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1 Introduction

In Mailath and Samuelson (2001), Proposition 1.2 is incorrect as written and the
proof of Proposition 3 contains an error. We thank Lucas Maestri for bringing
the first and Eduardo Faingold for bringing the second to our attention. We
refer the reader to Mailath and Samuelson (2001) for the setting and notation.

2 Proposition 1.2

The correct statement of Proposition 1.2 is:

Proposition 1.2 If § =0 and

1-2p
1—p

A<

then for any
p
¢ € (0> ,
p+ Al —p)

there exists ¢ > 0 such that for all 0 < ¢ < ¢, the pure strategy profile in which
the competent firm chooses high effort in period t if and only if ¢ > ¢’ is a
Markov perfect equilibrium.

The first displayed equation is a new requirement, while the second displayed
equation tightens the previous condition that ¢’ € (0,1 — X) (note that p/[p +
A(l = p)] < 1—A). Both conditions hold if A and ¢’ are not too large, which
is the case we have in mind. The first addition ensures that the slope of ¢(¢|g)
with respect to ¢, evaluated at zero, is positive. This ensures that there are
values of ¢ at which a good outcome is sufficiently good news as to push the
posterior probability of a competent firm upward, i.e., that there exist values
of ¢ at which ¢(¢|g) > ¢. The second requirement ensures that ¢(¢|g) > ¢
for values of ¢ above ¢’. The competent firm then chooses high effort in order
to reduce the probability that the posterior falls below the cutoff ¢’ at which
expectations of high effort vanish.

With these changes, the proof of the proposition is correct as written.



3 The Proof of Proposition 3

The corrected proof has a structure analogous to that of the published proof,
replacing arguments based on bounded derivatives with those based on Lipschitz
bounds.

We are concerned here with the endogenous-replacements model examined in
Section 5. With the exception of the new lemma 0, numbered items correspond
to their counterparts in Mailath and Samuelson (2001).

We first collect from Mailath and Samuelson (2001) some ideas that will
play prominent roles in the proposition and proof. In an equilibrium in which
competent firms always exert high effort, posterior beliefs of the consumers are
given by

(1—p)o

(o |g) = (1—A)(17p)¢+p(1 7¢)+AV+MD (Ve(e(o | 9) — Vile(d | g)z;;
and
P(6]D) = (1-A) po A+ ARD (Ve(p(@ | B) — Vil((é | 1))

pop+(1—p)(1—9)
(10)
Given that competent firms exert high effort, the equilibrium belief function

for consumers is given by

p(¢) = (1 =2p)¢ +p. (11)

The value function of the inept firm is then

Vi(¢) = (1 =2p)¢p+p+ 61 =N {pVi(e(®|g)) + (1= p)Vi(e(e | )}, (12)

and the value function of the competent firm is

Vo(d) = (1=2p)¢p+p—c+6(1=X){(1 = p)Ve(p(¢ | 9)) + pVe(e(o [ )}, (13)

From (13), a necessary condition for always exerting high effort to be consistent
with equilibrium is that for all possible posteriors ¢, a one period deviation to
low effort not be profitable, i.e.,

6(1 =M1 =2p){Velp(d | 9)) = Vole(o| b))} = ¢ (14)

An argument analogous to that of the one-shot deviation principle for repeated
games shows that (14) is also sufficient.

Definition 2 The triple (1,p,¢) is a reputation equilibrium if the competent
firm chooses high effort in every state (7(¢) = 1 for all ¢), the expectation
updating rules and the value functions of the firms satisfy (9)-(13), and the
competent firm is mazximizing at every ¢.

Proposition 3 Suppose v > 0, A > 0, §(1 — ) < p(1 — p)/(1 — 3p + 3p?),
and D' is bounded. Then there exists k* > 0 and c¢* > 0 such that a reputation
equilibrium exists for all k € [0,K*] and c € [0, c*].



4 The Proof

Proof. The proof requires some lemmas that we collect at the end of the proof.

[Step 1] We first show that any admissible posterior updating rule implies
a unique pair of value functions. Fix n € (6(1 —\)(1—3p+3p?)/(p— p?),1),
and let!

X = {f € C([0,1],[0,1]%) :

d1pfi(¢) + (1 = p)f2(¢) — (pf1(¢) + (1 = p)f2(¢))] < mld — '],
01(1=p)f1(e) + pfa(8) = (1 = p) f1(¢) + pfa(&') < nld — '],

F1(6) — fi(d)] < %w—w, 1F2(0) — fold)] < %w— o
for all distinct ¢, ¢ € [0, 1]} .

Any function ¢(¢) = (¢(¢ | g), (¢ | b)) € X is a potential posterior updating
rule, giving, for any prior probability ¢, the posteriors (¢(¢ | g), (¢ | b)) that
follow a good and bad utility realization. The set X is a convex, compact subset
of the normed space C([0, 1], [0, 1]?), with the norm

f1(9) — f1(¢)
-

f2(9) — f2(¢')

¢ —¢

(*)

The set X is nonempty. In particular, let ¢o denote the exogenous updating
rule, i.e., k is set equal to zero in (9) and (10). Noting that this updating
rule is differentiable, the proof of lemma 0 verifies that, for = # y € {g,b},
0 < ppp(@ | 2) + (1 =p)pp(d | y) < (L=A)(1=3p+3p)/(p—p?) <n/d and
@o(¢ | ) < 2/p, implying that o = (vo(- | 9), (- | b)) € X.

Let Y =(1—p)/(1 —46) and

; Sl;p | f2(¢)|, sup

¢,9’ @9’

} |

| f [|= max {St;p |f1(¢)l, sup

9= {f e C([0.1,[-Y. YP) -
sup (1 () — 1))/ (@ — )] < (1 — 20)/(1 — ),

z,y

sup |(fale) — Fa(w))/ (& — )] < (1 — 20)/(1 n)}.

z,Y

Interpret an element of ) as a pair of possible value functions (Vr,V¢), one
for the inept firm and one for the competent firm. Fix an updating rule ¢ =

I'We correct here the difficulty in the proof of this result in Mailath and Samuelson (2001),
where we defined the set X as the set of continuously differentiable functions with bounds on
derivatives, instead of continuous functions satisfying Lipschitz bounds. The former definition
does not allow us to draw the needed conclusion that X is compact.



(o(- | 9),0(-| b)) € X, and let ¥¥ : 9 — C([0, 1], R?) denote the mapping whose
coordinates are the functions:

TV, Ve) (o) = (1 =2p)p+p+ (L= X) {pVi(p(¢ | 9)) + (1 = p)Vi(p(¢ | D))},

and

US(V1, Vo) (o) = (1-2p)p+p—c+(1-N) {(1 = p)Ve(p(d | 9)) + pVe(p(o | b))}

The mapping ¥ is a contraction on ) (Lemmas A and B), and so has
a unique fixed point. For any updating rule ¢, this fixed point identifies the
unique value functions that are consistent with ¢, in the sense of satistying (12)
and (13). Let ® : X — ) denote the mapping that associates, for any updating
rule ¢ in X, the fixed point of ¥¥. The mapping & is continuous (Lemma C).

[Step 2] We now show that there exist updating rules and value functions
that are consistent, in the sense that using ® to obtain value functions from an
updating rule and then applying (9)—(10) returns the original updating rules.
Let ¢ denote the updating rule obtained from ¢ and ®(¢) = (V;, V) by using
(9)-(10):

@D ]9)=wo(@|g) +AD [Vole(d | g)) = Vile(e | 9))],

and
P& | b) = po(¢ | b) + AD [Va(p(e | b)) = Vi(e(e [ )]
We have, for x # y € {g,b}.

lp@(d | ) + (1= p)@( | y) — (pp(¢" | ) + (1 = p)p(¢" | y))|

< ppo(@ ] 2) + (1 = p)po(d | y) — (ppo(@’ | ) + (1 = p)po(9’ | v))
+ Ak |pD[Ve(p(o | 2) = Vi(p(¢ | 2)] + (1 = p)D[Ve(p( | y) — Vile(d | v))]
—pD[Ve(p(¢' | 2)) = Vi(p(¢' | 2))] = (1 = p)D[Ve(e(d' | y)) — Vilp(¢' | y))]’
< ppo(@ ] 2) + (1 = p)po(@ | y) — (ppo(@’ | ) + (1 = p)po(9’ | v))

. D(d¢) — D(dg) Ve(o) = Vi(o) — (Va(d') — Vi(d'))
i A I = ‘
X |pp(d | ) + (1= p)p(o | y) — (pp(@" | 2) + (1 — p)p(¢" | y))I -

The first and third line are each smaller than %|¢ — ¢'|, since ¢y and ¢ are
both contained in X. The two absolute values in the middle line have bounded
suprema, since (V7(-),Ve(+)) € 9 and the distribution function D has bounded
derivative and hence is Lipschitz continuous. There is then a sufficiently small
(but positive) value of x so that

06 | @) + (1= p)@(é | y) — (p3(¢ | ) + (1= p)p(& | 9)| < L& — &].




Hence, for sufficiently small values of & (say k < k**), the mapping T*(¢) =
¢ is a mapping from X into X. The space C([0,1],[0,1]?) with the norm || - ||
defined in (*) is a locally convex, linear topological space. The set X is convex
and compact. Moreover, the mapping T"*(p) = ¢ is clearly continuous (because
® is continuous), and hence, by the Schauder-Tychonoff theorem (Dunford and
Schwartz, 1988, p. 456), has a fixed point. For each value of x, we denote a
posterior updating function which is a fixed point of the mapping Y" by ¢,
and let (V},V5) = ®(p,) denote the corresponding value functions. Together,
¢ and (Vf5, VE) satisfy (9)-(10) and (12)—(13).

[Step 3] We now verify (14). There is a unique triple (o, V}?, V2) satisfying
(9), (10), (12), and (13) when x = 0. Since v > 0 and A > 0, there exist ¢,
éo’ o, and ¢, 0 < ¢ < ¢ < ¢y < ¢ < 1, such that ¢o(¢ | z) € @0,50] for
all ¢ € [0,1] and = € {g,b}. Moreover, there exists ¢ such that 6(1 — A)(1 —
2/3) {VE(po(019)) — VE(po(¢ | b))} > c for all ¢ € [¢,¢] and ¢ < ¢f (Lemma
D).

Fix ¢* < ¢j. The sequential compactness of X and 9 then implies the

existence of k* (< &™) such that for all Kk < K*, pu(¢ | ) € [¢,¢] for all

¢ €[0,1] and = € {g,b}, and 5(1 — A)(1 = 2p) {VE(pw(¢ | 9)) — VE(@u(o | 1))}
> ¢* for all ¢ € [¢, ¢]. n

Lemma 0 ¢y € X.

Proof. The function g is differentiable, and hence it suffices to show that its
derivatives satisfy the Lipschitz bounds in the specification (*) of the norm || - ||.
Differentiating g gives

(1=Np(l=p) _2

@0(¢|9):[(1_2p)¢+p]2—p
and
, (1-XNpd-0p) 2
b) = —.
Al e S
Thus, ppg (¢ 9) + (1 —p) o (6] b) =

(1=XN)p(l-p)
[(1=2p) ¢+ p)” [(1 = p) — (1 —2p) ]

3 {pl0=p) = (1=20) 6 + (1= p) [(1 = 20) 6+ pI* } .
(%)

We want to bound this expression from above by #. Differentiating the term in
braces with respect to ¢ yields

—2(1=2p)p[1=p) = (1 =2p) 9] +2(1=2p) (1= p)[(1—2p) ¢+ p]
= 2(1=2p)[-p(A=p)+p(1=2p) o+ (1 =p)(1=2p) ¢+ (1—p)p]

and so an upper bound for the term in braces is obtained by evaluating it at

=1, e, {p3 . p)3}.



Differentiating the denominator with respect to ¢ in order to find its mini-
mum yields a first order condition

2(1-20) [(1=2p) &+ p] [(1 = p) = (1 - 2p) ]
—2(1-2p)[(1=2p) ¢+ p” [(1 = p) = (1 = 20) ¢] = 0,

ie.,
(I=p)=(1=2p)¢p=(1-2p)d+p
or )
1—2p:2(1—2p)¢>:>¢:§.
This yields three possible minimizers for the denominator, ¢ = 0, i 5, and 1.
Evaluating the denominator at ¢ = 0 and 1 yields p? (1 — p) , while evaluating
it at ¢ = 1/2 yields

2

205+ "r -p-a-203] =g

Since p? (1 — p)® < 1/16, we combine these three cases to conclude that (¥*) is
no larger than

A=XNp(=p)y s o 51 1=N(1-3p+30%) g
i Gl T R
Turning now to the other case, ppp (¢ |0) + (1 —p) ¢l (¢ | g) =
1-Npd-p)

TR p sy {pl1=20) 0+ 0" + (1= ) [(1 - p) = (1 - 20) ¢}

The denominator is bounded below, as before, by p? (1 — p)2. The term in
braces has derivative

2(1=2p)p[(1=2p) ¢+ p] —2(1=2p) (1 = p) [(1 = p) — (1 = 2p) ¢]
= 2(1-2p) {p 1-2p)¢+p° —(1—p)* +(1L—p) (1—2p) ¢
= 201-29) [(1-2p) 0+ 0"~ (1= )| =2(1-2p)° 6 +2(1 = 20) (20— 1)
= 2(1-2p)°(¢—1) <0,

and so an upper bound for the term in parentheses is obtained by evaluating it
at ¢ =0, i.e., {p3 +(1- p)g}. We thus have the same bound as in the previous
case, allowing us to conclude that ¢y € X. [

Lemma A T%(9) C9.



Proof. Denote the image of (V7,Vc) under U¥ by (‘7{7 Vo). We verify that
(Vi,Ve) € 9 for all (V;,Ve) €. Clearly, both Vi and V¢ are continuous, and

it is straightforward that ‘V[@)) VC(¢)‘ <Y. Now,

)

< (1-2p)|¢—¢'|

a1 ) ][pmo(qb [ 9)) + (1= p)Vilo(6 | B)]

Vi(e) — Vi(¢)

= [pVi(e(@" [ 9)) + (1 = p)Vi(p(¢' | )]

1-2
< (1-20) 0= & +30 - N7

X |(pp(@ | 9) + (1= p)p(¢ | D) — (pp(@" | 9) + (1 — p)p(d” | )|

(since (V1,Veo) €9)

1-2p /
=2y

<(1-20)l¢—¢|+n

(since ¢ € X)

_ (1=2p)
U

o - .

A similar calculation holds for VC(QS) , and so U¥ maps ) into ). ]

Lemma B U¥ is a contraction under the norm || - || from (*).

Proof. First note that

VP (Vi Ve)(6) = U (V1. Vo) (6)

sup
¢

IN

5(1- ) {sgpp Vite(6 19) = Vile(o | 9))| + sup(1 = ) [Vio(& | D) = Vi(e(o | b))\}

< §(1-N) Sl(;p ‘V[((ﬁ) - VI(¢)‘

and similarly that sup,, ’\pg’(vl, Vo) (6) — B4 (Vr, VC)(qb)’ < 3(1-X)supy ‘Vc(ﬁb) - Vc(ab)].



For the next component of the norm, we note that

(WF (V2 Vo)) (9) = (W5 (V1. V) ) (8) = (W (V2 Vo)) (¢) + (W5 (V1. Vo)) ()

s o— ¢
< 5= N sup [ (p(Vi(e(6 | )~ Vile(@ ] ) + (1 — p)(Vi(o(6 | B) — Vilp(6 | D)
6,8 |O— @
= p(Vilp(d' | 9)) = Vi(e(@' | 9)) + (1= p)(Vi(p(6' | B)) = Vi’ | 0)))|
Cyeun |, 2@ 19) —2(d 1 9) Vile(@ ] 9) = Vile(o | 9)) = Vile(@' | 9)) + Vile(d | 9))
R @19 =& 1)
L1 )P @lh) =@ 15) Vile(d]6) = Vilp(d | b)) ~Vilp(d' |5) + Vile(¢' | )
¢— ¢ 0(@|b) — (¢ | b)
LG v[<¢>>¢— _<ZII<¢'> —Vi(¢)

while a similar calculation shows that
(WE(Vi, Vo)) (@) = (WE(V1, Vo) ) (6) = (B5(VE, Vo)) (¢) + (W5 (V1 V) ) (¢)
o—¢

Ve(d) = Ve(9) — (Ve(¢) = Ve(d))
¢o—¢

sup
¢’

< n(l = N)supg, ¢

Thus,
[ we v ve) — w1, Vo) || < max{s(1 = 2).n0 = 0} | (Ve Ve) = (V2. Ve

and, as claimed, ¥¥ is a contraction. [ |

Lemma C ® is continuous.

Proof. Suppose ¢, — ¢ Since 9) is sequentially compact (it is an equicon-
tinuous collection of uniformly bounded functions on a compact space), there is
a subsequence, denoted {¢,,}, with (V;", V&) = ®(¢.,) uniformly converging



to some (V, Vo) € 9. To see that Vi satisfies (12), note that

Vi(¢) — (1 —=2p)p —p— (1 = XN) {pVi(e (@] 9)) + (1 — p)Vi(@oc( | b))}

<|Vi(¢) = V" ()|
+ Vit (9) = (1 =2p)¢p — p = (L = N) {pV[" (em (¢ | 9)) + (1 = p)V[" (o (¢ | D)) }|
+6(1=Np|Vi(peo(9 | 9) — V[”(wm(aS | 9))l
+0(1 =N (1 = p) [VI(po(® | D) = Vi (om(9 | b))

=Vi(¢) = Vi"()| + (1 = N)p|Vi(p(@ | 9)) = V" (pm( | 9))
+06(1 = X)(1 = p) [Vi(poo(® | b)) = Vi (om(o | b))], (A.2)

where the equality holds because (V/™*,VZ') = ®(¢,,). Now, fix € > 0. There

exists m. such that for all m > m, and all ¢, [Vi(¢) — V[™(#)| < €/3. Moreover,

since V7 is uniformly continuous and ®(¢,,) converges uniformly to ¢, m, can

be chosen such that [V (oo (¢ | 2)) = Vi™ (em (@ | 2))] < [Vi(oo(@ | 7)) = Vi™ (0oc(@ | 2))]
+

[V (poo(d | ) — V™ (om (¢ | )| < €/3 for x € {g,b}. Thus, (A.2) is less than

or equal to €, for all € > 0, and so V7 satisfies (12) for the updating rule .

Because there is a unique solution to (12) given ¢, it must then be that V;»
converges to V7. A similar argument shows that V3 (¢,,) converges to Vo (¢oo),

giving the result. ]

Lemma D There exists a cost ¢ such that V2 (o (¢ | g)) — VE (w0 (¢ | b)) >
c/[6(1=X) (1 —=2p)] for all ¢ € [¢,¢] and all ¢ < c}.

Proof. There exists ( > 0 such that for all ¢ € [¢, @],

eo(¢ ] g) —eo(o|b) > <. (A.3)

Given ht € {g,b}?, denote the consumers’ posterior using o after observing

the sequence h' = (z1,...,2¢) by wo(¢ | ') = wo( - wo(wo(¢ | z1) | x2) -+ |
z¢). The value function V¥ can be written as, by recursively substituting,

—c
VE) = Tyt (1200 +(1-2) DN DD ol | WPt | H).
= h €{g,b}*
(A.4)
where Pr(h! | H) is the probability of realizing the sequence of outcomes h'
given that the firm chooses high effort in every period.

Then, V(g0 (¢ ] 9)) — VE (o (¢ b)) =



(1-2p) (0 (6] 9) — w0 (d]b))
+1=2p) > a1 =N" > {eo(d | gh') —pole | bh")} Pr(ht | H)

hte{g,b}t

> (1-2p)(po(d]9)—wo(e]0),
since ©o(¢ | ght) — @o(¢ | bht) > 0 for all ¢ and all ht. Thus, using (A.3),
VE (o (01 9) = VE(po(d]0) > (1-2p)¢
and so an appropriate upper bound on c is
G =08(1-A)(1-2p)°¢C

Note that this not a tight bound, since we used only the inequalities that pertain
to the first period of the value-function calculations. ]
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