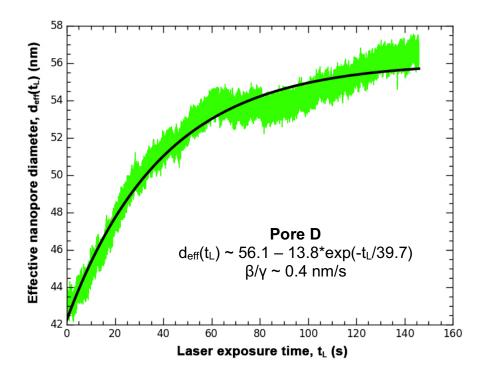
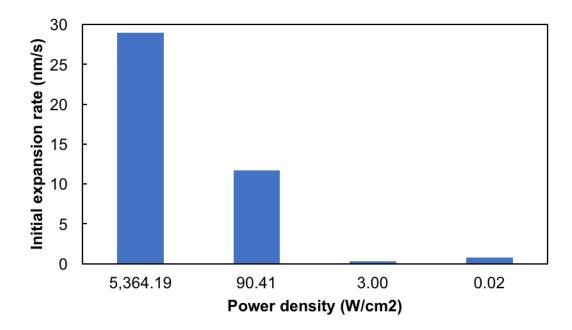
Supporting Information Monolayer WS_2 nanopores for DNA translocation with light-adjustable sizes

Gopinath Danda^{1,2‡}, Paul Masih Das^{1‡}, Yung-Chien Chou¹, Jerome T. Mlack¹, William M. Parkin¹, Carl H. Naylor¹, Kazunori Fujisawa³, Tianyi Zhang⁴, Laura Beth Fulton¹, Mauricio Terrones^{3,4,5}, Alan T. Charlie Johnson¹, and Marija Drndić^{1*}


¹Department of Physics and Astronomy, and ²Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States

³Department of Physics, Center for 2-Dimensional and Layered Materials, and ⁴Department of Chemistry, and ⁵Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States


*To whom correspondence should be addressed: e-mail, drndic@physics.upenn.edu.

Contents:

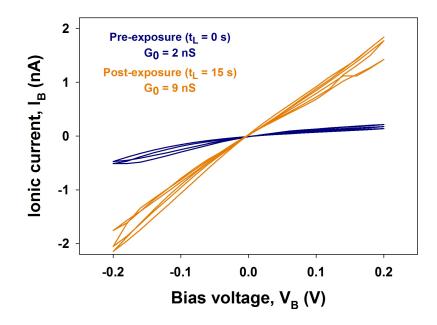

- 1. Effective nanopore diameter of pore D under laser exposure
- 2. Pore expansion rate as a function of laser power density
- 3. Laser exposure effects on an intact WS₂ membrane

Figure S1. Effective nanopore diameter of pore D under laser exposure. Diameter d_{eff} ($d_{eff} = (I_B/V_B)/\sigma$) of pore D was calculated from the obtained conductance measurements (see Figure 6). Periods with the laser (power density = 3 W/cm²) on were extracted, concatenated, and fit with the exponential trend discussed in the main text to yield functional parameters $\alpha = 56.1$ nm, $\beta = 13.8$ nm, and $\gamma = 39.7$ s. The initial expansion rate of the pore was determined to be 0.4 nm/s using β/γ as discussed in the main text.

Figure S2. Pore expansion rate as a function of laser power density. The initial expansion rate of different nanopores under varying laser power densities was calculated *via* conductance measurements before and after 5 s of laser exposure (see Figures 6 and S1). A direct correlation between rate and power density was observed.

Figure S3. Laser exposure effects on an intact WS_2 membrane. IV curves were obtained before and after laser exposure (power density of 90 W/cm², $t_L = 15$ s) on an intact WS_2 membrane containing no nanopores. The observed increase in conductance, G_0 , from 2 to 9 nS suggests that the laser aids in creating ionic channels through existing defects. Under additional exposure with a higher power density (power density ~5400 W/cm², $t_L = 6$ s), no increase in conductance was observed, indicating that exposed edges, such as those formed during e-beam nanopore drilling, are necessary to form larger channels.