
A Foundation for Markov Equilibria in Sequential

Games with Finite Social Memory∗

V. Bhaskar†, George J. Mailath‡, and Stephen Morris§

November 7, 2012

Abstract

We study stochastic games with an infinite horizon and sequential
moves played by an arbitrary number of players. We assume that social
memory is finite—every player, except possibly one, is finitely lived
and cannot observe events that are sufficiently far back in the past.
This class of games includes games between a long-run player and
a sequence of short-run players, games with overlapping generations
of players. An equilibrium is purifiable if some close-by behavior is
consistent with equilibrium when agents’ payoffs in each period are
perturbed additively and independently. We show that only Markov
equilibria are purifiable when social memory is finite. Thus if a game
has at most one long-run player, all purifiable equilibria are Markov.
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1 Introduction

Repeated game theory has shown that punishment strategies, strategies con-
tingent on payoff irrelevant histories, greatly expand the set of equilibrium
outcomes. Yet in much applied analysis of dynamic games, researchers re-
strict attention to Markov equilibria, equilibria in which behavior does not
depend on payoff irrelevant histories. Arguments for focussing on Markov
equilibria include (i) their simplicity; (ii) their sharp predictions; (iii) their
role in highlighting the key payoff relevant dynamic incentives; and (iv) their
descriptive accuracy in settings where the coordination implicit in payoff ir-
relevant history dependence does not seem to occur. However, principled
reasons for restricting attention to Markov equilibria, based on strategic
considerations, are limited.1

This paper provides a foundation for Markov strategies for dynamic
games that rests on three assumptions. First, we assume that social mem-
ory is bounded – every player, except possibly one, cannot observe events
that are sufficiently far back in the past. Second, we assume that moves are
sequential – the game is such that only one player moves at any point of
time. Finally, we require equilibrium strategies to be “purifiable,”i.e., there
are nearby strategies that constitute an equilibrium of a perturbed game
with independent private payoff shocks in the sense of Harsanyi (1973). Our
main result is that Markov equilibria are the only purifiable equilibria in
games with sequential moves when social memory is bounded.

The purifiability requirement reflects the view that models are only an
approximation of reality, and so there is always some private payoff informa-
tion. We make the modest requirement that there must be some continuous
shock under which the equilibrium survives.

The boundedness of social memory is natural in most contexts, such as
games between a long-run player and a sequence of short-run players or in
games with overlapping generations of players. Indeed, the common assump-
tion when modeling, for example, the oligopolistic interaction of firms or the
societal interaction of families, that players are infinitely-lived is an approxi-
mation. More realistically, a firm would be modeled as a sequence of finitely
lived managers/owners, while a family would be modeled as a dynasty. Mod-

1For asynchronous choice games, Jehiel (1995) and Bhaskar and Vega-Redondo (2002)
provide a rationale for Markov equilibria based on complexity costs. Maskin and Tirole
(2001) discuss the notion of payoff relevance and the continuity properties of Markov
equilibria; we discuss Maskin and Tirole (2001) in Section 5.6. Harsanyi and Selten (1988)
provide a justification for Markov equilibrium that has a more axiomatic flavor, based on
the notion of subgame consistency.
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eling a firm as an infinitely-lived player is typically justified by the argument
that current owners seek to maximize the present value of profits over the
infinite horizon, since they are able to sell their ownership shares in a com-
petitive stock market.2 For families, the justifying assumption is that each
generation has altruistic preferences. In both cases, a player’s objective will
be to maximize infinite horizon payoffs. However, these justifications ignore
the bounds on memory naturally implied by bounded lives.3 Since Markov
equilibria do not require unbounded memory, it is an implication of our
results that ignoring the bounds on memory is harmless.

Our results also apply if we have long run players who are perfectly in-
formed on past events but use bounded recall strategies. A previous version
of this paper (Bhaskar, Mailath, and Morris, 2012) showed that only Markov
equilibria of perfect information games with perfectly informed agents satisfy
the two requirements of purifiability and bounded recall (where the bounded
recall requirement is imposed on the purifying strategies in the perturbed
game).4

Our argument exploits the special feature of the games we study, whereby
only one player moves at a time. Purifying payoff shocks imply that if a
player conditions upon a past (payoff irrelevant) event at date t, then some
future player must also condition upon this event. Such conditioning is
possible in equilibrium only if the strategy profile exhibits infinite history
dependence. We thus give the most general version of an argument first
laid out by Bhaskar (1998) in the context of a particular (social security)
overlapping generations game. This argument does not apply with simulta-
neous moves since two players may mutually reinforce such conditioning at
the same instant, as we discuss in Section 5.4.

2 A Long-Run Player/Short-Run Player Example

Consider the chain store game, played between a long-run player and an
infinite sequence of short-run players. In each period, an entrant (the short-
run player) decides whether to enter or stay out. If the entrant stays out,

2We give a sketch in our setting of this justification in footnote 16.
3Section 5.2 discusses why the possibility of communication does not trivially address

this issue.
4Strategies that depend on what happens in the arbitrarily distant past do not seem

robust to noisy information. In a different context (repeated games with imperfect public
monitoring), Mailath and Morris (2002, 2006) show that strategies based on infinite recall
are not “robust to private monitoring,” i.e, they cease to constitute equilibrium with even
an arbitrarily small amount of private noise added to public signals.
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Figure 1: The stage game for the chain store. The top payoff is the payoff
to the Entrant.

the stage game ends; if he enters, then the incumbent (the long-run player)
decides whether to accommodate (A) or fight (F). The stage game is depicted
in Figure 1.

Each entrant maximizes his stage game payoff, only observing and thus
only conditioning on what happened in the previous period. The incumbent
maximizes the discounted sum of payoffs, observing the entire history. The
incumbent’s discount factor δ is between c/(1 + c) and 1. We require equi-
libria to satisfy sequential rationality—each player is choosing optimally at
every possible history.

Ahn (1997, Chapter 3) shows that there is no pure strategy equilibrium
where entry is deterred (for generic values of the discount factor). To pro-
vide some intuition, restrict attention to the case where every entrant plays
the same strategy, for t > 1. Since the entrant only observes the outcome of
the previous period, the entrant’s history is an element of O = {Out,A,F}.
Consider a trigger strategy equilibrium where the entrant enters after ac-
commodation in the previous period, and stays out otherwise. The best
response of the incumbent to this stationary strategy is to play F indepen-
dent of history, as long as δ > c/(1 + c). However, the best response of the
entrant to the incumbent’s strategy is to stay out independent of history,
and thus a trigger strategy profile cannot be an equilibrium.

There is however a class of mixed strategy equilibria in which entry is
deterred with positive probability in each period. In any equilibrium in this
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class, the incumbent plays F with probability 1
2 , independent of history. The

entrant is indifferent between In and Out at any information set, given the
incumbent’s strategy. He plays In with probability p at t = 1. At t > 1 he
plays In with probability p after ot−1 ∈ {Out,F}; after ot−1 = A, he plays
In with probability q, where q = p + c/[δ(1 + c)]. That is, the difference in
entry probabilities across histories, q − p, is chosen to make the incumbent
indifferent between accommodating and fighting. If we choose p = 0, then
no entry takes place on the equilibrium path. Note that we have a one-
dimensional manifold of equilibria in this class. In any such equilibrium,
the entrant’s beliefs about the incumbent’s response is identical after the
two one-period histories ot−1 = A and ot−1 ∈ {Out,F}. Nevertheless, the
entrant plays differently. This is perhaps the simplest illustration of belief-
free equilibrium, a notion that has played an important role in the study of
equilibria in repeated games of private monitoring. We return to belief-free
equilibria at the end of Section 3 and in Section 5.4.

We now establish that none of these mixed strategy equilibria can be
purified if we add small shocks to the game’s payoffs. Suppose that the
entrant gets a payoff shock εz̃t1 from choosing Out while the incumbent gets a
payoff shock εz̃t2 from choosing F. We suppose each z̃ti is drawn independently
across players and across time according to some known density with support
[0, 1]. The shocks are observed only by the player making the choice at the
time he is about to make it. A strategy for the period t entrant is

ρt : O × [0, 1]→ ∆(A1),

while a strategy for the incumbent is

σt : Ot × {In} × [0, 1]→ ∆(A2)

(in principle, it could condition on the history of past payoff shocks, but
this turns out not to matter). Note that ρt+1 does not condition on what
happened at t−1. Fix a history ht = (o1, o2, . . . , ot) ∈ Ot with ot = In (entry
at date t) and zt2 (payoff realization for incumbent). For almost all zt2, the
incumbent has a unique pure best response. Since ρt+1 does not condition
on ht−1,

σt((ht−1, In), zt2) = σt((ĥt−1, In), zt2)

for almost all zt2 and any ĥt−1 ∈ Ot−1. So the incumbent does not condition
on ht−1. Since the entrant at t also has a payoff shock, it has a unique pure
best response for almost all payoff shock realizations, and so

ρt(h
t−1, zt1) = ρt(h̃

t−1, zt1)
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for almost all zt1 and any h̃t−1 ∈ O. In particular, the entrant’s behavior
after F or A in the previous period must be the same.

We conclude that for any ε > 0, only equilibria in Markov strategies exist
in the perturbed game. If ε is sufficiently small, the incumbent accommo-
dates for all realizations of his payoff shock, and therefore, with probability
one. So the entrant enters with probability one. Thus, in any purifiable equi-
librium of the unperturbed game, the backwards induction outcome of the
stage game must be played in every period, and an equilibrium is purifiable
if and only if it is Markov.

3 The Benchmark Game

We consider a potentially infinite dynamic game, Γ. The game has a recursive
structure and may also have moves by nature. The set of players is denoted
by N and the set of states by S, both of which are countable. Only one
player can move at any state, and we denote the assignment of players to
states by ι : S → N . This assignment induces a partition {S(i) | i ∈ N} of
S, where S(i) = {s ∈ S | ι(s) = i} is the set of states at which i moves. Let
A denote the countable set of actions available at any state; since payoffs
are state dependent, it is without loss of generality to assume that the set
of actions is state independent.

While states are observed by players, actions need not be. There is mon-
itoring of the actions via signals y drawn from a countable set, Y . The tran-
sition function q : S × A→ ∆(Y × S) specifies the probability q(y, s′ | s, a)
of the signal y and next period’s state s′ as a function of this period’s state
s and action a.5 The initial distribution over states is given by q0 ∈ ∆(S).
Our notational convention is that period t begins in state st, an action at is
taken (by player ι(st)), resulting in the realized signal-state pair (yt, st+1).

The model and results naturally extend to continuum spaces under ad-
ditional assumptions; see Section 5.1.

All but perhaps one of the players are finitely-lived. Denote by T̃ (s) the
set of dates at which state s arises with positive probability under q and some
specification of actions, T̃ (s) := {t : Pr{st = s | a0, a1, . . . , at−1} > 0 for
some a0, a1, . . . , at−1}. The long-lived player, if present, is player i∗. Player
i 6= i∗ has a finite life described by a first and last date, 0 ≤ ti ≤ Ti < ∞.
Consistency with the process determining state transitions requires that

ι (s) = i⇒ T̃ (s) ⊆ {ti, ..., Ti} .
5If the game has perfect monitoring, then we take Y = A, with y = a receiving

probability 1 when a is taken.
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(We take ti∗ = 0 and Ti∗ =∞, so that the long-lived player is also covered.)
For i 6= i∗, let t̃i = mins∈S(i) T̃ (s) denote the earliest possible date that

player i moves and let T̃i = maxs∈S(i) T̃ (s) denote the latest possible date.
Since we would like to allow for the possibility that a player has information
regarding events that take place before he moves, t̃i can be greater than ti,
the player’s birth date.

We assume players only know the period t states and signals while they
are alive. Since younger players know only a strict subset of current older
players’ histories, we say the histories of states and signals are semi-public.
Denote by hiτ a player i semi-public history at date τ , ti ≤ τ ≤ Ti, i.e.,

hiτ := (sti , yti , sti+1, yti+1, . . . , sτ ) ∈ (S × Y )τ−ti × S.

Note that the period-τ signal is not in the period-τ history; in particular,
hiti = (sti) so that if player i chooses an action in his or her first period,
the only information that player has is the current state. In addition, each
player knows his or her own past actions; these histories constitute player
i’s private histories.

If player i moves at date τ , ti ≤ τ ≤ Ti, after a semi-public history hiτ ,
then sτ ∈ S(i). The set of all feasible player i period-τ semi-public histories
at which i moves is denoted Hiτ . Thus, player i moves in period τ if, and
only if, Hiτ 6= ∅. This set is a strict subset of (S×Y )τ−ti×S. In addition to
the requirement sτ ∈ S(i), some signals may have zero probability at some
states, and some state transitions have zero probability (such as to a state
of a player who is not alive in that period). Given hiτ , Piτ (hiτ ) is the set of
player i private histories at date τ , i.e., Piτ (hiτ ) := {(at){t:i=ι(st),t<τ} : at ∈
A}, with typical element piτ . At player i’s initial move, Piτ is (as usual)
the singleton set consisting of the null history. A period-τ history hiτ or
(hiτ , piτ ) is relevant if player i moves after the history.

We require that there is a uniform bound on the life span of the finitely-
lived players:

Assumption 1 There exists K such that Ti − ti ≤ K for all i 6= i∗.

Player i’s flow payoffs are described by a bounded function

ui : S × Y ×A→ R.

There is only an apparent tension between our definition of payoffs and
our assumption that the signal yτ and the transition from sτ to sτ+1 are
the only information that players i 6= ι(sτ ) have about the action taken by
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player ι(sτ ) in period τ . If the game has imperfect monitoring and the ex
post flow payoff of a player i 6= ι(sτ ) depends nontrivially on the action
chosen, then our modeling is consistent with two interpretations: (1) the
signal y conveys the same information (for example, part of the signal may
be player i’s payoff at sτ ); and (2) player i only observes the payoff at Ti.
(For the long-lived player, the second interpretation is less natural than the
first.)

This formulation allows for both deterministic and stochastic finite hori-
zons: one (or more) of the states may be absorbing, and gives all players a
zero payoff. Player i’s discount factor is given by δi.

One important special case is where a short run player, i 6= i∗, receives
payoffs only between dates ti and Ti, so that ui is identically zero in periods
before ti or after Ti. A second important special case is where players are
finitely-lived but maximize infinite horizon payoffs. This occurs in a dynastic
model, where each finitely-lived player is replaced at the end of her life by
her descendent, towards whom she has altruistic preferences. If altruism is
perfect, then this corresponds to a model with constant discounting. This
can also capture a setting where the player is the owner of a firm, who is
able to sell it on in a competitive stock market, thus capitalizing the present
value of his expected profits (see footnote 16). In all these cases, a short
run player maximizes infinite horizon payoffs, but his information is limited,
since he only observes public signals that are realized during his lifetime.

The game starts in a state s0 at period 0 determined by q0. Denote by
H∞ ⊂ (S × Y ×A)∞ the set of feasible outcomes with typical element h∞;
an initial t-period history is denoted ht. Player i’s payoff as a function of
outcome, Ui : H∞ → R, is

Ui (h∞) = Ui ((st, yt, at)
∞
t=0) =

∞∑
t=0

δtiui(st, yt, at).

A period-τ behavior strategy for player i is a mapping

biτ :
⋃

hiτ∈Hiτ
{{hiτ} × Piτ (hiτ )} → ∆(A),

and we write bi = (biτ )Tiτ=ti,Hiτ 6=∅ and Bi for the set of strategies of player i.
Many games fit into our general setting:

1. Perfect information games played between overlapping generations
of short-lived players. These include the classical consumption-loan
model of Samuelson (1958), models of organizations with finitely lived
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managers (Cremer, 1986) or of legislatures with overlapping terms
(Baron and Ferejohn, 1989; Muthoo and Shepsle, 2010). Kandori
(1992) and Smith (1992) prove folk theorems for these games, under
the assumption that the short-lived players are fully informed about
all past events. Baron and Ferejohn (1989) argue that informational
restrictions may justify the focus on Markov equilibria; Bhaskar (1998)
and Muthoo and Shepsle (2010) explicitly model such restrictions.

2. Extensive form games between a long-lived and a sequence of short-
lived players. Such games arise naturally in the reputation literature
(e.g., Fudenberg and Levine (1989)). Ahn (1997, Chapter 3) examines
the implications of the short lived players having a bounded observa-
tion of past histories.

3. Finally, as discussed in the Introduction, our analysis applies to many
settings, traditionally modeled with infinitely-lived players, in which
only one player moves at a time, such as the asynchronous choice
models of oligopoly of Maskin and Tirole (1987, 1988a,b).

Our next step is to define equilibrium. Player i’s expected continuation
value from strategy profile b at (hiτ , piτ ) is defined recursively as follows. If
ι(sτ ) = i, then player i’s period-τ value function satisfies

Vi(b | hiτ , piτ ) =
∑
a∈A

bi(a | hiτ , piτ )
∑

y∈Y,s′∈S

{
ui(sτ , y, a)

+ δiVi(b | (hiτ , y, s′), (piτ , a))
}
q(y, s′ | sτ , a)

=
∑
a∈A

bi(a | hiτ , piτ )
{∑

y
ui(sτ , y, a)qY (y | sτ , a)

+δi
∑

y,s′
Vi(b | (hiτ , y, s′), (piτ , a))q(y, s′ | sτ , a)

}
,

where qY is the marginal distribution on Y .
An almost identical equation holds when ι(sτ ) 6= i, with two changes.

First, in the specification of the period-(τ + 1) value function, the private
history piτ is not augmented by the period-τ action of player ι(sτ ) 6= i.
Second, the distribution over the period τ action, bi(a | hiτ , piτ ) is replaced
by player i’s belief over the behavior of player ι(sτ ):

bι(sτ )(a | hiτ , piτ ) = E[bι(sτ )(a | hι(sτ )τ , pι(sτ )τ ) | hiτ , pi,τ ].
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This conditional expectation is well defined for histories (hiτ , piτ ) on the
path of play.

For other histories, we assume the player has some beliefs over the his-
tories observed by the other players. While it is natural to require player
i’s beliefs over player ι(sτ )’s history to respect Bayes’ rule when possible,
we do not impose this requirement. Instead, we simply require that players
have well-defined beliefs at every feasible history, and so the value function
is well defined at all feasible histories.

Definition 1 A strategy profile b is a perfect Bayes equilibrium (PBE) if,
for all i ∈ N , hiτ ∈ Hiτ , piτ ∈ Piτ (hiτ ), and b′i ∈ Bi,

Vi((bi, b−i) | hiτ , piτ ) ≥ Vi((b′i, b−i) | hiτ , piτ ). (1)

A strategy profile is a sequentially strict PBE if for all for all i ∈ N , hiτ ∈
Hiτ , piτ ∈ Piτ (hiτ ), bi(hiτ , piτ ) is a strict best reply in period τ : that is, for
all b′i ∈ Bi satisfying b′i(hiτ , piτ ) 6= bi(hiτ , piτ ),

Vi((bi, b−i) | hiτ , piτ ) > Vi((b′i, b−i) | hiτ , piτ ).

Definition 2 A strategy bi is Markov if for any two relevant histories (hiτ , piτ )
and (h′iτ , p

′
iτ ) ending in the same state (i.e., sτ = s′τ ),

bi(hiτ , piτ ) = bi(h′iτ , p
′
iτ ).

If b is both Markov and a PBE, it is a Markov perfect equilibrium.

Note that (hiτ , piτ ) and (h′iτ , p
′
iτ ) are both of length τ − ti.

Lemma 1 Every sequentially strict PBE is Markov perfect.

Proof. Fix a t period history ht. By Assumption 1, it is common
knowledge that from period t + K + 1 onwards, the behavior of players
i 6= i∗ does not depend on ht.6 This implies that long-lived player’s value
function from t+K + 1 onwards does not depend on ht. Thus, if the long-
lived player’s strategy satisfies sequential strictness, it does not depend on
ht after date t+K + 1.

We consider first the last player whose behavior could potentially depend
on elements of ht, namely the player choosing an action in period t+K.

6As Example 1 below illustrates, our assumption that the signal yt is a signal of at
only, and not of earlier actions, is important in this deduction. The Markovian nature of
the process determining states is also important.
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For any K-period continuation of ht, ht+K , this player is j = ι (st+K),
with associated semi-public and private histories (hj,t+K , pj,t+K). We now
argue that

bj,t+K

(
(hjt, hj,(t+1,t+K)), pj,t+K

)
= bj,t+K

(
(h̃jt, hj,(t+1,t+K)), p̃j,t+K

)
(2)

for all h̃jt and p̃j,t+K , where hj,t+K =: (hjt, hj,(t+1,T+K)).
We have two cases:

1. Player j is born after period t (i.e., tj > t). In this case, (2) for all h̃jt
is immediately implied by feasibility;

2. Player j is born at or before period t (i.e., tj ≤ t). Nonetheless,
the decision problem facing player j is independent of h̃jt. Moreover,
the decision problem is also independent of player j’s private history
pj,t+K , and so the set of maximizing actions is independent of h̃jt and
pj,t+K . Finally, sequential strictness implies the set of maximizing
choices is a singleton, implying (2).

This argument now applies to show that the choice of the player making
a choice in period t + K − 1 is also independent of the semi-public as well
as the complete private history. Proceeding recursively yields the result.

We are not the first to observe this implication of sequential strictness.
In the context of repeated games where players move asynchronously, Je-
hiel (1995) and Bhaskar and Vega-Redondo (2002) have used this logic to
conclude that if players have a motivation to reduce the memory require-
ments of their strategies, then they must play Markov strategies. However,
sequential strictness is, in our view, too demanding requirement—any equi-
librium in mixed strategies fails it. Thus we would rule out mixed strategy
equilibria in strategic form games as well as many Markov equilibria in
dynamic games. For example in the Maskin and Tirole (1988b) model of
dynamic price competition where firms move asynchronously, collusive pric-
ing can be sustained via Markov strategies, but this requires randomization
off the equilibrium path. Similarly, in the repeated prisoner’s dilemma with
asynchronous moves, there exists, for some parameter values, a coopera-
tive Markov perfect equilibrium; in such an equilibrium, any breakdown of
cooperation requires a randomized return to cooperation.

At the same time, belief-free equilibria exist in games with finite social
memory, and support non-Markovian behavior (Bhaskar, 1998). Belief-free
equilibria are characterized by the property that a player’s beliefs over the
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continuation play of the other players are irrelevant (in the sense that the
specified behavior is optimal for all “relevant” beliefs). This “belief-free”
property of best responses has made the belief-free equilibrium concept a
central tool in the study of repeated games with private monitoring,7 and
more generally, an important class of equilibria. Nonetheless, the belief-
freeness of best responses raises important questions about the practical
relevance of belief-free equilibrium (we return to this issue in Section 5.4).

The main contribution of this paper is to show that payoff perturba-
tions and purification naturally yield the appropriate notion of sequential
strictness in a large class of games. In particular, the payoff perturbations
eliminate non-Markov equilibria (in particular, belief-free equilibria in se-
quential move games), but not mixed Markov equilibria (such as the coop-
erative equilibrium in the asynchronous move repeated prisoners’ dilemma).
With payoff perturbations, non-Markov equilibria are eliminated since the
players now have strict incentives to not condition on payoff irrelevant his-
tories. Nevertheless, to an outside observer who cannot observe these payoff
shocks, it is as though the player randomizes, as in Harsanyi (1973). Thus
Markov equilibria in mixed strategies are very much consistent with our ap-
proach. This is in contrast with sequential strictness, which is too stringent
and results in non-existence of equilibria in some games.

4 The Game with Payoff Shocks

We now allow for the payoffs in the underlying game to be perturbed, as
in Harsanyi (1973). Unfortunately, the description of the perturbed game
is notationally cumbersome. Moreover, the definition of sequential rational-
ity in the perturbed game requires specifying beliefs over histories of both
past private actions as well as past private payoff shocks. Fortunately, the
structure of the model allows us to finesse many of the details. Section 4.1
gives the formalism of the perturbed model, including beliefs, and ends with
Lemma 2, which shows that optimal behavior is independent of the pri-
vate history of actions and payoff shocks. Section 4.2 shows that all perfect
Bayesian equilibria of the perturbed game are Markov.

7See Piccione (2002), Ely and Välimäki (2002), and Ely, Hörner, and Olszewski (2005).
For an introductory discussion, see Mailath and Samuelson (2006, Chapter 14).
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4.1 The General Structure of the Perturbed Game

We require that the payoff shocks respect the recursive payoff structure of the
infinite horizon game, i.e., to not depend upon history except via the state:
Let Z be a full dimensional compact subset of R|A| and write ∆∗ (Z) for
the set of measures with support Z generated by strictly positive densities.
At each history ht ∈ (S × Y × A)t × S, a payoff shock zi ∈ Z is drawn
according to µsti ∈ ∆∗(Z) for each i.8 The payoff shocks are independently
distributed across players and histories. We write µst := ×iµsti for the
product measure on ZN . The complete history, including payoff shocks is
denoted h̃t ∈ (S×Y ×A×ZN )t×S×ZN . We emphasize that the period-t
state and payoff shock profile are in h̃t. If player ι(s) chooses action a, i’s
payoff is augmented by εzai , where ε > 0 is a positive constant and zai is
player i’s private payoff shock under action a. Thus, players’ stage payoffs
in the perturbed game depend only on the current state, signal, action, and
payoff shock (s, y, a, z), and are given by

ũi (s, y, a, zi) = ui (s, y, a) + εzai .

Each player i only observes his/her private payoff shock in the periods t
when i is alive, i.e., ti ≤ t ≤ Ti.9 We denote the perturbed game by Γ (ε, µ).

To describe strategies, we first describe players’ information more pre-
cisely. Write zi(h̃t) =: zti for the sequence of payoff shocks realized for player
i along h̃t, zit(h̃t) for player i’s current shock (thus zit(h̃t) is the last element
of the sequence zi(h̃t)), and z(h̃t) for the sequence of payoff shock profiles
realized for all players in h̃t.

At the semi-public history hit, a player i period-t private history is p̃it :=
(pit, (ziτ )tτ=ti) ∈ Pit(hit)×Z

t−ti+1. A behavior strategy for player i, b̃i, in the
perturbed game specifies player i’s mixed action b̃i(hit, p̃it), at every relevant
history (hit, p̃it), i.e., with st ∈ S(i) and for every specification of player i’s
actions and realization of i’s payoff shocks. The set of all behavior strategies
for player i is denoted B̃i.

Each player i will maximize expected payoffs given beliefs over the un-
known aspects of history. A belief assessment for player i specifies, for every
relevant history (hit, p̃it), a belief π(hit,p̃it)

i over histories h̃t, that is,

π
(hit,p̃it)
i ∈ ∆

(
(S × Y ×A× ZN )t × S × ZN

)
.

8Our analysis only requires that the shock distributions have densities with full di-
mensional compact supports. The assumption of common support is made to simplify
notation.

9Our assumption, made to simplify notation, that all players receive payoff shocks in
all periods (and not just in the periods they are alive) is without loss of generality.

12



Since the distribution of a player’s private payoff shock after the history
ht is completely determined by the state st and players’ private payoff shocks
are independent, player i’s beliefs over the unknown aspects of history are
independent of the realization of these private payoff shocks. In addition,
a player’s past actions should not affect player i’s own beliefs (this is in
the spirit of, but weaker than, Fudenberg and Tirole’s (1991) “no-signaling-
what-you-don’t-know” condition).

We are thus led to the following maintained assumption on belief assess-
ments:

Assumption 2 Every player i’s belief assessment satisfies

1. the implied beliefs over other players’ semi-public and private histories
are independent of player i’s private payoff shocks and past actions pit;
and

2. player i’s beliefs assign probability zero to the event that the history h̃t

is inconsistent with (hit, p̃it).

Beyond Assumption 2, we impose no further restrictions (such as consis-
tency with Bayes’ rule on the equilibrium path and independence of payoff
shocks across other players or periods); we return to this issue after we
introduce the notion of a sequential best response.

Player i’s ex post value is recursively given by, for a given strategy profile
b̃,

Ṽi(b̃ | h̃t) =
∑
a∈A

b̃ι(st)(a | hι(st)t, p̃ι(st)t)
∑

y∈Y,s′∈S

{
ũi(st, y, a, zit)

+δi
∫
Ṽi(b̃ | h̃t, y, s′, a, z′) dµs

′
(z′)
}
q(y, s′ | s, a).

Player i’s expected payoff from the profile b̃ is given by∫
Ṽi(b̃ | h̃t) dπ(hit,p̃it)

i (h̃t). (3)

Definition 3 Strategy b̃i is a sequential best response to (b̃−i, πi), if for
each hit ∈ Hit, p̃it = (pit, (ziτ )tτ=ti) ∈ Pit(hit)× Z

t−ti+1, and b̃′i ∈ B̃i,∫
Ṽi((b̃i, b̃−i) | h̃t) dπ(hit,p̃it)

i (h̃t) ≥
∫
Ṽi((b̃′i, b̃−i) | h̃t) dπ

(hit,p̃it)
i (h̃t).

Strategy b̃i is a sequential best response to b̃−i if strategy b̃i is a sequential
best response to (b̃−i, πi) for some πi.
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Because the perturbed game has a continuum of possible payoff shocks in
each period, and players may have sequences of unreached information sets,
there is no standard solution concept to which we may appeal. Our notion
of sequential best response is very weak (not even requiring that beliefs
respect Bayes’ rule on the path of play).10 Assumption 2 does require each
player’s beliefs over other players’ payoff shocks be independent of his own
shocks. For information sets on the path of play, this requirement is implied
by Bayes’ rule. Tremble-based refinements imply such a requirement at
all information sets, though they may imply additional restrictions across
information sets.

In principle, a strategy for a player i depends on the fine details of the
private histories that the player observes, i.e. his past payoff shocks and his
past actions. Lemma 2 shows that any sequential best response must ignore
such fine details, although it may depend upon the player’s current payoff
shock.

Definition 4 A strategy b̃i is a current shock strategy if for all hit ∈ Hit,
and private histories (pit, (ziτ )t−1

τ=ti
), (p′it, (z

′
iτ )t−1

τ=ti
) ∈ Pit(hit)×Zt−1−ti, then

for almost all z ∈ Z,

b̃i(hit, (pit, (ziti , .., zit−1, z))) = b̃i(hit, (p′it, (z
′
iti , .., z

′
it−1, z))).

Lemma 2 If b̃i is a sequential best response to b̃−i, then b̃i is a current
shock strategy.

Proof. Fix a player i, hit ∈ Hit, and private history , p̃it = (pit, (ziτ )tτ=ti).
Denote i’s beliefs by πi. Player i’s next period expected continuation payoff
under b̃ from choosing action a this period, Vi(a, b̃−i, πi | (hit, p̃it)), is given
by∑
y,s′

q(y, s′ | s, a)
∫∫

max
b̂i

Ṽi(b̂i, b̃−i | h̃t, y, s′, a, z′) dµs
′
(z′) dπ(hit,p̃it)

i (h̃t ).

Since b̃−i and the beliefs implied by π(hit,p̃it)
i over other players’ semi-public

and private histories are independent of p̃it, the maximization implies that
10Since we have allowed for countably infinite action spaces and beliefs that need not

respect Bayes’ rule, sequential best responses may not exist. This possible failure of
existence is not a problem, since our interest lies in the characterization of sequential best
responses, not in proving existence. Sequential best responses exist for finite action spaces
and beliefs that satisfy Bayes’ rule.
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Vi(a, b̃−i, πi | (hit, p̃it)) also does not depend on player i’s private history.
Thus, player i’s total utility from the action a,

ui(s, y, a) + εz̃ai + δiVi(a, b̃−i, πi | (hit, p̃it)),

is independent of player i’s private history. Since µs is absolutely continuous,
player i can only be indifferent between two actions a and a′ on a zero
measure set of z ∈ Z. For other z, there is a unique best response, and so
it is independent of the private history before the current shock.

4.2 Mutual Sequential Best Responses are Markov

A current shock strategy (ignoring realizations of z of measure 0) can be
written as

b̃i : ∪ti≤t≤TiHit × Z → ∆ (A) .

If all players are following current shock strategies, we can recursively define
value functions for a given strategy profile b̃ that do not depend on any payoff
shock realizations:

V ∗i (b̃|hit) =
∫ ∑

a∈A
b̃ι(st)(a|hit, zι(st))

∑
y∈Y,s′∈S

[
ũi(st, y, a, zi)

+δiV ∗i (b̃|hit, y, s′)
]
q(y, s′|st, a) dµst(z), (4)

where
b̃ι(st)(a|hit, zι(st)) = E[b̃ι(st)(a|hι(st)t, zι(st))|hit, z] (5)

is i’s prediction of player ι(st)’s behavior given i’s semi-public history and
the period t payoff shock. As suggested by (5), V ∗i does depend, in general,
on non-payoff-shock aspects of i’s belief assessments. As will be clear, this
dependence does not arise in equilibrium, and so we economize on notation
by suppressing the potential dependence of V ∗i on beliefs. For future ref-
erence, player i’s ex post value from the action a given the payoff shock zi
(the value of the second summation) is denoted by

Ṽ ∗i (a, zi; b̃|hit) :=
∑

y∈Y,s′∈S

[
ũi(st, y, a, zi) + δiV

∗
i (b̃|hit, y, s′)

]
q(y, s′|st, a).

It is straightforward to verify that Ṽ ∗i is the expectation of Ṽi, conditional
on hit, when all players are following current shock strategies.

15



Lemma 2 implies that beliefs over private histories are essentially irrele-
vant in the notion of sequential best responses, because, while behavior can
in principle depend upon private histories, optimal behavior does not. We
restate Lemma 2 in a more convenient form using the V ∗i notation:

Lemma 3 A profile b̃ is a profile of mutual sequential best responses if, and
only if, for all i, b̃i is a current shock strategy, and for each hit ∈ Hit, and
b̃′i ∈ B̃i,

V ∗i ((b̃i, b̃−i) | hit) ≥ V ∗i ((b̃′i, b̃−i) | hit). (6)

Given Lemma 3 and the discussion in Section 4.1, the following defini-
tions are natural:

Definition 5 A perfect Bayesian equilibrium ( PBE) is a profile of mu-
tual sequential best responses (which is necessarily a profile of current shock
strategies).

A profile b̃ of current shock strategies is an essentially sequentially strict
equilibrium if, for all i ∈ N , hit ∈ Hit, for almost all payoff shocks zi ∈ Z,
the action b̃i(hit, zi) is pure and is the unique maximizer of player i’s ex post
value from the action a given the payoff shock zi, Ṽ ∗i (a, zi; b̃|hit).

A current shock strategy b̃i is Markov if for for almost all zi ∈ Z, feasible
histories hit, h′it ∈ Hit satisfying st = s′t,

b̃i(hit, zi) = b̃i(h′it, zi).

If b̃ is both Markov and a PBE, it is a Markov perfect equilibrium.

After this considerable notational journey, we are led to a key result of
the paper (with a gratifyingly short proof).

Proposition 1 Every PBE of the perturbed game is essentially sequentially
strict, and so is Markov perfect.

Proof. Since flow payoffs are given by

ũi (s, y, a, zi) = ui (s, y, a) + εzai ,

the equality Ṽ ∗i (â, zi; b̃|hit) = Ṽ ∗i (ã, zi; b̃|hit) implies

ε(zâi − zãi ) =
∑

y∈Y,s′∈S
[ui(st, y, ã)− ui(st, y, â)]

+ δiV
∗
i (b̃|hit, y, s′)

[
q(y, s′|st, ã)− q(y, s′|st, â)

]
.
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Since the set of actions is countable, the set of values of zi for which
player i can be indifferent between any two actions is of Lebesgue measure
zero. Thus, for almost all zi, the set of maximizers must be a singleton, and
the profile is essentially sequentially strict.

The proof that every essentially strict equilibrium is Markov perfect is
almost identical to that of Lemma 1, and so is omitted.

4.3 Purification

We now consider the purifiability of equilibria in the unperturbed game.
Purification has several meanings in the literature (see Morris (2008)). One
question asked in the literature is when can we guarantee that every equilib-
rium is essentially pure by adding noise to payoffs (e.g., Radner and Rosen-
thal (1982))? As we have seen in Proposition 1, our shocks ensure that in
the perturbed game, any equilibrium must be essentially pure.

We follow Harsanyi (1973) in being interested in the relation between
equilibria of the unperturbed game and equilibria of the perturbed game.
But the definition of purifiability that we require for our main result is very
weak: we require only that there exists a sequence of equilibria of a sequence
of perturbed games that converge to the desired behavior.

Fix a strategy profile b of the unperturbed game. We say that a sequence
of current shock strategies b̃ki in the perturbed game converges to a strategy
bi in the unperturbed game if expected behavior (taking expectations over
shocks) converges, i.e., for each hit ∈ Hit and a ∈ A,∫

b̃ki (a | hit, zi) dµks(z)→ bi(a | hit). (7)

Definition 6 The strategy profile b is weakly purifiable if there exists a
sequence (µk, εk)∞k=1, with µk : S → ∆∗(Z) and εk → 0, such that there is
a sequence of profiles (b̃k)∞k=1 converging to b, with b̃k a perfect Bayesian
equilibrium of the perturbed game Γ(µk, εk) for each k.

Since the supporting sequence of private payoff shocks is allowed to de-
pend on the strategy profile b, and the distribution µk is itself indexed by k,
this notion of purifiability is almost the weakest possible.11 Our notion cru-
cially maintains the recursive payoff structure of the infinite horizon game

11It is also worth noting that we only require pointwise convergence in (7). For infinite
horizon games, we may ask for uniform (in hit) convergence, as is done in the positive
result (Theorem 3) in Bhaskar, Mailath, and Morris (2008). Negative results are of course
stronger with pointwise convergence.
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(in particular, we require that the payoff shocks are intertemporally inde-
pendent). Allowing for intertemporally dependent payoff shocks violates the
spirit of our analysis.

A stronger notion of purification, closer to the spirit of Harsanyi (1973),
is the following:

Definition 7 The strategy profile b is Harsanyi purifiable if for every se-
quence (µk, εk)∞k=1, where µk : S → ∆∗(Z) and εk → 0, there is a sequence
of profiles (b̃k)∞k=1 converging to b, with b̃k a perfect Bayesian equilibrium of
the perturbed game Γ(µk, εk) for each k.

Clearly, if a profile is Harsanyi purifiable, then it is weakly purifiable.
The following is immediate from Section 4.2:

Proposition 2 Every weakly purifiable PBE is Markov.

The logic behind this proposition is straight-forward. Proposition 1 im-
plies that in any perturbed game, any PBE is Markov. Thus, if b is not
Markov, given an arbitrary sequence (µk, εk)∞k=1 with εk → 0, we cannot
find a sequence of PBE of the perturbed games converging to b.

5 Extensions and Discussion

5.1 Continuum Action and State Spaces

The model and results extend to continuum spaces as follows: The set A is
a compact subset and Y and S are measurable subsets of finite dimensional
Euclidean spaces. Transitions and monitoring are described by a mapping
(probability kernel) q : S × A × F → [0, 1], where F is the collection of
events (measurable subsets) of Y × S, q(s, a, F ) is a measurable function
of (s, a) for each F ∈ F , as well as a probability measure over F for each
(s, a); we write qs,a for this measure. The flow payoffs are bounded and
continuous functions of (s, y, a). The value functions are as before (with
integrals replacing summations in the calculation of expectations), as is the
definition of PBE. A profile b in the unperturbed game is an essentially
sequentially strict PBE if (as in Definition 5) bi(hiτ , piτ ) is a strict best
reply for almost all signals. The proof that every essentially sequentially
strict equilibrium is Markov perfect is along the same lines as the proof of
Lemma 1.
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To keep things simple in our discussion of the perturbed game, we now
suppose actions, states and signals are all one dimensional (though the fol-
lowing extends in an obvious manner to more dimensions). Each player i’s
payoff perturbation is indexed by the one dimensional variable zi. Flow
payoffs are given by

ui(s, y, a) + εvi(s, y, a, zi),

where ε > 0 and vi(s, . , . , .) is a parameterization of the payoff perturbation.
In particular, we assume

v̄i(s, a, zi) :=
∫
vi(s, y, a, zi) dqs,a(y, s′) (8)

is either strictly supermodular or strictly submodular in (a, zi). Note that
we do not make any similar assumption on the payoff function ui.

Each player’s payoff shock zi is, for each history ht, distributed according
to µsti with common interval support Z ⊂ R. As for the countable case, we
assume the payoff shocks are continuously and independently distributed
across players and histories, and every player’s belief assessment is assumed
to satisfy Assumption 2. The notions of sequential best response (Definition
3) and current shock strategy (Definition 4) are unchanged, and Lemma 2
continues to hold with essentially the same proof (again, after summations
are replaced by the appropriate integrals). Similarly, Lemma 3 still holds,
and the notions of PBE and Markov perfect equilibrium continue to be given
by Definition 5.

We now argue that Proposition 1 holds, that is, every PBE is essentially
sequentially strict and so is Markov perfect. When players follow a profile
b̃, player i’s ex post payoff from choosing action â at (hit, zi) is given by

Ṽ ∗i (a, zi; b̃|hit) =
∫

(y,s′)∈Y×S

ui(st, y, a) + εvi(st, y, a, zi)

+ δiV
∗
i (b̃|hit, y, s′) dqst,a(y, s′)

= Wi(a; b̃|hit) + εv̄i(st, a, zi),

where

Wi(a; b̃|hit) :=
∫

(y,s′)∈Y×S

ui(st, y, a) + δiV
∗
i (b̃|hit, y, s′) dqst,a(y, s′)
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and v̄i is defined in (8). Note that the ex post payoff function Ṽ ∗i inherits
the strict super- or submodularity in (a, zi) of v̄i.

Define φi(zi|hit, b̃) := arg maxa′∈A Ṽ ∗i (a′, zi; b̃|hit), i.e., φi(·|hit, b̃) is the
correspondence describing the maximizers of Ṽ ∗i as a function of the payoff
shocks zi. A PBE b̃ will be essentially sequentially strict if, for all i and hit,
the set φi(zi|hit, b̃) is a singleton for almost all values of zi.

Suppose Ṽ ∗i is strictly supermodular (a similar argument applies if it is
strictly submodular). From Topkis (1998, Theorem 2.8.4), it follows that
the correspondence φi(·|hit, b̃) is increasing in the following sense: for all
zi < z′i, and for all a ∈ φi(zi|hit, b̃) and a′ ∈ φi(z′i|hit, b̃), we have a ≤ a′.
Let φ̂i(zi|hit, b̃) denote the maximal element in φi(zi|hit, b̃). Thus φ̂i(·|hit, b̃)
is an increasing function discontinuous at any value of zi for which the set
φi(zi|hit, b̃) is not a singleton. Since φ̂i(·|hit, b̃) is a monotone function, it is
discontinuous for at most a countable number of zi. Thus φi(zi|hit, b̃) must
be singleton-valued for all but a countable number of zi. Hence, every PBE
is essentially sequentially strict.

Finally, Proposition 2 holds in the current setting (for any sensible notion
of convergence in the definition of weak purification).

We now consider some applications of this result:

1. In the asynchronous choice oligopoly models of Maskin and Tirole
(1988a, 1987), players choose quantities, so that action sets and states
are subsets of the real line. Suppose the payoff perturbations, zi, arise
due to cost shocks, independently and identically distributed in every
period. Thus vi(a, y, zi ,s) = −azi, so the submodularity condition is
satisfied. Thus our argument justifies the restriction to Markov perfect
equilibria.

2. In Maskin and Tirole (1988b), firms choose prices and the products
are homogeneous. Payoff shocks in this setting do not generate the
required variability in current period output, since when a firm prices
above its competitor (as occurs in some parts of the Edgeworth cycle),
in that period, the firm makes no sales. On the other hand, in the
differentiated products version of Eaton and Engers (1990), a firm’s
quantities are decreasing in the firm’s own price, and thus the payoff
perturbation is strictly supermodular. Our argument therefore applies
in this case.

3. In Samuelson’s (1958) consumption loan model, agents live for two
periods, and a young agent must choose a transfer to the old agent,
a real number. With bounded social memory, there exists a pure
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strategy equilibrium that supports efficient transfers. If we perturb
payoffs, so that there are shocks to the marginal rate of substitution of
the young agent, between consumption when young and consumption
when old, then the supermodularity condition is satisfied. Thus only
the Markov perfect equilibrium survive these perturbations.12

More generally, in many economic applications, supermodularity or sub-
modularity of the payoff function in the payoff shock parameter and the ac-
tions is a natural assumption. Thus the purification justification for Markov
equilibrium can be readily applied, to many economic examples of dynamic
games, across a variety of fields in economics.

5.2 Bounded Memory and Communication

The bounded memory assumption is natural in models where players are
finitely lived and are periodically replaced by others, such as repeated games
with overlapping generations of players or games played between a long-lived
player and a sequence of short lived players.

We have argued in the introduction that many models with infinitely-
lived players are imperfect mathematical idealizations of real-world situ-
ations with finitely-lived players. For example, owners of firms are only
finitely lived, but if they can sell their shares in a competitive market, they
will presumably seek to maximize long run profits (see footnote 16). Our
results thus apply to many industrial organization settings, such as Maskin
and Tirole (1988a,b, 1987).

Our model rules out communication between players (in particular, the
payoff shocks in the perturbed model imply that the actions cannot include
any “cheap-talk” component). We are thus examining one extreme, with the
other extreme being error-free and honest communication, allowing players
to know events arbitrarily far in the past. While it is beyond the scope of the
current paper to analyze communication that is either subject to error or
strategic, we do not believe such communication implies that players always
know events arbitrarily far in the past.

We content ourselves with two brief comments on strategic commu-
nication (see Anderlini and Lagunoff (2006) and Anderlini, Gerardi, and
Lagunoff (2008) for explicit models of inter-generational communication).
First, we note that even if each player can communicate with his or her

12For reasons of space we omit the details of this argument. They are available from
the authors on request. Bhaskar (1998) provides such a result for a discrete action version
of this game.
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successor, it is an equilibrium for no player to transmit information to his
or her successor. In particular, no individual player in role i, can benefit by
transmitting information to his successor in the same role. Since players in
role j, j 6= i, are using finite memory strategies, the player in role i has a
best response that is also in finite memory strategies. Formally, this claim
follows from our main theorem, which allows for the possibility that one
player could be long lived and could have unbounded memory.

Our second comment concerns models in which finitely-lived owners of
firms sell their shares in a competitive market at retirement. We conjecture
that there is no equilibrium in which communication allows for behavior
to depend nontrivially on events that occurred arbitrarily far in the past.
If the value of a firm varies across histories, an owner selling his firm has
an incentive to misrepresent his information, choosing to report the history
maximizing the value of the firm, rather than the true history. But this
implies that the owner has no incentive for truthful communication.

Finally, the logic of our results also applies when the bounded memory
property is not a constraint but rather long-lived players follow strategies
with finite memory (Bhaskar, Mailath, and Morris, 2012). In particular, the
logic applies to models of non-cooperative bargaining in which in each pe-
riod, a proposer makes an offer and other players decide sequentially whether
to accept or reject the offer, with either deterministic order of moves (Rubin-
stein, 1982) or random order (Chatterjee, Dutta, Ray, and Sengupta, 1993).
Players may endogenously follow bounded memory strategies because such
finite memory strategies are more robust to informational frictions (see foot-
note 4). This might also occur because long-lived players have literal mem-
ory problems (while clearly speculative, we think this is a fruitful area of
future research).

5.3 Alternative Informational Assumptions on Signals

It is critical for our result that the signal in any period, yt, depends on at
only, and not on earlier actions.

Example 1 There are overlapping generations with all players being finitely-
lived and living for two periods. Agents are indexed by τ ∈ N with tτ = τ−1
and Tτ = τ + 1. Player τ chooses aτ ∈ {0, 1} in period τ , paying a cost of
aτ . The period-τ player also receives a payoff of 2aτ+1 in period τ + 1. At
the end of period τ − 1, agent τ observes a signal yτ−1 given by

yτ−1 = aτ−2 + aτ−1,
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where we initialize the recursion by specifying a−1 = 1. The state space S
is given by N, the set of periods, and ι : S → N is given by ι(τ) = τ .

A pure strategy for players τ ≥ 1 is a function σt : {0, 1, 2} → {0, 1},
while a strategy for player 0 is an action choice from {0, 1} (since player 0 has
a null history). A Markov strategy is an action choice for every player (since
the state space is N, and the state transition is independent of actions). The
game has a unique Markov perfect equilibrium, and in this equilibrium all
players choose 0.

Consider the following (non-Markov) strategy profile: every player τ ≥ 1
plays the strategy σ given by σ(0) = σ(1) = 0 and σ(2) = 1, and player
0 chooses 1. We argue that this profile is a sequentially strict PBE, even
though there is a uniform bound on players’ life spans and the profile is not
Markov.

It is straightforward to verify that the choice of 1 at yτ = 2 is optimal
for all players, and that the choice of 0 at yτ = 0 is optimal.

The critical value of y is y = 1. The value of yτ = 1 arises from two
different private histories: (aτ−2, aτ−1) = (0, 1) and (aτ−2, aτ−1) = (1, 0).
If it is the former, the action choice aτ is pivotal in determining aτ+1 un-
der σ, while under the latter history, it is not (since aτ+1 = 0 indepen-
dent of aτ ). If player τ assigns sufficient probability to the action history
(aτ−2, aτ−1) = (1, 0), then aτ = 0 is strictly optimal. Finally, beliefs such
that the probability that (aτ−2, aτ−1) = (1, 0) equals one can be derived as
the limit of a sequence of trembles requiring only a single agent to deviate
from the equilibrium path of play. Since this equilibrium is strict, it also
admits a Harsanyi purification – if ε is sufficiently small, in the perturbed
game there exists an equilibrium where each player plays as in the above
equilibrium of unperturbed game, for all realizations of his payoff shock.

F

This example illustrates that cooperation and non-Markovian behavior
can be sustained as an equilibrium when there is less information on past
events, as compared to the case when there is more information.

5.4 Simultaneous Move Games

Propositions 1 and 2 do not extend to games where more than one player
moves at a time, e.g. repeated synchronous move games. It is easy to con-
struct counterexamples, and indeed Mailath and Olszewski (2011) prove a
folk theorem using strict, and hence purifiable, finite recall strategy profiles.
For an illustrative example, consider the modification of the chain store
game, where players move simultaneously, with payoffs given in Figure 2.
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A F

IN 2, 0 0,−c

OUT 1, 1 + z 1, 1

Figure 2: A simultaneous move version of the Chain Store game.

We assume that z > 0, so that (OUT,F) is not a Nash equilibrium of the
stage game.

The game is played between an incumbent (the long run player) who
chooses from {A,F} and a sequence of entrants (short run players). The
entrant born at date t−1 observes the action profile played at t−1, and plays
the game at date t. The incumbent observes the entire history. Consider the
strategy profile where actions at date t only depend upon the action profile
played at t−1. The entrant plays OUT at t = 1, and at any date t if (OUT,F)
is played at t − 1; otherwise, he plays IN. The incumbent plays F at t = 1,
and and at any date t if (OUT,F) is played at t− 1; otherwise, he plays IN.
If (1 − δ)z < δ, the incumbent has no incentive to deviate to A along the
equilibrium path, and this profile is a sequentially strict PBE; more precisely,
for any beliefs over histories that each entrant may have, the strategy profile
satisfies sequential rationality. Since all players have strict incentives at
every information set, it is easy to show that this equilibrium admits a
Harsanyi purification. However, the unique Markov Perfect equilibrium of
this game has players playing the unique Nash equilibrium of the stage game,
(IN,A), at every history.13

The strategy profile just constructed has the property that the actions at
date t depend upon the action profile at t−1, i.e. upon the actions of both the
entrant and the incumbent. This feature prevents the incumbent’s unilateral
manipulation of history that precludes non-Markovian equilibrium play in
the sequential chain store of Section 2. In the simultaneous-move chain store,
the incumbent cannot restore the (OUT,F) continuation path after a play
of (IN,A), because the profile specifies continued play of (IN,A) after (IN,F).
Note that under such a specification in the sequential chain store of Section 2,
sequential rationality would force the incumbent to play A after the first play

13Liu (2011) and Liu and Skrzypacz (2011) consider simultaneous move games played
between a long run player and short run players with finite social memory. They show
that such games can give rise to interesting dynamics in the presence of a reputational
type for the long run player.
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of IN, eliminating any incentive for the entrants to play OUT. In contrast,
under simultaneous moves, on the equilibrium path, the current entrant
believes the incumbent will choose F (which is sequentially rational for the
incumbent, since simultaneous moves prevent the incumbent’s current action
from depending on the current action of the entrant).

One can, of course, increase the set of Markov equilibria in the chain
store game by expanding the set of states, by allowing them to depend
upon the previous period’s outcome. However, with sequential moves, such
a “spurious” Markov strategy profile will not be sequentially strict. As we
show in Section 5.6, it may not admit a Harsanyi purification.

Although purifiability clearly has less bite in simultaneous move games,
it is possible that it may still restrict the set of equilibria. One conjecture
is that it will rule out the “belief-free” strategies recently introduced by
Piccione (2002) and Ely and Välimäki (2002). Bhaskar, Mailath, and Morris
(2008) show that the one period recall strategies of Ely and Välimäki (2002)
are not purifiable via one period recall strategies in the perturbed game;
however, they are purifiable via infinite recall strategies.14 The purifiability
of belief free strategies via finite recall strategies remains an open question.

Recent work of Peski (2009, 2012) gives conditions under which all re-
peated game equilibria are sequences of stage game equilibria. Peski assumes
a continuum of signals that are sufficiently rich, even though the stage game
has finitely many actions. The result uses a purification argument, and a
requirement that strategies are measurable with respect to a finite partition
of histories. Sequences of stage game equilibria are the only Markov equi-
libria in repeated games, and thus these papers give alternative conditions
under which only Markovian equilibria survive.

5.5 Purification of Stationary Markov Equilibria

Our primary interest in this paper is to explore the extent to which purifica-
tion justifies restricting attention to Markov equilibria. In this section, we
provide a partial converse: for a class of models, every stationary Markov
equilibrium can be purified. Our central Assumption 1 implies that the
game necessarily has a countable infinity of players, and our notion of state
accommodates this infinity. The unperturbed game is a dynamic stochastic
game with a countable set of players, states, signals, and actions, while the
perturbed game adds the further complication of a continuum of private

14A similar argument shows that in the chain store example of Section 2, if entrants
have unbounded memory, the one-period recall mixed strategy equilibrium is purifiable
(Bhaskar, Mailath, and Morris, 2012, Example 3).
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payoff shocks. We are not aware of any standard theorems on existence and
purification for our perturbed game setting.

Our strategy therefore is to show the existence and purifiability of Markov
perfect equilibria in a class of stationary games, with a countable set of play-
ers and states. We do this by showing an equivalence between the equilibria
of this underlying game, Γ, and of a related game Γ̂ that has finitely many
states and players. Thus the existence and purification results for the latter
can be extended to the underlying game, Γ.

As we have already noted, any finite stochastic game can be reinterpreted
as a game with infinitely many short run players who have the same payoff
function as the long run player in the original game. We formalize this as
follows.

An infinite horizon finite (sequential) stochastic game is described by
the collection Γ̂ := {W, N̂, ι̂, A, q̂, (δi, ui)i∈N̂}, where W is the finite set of
states, N̂ is the finite set of long-lived players, ι̂ : W → N̂ identifies the
mover at each state, A is the finite set of actions, q̂ : W × A → ∆(W ) is
a stationary transition function, and finally, player i ∈ N̂ maximizes the
discounted (by δi) expected value of the infinite sequence of flow payoffs
given by ui : W ×A→ R.

Note that, for simplicity, we assume the game has perfect monitoring,
and so there are no public signals y.

To map the game Γ̂ into a game Γ covered by Section 3, we begin by set-
ting S := W×N0, where N0 := {0, 1, 2, . . . } denotes the set of periods. Tran-
sitions are described by q : S × A → ∆(S), where q(w, t, a) := q̂(w, a)ft+1

and ft+1 is a degenerate distribution on N0 assigning probability one to
t+ 1.

Fix K ≥ 1. For i ∈ N̂ , associate a countably infinite number of short-
lived players, with player j ∈ N0 having flow payoff function ui, birth date
tj = jK, and death date Tj = (j + 1)K − 1.15 Denote the jth short-
lived version of player i by j(i), and the set of such players by N (i). The
countable collection of short-lived players is then given by N := ∪

i∈N̂N (i).
The assignment of players to states s = (w, t) is ι(w, t) := jt(ι(w)), where jt
satisfies jtK ≤ t < (jt+ 1)K. Finally, all short-lived players associated with
player i in Γ̂ share player i’s discount factor δi (in particular, player j(i) is
altruistic with respect to future generations j′(i), j′ > j). We call the game
Γ an infinite player version of a finite stochastic game.16

15More general patterns of birth and death dates, consistent with Assumption 1, can
easily be accommodated, at the cost of more complicated notation.

16We sketch here an argument suggesting that this model can also accommodate models
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In both Γ and Γ̂, a stationary Markov strategy profile is a mapping
b̃ : W → ∆(A). It is immediate that the stationary Markov equilibria of Γ
and Γ̂ are identical (the non-Markov equilibria may differ since the players in
Γ̂ have additional information on payoff-irrelevant histories). The existence
of stationary Markov perfect equilibria in the game Γ̂ is well established
in the literature. Thus stationary Markov equilibria exist in the game Γ.
As in Section 4.1, player i’s payoff shocks are described by the continuous
measure µwi ∈ ∆∗(Z), and we denote the perturbed games by Γ̂(ε, µ) and
Γ(ε, µ). As for Γ(ε, µ), sequential best replies in Γ̂(ε, µ) are current shock
strategies (finite memory plays no role in the proof of Lemma 2), and so the
stationary Markov equilibria of Γ̂(ε, µ) and Γ(ε, µ) are identical.

The game Γ̂ is parameterized by the collection of utility functions, ui :
W ×A→ R, i ∈ N̂ , i.e., by a point in R|W×A×N̂ |. By Doraszelski and Esco-
bar (2010, Theorem 2), for almost all payoffs in R|W×A×N̂ |, any stationary
Markov equilibrium of Γ̃ is Harsanyi-purifiable. In view of the equivalence
between the Markov equilibria of Γ and Γ̃, and between the Markov equilib-
ria of the perturbed version of these two games, this implies that for almost
all payoffs in R|W×A×N̄ |, any stationary Markov equilibrium of Γ can be pu-
rified. We caution the reader that this result only holds for generic payoffs;
if payoffs are not generic, then Markov equilibria need not be Harsanyi-
purifiable, even if they are in pure strategies.17

5.6 The Notion of Markov State

One criticism made of the notion of Markov equilibria is that it can be made
arbitrarily permissive by expanding the set of states. In particular, consider
a non-Markov strategy profile that plays differently across different histories

of finitely-lived owners and competitive stock markets: Each long-lived player i ∈ N̂ is a
firm, and player j associated with firm i is the jth owner of firm i. Owner j only receives
profits while alive; in addition to the flow profits ui, owner j also pays the purchase price of
the firm in period tj and receives the revenues from selling the firm in period Tj . In period
Tj , owner j sells the firm in a first price auction. Since this is a common value auction,
owner j receives the perceived value of the firm. Moreover, in any equilibrium that does
not exhibit a bubble, the perceived value of the firm should equal the expected discounted
value of the infinite stream of flow profits. The behavior in any such equilibrium should
then be the same as the equilibrium behavior in the game Γ.

17To see this, consider a repeated extensive form game where the stage game has a
unique backwards induction path, where player i plays action a. Now consider a new
game where player i is given a duplicate action a′, such that a′ and a have identical
payoff consequences. The new stage game has multiple pure strategy backwards induction
outcomes. Neither of these is Harsanyi purifiable, since different payoff perturbation
sequences will induce different limit distributions over a and a′.
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or information sets. Such a profile can be made into a Markov profile by
expanding the set of states, so that distinct information sets induce distinct
states. However, since our Harsanyi-purification result holds only for games
with generic payoffs, there is no guarantee that the resulting equilibria can
be purified. Indeed, it seems likely that genericity will be violated since if
the two “spuriously” distinct states are labelled s and s′, ui(a, s) = ui(a, s′)
for all a. The following two examples, based on the chain store game, are
illustrative.

Assume, as in Section 2, that the short run player only observes the
outcome in the previous period, which belongs to the set O = {Out,A,F}.
This outcome was assumed to be not payoff relevant in the current period,
while the set of states W (introduced in Section 5.5) has two elements:
the initial node, w0 where the entrant moves and w1, where the incumbent
moves. Now suppose that the state space is W×O, i.e. we augment the state
space by also including the previous period’s outcome. The mixed strategy
equilibrium where entry is deterred is now a Markov equilibrium. However,
it cannot be Harsanyi-purified: It suffices to consider any payoff perturbation
µ that does not depend upon O, i.e. where µwio = µwiõ for any o, õ ∈ O.
Since neither state transitions nor payoffs depend on the current element of
O, an equilibrium that conditions upon O cannot be purified under these
perturbations. This also implies that the mixed strategy equilibrium cannot
be weakly purified by payoff perturbations that do not depend on O.

On the other hand, if a state can encode the infinite history, then such
Markov equilibria can be purified even if the states do not directly affect
payoffs. To see this, suppose the state space is given by {w0, w1} × {a, f},
where w0 and w1 are as described in the previous paragraph. The states
a and f encode history, with the current encoding being f if any entry had
been met with F, and a if a single entry had been followed by A. Consider
the Markov strategy profile where the incumbent plays f at F and A at a,
while the entrant enters at a and stays out at f. This is a Markov equilibrium
where each player has strict incentives at each information set, and it is easy
to show that it can be Harsanyi purified. Our justification for restricting
attention to Markov equilibria rests on informational restrictions—in par-
ticular, bounded memory. Thus if states allow players to encode infinite
histories, then mutual conditioning upon these states can be sustained even
if these states do not directly affect payoffs.

These two examples illustrate the difference between our approach, based
on informational considerations and payoff perturbations and that of Maskin
and Tirole (2001), that is based entirely on payoff considerations. Loosely,
Maskin and Tirole (2001) consider stochastic games with perfect information
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on histories and use payoff equivalence to induce a partition over histories
of the same length. The set of Markov states is defined to be the coarsest
partition over histories such that for every profile measurable with respect
to that partition, each player has a best response measurable with respect
to that partition. Under the Maskin-Tirole definition, in both the above
examples, in the unique Markov equilibrium the backwards induction out-
come is played in each period. However, if the state allows the encoding of
infinite histories, then a trigger strategy type equilibrium can be purified.

6 Concluding Comments

We provide a foundation for Markov equilibria in stochastic games where
moves are sequential and where social memory is bounded. Sequentiality of
moves is natural in many contexts, including those where decisions are made
in continuous time, such as games of entry or exit. Similarly, boundedness
of social memory arises in many standard games, including games between
a long-run player and a sequence of short-run players or in games with
overlapping generations of players.

We noted in the introduction that Markov equilibrium is often assumed
in applied economic analysis of dynamic games. We conclude by examining
the implications of our analysis for this use of the Markov restriction. Our
main result is that in sequential games with bounded social memory, only
Markov equilibria are purifiable. Equilibria that are not purifiable cease to
be equilibria once small natural misspecifications of the game are acknowl-
edged. We regard purifiability to be an uncontroversial requirement.

We also think of the bounded social memory assumption as relatively
mild. A number of existing models with finitely lived agents fit our bench-
mark setting (see Section 3) and also our continuum action extension in
Section 5.1. As we discussed in the Introduction, the common assumption
when modeling the oligopolistic interaction of firms that each firm is in-
finitely lived is an approximation. More realistically, a firm would be mod-
eled as a sequence of finitely lived managers/owners. Modeling a firm as
an infinitely-lived player is typically justified by the argument that current
owners seek to maximize the present value of profits over the infinite hori-
zon, since they are able to sell their ownership shares in a competitive stock
market. However, this argument ignores the bounds on memory naturally
implied by bounded lives (Section 5.2 discussed why the possibility of com-
munication does not trivially address this issue). Since Markov equilibria
do not require unbounded memory, it is an implication of our results that
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ignoring the bounds on memory is harmless.
Our result relies on the assumption of sequential moves (see Section

5.4). The choice of modelling strategic situations via simultaneous moves or
sequential moves is often one of convenience in applied analysis. The preva-
lence of simultaneous move modelling occurs more by convention than con-
viction. Presumably economic actions of consequence do not literally occur
at the same instant. The importance of the sequential versus simultaneous
moves modelling derives from the accompanying informational assumptions.
In particular, the assumption that two players make a simultaneous choice of
actions is best understood as a metaphor for the situation that they choose
actions at different points in time but in ignorance of each other’s action
choice. Our analysis assumes sequential moves, which by itself is a weak
assumption, but imposes a semi-public signals assumption that essentially
requires that signals about actions are publicly observed by players that are
active in the game at the time.

The Markov assumption is ubiquitous is dynamic models of industrial
organization used in both theoretical and empirical work (see Doraszelski
and Pakes (2007) for a survey of the literature growing from Ericson and
Pakes (1995)). We can gain perspective on our assumptions and results by
using this literature as a case study. When would the Markov assumption
be justified by the type of considerations in this paper? Bounded social
memory is very natural in this context because overlapping generations of
managers will often be involved in implementing decisions. Are the relevant
actions simultaneous or sequential and, if the latter, does the semi-public
signals assumption make sense? If we think of actions which have long run
implications, i.e., investment, entry and exit decisions, it may be natural to
assume that actions take place sequentially and information is semi-public.
If we focussed on these decisions, there are forces pushing towards Markov
behavior. On the other hand, product market competition is often modelled
via a simultaneous move game, both because significant choices may actually
be made closer together in time and because information cannot be semi-
public. The Markov assumption may be less compelling in this case.
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Ely, J. C., and J. Välimäki (2002): “A Robust Folk Theorem for the
Prisoner’s Dilemma,” Journal of Economic Theory, 102(1), 84–105.

Ericson, R., and A. Pakes (1995): “Markov-Perfect Industry Dynamics:
A Framework for Empirical Work,” Review of Economic Studies, 62(1),
53–53.

Fudenberg, D., and D. K. Levine (1989): “Reputation and Equilibrium
Selection in Games with a Patient Player,” Econometrica, 57(4), 759–778.

Fudenberg, D., and J. Tirole (1991): “Perfect Bayesian Equilibrium
and Sequential Equilibrium,” Journal of Economic Theory, 53(2), 236–
260.

Harsanyi, J. C. (1973): “Games with Randomly Disturbed Payoffs: A
New Rationale for Mixed-Strategy Equilibrium Points,” International
Journal of Game Theory, 2(1), 1–23.

Harsanyi, J. C., and R. Selten (1988): A General Theory of Equilibrium
in Games. MIT Press, Cambridge.

Jehiel, P. (1995): “Limited Horizon Forecast in Repeated Alternate
Games,” Journal of Economic Theory, 67, 497–519.

Kandori, M. (1992): “Repeated Games Played by Overlapping Genera-
tions of Players,” The Review of Economic Studies, 59(1), 81.

Liu, Q. (2011): “Information Acquisition and Reputation Dynamics,” Re-
view of Economic Studies, 78(4), 1400–1425.

Liu, Q., and A. Skrzypacz (2011): “Limited Records and Reputation,”
Columbia University and Graduate School of Business, Stanford.

Mailath, G. J., and S. Morris (2002): “Repeated Games with Almost-
Public Monitoring,” Journal of Economic Theory, 102(1), 189–228.

(2006): “Coordination Failure in Repeated Games with Almost-
Public Monitoring,” Theoretical Economics, 1, 311–340.

Mailath, G. J., and W. Olszewski (2011): “Folk Theorems with
Bounded Recall under (Almost) Perfect Monitoring,” Games and Eco-
nomic Behavior, 71(1), 174–192.

32



Mailath, G. J., and L. Samuelson (2006): Repeated Games and Rep-
utations: Long-Run Relationships. Oxford University Press, New York,
NY.

Maskin, E., and J. Tirole (1987): “A Theory of Dynamic Oligopoly, III:
Cournot Competition,” European Economic Review, 31(4), 947–968.

(1988a): “A Theory of Dynamic Oligopoly I: Overview with Quan-
tity Competition and Large Fixed Costs,” Econometrica, 56(3), 549–569.

(1988b): “A Theory of Dynamic Oligopoly, II: Price Competition,
Kinked Demand Curves, and Edgeworth Cycles,” Econometrica, 56(3),
571–599.

(2001): “Markov Perfect Equilibrium I. Observable Actions,” Jour-
nal of Economic Theory, 100(2), 191–219.

Morris, S. (2008): “Purification,” in The New Palgrave Dictionary of Eco-
nomics Second Edition, ed. by S. Durlauf, and L. Blume, pp. 779–782.
Macmillan Palgrave.

Muthoo, A., and K. Shepsle (2010): “Information, Institutions and Con-
stitutional Arrangements,” Public Choice, 144(1–2), 1–36.

Peski, M. (2009): “Asynchronous Repeated Games with Rich Private Mon-
itoring and Finite Past,” Department of Economics, University of Toronto.

(2012): “An Anti-Folk Theorem for Finite Past Equilibria in Re-
peated Games with Private Monitoring,” Theoretical Economics, 7(1),
25–55.

Piccione, M. (2002): “The Repeated Prisoner’s Dilemma with Imperfect
Private Monitoring,” Journal of Economic Theory, 102(1), 70–83.

Radner, R., and R. Rosenthal (1982): “Private Information and Pure-
Strategy Equilibria,” Mathematics of Operations Research, 7(3), 401–409.

Rubinstein, A. (1982): “Perfect Equilibrium in a Bargaining Model,”
Econometrica, 50(1), 97–109.

Samuelson, P. A. (1958): “An Exact Consumption-Loan Model of Interest
With or Without the Social Contrivance of Money,” Journal of Political
Economy, 66(6), 467–482.

33



Smith, L. (1992): “Folk Theorems in Overlapping Generations Games,”
Games and Economic Behavior, 4(3), 426–449.

Topkis, D. M. (1998): Supermodularity and Complementarity. Princeton
University Press.

34


	Introduction
	A Long-Run Player/Short-Run Player Example
	The Benchmark Game
	The Game with Payoff Shocks
	The General Structure of the Perturbed Game
	Mutual Sequential Best Responses are Markov
	Purification

	Extensions and Discussion
	Continuum Action and State Spaces
	Bounded Memory and Communication
	Alternative Informational Assumptions on Signals
	Simultaneous Move Games
	Purification of Stationary Markov Equilibria
	The Notion of Markov State

	Concluding Comments
	References

