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Reproducibility of a pressure-dependent, non-monotonic change trend in threshold 
voltage 

 

Figure S1. Dependence of pressure and vacuum annealing on threshold voltage (a) Transfer 
characteristics (ID–VG) of a monolayer MoS2 FET with different ambient conditions. First, the 
ID–VG curve is shifted in the negative direction (from back to red) as the pressure is reduced 
to 2.7×10-7 Torr. Then, the curve is moved back to the positive side (from red to blue) with 
decreasing pressure to 6.7×10-8 Torr and shifted further in the positive direction (from blue to 
orange) by vacuum annealing (denoted as VA). (b) Threshold voltage with respect to the 
pressure, which is extracted from the transfer curves in Figure (a). The threshold voltage is 
reduced with decreasing pressure but increased again, showing a pressure-dependent, non-
monotonic change in threshold voltage which is discussed in detail in the main text. In 
addition, further increase of the threshold voltage is observed after vacuum annealing. 
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Effects of vacuum annealing on electrical characteristics of MoS2 FETs with different 
contact materials 

 

Figure S2. Electrical characteristics of monolayer MoS2 FETs with different contact 
materials before and after vacuum annealing (400 K for ~12hr), measured at a pressure of 
6.0×10-8 Torr. (a)-(b) a MoS2 FET with Ti/Au contact (3 nm /100 nm). (c)-(d) a MoS2 FET 
with Au contact (100 nm). 
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Mechanism of the non-monotonic dependence of threshold voltage on pressure 

 

Figure S3. Schematics to explain the non-monotonic dependence of threshold voltage on 
pressure. As the water and oxygen molecules adsorbates near MoS2-Au electrodes are 
desorbed, the contacts are changed from Schottky contacts to ohmic contacts, resulting in the 
the reduction of threshold voltage. Under high vacuum condition, the lower trap density 
reduces the number of carriers that can be released back to the channel when a negative gate 
voltage is applied, resulting in a decreased drain current and an increased threshold voltage. 
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Reduction of hysteresis after vacuum annealing 

  

Figure S5. Comparison of the transfer characteristics (ID–VG) hysteresis before and after 
vacuum annealing (400 K for ~12hr), measured at a pressure of 6.0×10-8 Torr. Smaller 
hysteresis is shown after vacuum annealing. 
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Acceptor-type, shallow traps produced by the absorbed gas molecules 

 

Figure S6. Schematic of energy band of the MoS2 channel with absorbed water and oxygen 
molecules as interface traps filled with electrons below the Fermi level (EF). The Fermi level 
is moved toward the conduction band with increasing gate voltage (VG). 

 

As shown in Fig. 2a in the main text, we observed the clockwise direction of the hysteresis 

in the ID–VG characteristics of the MoS2 FETs: a lower threshold voltage in the forward gate 

sweep and a higher threshold voltage in the reverse gate sweep. From this experimental result, 

we can understand that the interface traps produced by the absorbed gas molecules are 

acceptor-type traps [1] that become negatively charged in a such way that the trap energy 

levels below the Fermi level (EF) are filled by electrons (Fig. S5). The electrons in the MoS2 

channel can be transferred into the interface traps at positive gate bias, resulting in the 

increased threshold voltage of the reverse sweep. Then, the captured electrons can be released 

again to the MoS2 channel at negative gate bias, resulting in the decreased threshold voltage 

for the forward sweep. 

As the gate voltage is increased, the Fermi level (EF) is moved toward the conduction band 

(EC) and the interface traps at that energy level close to the conduction band is involved in the 

extraction of the interface trap density. Large difference of the interface trap density for the 

two ambient conditions with increasing gate voltage (VG) as observed in Fig. 3b in the main 

text suggests that the interface traps are mainly located at shallow energy levels close to 

conduction band, which are typically called as shallow traps [1]. 
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