aggregate capital stock rises as a result.
That is, there is precautionary saving on the micro and macro level in our model, but it
takes the form of state-contingent saving due to the market structure we have assumed.
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Figure 2: The left panel shows wage-normalized capital demand κd(r) and capital supply
by the household sector κs(r), as a function of the interest rate. The figure is drawn with
Assumption 3 in place, guaranteeing a unique stationary equilibrium interest rate r∗ < ρ.
The right panel plots consumption demand C(r) by the household sector and net goods
supply. There are two intersections: one at the stationary equilibrium interest rate r∗ and
one at r = 0; but at the latter interest rate (r = 0), the capital market does not clear.

The unique equilibrium is represented graphically in Figures 2a and 2b. There is a
unique equilibrium with an interest rate r < ρ that clears both the capital market (Figure
2a) and the goods market (Figure 2b).

21Capital saved for the transition to the low state (see equation (22)) is given by k2(1) = 1
ξ+ν+ρζw =

w
ν(1+ρ/(ξ+ν)) which is increasing in ξ.
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5.2.2 Multiple Partial Insurance Steady State Equilibria

If normalized capital demand κd(r) is downward sloping, as it is for Cobb-Douglas produc-
tion, the CES specification for η ≥ 1 and a multitude of other production functions, the key
to establishing the existence of a unique partial insurance steady state is an upward-sloping
normalized capital supply function.

Inspection of the asset supply function on the right-hand side of (47) shows this to be
the case if σ ≤ 1. In contrast, as σ approaches infinity and the IES converges to zero,
the lifetime utility function becomes Leontieff, and the asset supply function is downward-
sloping, raising the possibility of multiple partial insurance stationary equilibria. The next
proposition summarizes the various possibilities for σ ̸= 1. For simplicity, we impose a
Cobb-Douglas production function on the capital demand side.

Proposition 9. Let Assumption 3 be satisfied.

1. If σ < 1, then κs(r) is strictly increasing on r ∈ (−δ, ρ). There exists a unique

stationary equilibrium with interest rate r ∈ (−δ, ρ).

2. Let σ > 1 and let σν+ρ
σ−1

> δ be satisfied.22 There exists at least one stationary

equilibrium with r ∈ (−δ, ρ).

(a) Suppose σ ∈ (1, 2] and let ξ ≥ δ be satisfied.23 Then κs(r) is increasing

on r ∈ [−δ, ρ) and the stationary equilibrium with interest rate r ∈ (−δ, ρ)

remains unique.

(b) There exist parameter combinations with 2 < σ < ∞ such that κs(r) has

decreasing parts on [−δ, ρ) and that there are two stationary equilibria with

r ∈ (−δ, ρ) solving the quadratic capital market clearing condition (48).

Proof. See Online Appendix E. For the last part, see the example in Figure 3.

This proposition shows that for wide parameter combinations, the uniqueness of equi-
librium can be guaranteed (parts 1 and 2a). It also identifies (in part 2b) the range of
parameters where two stationary equilibria can emerge. This scenario is depicted in Fig-
ure 3.

22This condition ensures that the effective discount rate r + ν + g(r) used to determine c(2) is positive
even at r = −δ, and thus c(2) is finite at that interest rate and at all higher interest rates.

23This condition ensures that κs(r) is increasing at r = −δ.
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Figure 3: Two equilibria with partial insurance when σ > 2.

(a) Capital Market Clearing (b) Equilibrium Consumption Distributions

This figure plots an example of two equilibria, both with partial insurance, under parameter values σ =
10, θ = 0.25, δ = 0.16, ν = 0.05, ξ = 0.02, ρ = 0.4. The two equilibrium interest rates are given by r∗1 =
−0.0246, r∗2 = 0.1357. Left panel: solid line represents the capital supply curve κs (r), dashed line represents
the capital demand curve κd (r). The right panel displays the two equilibrium consumption distributions,
including the mass point for each of them.

6 Stationary Equilibrium with Full Insurance

Suppose that r̄ = ρ, but that the second part of assumption 2 is violated, i.e., suppose
lim supr→ρ κ

s(r) ≤ lim infr→ρ κ
d(r). Since there is full consumption insurance when

r = ρ, it follows that the capital supply needed to provide this full insurance is insuffi-
cient to meet capital demand from the production side. As a result, agents hold capital for
conventional consumption, smoothing savings motives, and not just as an insurance cush-
ion. Capital supply becomes infinitely elastic at r = ρ, just as in the steady state of the
standard representative agent neoclassical growth model.

Consider an agent indexed by j ∈ [0, 1] in state x. With full insurance, consumption
is constant at some level cj . There is no disinvestment, k̇j,t,x = 0, and hence, there is
a constant capital level kj(x) for every level of productivity x, with the flow of interest
payments financing the gap between income and consumption. Budget constraint (7) reads

cj +
∑
x′ ̸=x

αx,x′(kj(x
′)− kj(x)) = ρkj(x) + wz(x) (52)

or
(ρIN+1 − A)kj = cj − wz (53)
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where IN+1 is the identity matrix of size N ×N and where kj = [kj(1), . . . , kj(N)] is the
vector of capital stocks held by agent j, conditional on each income state.24 Equation (53)
can be solved for the capital levels kj , provided the wage w and consumption cj are known.
The wage w follows directly from the production side at r = ρ. As for the consumption
level, note that cj ≥ c(N), where the latter is the lowest consumption level in state N

compatible with r = ρ and as calculated in proposition 2. This follows because agents will
eventually reach state N , with zero capital and permanent consumption of at least c(N),
even if that agent starts off with zero capital in some other state. The proof of the following
proposition in appendix E then implies that kj is non-negative for any agent j.

Proposition 10. Suppose that r̄ = ρ and lim supr→ρ κ
s(r) ≤ lim infr→ρ κ

d(r). Then there

is a stationary equilibrium with r = ρ in which every agent j ∈ [0, 1] consumes a constant

amount cj ≥ c(N). Average consumption c̄ is given by sum of the flow income from capital

and wages

c̄ = ρKd(ρ) + w(ρ) (54)

where K = Kd(ρ) solves (38) at r = ρ and where w(ρ) follows from (39) at K = Kd(ρ).

Individual capital holdings kj satisfy equation (53). If cj = c̄ for all agents, the distribution

of the agents over the point masses (x, k̄j(x)) is given by the stationary distribution µ̄ for

A, where k̄ solves (53) for cj = c̄.25 For arbitrary consumption distributions cj ≥ c(N), k̄

is the average of the capital holdings across agents.

The proof is in appendix E. In principle, nothing guarantees that the vector of capital
holdings defined in (53) satisfies kj(x) ≥ 0 for all x. The point of the proof is to show that
this is precisely what the assumed inequality limr→ρ κ

s(r) ≤ κd(ρ) guarantees.
Note that replacing cj = c̄ in the agent budget constraint (53) with the goods market

clearing condition (54) and taking the inner product with the stationary distribution µ̄ yields

µ̄ · (ρIN+1 − A)k̄ = ρKd(ρ) + w(ρ)− w(ρ)µ̄ · z.
24Recall that we use the notation Ix to denote the (x − 1) × (x − 1) identity matrix: thus the subscript

N + 1 here. Further, recall that αx,x = −
∑

x′ ̸=x αx,x′ .
25It is not necessarily true that all agents have the same consumption: they just each have consumption of

at least c(N) and average consumption is c̄, but we cannot say more than that. The consumption distribution
is indeterminate and depends on the (arbitrary) initial distribution of capital, exceeding kN (x) for x < N or
0 for x = N .
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Since µ̄ · z = 1 by normalization and µ̄′A = 0 by stationarity of µ̄, we have

µ̄ · k̄ = Kd(ρ) (55)

and thus, the asset market clearing condition is satisfied at r = ρ as well, a simple conse-
quence of Walras’ law.

Proposition 10 opens the door for the existence of (at least) two steady-state equilibria,
one with partial insurance, the other with full insurance, by reversing the orderings at both
ends in Assumption 2.

Assumption 4. Assume that lim supr→r κ
s(r) > lim infr→r κ

d(r). Assume that r̄ = ρ and

that lim infr→ρ κ
s(r) < lim supr→ρ κ

d(r).

Proposition 11. Suppose assumption 4 is satisfied. Then there is at least one partial insur-

ance stationary equilibrium with an interest r∗ ∈ [r, ρ) and one full insurance equilibrium

at r = ρ.

Proof. Like Proposition 7, the existence of a partial insurance stationary equilibrium fol-
lows from the intermediate value theorem and Proposition 6. The existence of the full
insurance equilibrium follows from proposition 10.

Assumption 4 requires that κd(r) is upward-sloping or that κs(r) is downward-sloping
for at least a certain range of the interest rate. As shown above, this cannot occur in our
simple 2-state example with Cobb-Douglas production and log-utility. However, even for
this example, Assumption 4 is not empty as long as σ is sufficiently large, and thus, the IES
is sufficiently small. 26

26Recall that normalized capital supply is κs(r) = ξ/((g + ν)(r + g + ν + ξ)) with g = (ρ − r)/σ, see
equation (48). While this function is well defined for −ν − ξ < r ≤ ρ, examination of (18) shows that we
need to keep r > −ν, as σ → ∞. Impose that 0 < ν = ξ < δ. Therefore r = αmin = ν is the lower
bound for r in assumption 4. As r → −ν and σ → ∞, normalized capital supply converges to 1/ν, while
normalized capital demand in the Cobb-Douglas case is θ/((1−θ)(δ−ν)). If ν < (1−θ)δ, one can therefore
find r > −ν and σ large enough that Assumption 4 is satisfied.

These calculations also allow for a non-existence example. Assume again Cobb-Douglas production and
Leontieff preferences σ → ∞, and impose θ = 1/3 as well as ν = ξ < δ and thus r = −ν. Non-existence
follows if κs = 1/(r + 2ν) > 2(r + δ) = κd for all r ∈ (−ν, ρ]. This is the case if ν < 2δ/3. For finite, but
large σ then follows for ν sufficiently small compared to δ. Concretely, assume that ν = ξ = ρ < δ/2. With
some algebra one can show that κs > κd for all r ∈ (−ν, ρ] if σ ≥ 7.
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7 Quantitative Exploration

The previous sections characterized partial- and full insurance stationary equilibria theo-
retically. We now demonstrate that our model is amenable to the same quantitative analysis
as the standard incomplete markets (SIM) model. For a plausible calibration of idiosyn-
cratic risk consistent with micro data, it delivers a unique partial insurance interest rate
and consumption distribution that can be quantitatively compared to the SIM in continuous
time, as explored recently in, e.g., Kaplan, Nikolakoudis and Violante (2023). To do so, we
first discuss the calibration of the model, with focus on the idiosyncratic productivity pro-
cess. We then show the stationary consumption distribution and contrast the capital market
equilibrium in our model with that in the standard incomplete market model.

7.1 Calibration

For the calibration, we adopt the five-state process used by Kaplan et al. (2023), but aug-
ment it by a sixth state, referred to below as the superstar state, see Table 1. With this

Table 1: Parameterization of the Quantitative Model

Parameter Interpretation Value
θ Capital Share 40%
δ Depreciation Rate 2.25%
σ Risk Aversion 1
ρ Time Discount Rate 1%
ν Poisson Rate of Moving into Top 0.001
ξ Poisson Rate of Moving out of Top 0.1
z Labor Productivity States (0.5,0.65,0.81,0.96,1.12,20)
µ̄ Labor Productivity Distribution (0.07,0.24,0.37,0.24,0.07,0.01)

The table contains the parameterization of the model at a quarterly frequency. The last two rows contain the
idiosyncratic labor productivity states z(.) as well as the associated stationary distribution µ̄ over these states.
The complete matrix of Poisson transition rates is contained in Appendix F

superstar state, the insights from the simple two-state example above carry over to the
quantitative version here: essentially, the agent switches back and forth between the very
high income and low incomes, setting aside insurance in the former against the transition to
the latter. Specifically, we choose the highest state in such a way that the share of the pop-
ulation in that state is 1% and that their share of labor income is 20% (see, e.g., Piketty and
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Saez, 2003). Since average labor productivity is normalized to 1, we have 0.01∗z(6) = 0.2

which implies z(6) = 20. Analogous to our two-state example, let ξ and ν denote the Pois-
son intensity of leaving or arriving at the high state.27 Since the share of highly productive
agents is 0.01 = ν

ξ+ν
= 1

1+ξ/ν
, this implies that we need ξ

ν
= 99. This leaves us with one

degree of freedom determining the persistence (or expected duration, 1/ξ) of remaining in
the superstar state. For a quarterly frequency of the calibration and assuming that duration
to be 10 quarters, we obtain ξ = 0.1 and thus ν = 0.1/99 = 0.001.

For the remaining parameters, we follow Kaplan et al. (2023) and set the capital share
to θ = 0.4 and the quarterly depreciation rate to δ = 2.5%. Risk aversion is σ = 1, and the
quarterly time discount rate is ρ = 1%.

7.2 Stationary Consumption Distribution and Capital Market

Figure 4 shows the consumption distribution. As Proposition 5 implies, there are N = 6

mass points. The highest mass point contains 1% of the population at the consumption
level c(6)/w = 4.65 = 0.23 ∗ z(6). Thus, agents in the highest income state set aside more
than three-quarters of their income as insurance payments against an income change.

Figure 4: Consumption Distribution: Quantitative Version Limited Commitment Model
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(a) Equilibrium Consumption Distribution
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(b) Consumption Distribution: Zoom

This figure displays the stationary consumption distribution, normalized by the wage. We chose r ≈ 0 be-
cause for low r, the mass points, depicted as green solid points, are more clearly visible. The left panel shows
the entire distribution with its long right tail, and the right panel zooms in on the middle of the distribution.

27Formally, ξ =
∑

x<6 α6,x and ν =
∑

x<6 αx,6µ̄(x).
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The density in between the mass points is provided in Proposition 5, exploiting the
matrix exponential formula (27). It is determined both by the common consumption decay
rate of all unconstrained individuals (r − ρ) as well as the outflow rates into higher states
(the αx,x̃), resulting from the matrix exponential differential equation. It therefore displays
exponential decay (at a rate that varies across the different segments).

Figure 5 depicts the capital market equilibrium for our limited commitment model
(LCM) and compares it to the standard incomplete markets (SIM) model. With the assumed
Cobb-Douglas production function, normalized capital κd is downward-sloping, see equa-
tion (48), and is the same for both models. For our calibration normalized capital supply
κs is strictly upward sloping in the limited commitment model. Assumption 2 is satisfied.
Thus, there is a unique equilibrium interest rate r∗, which takes the (quarterly) value of
r∗ = 0.68%, smaller than the quarterly discount rate of ρ = 1%.

Figure 5: Capital Market Equilibrium in the Limited Commitment Model and the Standard
Incomplete Markets Model with Neoclassical Production
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This figure displays the equilibrium in the capital market in the limited commitment model and SIM. The
normalized capital demand schedule (blue solid, downward sloping schedule) is identical in both models.
The normalized capital supply from the household sector, for a given interest rate, is larger in the SIM
(yellow line) than in the LCM (red line). Therefore, the interest rate is lower and the capital stock is higher
in the SIM than in the LCM, which in turn features a lower interest rate and higher capital than the SIM.

Capital supply for the SIM model needs to be calculated numerically, using standard
techniques, and is likewise upward sloping.28 We observe that capital supply for the SIM
model is larger for each interest rate than in our model. As a consequence, the stationary

28We thank Greg Kaplan for providing us with the code for the SIM with N > 2 states.
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equilibrium interest rate, unique in both economies, is strictly smaller (and thus the equilib-
rium capital stock is strictly larger) in the SIM model29 than in our economy, and is, in turn,
smaller in both models than the subjective time discount factor ρ = 1%. As summarized
in Table 2, the equilibrium interest rates for our benchmark calibration are r∗LCM = 0.68%

and r∗SIM = 0.6%. Finally, as the interest rate approaches the time discount factor from
below, asset supply in the SIM model diverges to infinity (as is well-known), whereas it
remains finite in the limited commitment economy.

7.3 Comparative Statics

So far, we set the parameter ξ = 0.1, implying an expected time of remaining in the
superstar state of 10 quarters, or 2.5 years. We now vary this parameter, with the objective
of not only providing sensitivity analysis but also showing how the equilibrium interest rate
and associated capital stock respond to a change in the extent of labor income risk as well
as its persistence. Raising ξ but holding ξ/ν constant keeps the cross-sectional distribution
over states constant, but it decreases the persistence of both remaining in the superstar state
and remaining in one of the 5 “normal” states.30 By contrast, only raising ξ and keeping ν

constant implies a mean-preserving spread, as in the simple model with two states.31

Table 2 shows the outcome of both experiments. The interest rate in our model is al-
ways larger and the associated equilibrium capital stock smaller than in the SIM. Making

Table 2: Comparative Statics

Parameter Bench. Low Pers. High Pers. MPS
ξ 0.10 0.2475 0.025 0.20
ν 0.001 0.0025 0.00025 0.001
r∗LCM 0.675% 0.775% 0.615% 0.635%
r∗SIM 0.595% 0.695% 0.565% 0.545%

The table summarizes the equilibrium r∗ for different parameterizations of the idiosyncratic income process.

29While the claim that this is always the case seems intuitive, it is not easy to prove. In a nutshell, our
environment allows agents to redistribute savings from states where they have a low marginal value of wealth
to states where this value is high. The effect on the marginal value of overall capital can then turn either way.

30In particular, the mass of agents in the high income state remains at 1% and thus there is no need to
adjust the highest state z(6).

31This increase ξ
ν and makes the top group smaller. As a consequence, we increase z(6) and make the top

group income-richer, such that average productivity remains at one.
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the superstar state less persistent without changing the cross-sectional labor productivity
distribution lowers precautionary saving in both models, increases the equilibrium inter-
est rate and decreases the equilibrium capital stock in both models. By contrast, a mean
preserving spread (MPS) increases precautionary saving in both models and leads to a re-
duction in the equilibrium interest rate and an increase in the steady state capital stock in
the economy (as we showed analytically for our model with two states).

8 Conclusion

The standard incomplete markets general equilibrium model of Aiyagari (1994) has be-
come a workhorse model for a substantial literature, but does not address the source for
market incompleteness and results in less consumption smoothing than documented by the
empirical literature. In this paper, we therefore propose an alternative model in which mar-
ket incompleteness arises endogenously due to limited commitment. The resulting model
is analytically tractable yet as amenable to quantitative analysis as the benchmark SIM.

For a general continuous-time N-state Poisson labor productivity process, we have char-
acterized the optimal consumption-asset allocation, the stationary asset distribution, as well
as the aggregate supply of capital. For a specific example in which labor productivity takes
two values, one of which is zero and when agents have log-utility and production is Cobb-
Douglas, the entire stationary equilibrium can be computed in closed form. In contrast,
multiple steady states can arise for large risk aversion. We have analyzed a calibrated ver-
sion of our model, using six income states, and shown numerically that the nominal interest
rate is higher and less sensitive to comparative static changes in parameters than in the SIM
model. Our paper, therefore, provides a tractable alternative to the standard incomplete
markets general equilibrium model as in Aiyagari (1994).

In this paper we have focused on stationary equilibria, sidestepping the question of
whether this stationary equilibrium is reached from a given initial aggregate stock, and
what the qualitative properties of the transition path are. We pursue this analysis for our
two-sate example in Krueger, Li and Uhlig (2024). Similarly, thus far we have focused on
an environment that has idiosyncratic but no aggregate shocks. We study a discrete-time
version of our model with aggregate shocks and its asset pricing implications in Ando,
Krueger and Uhlig (2023).
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Appendix

A Characterizing the optimal contract: lemmas and proofs.

Proof of Proposition 1. 1. Write the Lagrangian

L = u(c) + U ′(k, x)k̇ +
∑
x′ ̸=x

αx,x′(U(k(x′), x′)− U(k, x))

+λ

(
rk + wz(x)− c− k̇ −

∑
x′ ̸=x

αx,x′(k(x′)− k)

)
−1k=0µxk̇ −

∑
x′ ̸=x

αx,x′µx′k(x′)

The first-order conditions are

∂L

∂c
: u′(c) = λ (56)

∂L

∂k̇
: U ′(k, x) = λ− 1k=0µx (57)

∂L

∂k(x′)
: U ′(k(x′), x′) = λ− µx′ , all x′ (58)

with the additional complementary slackness conditions

1k=0 min{µx, k̇} = 0 and for all x′ : min{µx′ , k(x′)} = 0 (59)

as well as the envelope condition

ρU ′(k, x) =
∂L

∂k

= U ′′(k, x)k̇ + rλ−
∑
x′ ̸=x

αx,x′(U ′(k, x)− λ)

or (
ρ− rλ+

∑
x′ ̸=x

αx,x′

)
(U ′(k, x)− λ) = U ′′(k, x)k̇ (60)
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For k > 0, (56), (57) and (59) imply

U ′(k, x) = λ = u′(c) (61)

With equation (58) and (59), we then get

u′(c(k′(x′)) = U ′(k′(x′), x′) = u′(c) for all k′(x′) > 0 (62)

showing (10). Suppose by contradiction, that u′(c(k, x)) < u′(c(k(x′), x′)) for
some state x′. This cannot be optimal since a small increase of k(x′) and thus a
small increase in c(k(x′), x′) at the cost of a small decrease in c(k, x) would improve
overall utility. We therefore obtain that u′(c(k, x)) ≥ u′(c(k(x′), x′)), in particular
for states x′, for which k(x′) = 0. The statement (11) now follows from the strict
concavity of u(·).

Rewriting (61) as a function of time and taking the derivative with respect to time,
we get

U ′′(kt, xt)k̇t = λ̇t = u′′(ct)ċt (63)

Rewriting (63) and combining it with (60) and (61) for u(c) = c1−σ/(1− σ) yields

ċt
ct

=
λ̇t

λt

u′(ct)

cu′′(ct)
=

ρ− r

σ
(64)

and thus (9).

2. This follows because any allocation that can be afforded for k can also be afforded
for k̃ > k.

3. This is a standard and straightforward argument. Consider two values for k, say
kA ̸= kB and some λ ∈ (0, 1). The λ-convex combination of the solutions for kA and
kB is feasible at the λ-convex combination of kA and kB and thus provides a lower
bound for U(kλ, x). This lower bound is strictly higher than the convex combination
of U(kA, x) and U(kB, x) since u(·) is strictly convex and c is strictly increasing in
k.

4. A formal proof is via Lemma 8 in the Online Appendix. Here, we provide a some-
what heuristic argument instead. If the constraint (5) is binding, then k̇ = 0, U(kt, x)
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is a constant function of time and thus so is ct, establishing the claim. Suppose, thus,
by contradiction, that the constraint is not binding and that k̇t > 0. In that case, we
have (61) as well (64). Consider now a small time interval δ later. At that point,
kt+δ ≈ k̇δ > 0 as well as ct+δ ≈ ct(1 − δg) < ct. We still have (61). Noting that
U(·, x) is strictly concave with the previous part, we have

U ′(0, x) > U ′(kt+δ, x) = u′(ct+δ) < u′(ct) (65)

in contradiction to (61).

Lemma 1. For this lemma32, denote the spectral radius of a matrix M as ρ(M).

1. e−Bxs ≥ 0 and e−Cxs ≥ 0. If, additionally, assumption 1 holds, then e−Bxs and e−Cxs

have only strictly positive entries for all s > 0.

2. The spectral radius of e−Bxs satisfies e−(r+αmax(x))s ≤ ρ(e−Bxs) ≤ e−(r+αmin)s ≤
e−rs.

3. If αmin = αmax(x), then 1x is an eigenvector of Bx and e−Bxs with eigenvalue r+αmin

and e−(r+αmin)s.

4. With assumption 1, there is an eigenvector ex to e−Bx and the largest eigenvalue

ρ(e−Bx) > 0, which has only strictly positive entries. It furthermore is the eigenvec-

tor to e−Bxs for all s ≥ 0 to the largest eigenvalue
(
ρ(e−Bx)

)s
> 0.

5. With assumption 1, let y ≥ 0 be a (x− 1)-dimensional vector with only non-negative

entries, such that y(j) ≤ Mex(j) for some constant M > 0 and all j = 1, . . . , x−1.

Suppose that −αmin < r. Then

0 ≤ e−Bxsy ≤ Me−(r+αmin)sex → 0 as s → 0 (66)

Proof. 1. Note33 that −Bx = −rIx+Ax only has non-negative entries off the diagonal.
For sufficiently small ϵ > 0, e−Bxϵ = Ix−ϵBx+o(ϵ) has therefore only non-negative
entries since the diagonal is dominated by Ix and the off-diagonal is dominated by

32Outside this lemma, ρ denotes the utility discount factor.
33The source for this part of the proof is an answer on math.stackexchange.com.
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Ax. Pick such an ϵ. For arbitrary s, use e−Bxs =
(
e−Bxϵ

)s/ϵ. The argument for Cx

is exactly the same since g ≥ 0. The argument that e−Bxs has only strictly positive
entries under assumption 1 follows, since e−Bxs =

(
e−Bxϵ

)n for ϵ = s/n, where n is
a sufficiently large natural number. It then also follows for e−Cxs = e−gse−Bxs.

2. Recall that
∑

x′<x αx̃,x′ = −
∑

x′≥x αx̃,x′ . Thus, maxx̃<x

∑
x′<xAx(x̃, x

′) = −αmin

and likewise for the minimum. With that and for any ϵ ≥ 0, the row sums of Ix−ϵBx

are between 1 − ϵ(r + αmax(x)) and 1 − ϵ(r + αmin). Let ∆ > 0. Since e−Bxϵ =

Ix− ϵBx+o(ϵ), there is thus ϵ̄ > 0, so that the sums of any row of e−Bxϵ are between
1− (r+αmax(x)+∆)ϵ and 1− (r+αmin −∆)ϵ for any 0 < ϵ < ϵ̄. Theorem 8.1.22
in Horn-Johnson (1985) implies that 1− (r+αmax(x)+∆)ϵ ≤ ρ(e−Bxϵ) ≤ 1− (r+

αmin−∆)ϵ. Thus (1−(r+αmax(x)+∆)ϵ)s/ϵ ≤ ρ(e−Bxs) ≤ (1−(r+αmin−∆)ϵ)s/ϵ.
Letting ϵ → 0 delivers that e−(r+αmax(x)+∆)s ≤ ρ(e−Bxs) ≤ e−(r+αmin−∆)s. Since
∆ > 0 can be arbitrarily small and since

∑
x′≥x αx̃,x′ ≥ 0 for x̃ < x, the result about

the spectral radius follows.

3. This follows from direct calculation for Bx1x and then for e−Bxs1x =
∑∞

j=0(−sBx)
j1x/j!.

4. Assumption 1 implies that that e−Bxs is irreducible. The existence of ex is a conse-
quence of the Perron-Frobenius theorem applied to e−Bx . Let n > 0 and m > 0 be
two natural numbers. Let s = n/m. Then

(
e−Bxs

)m
ex =

(
e−Bx

)n
ex =

(
ρ(e−Bx)

)n
ex

The result now follows from the fact that e−Bxs has only strictly positive entries,
which rules out periodicity, i.e., ex must be an eigenvector of e−Bxs. By continuity,
the result then holds not just for all rational but also for all real s > 0.

5. The first inequality follows from the first part of this lemma. For the second, use the
first and the third part of the lemma and calculate

e−Bxsy ≤ Me−Bxsv ≤ Me−(r+αmin)sex

The convergence to zero follows because r + αmin > 0 by assumption.

Proof of Proposition 2. Suppose we are in some state x̃ at t. Rewrite the budget constraint
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(7) as
k̇t(x̃)− rkt(x̃) +

∑
x′

αx̃,x′kt(x
′) = wz(x)− ct(x̃) (67)

where we now explicitly denote the current state x̃ as argument for kt, k̇t and ct and where
we have exploited that αx̃,x̃ = −

∑
x′ ̸=x̃ αx̃,x′ , aside from moving terms from one side of

the equation to the other. We proceed recursively. At state x = 1, c = c(1) = wz(1) and
the net costs are zero. Define d1 = k1 = [ ] of dimension 0.

Consider now any state x > 1 and its associated consumption level c = c(x). Suppose
that we start the consumption plan at this consumption level but for some other state x̃ < x

at t = 0. Consumption will now drift down until either there is a transition to some x′ ≥ x

or until the consumption level c(x− 1) is reached. Consumption will then continue to drift
down if the current state is x′ < x− 1: we take this into account when we aggregate costs.
Let T (x) be the time it takes for consumption to drift down from c(x) to c(x−1), i.e. T (x)
solves

c(x− 1) = e−gT (x)c(x)

Thus,

T (x) =
log(c(x))− log(c(x− 1))

g

as in equation (13). At time 0 ≤ t ≤ T (x) and current state x̃ < x, consumption will be

ct = e−gtc(x), (68)

provided no transition to some state x′ ≥ x has yet occurred.
In (67), kt(x′) = 0 for all x′ ≥ x and t > 0, since ct(x

′) ≥ c(x) > ct: the agent would
therefore rather dis-save in order to smooth consumption, but he is prevented from doing
so, due to our limited commitment assumption. Therefore, we only need to calculate the
entries of the (x− 1)-dimensional vector

kx,t = [kx,t(1), . . . , kx,t(x− 1)], (69)

where the second sub-index x indicates that we are at a consumption level ct in the interval
ct ∈ [c(x− 1), c(x)]. Therefore, rewrite the differential equation (67) in vector notation as

k̇x,t −Bxkx,t = wzx − e−gtc(x)1x (70)
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with terminal condition34

kx,T (x) =

[
kx−1

0

]
(71)

since kx−1,0 = kx−1 is needed to finance the consumption plan going forward for states
x̃ < x− 1 and ct ≤ c(x− 1). The solution is

kx,t = dx,t + e−Bx(T (x)−t)

[
kx−1

0

]
(72)

where the solution dx,t to the non-homogeneous part with terminal condition dx,T (x) = 0x−1

is given by35

dx,t = eBxt

∫ T (x)

s=t

e−Bxs
(
e−gsc(x)1x − wzx

)
ds (73)

= c(x)C−1
x e−gt

(
Ix − e−Cx(T (x)−t)

)
1x −B−1

x

(
Ix − e−Bx(T (x)−t)

)
wzx (74)

as one can verify directly or derive, using standard ODE calculus. The difference dx = dx,0

at t = 0 and given in equation (14) is now the (x − 1)-dimensional vector of net costs for
the piece of the consumption plan, starting at states x̃ ∈ {1, . . . , x − 1} and consumption
level c(x) for the time between t = 0 and t = T (x).

It follows from lemma 2 and equation (85) below that kx,t ≥ 0, thus satisfying the
limited commitment constraint (5).

We finally need to solve for c(x). Observe that the budget constraint in state x and at
c = c(x) needs to hold. It generally is given by (7). At c = c(x), k̇t = 0 and kt = 0. Note
that kt,x̃ = 0 for all x̃ > x, since c(x̃) > c(x). Note that kt,x̃ = kx(x̃) for x̃ < x, since
kx(x̃) is needed to finance the consumption plan going forward from state x̃ and starting
consumption c(x). The budget constraint (7) then reads

0 = c(x)− wz(x) +
∑
x̃<x

αx,x̃kx(x̃) (75)

34Thus, if x = 2, the terminal condition is kT (2),2 = 0.
35In principle, the net present value calculation of equation (73) can be done for arbitrary utility functions,

except that one would then need to replace e−gsc(x) by the appropriate path for consumption cs at date s
and starting at c(x), which solves the optimal consumption-savings problem at interest r. While it is unlikely
that one then gets an explicit formula for the arrival time T (x) of c(s) = c(x − 1) or an explicit solution
for the ODE as in the second line (74), one can still proceed to calculate these arrival times and integrals
numerically. The rest of the analysis then continues to go through.
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As in the proposition, let αx = [αx,1, . . . , αx,x−1]
′. Then, write equation (75) as equation

(16).

Note that e−gsc(x) < wz(x − 1) for x ≥ 3 and s sufficiently close to T (x), since
e−gT (x)c(x) = c(x − 1). Therefore, dx,t(x − 1) in equation (32) is increasing from a
negative value to zero rather than decreasing from a positive value as t approaches T (x).
Nonetheless, we have the following lemma. The statement may seem obvious. The proof,
however, is far from it.

Lemma 2. The solution kx,t to the vector ODE (70) together with (71) is strictly monoton-

ically decreasing to kx,T (x) =

[
kx−1

0

]
.

Proof. Define

vx = wzx +Bx

[
kx−1

0

]
(76)

Rewrite the solution for kx,t by combining (72) and (73) as

kx,t =

∫ T (x)

s=t

e−Bx(s−t)
(
e−gsc(x)1x − wzx

)
ds+ e−Bx(T (x)−t)

[
kx−1

0

]
(77)

=

∫ T (x)

s=t

e−Bx(s−t)
(
e−gsc(x)1x − vx

)
ds+

[
kx−1

0

]
(78)

with kx = kx,0. Since e−gsc(x) > c(x− 1) for s < T (x), it suffices to show that

vx ≤ c(x− 1)1x (79)

We shall show this recursively. Note that this is trivially true for x = 2, since v2 = wz(1) =

c(1). Suppose now that (79) is true up to some state x. We shall establish that

vx+1 ≤ c(x)1x+1 (80)

With the definition (76) applied to x+ 1, note that

vx+1 = wzx+1 +Bx+1

[
kx

0

]
(81)
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Consider first the last entry vx+1(x). With equation (16), this is

vx+1(x) = wz(x)− αxkx = c(x), (82)

thus establishing (80) for that entry.
Next, note first that Bx is the top left (x− 1)× (x− 1) sub-matrix of Bx+1, i.e.

Bx = Bx+1(1 : x− 1, 1 : x− 1) (83)

Thus, the vector of the other entries vx+1(1 : x− 1) can be written as

vx+1(1 : x− 1) = wzx +Bxkx (84)

Replace kx with (78) for t = 0 and use e−gT (x)c(x) = c(x− 1) to see that

vx+1(1 : x− 1) = wzx +Bx

[
kx−1

0

]

+Bx

∫ T (x)

s=0

e−Bxs
(
e−gsc(x)1x − vx

)
ds

= e−BxT (x)vx + Cx

∫ T (x)

s=0

e−Cxsds c(x)1x

−g

∫ T (x)

s=0

e−Cxsds c(x)1x

= c(x)1x − e−BxT (x) (c(x− 1)1x − vx)

−g

∫ T (x)

s=0

e−Cxsds c(x)1x

≤ c(x)1x

where the last inequality follows per the induction hypothesis (79) and because e−BxT (x) ≥
0 and

∫ T (x)

s=t
e−Cxsds ≥ 0 per part 1 of lemma 1.

The lemma immediately implies that the solution stated in proposition 2 satisfies

kx ≥

[
kx−1

0

]
≥ 0x (85)

and therefore, indeed satisfies the limited commitment requirement (4). The lemma is thus
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needed to complete the proof of proposition 2. Proposition 2 provides a system of equations
that the solution must satisfy. The system of equations has a recursive structure. Given the
solution up to x − 1, one may then seek to calculate the solution for x. Given c(x), the
values for T (x), dx and kx can be calculated, but there could potentially be many values
for c(x) for which (16) is then also satisfied. The next proposition shows that this cannot
be the case.

Proof of Proposition 3. The solution is unique for x = 1. Exploiting the block recursive
structure, suppose uniqueness has been shown for x − 1. We seek to show that there is a
unique solution c(x). Suppose by contradiction that there are two solutions ca(x) > cb(x).
Calculate the corresponding times T a(x) and T b(x) per (13). Note that T a(x) > T b(x).
Define t = T a(x)− T b(x) and note that

cb(x) = e−gtca(x) (86)

Next, calculate ka
x and kb

x, using (78). We have

ka
x =

∫ Ta(x)

s=0

e−Bxs
(
e−gsca(x)1x − vx

)
ds+

[
kx−1

0

]
(87)

and, with (86),

kb
x =

∫ T b(x)

s=0

e−Bxs
(
e−gscb(x)1x − vx

)
ds+

[
kx−1

0

]

=

∫ Ta(x)

s=t

e−Bx(s−t)
(
e−gsca(x)1x − vx

)
ds+

[
kx−1

0

]
= ka

x,t

Lemma 2 implies that kb
x < ka

x. Equation(16) now implies that

ca(x) = wz(x)− αxk
a
x < wz(x)− αxk

b
x = cb(x),

which is a contradiction.

Solving the system of equations (13) to (16) requires numerical techniques36. Generally,
the ordering of the states x such that c(x) is increasing in x will not be known a priori. The

36No numerical techniques are required if x = 2 and z1 = 0. In that case, c(x − 1) = 0, T (x) = ∞,
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block recursive structure of equations (13) to (16) in proposition 2 suggest the following
algorithm. Pick as x = 1 the state which generates the lowest flow income wz(x). Then,
recursively at each stage j = 2, . . . , N , pick each of the remaining states x. For x, calculate
the candidate c(x) per solving the system of equations (14) to (16). Among all x, pick
x = j to be that state, which produces the lowest candidate c(x) and remove it from the
pool of remaining states.

B Characterizing the consumption distribution: lemmas,
propositions and proofs.

Proposition 12. A stationary distribution D solves the following system of equations

−αx,xµx = fx+1,x(Tx+1) +
∑
x̃<x

αx̃,x

(
µx̃ +

∑
x′:x̃<x′≤x

∫ Tx′

t=0

fx′,x̃(t)dt

)
(88)

0 < t ≤ T (x), x̃ < x : ḟx,x̃(t) =
∑
x′<x

αx′,x̃fx,x′(t) (89)

t = 0, x̃ < x : fx,x̃(0) = αx,x̃µx + fx+1,x̃(Tx+1) (90)

if x̃ ≥ x or t > T (x) fx,x̃(t) = 0. (91)

This follows from straightforward accounting of the various flows. We note that the
system of ODE’s in (89) can be stated more compactly as (24).

Bx = r − α1,1, Cx = r + g − α1,1, αx = α2,1, 1x = 1, zx = [0], kx = dx. Now (16) reads as

c(x) = wz(2)− α2,1c(x)
1

r + g − α1,1

which can be easily solved for c(x),

c(x) =
r + g − α1,1

r + g − α1,1 + α2,1
wz(2)

For example, when N = 2 and z(1) = 0, and with ζ = z(2) = ζ, ν = α1,2 = −α1,1, ξ = z2,1 as well as
σ = 1 and thus g = ρ− r, we have c(1) = 0 and

c(2) =
ρ+ ν

ρ+ ν + ξ
wζ
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Lemma 3. Let µ̄x denote the unconditional probability of being in state x. Let µ̄ =

[µ̄1, . . . , µ̄N ]
′.

1. The unconditional probabilities solve

0 = A′µ̄ and
∑
x

µ̄x = 1 (92)

2. A distribution D is a stationary distribution if and only if it satisfies proposition 12

and whose unconditional probabilities µ̄x of being in state x,

µ̄x = µx +
∑
x′>x

∫ Tx′

t=0

fx′,x(t)dt (93)

sum to unity. The unconditional probabilities then satisfy (92).

3. Given equation (93), equation (88) is equivalent to

−αx,xµx = fx+1,x(Tx+1) +
∑
x̃<x

αx̃,x

(
µ̄x̃ −

∑
x′>x

∫ Tx′

t=0

fx′,x̃(t)dt

)
(94)

Proof. Equation (92) is the usual property of stationary distributions for continuous-time
finite-state Markov processes. Equation (93) is accounting for all the possibilities. It con-
versely implies that the marginal unconditional probabilities µ̄x calculated from a stationary
distribution D satisfy (92): beyond that restriction and proposition 12 there is nothing else
to satisfy. Finally, rewrite equation (93) for x̃ rather than x. For any x > x̃, this equation
then implies

µx̃ +
∑

x′:x̃<x′≤x

∫ Tx′

t=0

fx′,x̃(t)dt = µ̄x̃ −
∑
x′>x

∫ Tx′

t=0

fx′,x̃(t)dt (95)

Plugging this into equation (88) delivers (94) and vice versa.

Proof of Proposition 4. 1. Note that µ̄x ≥ µx per (93), since fx′,x(t) ≥ 0. Thus, if
µ̄x = 0, then µx = 0, since µx ≥ 0. Since consumption is only drifting down, it
follows37 that fx,x′(t) = 0 for all t, all x > x̄ and all x′ < x.

37A more formal argument can be made by first establishing step 3 of the corollary.
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2. Note that fx′,x̄(t) = 0 for all x′ > x̄. Equation (94) at x = x̄ then reduces to

0 = αx̄,x̄µx̄ +
∑
x̃<x̄

αx̃,x̄µ̄x̃ (96)

Compare this to the equation for the unconditional probability µ̄x̄,

0 = αx̄,x̄µ̄x̄ +
∑
x̃ ̸=x̄

αx̃,x̄µ̄x̃ (97)

and recall that αx̄,x̄ ̸= 0 as well as µ̄x̃ = 0 for x̃ > x̄. The equation µx̄ = µ̄x̄ now
follows.

3. (a) Note that fx(0) can be calculated via (90), since all other terms are known per
by recursivity. The result is unique.

(b) (27) is the unique solution to (24) or, equivalently (24), given the initial condi-
tion fx(0).

(c) Equation (28) is equation (94) stated for x− 1 rather than x. Note that all other
terms are known by recursivity and recall that αx−1,x−1 < 0 by assumption.

The resulting D satisfies proposition 12 as well as lemma 3 and thus is a stationary
distribution satisfying (93) by construction. The calculation for D is unique. Thus, this is
the unique stationary distribution satisfying (93) by the third part of lemma 3.
To establish (29), define

gx(s) =

∫ s

t=0

fx(t)dt (98)

We seek to calculate gx(T (x)). Per (24), ḟx(t) = A′
xfx(t). Thus,

A′
xgx(s) =

∫ s

t=0

A′
xfx(t)dt

=

∫ s

t=0

ḟx(t)dt

= fx(s)− fx(0)

= (exp(A′
xs)− Ix)fx(0)

where the last equality follows with (27). The result now obtains for s = T (x).

Proof of Proposition 5. The corollary follows from proper accounting and the consump-
tion dynamics in proposition 2. It is clear that the mass points are as stated. For the density,
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calculate instead the cdf Φ first. It is given by

Φ(c) = Φ(c(x− 1)) +
∑
x′<x

∫ t(c)

0

fx,x′(t)dt (99)

The expression for the density in (30) follows directly by taking the derivative and the
dependence of the upper bound of the integral on t(c). With equation (30), we seek to
explicitly calculate aggregate consumption

Cr =

∫ c(N)

c(1)

cϕr(c)dc (100)

We follow a similar strategy as the proof for (29). Note that the integral expressions in
(100) can be rewritten as ∫ c(x)

c(x−1)

fx(t(c))

g
dc = c(x)hx(T (x)) (101)

where
hx(s) =

∫ s

0

e−gtfx(t)dt (102)

using the transformation of variable from c to t(c)38. Recall that ḟx(t) = A′
xfx(t) per

equation (24). Thus, using integration by parts as well as the explicit solution (27) to (24),

A′
xhx(s) =

∫ s

0

e−gtA′
xfx(t)dt

=

∫ s

0

e−gtḟx(t)dt

= e−gtfx(t) |s0 +g

∫ s

0

e−gtfx(t)dt

=
(
e−gs exp(A′

xs)− Ix
)
fx(0) + ghx(s)

or
Dxhx(s) = (Ix − exp(−Dxs))fx(0) (103)

For s = T (x) and with (100), we obtain (31).
38Thus, dt = dc/(cg) or c(x)e−gtdt = dc/g.
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C Aggregate Capital Demand

C.1 General Production Function

Proposition 13. Suppose that FK is strictly convex. Then normalized capital demand κd(r)

is strictly decreasing in r.

Proof. Define f(K) = F (K, 1) (within this proof). Due to constant returns to scale,
F (K,L) = f(K/L)L. Equation (39) can be rewritten as w(K) = f(K) − f ′(K)K.
Due to the strict concavity of F , capital demand K(r) characterized by (38) is strictly
decreasing in r. Therefore κd is strictly decreasing if

g(K) =
w(K)

K
=

f(K)

K
− f ′(K) (104)

is strictly decreasing in K, since g(K(r)) = 1/κd(r).
With f(0) = 0 and by the mean value theorem, there is some 0 < K̃ < K so that

f(K) = Kf ′(K̃). Applying the mean value theorem to f ′, there is some K̂ with K̃ <

K̂ < K so that f ′(K) − f ′(K̃) = (K − K̃)f ′′(K̂). Since FK is strictly convex, so is f ′,
i.e., f ′′ is strictly increasing. Thus, f ′′(K̂) < f ′′(K). Combining,

g′(K) = −f(K)

K2
+

f ′(K)

K
− f ′′(K)

=
f ′(K)− f ′(K̃)

K
− f ′′(K)

= f ′′(K̂)− f ′′(K) < 0

C.2 CES Production Function

The following proposition completely characterizes κd(r) for a general CES production
function.

Proposition 14. Suppose that F is of the CES variety,

F (K,L) =
(
θK1− 1

η + (1− θ)L1− 1
η

) η
η−1

= (θKν + (1− θ)Lν)
1
ν (105)
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where the elasticity of substitution η satisfies 0 < η < ∞ and thus ν ∈ (−∞, 1).39 Define

r̆ =

{
θ

η
η−1 − δ, if η ̸= 1

−δ, if η = 1
(106)

Note that r̆ ≥ −δ.

1. Capital demand Kd(r) satisfying FK(K
d(r), 1)−δ = r (and thus normalized capital

demand κd(r) = Kd(r)/w(r)) is well-defined for the range of interest rates r:

(a) For η ∈ [1,∞) the interval is given by r ∈ (r̆,∞).

(b) For η ∈ (0, 1), the interval is given by r ∈ (−δ, r̆).

2. On the range for which Kd(r) is defined, normalized capital demand is given by

κd(r) =
θ

(r + δ)
[(

r+δ
θ

)η−1 − θ
] (107)

3. For η ∈ [1,∞), normalized capital demand is strictly decreasing in r , with limr→r̆ κ
d(r) =

∞ and limr→∞ κd(r) = 0.

4. For η ∈ (0, 1), κd(r) is downward sloping on (−δ, η
1

1−η θ
η

η−1 −δ] and upward-sloping

on [η
1

1−η θ
η

η−1 − δ, r̆). Since η ∈ (0, 1) we have η
1

1−η ∈ (0, 1) and thus both sub-

intervals are nonempty. Furthermore, limr→−δ κ
d(r) = ∞ and limr→r̆ κ

d(r) = ∞.

5. For η = 0 (Leontieff production), κd(r) is strictly increasing on its entire domain

r ∈ (−δ, 1− δ), with limr→−δ κ
d(r) = 1 and limr→1−δ κ

d(r) = ∞.

Proof. For ease of notation define ν = 1− 1
η
∈ (−∞, 1). Thus the production function is

given by
F (K,L) = (θKν + (1− θ)Lν)

1
ν

and the marginal products (in equilibrium equal to factor prices) are given by

FK(K, 1) = θ
(
θ + (1− θ)K−ν

) 1−ν
ν = r + δ (108)

FL(K, 1) = (1− θ) (θKν + (1− θ))
1−ν
ν = w (109)

39For η = 1, this is the Cobb-Douglas production function F (K,L) = KθL1−θ.
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1. For the first part, we note that Kd(r) = K is defined through the equation (108).
First consider η > 1 and thus ν ∈ (0, 1). In that case FK(K, 1) is strictly decreasing
and

lim
K→0

FK(K, 1) = ∞

lim
K→∞

FK(K, 1) = θ
1
ν

Therefore, equation (108) has a solution if and only if

θ
1
ν < r + δ

The unique solution Kd(r) is thus well-defined on the interval r ∈ (r̆,∞).

Now consider 0 < η < 1 and thus ν ∈ (−∞, 0). Then FK(K, 1) is still strictly
decreasing, with

lim
K→0

FK(K, 1) = θ
1
ν < ∞

lim
K→∞

FK(K, 1) = 0

and equation (108) has a unique solution if and only if

θ
1
ν > r + δ

Thus, for ν ∈ (−∞, 0), we have that Kd(r) is well-defined on r ∈ (−δ, r̆), where
r̆ = θ

1
ν − δ > −δ.

Finally, for the Cobb-Douglas case η = 1 or ν = 0, we have

FK(K, 1) = θKθ−1

with

lim
K→0

FK(K, 1) = ∞

lim
K→∞

FK(K, 1) = 0

Thus Kd(r) is well-defined on all of r ∈ (−δ,∞).
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2. Now we derive κd(r) = Kd(r)
w(r)

on the interval of interest rates for which Kd(r) is
defined. From equations (108) and (109), we note that

r + δ

w
=

FK(K, 1)

FL(K, 1)
=

θKν−1

(1− θ)
=

θ

1− θ
wν−1κν−1

and thus

κ =

[
θ

r+δ
wν

1− θ

] 1
1−ν

(110)

We can express wν in terms of r from equation (109) as

wν = (1− θ)ν (θKν + (1− θ))1−ν (111)

Rewrite (108) as

Kν =
(1− θ)[

r+δ
θ

] ν
1−ν − θ

Use it to substitute Kν in equation (111) to obtain

wν = (1− θ)

(
θ[

r+δ
θ

] ν
1−ν − θ

+ 1

)1−ν

=
(1− θ)

[
θ

r+δ

]−ν([
r+δ
θ

] ν
1−ν − θ

)1−ν

Inserting wν back into equation (110) and exploiting the relationship ν
1−ν

= η − 1

gives the expression (107) for κd(r) in the proposition.

3. For the case η ≥ 1 we have η − 1 ≥ 0 and the properties of κd(r) stated in the
proposition follow from direct inspection of equation (107).

4. Suppose that η ∈ (0, 1) or, equivalently, ν < 0. Inspecting equation (107) and noting
that

(
r̆+δ
θ

)η−1
= θ yields

lim
r→−δ

κd(r) = lim
r→r̆

κd(r) = ∞

since κd(r) is finite on (−δ, r̆), it follows that κd(r) is non-monotone on its domain.
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κd(r) is decreasing, if and only if 1/κd(r) is increasing. The derivative d(r) of

1/κd(r) =

(
r + δ

θ

)η

− r − δ (112)

is

d(r) =
η

θ

(
r + δ

θ

)η−1

− 1 (113)

and is decreasing in r. Thus, d(r) > 0 and κd(r) is decreasing, if and only if r < r̂,
where r̂ solves d(r̂) = 0, i.e.,

r̂ = θ

(
θ

η

) 1
η−1

− δ (114)

This delivers the downward-sloping and upward-sloping segmentation of (−δ, r̆), as
stated in the proposition. Since η ∈ (0, 1) we have η

1
1−η ∈ (0, 1) and thus both

intervals above are nonempty.

5. For the Leontieff case, η = 0, and thus

κd(r) =
θ

(r + δ)
[(

r+δ
θ

)−1 − θ
] =

1

1− (r + δ)

and the stated properties in the proposition directly follow.

D Aggregate Capital Supply

D.1 General Theoretical Properties

In this subsection, we state and prove Lemma, providing the general characterization of
aggregate consumption as a function of the interest rate. We now note explicitly the depen-
dence of the wage w on r. The following lemma is needed in preparation.

Lemma 4. Let −αmin < r < ρ. Then

kx,t(x
′) ≤ κ̄sw (115)
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where

κ̄s =
σz(N)

ρ− r
< ∞ (116)

Proof. Since r < ρ, the agents with x = N and the highest income do not hold any capital
for financing their own consumption and only set capital aside for insurance purposes in
case of dropping to a lower state. Lemma 2 together with (85) guarantee that kx,t(x′) ≤
kN(x

′). In order to find a bound for these values, consider instead a two-state process,
where the agent oscillates between income z(N)w and zero and where the transition from
zero back to z(N)w happens at rate ν = αmin. Suppose that the consumption in the high-
income state takes the same value c(N) as before. For that two-state process and as in
equation (18) of section 3.3, the insurance capital needed to be set aside in the high-income
state is

k̃ =

∫ ∞

s=0

e−(r+g+ν)sds c(N) =
c(N)

r + g + ν
(117)

where g = g(r) = (ρ − r)/σ. Since the agent in the original specification transits back to
state N at least at rate αmin and makes income no less than zero, regardless of the state, it
follows that the agent needs to set aside less insurance capital in the original specification in
state N and for any x′ than in the high-income state in this “worst case scenario” two-state
comparison, i.e., kN(x′) ≤ k̃ for all x′. Since r > −αmin and since c(N) ≤ z(N) due to
r < ρ, the bound follows.

Lemma 5. 1. C(r) is continuously differentiable in r ∈ (−αmin, ρ).

2. C(r)− w(r) has the same sign as r. In particular, C(0) = w(0).

3. −C(r)/w(r) converges to a strictly positive and finite value, as r → −αmin.

4. κs(r) = (C(r)/w(r)− 1)/r satisfies 0 ≤ κs(r) ≤ κ̄s, where κ̄s is given in (116).

Proof of Lemma 5. 1. The fact that C(r) is continuously differentiable follows from
the implicit function theorem since all equations in propositions 2, 4 and 5 are differ-
entiable in r as well as in the endogenous objects to be calculated and since proposi-
tion 3 and its proof guarantee the invertibility of the relevant Jacobian in the endoge-
nous objects.

2. We have characterized the stationary distribution in terms of (x, t) in (23), where x

characterizes the current consumption interval ct ∈ (c(x − 1), c(x)] and t denotes
the time drifting down from c(x), rather than the current state x̃ and current capital
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holdings k = kx,t(x̃). These imply the decision rules decision rules for consumption
c(x̃, k) = e−gtc(x), capital depletion k̇(x̃, k) = k̇x,t(x̃) and insurance k(x′; x̃, k) =

kx,t(x
′). The budget constraint (3) in terms of the decision rules in the original state

space
c(x̃, k) + k̇(x̃, k) +

∑
x′ ̸=x̃

αx̃,x′(k(x′; x̃, k)− k) = rk + wz(x̃) (118)

can therefore be rewritten as

e−gtc(x) + k̇x,t(x̃) +
∑
x′ ̸=x̃

αx̃,x′(kx,t(x
′)− k) = rkx,t(x̃) + wz(x̃) (119)

in terms of (x, t) as in (23) as well as the current state x̃. Integrate this budget
constraint with the stationary distribution (23) across all x, t, x̃. Due to stationarity,
the integrals over capital depletion terms plus insurance terms must be zero, as there
cannot be capital depletion or insurance in the aggregate, i.e., these terms reflect
cross-population redistributions. Note that C(r) is the integral over the consumption
terms e−gtc(x). Let Ks(r) denote the integral over the capital holdings kx,t(x̃).40

Since average labor productivity is normalized to be 1, it follows that

C(r) = rKs(r) + w (120)

By lemma 4, kx,t(x̃) ≤ k̄, where k̄ < ∞ is defined in equation (116). Since 0 <

kx,t(x̃) except on a null set, it follows that

0 < Ks(r) ≤ κ̄sw (121)

for all r ∈ (−αmin, ρ). Equation (120) now implies the claim.

3. By the first part of the lemma, C(r) and, analogously, Ks(r) are differentiable func-
tions of r ∈ (−αmin, ρ). Note that the solutions for consumption and capital in
propositions 2, 4, and 5 are homogeneous of degree 1 in w. Therefore, C(r)/w(r) is
differentiable in r ∈ (−αmin, ρ), establish the claim of a finite limit. Equation (120)
and the bound (121) together with the degree-1 homogeneity of Ks(r) in s imply
that

0 < −C(r)/w(r) < δκ̄s, (122)
40The superscript “s” denotes that this will be capital supply; see equation (42).
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4. The last part now follows immediately, completing the proof.

E Equilibrium and Proofs of Propositions 9 and 10

Proof of Proposition 9: The first step of the proof is to establish that the normalized capital
supply function is well-defined and continuous on r ∈ (−δ, ρ). Recall that normalized
capital supply is κs(r) = ξ/((g + ν)(r + g + ν + ξ)) with g = (ρ − r)/σ, see equation
(48). It is evidently continuous and well-defined on (−δ, ρ) as long as both terms of the
denominator are strictly positive. Since r < ρ, and thus g > 0, the first term in the
denominator of κs is always strictly positive. The second term is always positive, since
g > 0 and r + ν + ξ > δ + ν + ξ > −min ν, ξ + ν + ξ > 0 per assumption 3.

By Assumption 3, we have κd(r = ρ) < κs(r = ρ). Since κs(r = −δ) < ∞ =

κd(r = −δ), it follows that κs and κd intersect at least once in (−δ, ρ). This establishes the
existence of a stationary equilibrium.

The uniqueness of equilibrium follows if κs(r) is increasing (given that κd(r) is strictly
decreasing). The derivative of κs(r) is given by

dκs(r)

dr
= ξ

[
2
σ
− 1
] [

ρ−r
σ

+ ν
]
+ ξ+r

σ[(
ξ + ν + ρ−r

σ
+ r
) (

ν + ρ−r
σ

)]2
A sufficient condition for this expression to be positive is σ < 1 (part 1 of the proposition)
or σ ∈ (1, 2] and ξ ≥ δ (part 2a of the proposition). Part 2b follows from the fact that
equation (48) is a quadratic equation and thus has at most two solutions (and we have
already established that under the assumptions made, it has at least one solution). The
numerical example in the main text shows that the statement in 2b of the proposition is not
vacuous.

Proof of Proposition 10: The proof consists of two parts. For the first, we use proposition 2
to calculate the capital vector kN , when r = ρ. That proposition calculates c(N), when
agents start with zero capital. We then show that the capital vector of an agent has to be
at least as high as kN and thus non-negative if the agent consumes at least c(N). For the
second, we use proposition 4 to calculate the stationary distribution when r → ρ and agents
in state N do not have capital. This delivers the limit capital supply limr→ρ κ

s(r). We then
argue that limr→ρ κ

s(r) ≤ κd(r) implies that all agents consume at least c(N).
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1. Consider the results in proposition 2 for r = ρ. In that case, g = 0 and e−CxT (x) =

e−BxT (x) = 0x−1,x−1. The equations for c(N) and kN read

kN = dN = c(N)C−1
N 1N −B−1

N wzN (123)

c(N) = wz(N)− αNkN (124)

Pre-multiplying equation (123) with BN = CN = ρIN −AN , these equations can be
written as [

ρIN − AN ∗
−αN ∗

][
kN

0

]
= c(N)1N+1 − w

[
zN

z(N)

]
(125)

where 1N+1 denotes a vector of ones of length N . where “∗” denotes that the coef-
ficients in that last column are arbitrary, as they multiply zero. Recall that c(N) was
defined as that level of consumption in state N , if k = 0. We might as well write
(125) as

(ρIN+1 − A)

[
kN

0

]
= c(N)1N+1 − wz (126)

where IN+1 is the identity matrix of size N ×N . Now note that

(A− ρIN+1)1N+1 = −ρ1N+1 (127)

Thus, for c ≥ c(N), the vector

k =

[
kN

0

]
+

c− c(N)

ρ
1N+1 (128)

is non-negative and is the solution to (53).

2. The main purpose of this part is to establish that

lim
r→ρ

κs(r)w(r) = lim
r→ρ

Ks(r) =
[
kN , 0

]
µ̄, (129)

which may seem rather obvious. The formal argument relies on the definition of
aggregate capital supply via the calculation of the stationary distribution in proposi-
tion 4, which we shall now provide. That proposition assumes that agents in state N
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do not hold capital. For r → ρ, the proposition delivers µN = µ̄N and

fN(t) = exp(A′
N t)


αN,1

...
αN,N−1

 µ̄N , t ∈ [0,∞).

Equation (29) delivers
∫∞
0

fN(t)dt = (A′
N)

−1
[
αN,1, · · · αN,N−1

]′
µ̄N . Since µ̄

is the stationary distribution, rewrite the first N − 1 rows of 0 = A′µ̄ as

0 = A′
N


µ̄1

...
µ̄N−1

−


αN,1

...
αN,N−1

 µ̄N

= A′
N




µ̄1

...
µ̄N−1

−
∫ ∞

t=0

fN(t)dt


Thus, (28) and (25) deliver recursively, starting from x = N ,

µ(x− 1) =
−1

αx−1,x−1

∑
x̃<x−1

αx̃,x−1

(
µ̄x̃ −

∫ ∞

t=0

fN,x̃(t)dt

)
= 0

fx−1 = 0x−1

completing the description of the stationary distribution D for r = ρ, when k = 0 for
agents in state N . It implies that agents are either in state N with probability µ̄N and
holding zero capital or in some state x < N with probability

∫∞
0

fN,x(t)dt = µ̄(x),
“drifting down” at zero drift from c(N) and holding capital kN(x). Total capital
supply is therefore Ks(ρ) =

[
kN , 0

]
µ̄, thus finally justifying (129).

Therefore, take the inner product of (126) with the stationary distribution µ̄, i.e. pre-
multiply (126) with the row vector µ̄′, and exploit µ̄′A = 0N+1 and µ̄′z = 1 to
find

ρKs(ρ) = µ̄′ (ρIN+1 − A)

[
kN

0

]
= c(N)− w

Compare this to equation (54), defining c̄ from capital demand. The condition κs(ρ) ≤
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κd(ρ) or, equivalently, Ks(ρ) ≤ Kd(ρ) now implies that

c(N) ≤ c̄ (130)

which is the desired inequality. Since agents will always end up in state N with
some positive probability and have at least zero capital there, it follows that all agents
consume at least c(N), validating the calculations and conclusions of the first part.

F Poisson Transition Matrix

The complete matrix (αx,x′) used in Section 7 is given by:

−0.232 0.060 0.093 0.060 0.018 0.001

0.018 −0.190 0.093 0.060 0.018 0.001

0.018 0.060 −0.157 0.060 0.018 0.001

0.018 0.060 0.093 −0.190 0.018 0.001

0.018 0.060 0.093 0.060 −0.232 0.001

0.020 0.020 0.020 0.020 0.020 −0.100
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