
Incentive Compatibility and Differentiability:

New Results and Classic Applications∗

George J. Mailath† Ernst-Ludwig von Thadden‡

January 21, 2013

Abstract

We provide several generalizations of Mailath’s (1987) result that in
games of asymmetric information with a continuum of types incentive
compatibility plus separation implies differentiability of the informed
agent’s strategy. The new results extend the theory to classic models in
finance such as Leland and Pyle (1977), Glosten (1989), and DeMarzo
and Duffie (1999), that were not previously covered.

JEL Classification Numbers: C60, C73, D82, D83, G14.

Keywords : Adverse selection, separation, differentiable strategies, incentive-
compatibility.

∗First version September 2010. We thank Navin Kartik, Zehao Hu, the associate editor,
and two referees for helpful comments. Mailath thanks the National Science Foundation
for financial support (grant SES-0961540).

†Department of Economics, University of Pennsylvania, gmailath@econ.upenn.edu.
‡Department of Economics, Universität Mannheim, vthadden@uni-mannheim.de.



1 Introduction

In many problems of asymmetric information, one agent has private infor-
mation upon which she bases her actions, and uninformed agents act based
on inferences from these actions. Because the informed agent can reveal
information through her actions, she chooses her actions strategically. If the
informed agent’s action as a function of her private information is one-to-
one, then her strategy is said to be separating and her actions completely
reveal her private information.

If the agent’s private information (her “type”) is given by a continu-
ously distributed real-valued random variable, incentive-compatible separat-
ing strategies in such interactions can easily be characterized by a differential
equation, if the strategy is known to be differentiable. But exactly because
the strategy is not known, differentiability cannot be taken for granted. This
poses a serious problem for the determination and uniqueness of equilibrium.

In many cases, however, differentiability is an implication of incentive-
compatibility. For a large class of signaling games and related settings,
Mailath (1987) has shown that any incentive-compatible separating strategy
of the informed agent must be differentiable and hence satisfy the standard
differential equation. Unfortunately, the assumptions in Mailath (1987) rule
out many important applications. In particular, as we describe below, they
do not cover the models of Leland and Pyle (1977), Glosten (1989), and De-
Marzo and Duffie (1999) that are at the core of modern theories of corporate
finance and market microstructure.

In this paper, we provide appropriate generalizations of Mailath (1987)
to cover these models. The new results can be grouped into two categories.
First, we provide new sufficient conditions on payoff functions for differ-
entiability to be implied by incentive-compatibility. For example, we show
that differentiability can obtain even in linear models, which are not covered
by Mailath (1987). This extends the analysis to those models in corporate
finance or Industrial Organization that use risk-neutrality, where the classic
first-order conditions of expected utility theory do not apply.

The second category of results refers to the underlying type and action
sets. We show that the original and our new sufficiency conditions extend
to non-compact (in particular, unbounded) type sets, and to bounded ac-
tion sets (in Mailath (1987) the action set is R). This is important for two
reasons. First, many applications, in particular in finance, naturally involve
unbounded type sets, for example, when using normally distributed returns,
or bounded action sets, for example when short-selling is not allowed. Sec-
ond, working with arbitrary type sets makes it possible to apply the sufficient
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conditions locally instead of globally. For this, one simply considers subin-
tervals of the original type set, when the sufficient conditions do not hold
globally (because, for example, a derivative vanishes somewhere), but do
hold locally (because the derivative cannot vanish everywhere). We pro-
vide an example in which global differentiability can be shown by “patching
together” local arguments.

Our interest in the differentiability of separating strategies leads us to
study environments with differentiable payoffs. The standard theory of
ordinary differential equations, together with the usual boundary condi-
tions then implies the uniqueness of separating equilibrium strategies. This
uniqueness also holds more generally in environments with continuous pay-
offs. See Roddie (2011) for global conditions that guarantee uniqueness of
the separating equilibrium when there is a continuum of types.

2 The Model

An informed agent knows the state of nature ω ∈ Ω ⊂ R and one or more
uninformed agents react to the informed agent’s action x ∈ X ⊂ R on the
basis of inferences drawn from x about ω. The sets Ω and X are intervals;
they may be bounded or unbounded, and we do not require the intervals to
be open or closed. For our purposes, this interaction can be summarized by
the C2 function

V : Ω2 ×X −→ R,
(ω, ω̂, x) 7−→ V (ω, ω̂, x),

(1)

denoting the informed agent’s payoff from taking action x when the true
state of nature is ω and the uninformed agents believe it is ω̂. We assume
V has a C2-extension (also denoted V ) to the closure of Ω2 ×X .1

As an example, consider the canonical signaling game (Spence (1973);
Cho and Kreps (1987)). There is an informed agent who, knowing ω, chooses
an action (or costly message) x, followed by an uninformed agent who ob-
serving x but not ω, chooses a response r ∈ R ⊂ R. The informed agent’s
payoff is given by v(x, r, ω). Given x and a point belief ω̂ ∈ Ω after ob-
serving x, denote by ρ(x, ω̂) a best response for the uninformed player. The
informed agent’s payoff, given the uninformed agent’s best response ρ, can
then be written as

V (ω, ω̂, x) ≡ v(x, ρ(x, ω̂), ω),

1For values (ω, ω̂, x) on the boundary of Ω2 × X , the derivatives are the appropriate
one-sided derivatives.
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which is of the form assumed in (1) if v and ρ are twice continuously differ-
entiable.

We study interactions in which the informed agent’s information is fully
revealed (as in separating equilibria in signalling games): The informed
agent’s action is given by a one-to-one function X : Ω → X , so that ω 6= ω′

implies X(ω) 6= X(ω′). Furthermore, X must be incentive-compatible, which
means that the informed agent finds it optimal to follow this strategy when
she knows ω:

X(ω) ∈ arg max
x∈X(Ω)

V (ω,X−1(x), x). (IC)

The following assumptions adopt Mailath’s (1987) local concavity con-
ditions (4) and (5) to our setting.2 We will use them to prove some, but not
all generalizations of Mailath’s (1987) theorem in Section 4.

Assumption 1 The first-best contracting problem (the problem under full
information),

max
x∈X

V (ω, ω, x)

has a unique solution for all ω ∈ Ω, denoted XFB(ω), for all ω ∈ Ω.

Note that if X is compact the first-best may lie on the boundary of X .
We denote the interior of a set A by int(A).

Assumption 2 1. For all ω ∈ int(Ω), V33(ω, ω,XFB(ω)) < 0.

2. There exists k > 0 such that for all (ω, x) ∈ Ω ×X ,

V33(ω, ω, x) ≥ 0 ⇒ |V3(ω, ω, x)| > k.

Note that Assumption 1 only implies V33(ω, ω,XFB(ω)) ≤ 0 for interior
ω. The strengthening to Assumption 2.1 is needed in the proof of Lemma
B in the appendix. Assumption 2.2 is weaker than strict concavity but
stronger than strict quasi-concavity of V (ω, ω, ∙).

The following theorem is the central result of Mailath (1987).

Theorem 1 (Mailath (1987)) Let Ω = [ω1, ω2] and X = R and let X be
one-to-one and incentive-compatible. Suppose Assumptions 1 and 2 hold,
and V13(ω, ω̂, x) 6= 0 and V2(ω, ω̂, x) 6= 0 for all (ω, ω̂, x) ∈ Ω2 ×X .

2Since Mailath (1987) took R as the action space, while we allow for arbitrary real
intervals, the assumption that the first order condition V3 = 0 has a unique solution has
been replaced with the more general requirement that the first-best contracting problem
has a unique solution.
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1. If V3(ω, ω̂,X(ω̂))/V2(ω, ω̂,X(ω̂)) is a strictly monotone function of ω
for all ω̂, then X is differentiable in the interior of Ω, int(Ω).

2. (a) If X(ω1) = XFB(ω1) and V2(ω, ω̂, x) > 0 for all (ω, ω̂, x) ∈ Ω2 ×
X , then X is differentiable on Ω \ {ω1}.

(b) If X(ω2) = XFB(ω2) and V2(ω, ω̂, x) < 0 for all (ω, ω̂, x) ∈ Ω2 ×
X , then X is differentiable on Ω \ {ω2}.

If X is differentiable, then it satisfies the differential equation

X ′(ω) = −
V2(ω, ω,X(ω))
V3(ω, ω,X(ω))

. (DE)

The differential equation (DE) is a trivial consequence of the incentive
constraint (IC), which yields the first-order condition V2 + X ′V3 = 0, given
differentiability.

The assumption that V2 never equals zero, and so never changes sign
(“belief monotonicity”) implies that the direction of desired belief manipu-
lation by the informed agent is unambiguous: if V2 > 0, she benefits from
the uninformed side believing her to be of a higher type (respectively, of a
lower type if V2 < 0). The assumption that V13 never changes sign (“type
monotonicity”) means that the informed agent’s marginal utility from x is
monotone in her type. Neither assumption need be satisfied in standard
examples, as the following section shows.

The condition that V3/V2 is a strictly monotone function of ω for all
(ω̂,X(ω̂)) is a weak form of single crossing; we discuss the role of the single
crossing property in Section 5 when we introduce Theorem 6.

For signaling games satisfying standard monotonicity properties, the ini-
tial value condition pinning down the value of X at either ω1 or ω2 in parts
2a and b of Theorem 1 is a simple consequence of sequential rationality:3

Suppose V2 > 0. Then ω̂ = ω1 is the worst belief the uninformed agents can
have about the informed agent. It is then immediate that in any Nash equi-
librium with X separating, if XFB(ω1) ∈ X(Ω) then X(ω1) = XFB(ω1).4

On the other hand, if XFB(ω1) 6∈ X(Ω), then in response to a deviation

3For signaling games with finite type and action spaces, sequential rationality is for-
malized as sequential equilibrium (Kreps and Wilson, 1982), and with infinite type and
action spaces, by various versions of perfect Bayes equilibrium.

4Suppose X−1(XFB(ω1)) = ω′ 6= ω1. Then,

V (ω1, ω
′, XFB(ω1)) > V (ω1, ω1, X

FB(ω1)) > V (ω1, ω1, X(ω1)),

and so X is not incentive compatible, a contradiction.
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to the action x = XFB(ω1), sequential rationality requires the uninformed
agents to choose a best reply to some belief, and V2 > 0 again implies that
ω1 has a profitable deviation. Finally, note that since V3(ω, ω,XFB(ω)) = 0
when X = R, (DE) implies |X ′(ω)| → ∞ as ω → ωk for any ωk satisfy-
ing X(ωk) = XFB(ωk), and so X cannot be differentiable at the indicated
endpoints in parts 2a and b.

3 Three Examples

3.1 Equity Issues

The classic model of equity issues of Leland and Pyle (1977) considers an
owner of a firm who wants to raise funds on the stock market by selling
her holdings. The uninformed side of the market is “the stock market”: a
large group of equally informed and well-diversified investors. Investors are
willing to invest if in expectation they earn the risk-free rate, normalized to
0.

The company is worth ω + ε in the future, where ω ∈ Ω = [ω1,∞) is a
positive number and ε is a zero-mean random variable defined on an interval
[ε, ε]. The expected value of the firm, therefore, is ω. The owner has personal
wealth (outside the firm) of w0 and is risk-averse, with an increasing, strictly
concave, twice continuously differentiable money utility function U . The
capital market is risk-neutral. The owner considers diversifying his risk by
selling a fraction 1 − x of the firm in exchange for a payment of t by the
capital market.

The owner’s utility from an allocation (x, t) ∈ [0, 1] × R is

EεU(x(ω + ε) + w0 + t) (2)

and that of the capital market (using risk-neutrality)

(1 − x)ω − t. (3)

Because the owner is risk-averse, the first-best is XFB(ω) = 0, i.e., to sell
the firm completely, regardless of ω. The interaction between the two sides
of the market is given by a signaling game in which the owner, knowing the
value of ω, proposes an equity issue (x, t) which the stock market accepts or
rejects.

As is well known, this game has a large number of equilibria. The liter-
ature usually considers equilibria with (i) maximum information transmis-
sion that (ii) leave zero expected profits to the market conditional on each
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type. Property (i) restricts attention to strategies (X,T ) : Ω → [0, 1] × R
that are one-to-one (fully separating), while property (ii) implies transfers
T (ω̂) = (1−x)ω̂, where ω̂ is the inferred expected value of the firm. One can
then ignore t = T (ω̂) in the analysis and denote a strategy of the informed
player (the owner) by X(ω).

The payoff function V of the informed agent as defined in (1) is

V (ω, ω̂, x) = EεU(w0 + x(ω + ε) + (1 − x)ω̂). (4)

We have

V2(ω, ω̂, x) = (1 − x)EεU
′(w0 + x(ω + ε) + (1 − x)ω̂),

and

V13(ω, ω̂, x) = EεU
′(w0 + x(ω + ε) + (1 − x)ω̂)

+ x(ω − ω̂)EεU
′′(w0 + x(ω + ε) + (1 − x)ω̂).

Simple examples show that in general V13 can be 0, violating type-
monotonicity. Furthermore, V2(ω, ω̂, 1) = 0, violating belief-monotonicity
for x = 1. Finally, Ω is not compact, and X is not R.

3.2 Market Microstructure

Motivated by Glosten (1989), consider a market for a risky asset in which risk
neutral market makers provide liquidity to an informed risk-averse investor
who, depending on her private information, may wish to buy or sell. Let
x ∈ R denote the quantity of the risky asset traded by the investor, with
x > 0 corresponding to a purchase and x < 0 to a sale. The corresponding
monetary transfer from the investor to the market maker is denoted by
t ∈ R; if t < 0, −t is the amount received by the investor. If as in standard
market microstructure theory, p is the price of the asset, then t = px.

The final value of the risky asset is ν = s + ε. The investor privately
observes s and her endowment θ of the risky asset before trade takes place.
The random variables (s, θ) describe the investor’s private information, and
after a trade (x, t), the investor’s final wealth is (x + θ)(s + ε) − t. Under
suitable assumptions,5 the private information of the investor can be sum-
marized by a one-dimensional type ω, whose support Ω may be bounded,

5See Mailath and Nöldeke (2008) for details. These assumptions are the same as in
Glosten (1989), with the exception that the random variables describing the investor’s pri-
vate information are not required to be normally distributed. If ω is normally distributed,
then the support Ω of its distribution is R, but in general Ω can be bounded.
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and the investor’s preferences over trade-transfer pairs are described by the
utility function

U(x, t | ω) = bωx − rx2/2 − t, (5)

where b > 1 and r > 0 are two parameters reflecting the investor’s risk aver-
sion and characteristics of the underlying stochastic environment. Market
makers are risk neutral and maximize expected trading profits. It suffices
to consider aggregate trading profits t − νx. Conditional on ω, expected
aggregate trading profits are given by

V(x, t | ω) = t − ωx. (6)

The strategic interaction between the two sides of the market is modeled
as a signaling game in which the market makers compete for the investor’s
trade after observing the posted quantity x. Each market maker i offers
a transfer Ti(x) to the informed investor, and the investor then chooses a
market maker.

We again consider outcomes with maximum information transmission,
i.e., trading schedules that are separating with respect to ω. Competition
between market makers implies that if there exists a separating equilibrium,
each market maker i must make zero expected profits on each type. By (6),
this means

Ti(X(ω)) = ωX(ω) for all ω ∈ Ω and all i. (7)

Hence, the trading schedule schedule pins down the pricing schedule.
By (5), the payoff function V of the informed investor as defined in (1)

is then
V (ω, ω̂, x) = (bω − ω̂)x − rx2/2. (8)

We have

V2(ω, ω̂, x) = −x, (9)

V13(ω, ω̂, x) = b, (10)

and
d

dω

{
V3(ω, ω̂, x)
V2(ω, ω̂, x)

}

= −
b

x
. (11)

Equations (9) and (11) violate the assumptions of Theorem 1. Further-
more, while it is possible in the equity issue model of the previous subsection
to restrict Ω arbitrarily to a compact interval, the case of an unbounded Ω
is important in this case (arising, for example, when ω is normal).6

6Mailath and Nöldeke (2008) do not prove that separating trading schedules are differ-
entiable. The results here support their assertion that the arguments in Mailath (1987)
apply.
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3.3 Security Design

The fundamental question in corporate finance is how to allocate the cash
flow generated by a firm’s assets among its different providers of capital.
DeMarzo and Duffie (1999) have argued that this problem should be ana-
lyzed in two steps. First, the firm’s owners or managers design the security,
and second the security is sold to investors. Since the second step may take
place significantly later than the first, the firm may have obtained private
information concerning the security’s payoff once it sells the security. For
this second step, DeMarzo and Duffie (1999) therefore consider the following
game.

The security has an expected payoff ω ∈ Ω, where ω is private informa-
tion of the firm and Ω ⊂ R is a potentially unbounded interval with left
endpoint ω1. The firm considers selling a quantity x ∈ [0, 1] of the security
to market investors. There are gains from trade because the firm discounts
the security’s cash flows at a higher rate than the market. Let δ < 1 be
the firm’s discount rate relative to that of the market (which is normalized
to 1). The firm and the market are both risk-neutral. If the firm sells the
amount x of the security for a total of t, the firm’s payoff is

t + (1 − x)δω (12)

and the market investors’ payoff is

xω − t. (13)

Market investors are competitive and must make zero expected profits
for each value of ω. Hence, if they believe the expected value of the security
to be ω̂, they will pay t = xω̂. Inserting this into (12) yields the payoff
function V of the informed investor as defined in (1):

V (ω, ω̂, x) = xω̂ + (1 − x)δω

= δω + (ω̂ − δω)x.

The informed agent’s payoff function V is linear in x and therefore vi-
olates Assumption 2 of Theorem 1. Furthermore, Ω need not be compact,
though X is.

4 The Generalized Theorems

In this section, we provide a set of results that significantly expand the
applicability of Theorem 1. The proofs of the results, which recycle Mailath’s
original proof and add a number of new elements, are in the appendix.

8



We generalize Theorem 1 in several respects. First we generalize the
theorem by weakening its assumptions on type and action sets. As stated
in Section2, Ω and X can now be arbitrary real intervals. With respect
to Ω, the argument is not immediate because Mailath’s proof uses uniform
convergence (for which compactness is needed) and exploits the behavior
of X on the boundary of Ω. With respect to X , the difficulty is that the
equivalence of V3(ω, ω,X(ω)) = 0 and X(ω) = XFB(ω) breaks down for
X(ω) on the boundary of X .

We also weaken Mailath’s (1987) assumption that the conditions on the
payoff function must hold for all (ω, ω̂, x) ∈ Ω2 ×X . The necessary changes
in Mailath’s proof are simple, but the new generality is useful because often
there is some a priori information about the graph of X that makes it easier
to verify the conditions only on the relevant subsets of Ω2 ×X . The equity
issue example in Section 6.1 is an example.

These observations yield the following generalization of Theorem 1.

Theorem 2 Let X be one-to-one and incentive-compatible. Suppose As-
sumptions 1 and 2 hold and V13(ω, ω, x) 6= 0 for all (ω, x) ∈ int(Ω) ×X .

1. Suppose V2(ω, ω̂,X(ω̂)) 6= 0 for all ω, ω̂ ∈ int(Ω), and

V3(ω, ω̂,X(ω̂))/V2(ω, ω̂,X(ω̂))

is a strictly monotone function of ω for all ω̂ ∈ int(Ω). Then X is
differentiable on int(Ω).

2. (a) Assume that Ω = [ω1, ω2] or Ω = [ω1,∞) and that X(ω1) =
XFB(ω1). If V2(ω, ω,X(ω)) > 0 for all ω ∈ Ω then X is differ-
entiable on Ω \ {ω1}.

(b) Assume that Ω = [ω1, ω2] or Ω = (−∞, ω2] and that X(ω2) =
XFB(ω2). If V2(ω, ω,X(ω)) < 0 for all ω ∈ Ω then X is differ-
entiable on Ω \ {ω2}.

At all points of differentiability, X satisfies the differential equation (DE).

Theorem 2.2 clarifies the role of the boundary conditions in Theorem
1 and shows that only one boundary condition is necessary to obtain the
result. This extends the validity of the theorem to the case of intervals that
are either unbounded from below or from above. Theorem 2.1 is the same
statement as in Theorem 1 but without the restrictions discussed above. The
comparison of Theorem 2.1 and Theorem 2.2 therefore extends and clarifies
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Mailath’s (1987) observation that in order to prove differentiability one can
use single crossing or a boundary condition.7

We now consider sufficient conditions that are different in spirit from
Theorem 1. Our first such result is that incentive-compatibility implies
differentiability in models with strictly monotone payoffs and compact choice
sets, as in DeMarzo and Duffie (1999).

Theorem 3 Let X be one-to-one and incentive-compatible, and suppose
that X is compact. For any ω ∈ Ω, if V3(ω, ω, x) 6= 0 for all x ∈ X ,
then X is differentiable at ω. At all points of differentiability, X satisfies
the differential equation (DE).

The assumption on V3 in Theorem 3 is slightly stronger than strict mono-
tonicity in x. Note that if V (ω, ω, ∙) is strictly monotone in x, XFB(ω) exists
and is unique (hence, Assumption 1 is satisfied) and lies on the boundary
of X . As noted earlier, if ω is on the boundary of Ω or x on the boundary
of X , the derivatives are the relevant one-sided derivatives.

Corollary 1 Let X be one-to-one and incentive-compatible. If V is affine
in x ∈ X ,

V (ω, ω̂, x) = A(ω, ω̂) + B(ω, ω̂)x, (14)

with B(ω, ω) 6= 0 for all ω ∈ Ω, then X is differentiable at every ω ∈ Ω and
satisfies the linear differential equation

B(ω, ω)X ′(ω) + B2(ω, ω)X(ω) = −A2(ω, ω). (15)

Corollary 1 is a direct consequence of Theorem 3, because (14) implies
that V3(ω, ω, x) = B(ω, ω) 6= 0 for all ω ∈ Ω, and (15) is the re-write of
(DE) for the affine case.

Corollary 1 is useful because many standard models in corporate finance,
as in Industrial Organization, work with linear preferences, which often gives
rise to valuations V of the form (14).8 The theorem is surprising because
constrained optimization problems with linear objective functions often yield
discontinuous solutions. The assumption that the action set X is compact
does not force the solution to lie on the boundary: the optimal X typically
lies in the interior of X . Instead, compactness is needed to prove that for

7See Section 5 for further discussion of the single crossing property.
8Next to DeMarzo and Duffie (1999), for an example of such a model with with linear

preferences and continuous types in the IO/finance area, see Burkart and Lee (2011), who
also discuss further papers.
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any ω0 and any sequence ωn → ω0, V (ω0, ω0, X(ωn)) → V (ω0, ω0, X(ω0))
(Lemma D in the appendix). This is a crucial insight to establish the con-
tinuity of X, from which, in turn the differentiability of X can be deduced.

Instead of assuming compactness of X , this insight can also be proved
by using our relaxed concavity Assumption 2, which we do in the following
theorem.

Theorem 4 Let X be one-to-one and incentive-compatible. Suppose As-
sumptions 1 and 2 hold.

1. For any ω ∈ Ω, if V3(ω, ω, x) 6= 0 for all x ∈ X , then X is differentiable
at ω.

2. For any ω ∈ int(Ω), if V (ω, ω, ∙) is a monotone function in x and if
V2(ω, ω,XFB(ω)) 6= 0, then X is differentiable at ω.

3. Assume that V13(ω, ω, x) 6= 0 and V12(ω, ω, x) ≤ 0 for all (ω, x) ∈
int(Ω) × X . If V2(ω, ω,X(ω)) > 0 or if V2(ω, ω,X(ω)) < 0 for all
ω ∈ int(Ω), then X is differentiable on int(Ω).

At all points of differentiability, X satisfies the differential equation (DE).

Theorems 3 and 4 provide new conditions on V to establish the differen-
tiability of X. As in Theorem 2, the assumptions on the partial derivatives
need not hold for all (ω, ω̂, x) ∈ Ω2 ×X .

Theorems 3 and 4.1 are almost identical, differing only in one assumption
(Theorem 3 uses the compactness of X , while statement 4.1 uses the quasi-
concavity of Assumption 2). Theorem 4.2 addresses the same situation
slightly differently, because under Assumption 2 the fact that V (ω, ω, ∙) is a
monotone function in x only implies V3(ω, ω, x) 6= 0 for almost all ω ∈ int(Ω)
and x ∈ int(X ).

The condition V12 ≤ 0 (“manipulation monotonicity”), required in The-
orem 4.3, is mild and satisfied in almost all examples we know of (though
it does fail in Kartik, Ottaviani, and Squintani (2007)). It requires that the
informed agent’s gain from manipulating the uninformed beliefs upwards
does not increase in her type.

Theorems 3 and 4 show that in order to prove differentiability, neither
single crossing nor a boundary condition are necessary. Theorems 3, 4.1,
and 4.2 are useful because the required monotonicity is often easy to verify,
and is structurally novel because it is local (i.e., it only requires conditions
at ω0 to establish differentiability at ω0). Note, however, that also Theorem
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2 and Theorem 4.3 hold for arbitrary sets Ω, so the results can be applied
“piecemeal” to open subsets Ω0 ⊂ Ω. This is particularly useful if the
regularity assumptions for V are known not to hold on the whole domain.

Finally, we report a useful result that follows directly from Mailath’s
proof:

Theorem 5 Let X be one-to-one and incentive-compatible. Suppose As-
sumption 1 holds and that either X is compact or Assumption 2 holds. If,
for any ω ∈ Ω, X(ω) = XFB(ω), then X is continuous at ω.

The assumption in Theorem 5 seems difficult to verify a priori, because
one needs to know X, which one actually wants to characterize. However,
since it is often straightforward to find the ω̂ for which X(ω̂) = XFB(ω̂), the
injectivity of X then implies that one can apply Theorems 2–4 to {ω > ω̂}
or {ω < ω̂}, or to X \{X(ω̂)} if X(ω̂) is on the boundary of X . Hence,
the statement is useful to “fill possible holes” left by the other statements.
Subsection 6.2 provides an example for this technique.

5 When Does Differentiability Imply Incentive Com-
patibility?

Theorems 2, 3, and 4 identify conditions under which incentive-compatibility
implies differentiability and so (DE). To complete our discussion we briefly
turn to the question under what conditions the converse is true, i.e. when
differentiability (in the form of (DE)) implies incentive-compatibility. Under
the assumptions of Theorem 1, Mailath (1987, Theorem 3) showed that the
converse holds if V satisfies the single-crossing property on the graph of
X. The next theorem shows that this statement continues to be true under
weaker assumptions. Moreover, the property is also locally necessary (the
statement of Mailath (1987, Theorem 3) incorrectly describes the locality
notion).

The Spence (1973)-Mirrlees (1971) single-crossing property requires the
agent’s marginal rate of substitution between her action (x) and that of the
uninformed agents be appropriately monotone in her type. In our examples,
the uninformed agents’ action is a monetary transfer, and as is typical, the
action is monotone in beliefs about type. Consequently, in our reduced form
model, the relevant marginal rate of substitution is between ω̂ and x, that is,
V3(ω, ω̂, x)/V2(ω, ω̂, x). The adjective “appropriately” captures the require-
ment that, for example, in job market signaling, single crossing is implied
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by more (rather then less) able workers having a lower marginal cost of ed-
ucation. If less able workers have the lower marginal cost of education, then
the marginal rate substitution between education and wage is an increasing
function of ability. While monotonic, such a marginal rate of substitution
precludes the existence of a separating equilibrium.

The single-crossing property imposes a uniform structure on the deriva-
tives of V that implies global optimality from the first-order condition (which
is essentially the differential condition (DE)). Conversely, the second-order
condition for local optimality implied by incentive-compatibility is essen-
tially the local single-crossing condition.

The following theorem on the role of single crossing is proved in the
appendix. Since X ′ and V2 do not change sign, (16) and (17) both imply that
V3(ω, ω̂, x)/V2(ω, ω̂, x) is monotonic in ω (with the signs of X ′ and V2 jointly
determining the appropriate monotonicity). Condition (16) implies global
monotonicity, in that it holds everywhere on the graph of X, while (17)
implies local monotonicity, in that it only holds for the derivative evaluated
at ω̂ = ω.

Theorem 6 Assume that the one-to-one function X is continuous on Ω
and satisfies the differential equation (DE) on the interior of Ω. Suppose
V2(ω, ω̂,X(ω̂)) 6= 0 for all ω, ω̂ ∈ Ω.

1. If

X ′(ω)V2(ω, ω̂,X(ω̂))
d

dω

{
V3(ω, ω̂,X(ω̂))
V2(ω, ω̂,X(ω̂))

}

≥ 0 (16)

for all ω, ω̂ ∈ Ω, then X is incentive-compatible.

2. If X is incentive-compatible, then

X ′(ω)V2(ω, ω,X(ω))
d

dω

{
V3(ω, ω̂,X(ω̂))
V2(ω, ω̂,X(ω̂))

}∣∣
∣
∣
ω̂=ω

≥ 0 (17)

for all ω ∈ Ω.

6 The Examples Revisited

6.1 Equity Issues

Since the payoff of the informed party in the model of Section 3.1, V given
by (4), is strictly concave in x, one can apply Theorem 4 to obtain differen-
tiability. In fact, by statement 2, X must be differentiable on (ω1,∞), and
by Theorem 5, it is continuous at ω1.

13



6.2 Market Microstructure

From (8), the first-best in the model of Section 3.2 is given by

XFB(ω) =
b − 1

r
ω.

Under any competitive incentive-compatible separating price-quantity
schedule, type ω = 0 must get her first-best allocation, x = 0.9 Separation
then implies that every other type must choose a non-zero quantity. Hence,
V2(ω, ω,X(ω)) 6= 0 for all ω 6= 0 by (9). Since V12 ≡ 0, Theorem 4.3 therefore
implies that any incentive-compatible schedule X must be differentiable on
the open sets (0,∞) and (−∞, 0).

By Theorem 5, the schedule X is continuous at ω = 0. Calculating the
derivatives of X on (0,∞) and (−∞, 0) from (DE) shows that the left-hand
and right-hand derivative of X at ω = 0 exist and are identical. Hence, X
is differentiable on all of Ω.

Although the model of Section 3.2 is a signaling model, the analysis also
applies to separating equilibria of competitive screening models. However,
care needs to be exercised in applying these results to competitive screening
models, as such models often fail to have separating equilibria (Riley, 2001,
page 446).10

One of the main insights in Glosten (1989) is his non-existence result. In
particular, he shows that in the case b ≤ 2, the differential equation (DE)
for Ω = R does not have a separating solution (see also Hellwig (1992)).
This suggests that too much competition may be detrimental for market
activity. This conclusion requires that every equilibrium trading schedule is
differentiable, a result missing in Glosten (1989), but which is implied by
Theorems 4 and 5.

It is worth noting that this conclusion also requires viewing separation
as an implication of competition. Mailath and Nöldeke (2008) argue that
competitive pricing does not lead to market breakdown, even if the investor’s
private information has unbounded support.

6.3 Security Design

Since the firm’s payoff function V is linear in x, if the firm’s strategy X is
incentive-compatible and one-to-one, Theorem 3 implies that it is differen-

9Since V (0, 0, X(0)) ≥ 0 (type ω = 0 has the option of choosing x = 0), and V (0, 0, x) =
−rx2/2, which is strictly negative if x 6= 0, we have X(0) = 0.

10We thank a referee and associate editor for the Riley (2001) reference and for helping
us to appreciate this point.
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tiable for all ω > 0 and satisfies the differential equation

(1 − δ)ωX ′(ω) + X(ω) = 0. (18)

It can be easily verified that (18) has the solution

X(ω) = aω− 1
1−δ , (19)

where a ≥ 0 is a constant of integration. Since X(ω) ∈ [0, 1] by construction,
(19) implies that ω1 = inf Ω and a must satisfy ω1 ≥ a1−δ for a solution to
exist. In particular, if the interaction in the model is a signaling game (as
in Section 3 of DeMarzo and Duffie (1999)), then firm type ω1 must obtain
its most preferred allocation x = 1, and the constant of integration is

a = ω
1

1−δ

1 .

Note that this implies that Ω must be bounded away from 0 for a non-
trivial solution to exist.11

Appendices

A Preliminary Results

In what follows, Ω and X are intervals of R, and X is a one-to-one function
satisfying (IC). As in Mailath (1987), we first conduct some preliminary
calculations. Fix ω0 ∈ Ω. Define, for arbitrary ω, ω̂ ∈ Ω and x ∈ X ,

g(ω, ω̂, x) ≡ V (ω, ω̂, x) − V (ω, ω0, X(ω0)).

Since V is C2 on the closure of Ω2 × X , so is g. The derivatives are well
defined on the boundary of the relevant domains (in which case they are the
appropriate one-sided derivatives). Moreover,

g(ω, ω0, X(ω0)) = g1(ω, ω0, X(ω0)) = 0, ∀ω. (A.1)

Incentive compatibility implies

g(ω0, ω,X(ω)) ≤ 0 (A.2)

and g(ω, ω,X(ω)) ≥ 0. (A.3)

11DeMarzo and Duffie (1999) derive (19) assuming differentiability and cite an earlier
unpublished version of their paper for a proof.
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For any ω ∈ Ω and λ ∈ [0, 1], define

[ω; λ]1 ≡ (λω0 + (1 − λ)ω, ω,X(ω))

and for any μ ∈ [0, 1], define

[ω; μ]23 ≡ (ω0, μω0 + (1 − μ)ω, μX(ω0) + (1 − μ)X(ω)).

Expanding g(ω, ω,X(ω)) around (ω0, ω,X(ω)) as a second order Taylor ex-
pansion yields

g(ω, ω,X(ω)) = g(ω0, ω,X(ω)) + g1(ω0, ω,X(ω))(ω − ω0)

+ 1
2g11([ω; λ]1)(ω − ω0)2

for some λ ∈ [0, 1]. Next, expanding g1(ω0, ω,X(ω)) around (ω0, ω0, X(ω0))
as a first order Taylor expansion yields

g1(ω0, ω,X(ω)) = g1(ω0, ω0, X(ω0))

+ g12([ω; μ]23)(ω − ω0) + g13([ω; μ]23)(X(ω) − X(ω0))

for some μ ∈ [0, 1]. Because the first term on the right-hand side is 0 by
(A.1), combining these two expressions yields

g(ω, ω,X(ω)) = g(ω0, ω,X(ω))

+ (ω − ω0)

{
[

1
2g11([ω; λ]1) + g12([ω; μ]23)

]
(ω − ω0)

+ g13([ω; μ]23)(X(ω) − X(ω0))

}

. (A.4)

Expressions (A.2), (A.3), and (A.4) imply

0 ≥ g(ω0, ω,X(ω)) ≥ −(ω − ω0)

{
[

1
2g11([ω; λ]1) + g12([ω; μ]23)

]
(ω − ω0)

+ g13([ω; μ]23)(X(ω) − X(ω0))

}

(A.5)

for some λ, μ ∈ [0, 1].

Lemma A If X is continuous at ω0 and V3(ω0, ω0, X(ω0)) 6= 0, then X is
differentiable at ω0 with derivative

X ′(ω0) = −
V2(ω0, ω0, X(ω0))
V3(ω0, ω0, X(ω0))

.
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Proof. This is essentially Proposition 2 of Mailath (1987). We include the
proof for completeness. Expanding g(ω0, ω,X(ω)) around (ω0, ω0, X(ω0)) in
(A.5) and dividing by ω−ω0 > 0 (for ω−ω0 < 0, the following inequalities are
reversed, but the argument is unaffected) yields, since g(ω0, ω0, X(ω0)) = 0,

0 ≥ g2(ω0, ω0, X(ω0)) +

[
X(ω) − X(ω0)

ω − ω0

]

{g3(ω0, ω0, X(ω0))

+ 1
2g33([ω; γ]23)(X(ω) − X(ω0) + g23([ω; γ]23)(ω − ω0)}

+ 1
2g22([ω; γ]23)(ω − ω0)

≥ −
[

1
2g11([ω; λ]1) + g12([ω; μ]23)

]
(ω − ω0) − g13([ω; μ]23)(X(ω) − X(ω0)),

for some γ ∈ [0, 1]. Since V is C2 on the closure of Ω2×X , the cross-partials of
V (and so g) are bounded on any compact neighborhood of (ω0, ω0, X(ω0)).
If X is continuous at ω0, taking limits as ω ↘ ω0 then implies

0 ≥ g2(ω0, ω0, X(ω0)) + lim
ω↘ω0

[
X(ω) − X(ω0)

ω − ω0

]

g3(ω0, ω0, X(ω0)) ≥ 0,

implying the differentiability of X at ω0 (with the specified value); the
derivative is the appropriate one-sided derivative if ω0 is on the bound-
ary.

Under Assumptions 1 and 2, Lemma A implies that X is differentiable
at ω if X is continuous there, XFB(ω) ∈ int(X ) and X(ω) 6= XFB(ω).

Lemma B Suppose that Assumptions 1 and 2 hold. If X is continuous at
ω0 ∈ int(Ω), and V2(ω0, ω0, X(ω0)) 6= 0 or V2(ω0, ω0, X

FB(ω0)) 6= 0, then
V3(ω0, ω0, X(ω0)) 6= 0.

Proof. Suppose that V3(ω0, ω0, X(ω0)) = 0. Then by Assumption 2.2,
V33(ω0, ω0, X(ω0)) < 0 (one-sided derivative if X(ω0) ∈ {minX , maxX}).

Suppose V2(ω0, ω0, X(ω0)) > 0. Expanding g(ω0, ω,X(ω)) around the
point (ω0, ω0, X(ω0)) in (A.5) and dividing by ω − ω0 < 0 yields, since
g(ω0, ω0, X(ω0)) = 0 and g3(ω0, ω0, X(ω0)) = 0,

0 ≤ g2(ω0, ω0, X(ω0)) +

[
X(ω) − X(ω0)

ω − ω0

]
{

1
2g33([ω; γ]23)(X(ω) − X(ω0)

+ g23([ω; γ]23)(ω − ω0)
}

+ 1
2g22([ω; γ]23)(ω − ω0)

≤ −
[

1
2g11([ω; λ]1) + g12([ω; μ]23)

]
(ω − ω0) − g13([ω; μ]23)(X(ω) − X(ω0)),
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for some γ ∈ [0, 1]. Rearranging and simplifying gives

−1
2V22([ω;γ]23)(ω − ω0) − V23([ω; γ]23)(X(ω) − X(ω0))

≤ V2(ω0, ω0, X(ω0)) +
(X(ω) − X(ω0))2

2(ω − ω0)
V33([ω; γ]23) (A.6)

≤ −
[

1
2V11([ω; λ]1) + V12([ω; μ]23) + 1

2V22([ω; γ]23)
]
(ω − ω0)

− [V13([ω; μ]23) + V23([ω; γ]23)] (X(ω) − X(ω0)).

Since X is continuous at ω0, as ω ↗ ω0, the terms bounding the expression
in (A.6) converge to 0, and so the term in (A.6) must also converge to 0.
But, for ω close to ω0, V33([ω; γ]23) < 0, and so that term is bounded away
from 0 from below by V2(ω0, ω0, X(ω0)) > 0, contradiction.

If V2(ω0, ω0, X(ω0)) < 0, a similar contradiction is obtained using the
same argument applied to a sequence ω ↘ ω0.

Under Assumptions 1 and 2, Lemma B implies that X(ω) 6= XFB(ω) at
an interior ω if X is continuous there, XFB(ω) ∈ int(X ) and V2(ω, ω,X(ω)) 6=
0.

Lemma C Suppose Assumptions 1 and 2 hold. For each non-empty com-
pact interval [ω, ω] ⊂ Ω, X([ω, ω]) is bounded.

Proof. The continuity of V and the Maximum Theorem imply that the
first-best XFB is a continuous function on Ω.

Suppose that X is unbounded on [ω, ω] and let ωn ∈ [ω, ω], n = 1, 2, ...
be a sequence such that xn = X(ωn) → ∞ (the case xn → −∞ is han-
dled analogously). We may assume that, by taking subsequences if nec-
essary, the sequence ωn converges to some ω0 ∈ [ω, ω]. There is N ∈ N
such that X(ωn) > XFB(ω0) for all n ≥ N . Assumption 2 implies that
V (ω0, ω0, X(ωn)) → −∞.

For any K > 0 and ε > 0 let N1 ∈ N be such that V (ω0, ω0, X(ωN1)) <
−K − ε. Since X(ωn) → ∞ we can assume that X(ωN1) > sup XFB(ωn).
The continuity of V implies that there is an N2 ∈ N, N2 > N1, such that
V (ωn, ωn, X(ωN1)) is within ε of −K − ε for all n ≥ N2; hence we have
V (ωn, ωn, X(ωN1)) < −K for all n ≥ N2. Assumption 2 implies that for
each ωn, V (ωn, ωn, x) is strictly decreasing in x if x > XFB(ωn). Hence,
V (ωn, ωn, X(ωn)) < −K for all n sufficiently large. Since this is true for
arbitrary K, we have a contradiction to the incentive compatibility of X.
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Lemma D Suppose either that X is compact or that Assumptions 1 and 2
hold. If ω → ω0, then V (ω0, ω0, X(ω)) → V (ω0, ω0, X(ω0)).

Proof. Fix a compact neighborhood N in Ω containing ω0. By Lemma C or
directly by the compactness of X , X(N) is bounded. Hence, V is uniformly
continuous on N2 × cl(X(N)), where cl(∙) denotes the closure.

Fix ε > 0. Uniform continuity implies that there is a δ1 > 0 with
{ω ∈ Ω : |ω − ω0| < δ1} ⊂ N such that for all x ∈ X(N),

|ω − ω0| < δ1 =⇒ |V (ω0, ω, x) − V (ω0, ω0, x)| < ε.

For these ω, incentive compatibility implies

V (ω0, ω0, X(ω0)) ≥ V (ω0, ω,X(ω)) > V (ω0, ω0, X(ω)) − ε. (A.7)

On the other hand, there is a δ2 > 0 with {ω ∈ Ω; |ω − ω0| < δ2} ⊂ N
such that for all x ∈ X(N),

|ω − ω0| < δ2 =⇒ |V (ω, ω0, x) − V (ω0, ω0, x)| < ε/2

and |V (ω, ω, x) − V (ω0, ω0, x)| < ε/2.

Hence, for these ω, incentive compatibility implies

V (ω0, ω0, X(ω)) > V (ω, ω,X(ω)) −
ε

2

≥ V (ω, ω0, X(ω0)) −
ε

2
> V (ω0, ω0, X(ω0)) − ε. (A.8)

Therefore, for ω ∈ Ω with |ω − ω0| < min(δ1, δ2), we have

V (ω0, ω0, X(ω0)) − ε < V (ω0, ω0, X(ω)) < V (ω0, ω0, X(ω0)) + ε,

where the first inequality is from (A.8) and the second (A.7). Letting ε go
to zero proves the lemma.

Lemma E Suppose Assumption 1 holds and that either X is compact or
Assumption 2 holds. If, for any ω ∈ Ω, X(ω) = XFB(ω), then X is contin-
uous at ω.

Proof. Choose ω0 ∈ Ω and fix a compact neighborhood N in Ω containing
ω0. Consider a sequence ωn → ω0 in N . By the compactness of X or Lemma
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C (for Assumption 2), the sequence X(ωn) has a convergent subsequence
that converges to an x̂ ∈ cl(X(N)). By Lemma D, on that subsequence,

V (ω0, ω0, X(ωn)) → V (ω0, ω0, X(ω0)). (A.9)

By Assumption 1, V (ω0, ω0, ∙) has a unique maximum at x = XFB(ω0).
Equation (A.9) then implies x̂ = XFB(ω0) when X(ω0) = XFB(ω0), and so
X is continuous at ω0.

Lemma F Suppose Assumptions 1 and 2 hold. For any ω ∈ Ω, if V3(ω, ω, x) 6=
0 for all x ∈ X , then X is differentiable at ω.

Proof. Choose ω0 ∈ Ω and derive x̂ and (A.9) as in the proof of Lemma E.
Since V (ω, ω, ∙) is strictly monotone by assumption, it is one-to-one. Hence,
x̂ = X(ω0), and X is continuous at ω0. Differentiability then follows from
Lemma A.

Lemma G Suppose that Assumptions 1 and 2 hold, V13(ω, ω, x) 6= 0 and
V2(ω, ω,X(ω)) 6= 0 for all (ω, x) ∈ int(Ω) × X . Then X can have at most
one point of discontinuity ω0 in int(Ω). At the discontinuity,

1. X is continuous from either the left or the right,

2. the left-hand and the right-hand limits exist (i.e., the discontinuity is
a jump discontinuity), and

3. the jump of X is of the same sign as V13, i.e.,
(

lim
ω↘ω0

X(ω) − lim
ω↗ω0

X(ω)

)

∙ V13 > 0, (A.10)

and

4. the jump is over XFB, i.e.,

lim inf
ω→ω0

X(ω) < XFB(ω0) < lim sup
ω→ω0

X(ω). (A.11)

Proof. Suppose X is discontinuous at some ω0 ∈ int(Ω) and fix a compact
neighborhood in Ω around ω0, [ω0 − η, ω0 + η] ∩ Ω. By Lemma C, there
exists a sequence {ωn} in [ω0 − η, ω0 + η] ∩ Ω with ωn → ω0 such that the
sequence X(ωn) converges to some x̂ 6= X(ω0).
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By the continuity of V and Lemma D,

V (ω0, ω0, x̂) = V (ω0, ω0, X(ω0)). (A.12)

The strict quasi-concavity of V (from Assumptions 1 and 2) implies that
the equation V (ω0, ω0, x) = V (ω0, ω0, X(ω0)) can have at most two distinct
solutions in x, one of them being X(ω0). If there is only one such solution,
X is continuous at ω0. Hence, suppose there are two and denote them by x′

and x′′, with x′ < x′′. Equation (A.12) and the strict quasi-concavity also
implies that

x′ < XFB(ω0) < x′′. (A.13)

We now show that the left- and right-hand limits of X at ω0 exist. First,
consider any sequence ωn ↘ ω0, and let x+ = limωn↘ω0 X(ωn). Focusing on
the left-most and right-most terms of the inequality chain (A.5) and dividing
through by ω − ω0 yields, for ω = ωn,
[

1
2g11([ωn; λ]1) + g12([ωn; μ]23)

]
(ωn−ω0)+g13([ωn; μ]23)(X(ωn)−X(ω0)) ≥ 0.

(A.14)
Since g13([ω; μ]23) = V13([ω; μ]23), in the limit, this implies

(x+ − X(ω0))V13(ω0, ω0, μX(ω0) + (1 − μ)x+) ≥ 0. (A.15)

Now consider any sequence ωn ↗ ω0, and let x− = limωn↗ω0 X(ωn). By
the same argument as before,

(x− − X(ω0))V13(ω0, ω0, μX(ω0) + (1 − μ)x−) ≤ 0. (A.16)

Suppose that V13 > 0 (the case V13 < 0 is handled similarly, with the
relevant inequalities reversed). Inequalities (A.15) and (A.16) imply

lim inf
ωn↗ω0

X(ωn) ≤ lim sup
ωn↗ω0

X(ωn) ≤ X(ω0) ≤ lim inf
ωn↘ω0

X(ωn) ≤ lim sup
ωn↘ω0

X(ωn).

(A.17)
By our earlier argument, each of the five terms in (A.17) is either equal

to x′ or x′′. Hence, exactly one of the four inequalities in (A.17) is strict
and X is continuous from the left or from the right.

We now argue that the discontinuity at ω0 is a jump discontinuity. Sup-
pose, en route to a contradiction, that the right-most inequality in (A.17)
is strict (the left-most inequality is handled similarly). Hence, there are
sequences ωn ↘ ω0 and ω̃n ↘ ω0 with X(ω0) = lim X(ωn) < XFB(ω0) <
lim X(ω̃n). Since XFB is continuous, for large n and small ε, we have
X(ω̃n) > XFB(ω) > X(ωn) for all ω ∈ [ω0, ω0 + ε] ⊂ int(Ω). Hence,
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for ω ∈ [ω0, ω0 + ε], XFB(ω) is not on the boundary of X , and therefore
V3(ω, ω,XFB(ω)) = 0.

Fix ωn and ω̃m with ω0 < ω̃m < ωn < ω0 + ε. Lemmas B and E imply
that for all ω ∈ [ω̃m, ωn], X(ω) 6= XFB(ω). Hence, X is discontinuous at
some ω̂ ∈ [ω̃m, ωn] with some left limit exceeding XFB(ω̂) and some right
limit being less than XFB(ω̂). But this contradicts (A.17), applied to ω̂.
Hence, the right-hand limit at ω0 exists. Similarly, one shows that the left-
hand limit exists. Moreover, (A.17) implies (A.10), i.e., jumps can only be
in one direction.

It remains to argue that X can have at most one discontinuity in int(Ω).
Since all discontinuities are jump discontinuities, (A.13) implies that all
discontinuities are isolated. Suppose there exist two discontinuities ω1 <
ω2 such that X is continuous on (ω1, ω2). Because jumps can only be in
one direction, (A.13) holds, and XFB is continuous, it follows that there
exists an ω ∈ (ω1, ω2) such that X(ω) = XFB(ω). By continuity, the set
E = {ω ∈ (ω1, ω2); X(ω) = XFB(ω)} is compact. Let ω̂ ∈ (ω1, ω2) be
its minimum. Since X is continuous at ω̂ and X(ω̂) = XFB(ω̂), Lemma B
implies that XFB(ω̂) is on the boundary of X . But this is impossible, since
X is one-to-one and continuous on an open neighborhood containing ω̂.

Finally, (A.11) is immediate from (A.13).

Lemma H Suppose Assumptions 1 and 2 hold. Let Ω0 be an open subset
of Ω on which X is differentiable. Assume that V2(ω, ω,X(ω)) 6= 0 for all
ω ∈ Ω0. Then

V12(ω, ω,X(ω)) + X ′(ω)V13(ω, ω,X(ω)) ≥ 0 (A.18)

for all ω ∈ Ω0.

Proof. By Lemma A, X ′(ω) 6= 0 for all ω ∈ Ω0, and so X−1 is differentiable
for all x ∈ X(Ω0). Since X(ω) must maximize V (ω,X−1(x), x), the implied
first order condition evaluated at ω = X−1(x),

V2(X
−1(x), X−1(x), x)

dX−1(x)
dx

+ V3(X
−1(x), X−1(x), x) = 0,

must hold for all x ∈ X(Ω0). Since the equation is an identity, the first
derivative must also equal zero:

[V12 + V22]

(
dX−1

dx

)2

+ [V13 + 2V23]
dX−1

dx
+ V2

d2X−1

dx2
+ V33 = 0, (A.19)
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where all the partial derivatives of V are evaluated at (X−1(x), X−1(x), x).
The second derivative of V (ω,X−1(x), x) is

d

dx2
V (ω,X−1(x), x) = V22

(
dX−1

dx

)2

+2V23
dX−1

dx
+V2

d2X−1

dx2
+V33, (A.20)

where now all partial derivatives are evaluated at (ω,X−1(x), x). Evaluating
(A.20) at ω = X−1(x), and substituting from (A.19), yields

d

dx2
V (X−1(x), X−1(x), x) = −V12

(
dX−1

dx

)2

− V13
dX−1

dx

= −

(
dX−1

dx

)2

(V12 + X ′V13). (A.21)

Since V (ω,X−1(x), x) must have a local maximum at x = X(ω), the
right-hand side of (A.21) must be (weakly) negative for all ω ∈ Ω0, which
yields (A.18).

B Proof of Theorem 2

Statement 1 The result follows from Lemmas A and B once we have
proved that X is continuous in the interior of Ω.

Suppose that X is discontinuous at ω0 ∈ int(Ω). Assume that V13(ω, ω, x)
> 0 (the other case is analogous). By Lemma G, X is continuous for all
ω 6= ω0 and so, by Lemma B, differentiable at all such ω ∈ int(Ω) with
derivative

X ′(ω) = −
V2(ω, ω,X(ω))
V3(ω, ω,X(ω))

.

Since by (A.13) and Lemma G, X(ω) is strictly smaller than the first-best
for ω < ω0 and strictly greater for ω > ω0, we have (ω−ω0)V3(ω, ω,X(ω)) <
0 for ω 6= ω0, and so (ω − ω0)X ′(ω)V2(ω, ω,X(ω)) > 0 for ω 6= ω0. Since
V2(ω, ω,X(ω)) does not change sign on int(Ω) by assumption, X ′ has one
sign for ω < ω0 and the other sign for ω > ω0.

By assumption, V3(ω, ω̂,X(ω̂))/V2(ω, ω̂,X(ω̂)) is a strictly monotone
function of ω ∈ int(Ω), and so

X ′(ω)V2(ω, ω̂,X(ω̂))
∂

∂ω

[
V3(ω, ω̂,X(ω̂))
V2(ω, ω̂,X(ω̂))

]

< 0 (B.1)

for ω either below or above ω0.
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Suppose it is the former (the latter is handled similarly). Choose arbi-
trary ω′ < ω′′ < ω0 in int(Ω). Consider V (ω′′, X−1(x), x) as a function of
x. By the differentiability of X and the Intermediate Value Theorem, there
exists an ω ∈ (ω′, ω′′) such that

V (ω′′, ω′, X(ω′)) = V (ω′′, ω′′, X(ω′′)) −

{

V2(ω
′′, ω,X(ω))

dX−1(X(ω))
dx

+ V3(ω
′′, ω,X(ω))

}

(X(ω′′) − X(ω′))

= V (ω′′, ω′′, X(ω′′)) −

{

V2(ω
′′, ω,X(ω))

(

−
V3(ω, ω,X(ω))
V2(ω, ω,X(ω))

)

+ V3(ω
′′, ω,X(ω))

}

(X(ω′′) − X(ω′))

= V (ω′′, ω′′, X(ω′′)) −

{
V3(ω′′, ω,X(ω))
V2(ω′′, ω,X(ω))

−
V3(ω, ω,X(ω))
V2(ω, ω,X(ω))

}

× V2(ω
′′, ω,X(ω))(X(ω′′) − X(ω′))

= V (ω′′, ω′′, X(ω′′)) −
∫ ω′′

ω

∂

∂ω

(
V3(ω, ω,X(ω))
V2(ω, ω,X(ω))

)

dω

× V2(ω
′′, ω,X(ω))(X(ω′′) − X(ω′))

> V (ω′′, ω′′, X(ω′′)).

The strict inequality (which follows from (B.1) and ω < ω′′) contradicts
incentive compatibility.

Statement 2 Assume that V2(ω, ω,X(ω)) > 0 for all ω ≥ ω1 (the other
case is handled similarly). Suppose that X is discontinuous at some ω0 > ω1

(by Lemma G, there can be no other discontinuity). Denote Ω0 = {ω ∈
Ω; ω > ω1, ω 6= ω0}. By Lemma A, X is differentiable on Ω0, and by
Lemma H, it satisfies (A.18) there.

Since V2(ω, ω,X(ω)) 6= 0, by assumption, the continuity of X at ω1 and
Lemma A imply that |X ′(ω)| → ∞ as ω → ω1. Hence, (A.18) implies that
X ′ must have the same sign as V13 for ω ∈ Ω0 sufficiently close to ω1.

Suppose V13 > 0 (the case V13 < 0 is handled similarly). Near ω1, X ′ is
arbitrarily large and so for all ω ∈ (ω1, ω0), X(ω) > XFB(ω), while (A.10)
and (A.11) imply limω↗ω0 X(ω) < XFB(ω0), the desired contradiction.
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C Proof of Theorem 3

Choose ω0 ∈ Ω and derive x̂ and (A.9) as in the proof of Lemma E. Since
V (ω, ω, ∙) is strictly monotone by assumption, it is one-to-one. Hence, x̂ =
X(ω0), and X is continuous at ω0. Differentiability then follows from Lemma
A.

D Proof of Theorem 4

Statement 1 This is Lemma F.

Statement 2 Choose ω0 ∈ Ω and derive x̂ and (A.9) as in the proof of
Lemma E. If V (ω0, ω0, ∙) is monotone, it is strictly monotone (and so one-to-
one) because of Assumption 2. Hence, x̂ = X(ω0), and so X is continuous
at ω0. Differentiability therefore follows from Lemmas A and B.

Statement 3 By Lemma G, X can have at most one discontinuity in
int(Ω), say ω0. By Lemma A, X is differentiable on int(Ω)�{ω0}, and by
Lemma H, it satisfies (A.18) there.

Since V12 ≤ 0 and V13 6= 0, (A.18) immediately implies that X ′ must
have the same sign as V13 for all ω ∈ int(Ω) \ {ω0}.

Recall that for all ω ∈ int(Ω) \ {ω0},

X(ω) > XFB(ω) ⇔ V3(ω, ω,X(ω)) < 0

⇔ X ′(ω)V2(ω, ω,X(ω)) > 0,

where the first equivalence follows from the definition of the first-best and
the second from the form of the derivative of X derived in Lemma A. By
(A.13), we have both X(ω′) > XFB(ω′) and X(ω′′) < XFB(ω′′) for some
ω′, ω′′ ∈ int(Ω) (since ω0 is a point of discontinuity). Since V2 does not
change sign on int(Ω), X ′ does. But X ′ must have the same sign as V13 on
int(Ω)�{ω0}, which does not change its sign by assumption. Contradiction.

E Proof of Theorem 5

This is Lemma E.
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F Proof of Theorem 6

First note that it suffices to prove the result assuming Ω is open (since if
Ω includes a boundary, and X is incentive compatible on the interior of Ω,
then continuity implies X is incentive compatible on Ω).

1. (Sufficiency of global single crossing for IC) Since X satisfies (DE), it
satisfies the first order condition implied by (IC), and so satisfies (IC)
if

d

dx
V (ω,X−1(x), x) ∙ (x − X(ω)) ≤ 0 ∀x ∈ X(Ω), ω ∈ Ω. (F.1)

The derivative equals

V2(ω,X−1(x), x)

(
dX

dω̂

∣
∣
∣
∣
X−1(x)

)−1

+ V3(ω,X−1(x), x)

= V2(ω,X−1(x), x)
−V3(X−1(x), X−1(x), x)
V2(X−1(x), X−1(x), x)

+ V3(ω,X−1(x), x)

= V2(ω,X−1(x), x)

{
V3(ω,X−1(x), x)
V2(ω,X−1(x), x)

−
V3(X−1(x), X−1(x), x)
V2(X−1(x), X−1(x), x)

}

.

If X is strictly increasing and V2(ω, ω,X(ω)) > 0 (the other possibili-
ties handled mutatis mutandis), (F.1) is satisfied when

V3(ω, ω̂,X(ω̂))/V2(ω, ω̂,X(ω̂))

is an increasing function of ω for all ω̂ ∈ Ω.

2. (Necessity of local single crossing for IC) Suppose X satisfies (IC). The
second order condition is

d2

dx2
V (ω,X−1(x), x)

∣
∣
∣
∣
x=X(ω)

≤ 0,

which is, after substituting for d2X−1(x)/dx2 (see (A.21)),

−
dX−1

dx
∙

{

V12(ω, ω,X(ω))
dX−1

dx
+ V13(ω, ω,X(ω))

}

≤ 0,

i.e.,

−
dX−1

dx
∙

{

V13(ω, ω,X(ω)) − V12(ω, ω,X(ω))
V3(ω, ω,X(ω))
V2(ω, ω,X(ω))

}

≤ 0.
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Multiplying both sides of this inequality by −(X ′)2 yields an expres-
sion equivalent to (17), since

d

dω

{
V3(ω, ω̂,X(ω̂))
V2(ω, ω̂,X(ω̂))

}∣∣
∣
∣
ω̂=ω

=
1

V2(ω, ω,X(ω))

{
V13(ω, ω,X(ω))

− V12(ω, ω,X(ω))
V3(ω, ω,X(ω))
V2(ω, ω,X(ω))

}
.
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