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Abstract

In repeated games with imperfect public monitoring, players can use
public signals to perfectly coordinate their behavior. Our study of repeated
games with imperfect private monitoring focuses on the coordination prob-
lem that arises without public signals. We present three new observations.
First, in a simple twice repeated game, we characterize the private signalling
technologies that allow non-static Nash behavior in pure strategy equilibria.
Our characterization uses the language of common p-belief due to Monderer
and Samet (GEB, 1989). Second, we show that in the continuum action
convention game of Shin and Williamson (GEB, 1996), for any full support
private monitoring technology, equilibria of the finitely repeated convention
game must involve only static Nash equilibria. By contrast, with sufficiently
informative public monitoring, the multiplicity of Nash equilibria allows a
finite folk theorem. Finally, for finite action games, we prove that there
are full support private monitoring technologies for which a Nash reversion
infinite horizon folk theorem holds.
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Repeated Games with Imperfect Private Monitoring:
Notes on a Coordination Perspective

by George J. Mailath and Stephen Morris

1. Introduction

Repeated games with imperfect public monitoring are well-understood. When
public signals provide information about past actions, punishments contingent
on public signals provide dynamic incentives to choose actions that are not static
best responses (see Green and Porter [12] and Abreu, Pearce, and Stacchetti
[1]). Moreover, if the public signals satisfy an identifiability condition, a folk
theorem holds: if the discount rate is sufficiently close to one, any individually
rational payoff can be supported as the average payoff of an equilibrium of the
repeated game (Fudenberg, Levine, and Maskin [11]). Perfect public equilibria of
games with imperfect public monitoring have a recursive structure that greatly
simplifies their analysis (and plays a central role in Abreu, Pearce, and Stacchetti
[1] and Fudenberg, Levine, and Maskin [11]).! In particular, any perfect public
equilibrium can be described by an action profile for the current period and
continuation values that are necessarily equilibrium values of the repeated game.
However, for this recursive structure to hold, all players must be able to coordinate
their behavior after any history (i.e., play an equilibrium after any history). If
the relevant histories are public, then this coordination is clearly feasible.
Repeated games with imperfect private monitoring have proved less tractable.
Since the relevant histories are typically private, equilibria do not have a simple
recursive structure.? Consider the following apparently ideal setting for sup-
porting non-static Nash behavior. There exist “punishment” strategies with the
property that all players have a best response to punish if they know that others
are punishing; and private signals provide extremely accurate information about
past play, so that punishment strategies contingent on those signals provide the
requisite dynamic incentives to support action profiles that are not static Nash.
Even in these circumstances, there is no guarantee that non-static Nash behavior
can be supported in equilibrium. The problem is that even when one player is al-
most sure that another has deviated and would want to punish if he believed that

LA strategy is public if it only depends on the pubic history, and a perfect public equilibrium
is a profile of public strategies that induces a Nash equilibrium after every public history.

2 Amarante [3] provides a large state space recursive characterization of the equilibrium set
of repeated games with imperfect private monitoring.
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Figure 1.1: A two stage game.

others were punishing, he is not sure that others are almost sure that someone
has deviated. With private signals, unlike public signals, there is not common
knowledge of the histories that trigger punishments. Common knowledge is a
sufficient condition for coordinating behavior. But is it a necessary condition??
To illustrate the issues we explore, consider the two stage game in Figure
1.1. If player 1 observes player 2’s choice (i.e., there is perfect monitoring),
there is a subgame perfect equilibrium in which player 2 plays R in the first
stage. Now suppose player 2’s choice is not observed, but there is a public signal
w € {l,r}, with the signal correctly revealing the action taken with probability
1—e. Consider the public profile: player 2 plays R in the first stage, and (G, G) is
played if r is observed and (B, B) is played otherwise. This will be an equilibrium
if ¢ < 1/4. Note that independent of the signal observed, the profile specifies
a Nash equilibrium of the continuation game. This is just a reflection of the
recursive structure of perfect public equilibria discussed above. Note also that in
equilibrium, both players play B after [ only because they expect the other player
to do so.* Now suppose that the signal about player 2’s stage 1 choice is private:
only player 1 observes the signal wy € {l,7}. The only stage 1 action consistent
with pure strategy equilibria in this case is L. Since player 2 does not observe the
signal, her stage 2 behavior must be independent of it. Since we are considering
pure strategies, her second period choice is thus deterministic and independent
of the signal. But this means the sequentially-rational choice for player 1 is also

3 An alternative solution to the co-ordination problem is to allow players to (publicly) commu-
nicate, thus automatically generating the required common knowledge histories (see Compte [9],
Kandori and Matsushima [16], and Aoyagi [4]). Although the coordination problem is automat-
ically solved by public communication, a new set of problems arises from players’ truth-telling
contraints.

4Player 2 is not being punished for deviating since, in equilibrium, the signal [ is observed
with positive probability. Player 1 assigns probability 1 to the event that player 2 had followed
the equilibrium specification of R after observing I. Of course, if (B, B) is not specified after [,
player 2 has no incentive to play R.



independent of the signal, and so player 2 has no incentive to play R.> Finally,
suppose that player 2 also received a private signal, wo € {l,r}, correlated with
player 1’s private signal (player 2 of course knows her own stage 1 action, but
additional information about player 1’s signal is valuable). The second stage is
now a game of incomplete information, with different values of w; corresponding to
different types (the game is degenerate in that payoffs are independent of type).
Clearly, there is an equilibrium of this incomplete information game where all
types of each player choose B and another one where all types choose G. Neither
of these will support R in the first stage. But are there also equilibria where
both actions G and B are each chosen by some types? In this case, we could say
there is contingent coordination: players coordinate their behavior, contingent on
payoff-irrelevant types, despite a lack of common knowledge. It would clearly be
sufficient if the signals w; and we were almost perfectly correlated (i.e., if the
signal structure was almost public).

The literature on higher-order beliefs has explored the role of common knowl-
edge in coordination in static games of incomplete information (Monderer and
Samet [18], Morris, Rob and Shin [19], Kajii and Morris [14]; see Kajii and Mor-
ris [13] for a survey). A basic insight from that literature can be illustrated by
modifying our earlier example. Ignore the first stage and suppose each player
1 observes a payoff-irrelevant signal, w;, from some finite set, §2;, before playing
the second stage. Write 7 for the joint probability distribution on €1 x 25 and
assume it has full support. Thus the two players are engaged in a incomplete
information game. There exists a pure strategy equilibrium where both G and B
are chosen if and only if there exist two disjoint subsets of the state space 21 x (o
that can be approximately commonly known (in the sense of Monderer and Samet
[18]). More precisely, fix such an equilibrium and write QF for the set of types of
player ¢ who choose action G and Qf for the set QZ\QZG , 1.e., the set of types who
choose action B. A necessary condition for equilibrium is that each type w; € Qf
believe (under 7) with probability at least % that we € QF, and vice versa. If this
condition holds, the event Qf x Qf is said to be “I-evident”: whenever the event
occurs, both players believe it with probability at least %. This implies that the
event QF x QF is “common %—belief” at all states in Qf x QF: Monderer and
Samet [18] showed that Qf x QF is exactly the set of states where both players
believe QlG X Qg with probability at least i, both players believe with probability
at least i that both believe Q x QF with probability at least i, and so on ad

5The restriction to pure strategies is important. Suppose the payoff from the profile (G, G)
is k for each player, rather than 3. If k € (2,23] and ¢ = (k—2)/(k — 1), there is a mixed
strategy equilbrium in which player 2 chooses L with probability « € [,2(1 —¢) /(2 —€)]. We
return to the issue of mixed strategies in Section 2.



infinitum. An analogous argument shows that Qf x QF is %—evident. Observe
that this condition is quite stringent: there must be two, disjoint events such that
whenever either occurs, both players attach some minimal probability to it having
occurred. If QF and QF are singletons, the condition is equivalent to requiring
sufficiently correlated signals (as we described in the previous paragraph).

This example illustrates the type of problem that arises in repeated games with
imperfect private monitoring. Players’ types (at each date) are their private and
payoft-irrelevant histories. There is not common knowledge of types. How much
approximate common knowledge is required to achieve contingent coordination?
This comparison suggests that we might want to look for a result of the following
form:

A folk theorem holds for a repeated game with imperfect private mon-
itoring if and only if there exist approximate common knowledge sets
of private signals (i.e., “almost public” events) with the property that
those almost public events are sufficiently informative (in the sense of
the imperfect public monitoring folk theorems).

Unfortunately complications arise in trying to make this vague conjecture pre-
cise. First, the connection between approximate common knowledge and equi-
libria coordinated on payoff irrelevant events can be made precise in examples
(as we demonstrated above), but it is more complex in the continuation games at
arbitrary histories of a repeated game. Mixed strategies present special problems,
as illustrated by footnote 5 and their role in the imperfect public monitoring folk
theorem (see Fudenberg, Levine, and Maskin [11, footnote 13]). Further compli-
cating matters is the possibility of purification (see the end of Section 2). Second,
in static games, the information structure is given by the (exogenous) probability
distribution over types. In repeated games with imperfect private monitoring,
the probability distribution over types at any date depends on not only the (ex-
ogenous) monitoring technology but also the (endogenous) strategies. Thus it
will in general be hard to guarantee that a given property of the monitoring tech-
nology implies that the distribution over types does (or does not) entail enough
approximate common knowledge to allow contingent coordination. Posterior dis-
tributions over types are especially hard to analyze with mixed strategies.

Nonetheless, we believe that this “coordination perspective” may be valuable
in understanding repeated games with imperfect private monitoring. The purpose
of this paper is to describe a number of positive (i.e., folk theorem type) results
and negative (i.e., anti-folk theorem type) results in examples. We, like much
of this literature, focus on noisy imperfect private monitoring. There is also a



small literature on monitoring where only a subset of players perfectly observe
the behavior of some player (see, for example, Ben-Porath [5] and Ahn [2]).

Section 2 considers the simplest possible two stage game in which we can
explore the coordination perspective. In particular, we suppose that two players
play the prisoner’s dilemma in the first period and a coordination game in the
second period (this is essentially a symmetric version of Figure 1.1). In this
simple case, we are able to characterize completely pure strategy equilibria (for
arbitrary monitoring technologies) and demonstrate that approximate common
knowledge in the monitoring technology is both necessary and sufficient for co-
operation in the first stage prisoner’s dilemma. But we also demonstrate how
mixed strategies in the first period can be used to generate the required correlation
and thus approximate common knowledge of types in the second period, even
if the monitoring technology generates independent signals conditional on any
pure action profile. This section builds on Bhaskar and van Damme [1997] who
demonstrated the role of correlated signals in supporting pure strategy equilibria
in a similar context.

In section 3, we present an “anti-folk” theorem. Shin and Williamson [21]
introduced and analyzed a simple continuous action “convention game,” where
there was a continuum of Nash equilibria but nonetheless it was impossible to
coordinate different conventions contingent on any event that was not full common
knowledge (common p-belief for any p < 1 is never sufficient). This is thus a very
extreme game. But exploiting the coordination perspective outlined above, we are
able to show that for any full support private monitoring technology, equilibria of
the finitely repeated convention game must involve only static Nash equilibria. By
contrast, with perfect monitoring or sufficiently informative public monitoring,
the multiplicity of Nash equilibria allows a finite folk theorem.

This anti-folk theorem suggests that we cannot be sure to obtain positive (i.e.,
folk theorem) results even if we are allowed to pick any full support private moni-
toring technology. But in Section 4, we show that for a particular type of private
monitoring technology, there is an infinite horizon folk theorem for finite action
games. The finite action restriction is crucial as it allows a non-trivial degree
of approximate common knowledge to be sufficient for coordination. Our pri-
vate monitoring technology has players’ signals highly correlated whatever action
profile was chosen in the previous period. One interpretation of this monitoring
technology is that we are in a world of almost (but not complete) imperfect public
monitoring. We prove a folk theorem for two different strategy profiles, although
both have a Nash reversion flavor. In Section 4.1, we consider strategy profiles
where players’ actions depend only on the private signal they observed in the pre-
vious period. Together with the highly correlated signal structure, this ensures
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Figure 2.2: A Coordination Game

that there is always approximate common knowledge of the actions other players
will be taking at any history. In Section 4.2, we consider Nash reversion in which
a particular Nash equilibrium “threat point,” once reached is never left. Unlike
the profile of Section 4.1, this profile does depend upon the entire history. How-
ever, as long as the correlation in the signals is sufficiently strong, the required
approximate common knowledge still holds.

2. A Two Stage Example

In our first example, two players are involved in a two stage game. In the first
period, they play the prisoner’s dilemma in Figure 2.1,where x > 0. In the second
period, they play the coordination game in Figure 2.2, where k£ > 2. There is no
discounting. Under these assumptions, with perfect monitoring, it is possible to
support (C,C) in the first period with pure strategies.

Now consider the case with imperfect private monitoring. Before choosing his
second period action, player i observes a signal w; from a finite set {2; concerning
the first period action profile; write 7 ((w1,ws) |a) for the positive probability
that signals (w1,ws) are observed when first period actions are a € {C, D}z. To
keep the example simple, we assume 7 is symmetric, i.e., 7 ((wj,w;)|(aj,a;)) =
7 ((wi,w5) l(ais az)):

When the players play according to a Nash equilibrium of this two stage game
with imperfect private monitoring, the second stage can be viewed as a game of
incomplete information, with player i having T; = {C, D} x €); as his type space.
Moreover, there is a joint distribution over this type space induced by first period
behavior and 7.

In order to characterize the critical properties of w, we introduce belief oper-



ators (see Monderer and Samet [18]). For any E C ©; X Qq, say that i p-believes
E at w = (wi,wse) if m(E |w;) > p. The belief operator for player i identifies the
signals at which i p-believes F, i.e.,

BY(E;a) = {w € Q1 x Qg : m(E|w;, a) > p}.

The event E is p-evident (given a) if E C BF(FE;a) for i = 1,2. Note that if £
is p-evident, then (since belief operators are monotonic, in the sense that £/ C E
implies B} (E';a) C B} (E;a)) E C B (E;a) C B (B}(E;a);a), ie., i also assigns
a probability of at least p to j assigning probability of at least p to E.

Proposition 1. There exists a pure strategy equilibrium with cooperation in the
first period if and only if each ); can be partitioned into sets {QlG, OB } such that

1. QF x QF is tig-evident (given CC),
2. QF x QF is tir-evident (given CC), and
3.k {(QF x 0§|cC) —n (Qf x 0§| DC)}
+{r (2F x f|cC) - = (0F x 0F| DC)} > 1.

This follows almost immediately from the definition of equilibrium. Suppose
there is a pure strategy equilibrium (87, $2) with

. . G
§l = C and 8 (C,w;) = { g EZ E 33
Properties [1] and [2] in the lemma follow from the requirement that second
period strategies constitute a (Bayesian) Nash equilibrium of the second period
game following C'C' (this is a degenerate incomplete information game). Property
[3] of the lemma is required to ensure that it is optimal to play C in the first
period.

The pure strategy restriction is key to the above analysis. The role of mixed
strategies in this context has been explored by Bhaskar and van Damme [7].5 They
consider a twice repeated game with imperfect private monitoring. Our two stage
game is essentially a stripped down version of their twice repeated game. They
note that co-operation (i.e., an efficient but dominated action) is impossible in

6Kandori [15] shows how with private monitoring, mixed strategies may allow non-static Nash
behavior even in finitely repeated games with a unique Nash equilibrium.
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Figure 2.4: The distribution if o = 1.

pure strategy equilibria with independent signals, but note that co-operation is
possible with correlated signals. Our Lemma 1 provides an exact description of
how great the deviation from independence must be to allow co-operation.

Bhaskar and van Damme go on to show that mixed strategies allow co-
operation in the first period, even with independent signals.” We now illustrate
this point in our example. In doing so, we will note how mixed strategies generate
the requisite approximate common knowledge even when the private monitoring
technology generates no correlation and thus no approximate common knowledge
of the signals.

Consider an independent monitoring technology, with €; = {¢,d}, in which
each player observes his opponent’s action correctly with independent probability
1 — ¢, and incorrectly with probability e. We denote the signal of the opponent’s
action by a lower case letter. Thus,

(1—5)2, if wg = as and wy = aq,
e(l—¢), ifw; =ayand wy # ay,
e(l1—e¢), ifwy # ag and we = ay,

g2, if w1 # as and wo # ay.

7 ((w1,w2) | (a1,a2)) =

"The probability of co-operation is bounded away from one as the noise goes to zero. But
the additional use of public sunspots allows co-operation with probability approaching one using
mixed strategies, as the noise goes to zero.
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Suppose that each player co-operates with probability « in the first period, and
defects with probability 1 — a. The induced distribution over the type space
T1 x Ty is given in Figure 2.3. Setting o = 1 gives the pure strategy outcome of
first period cooperation, with an induced distribution over types given in Figure
2.4, which cannot give pure strategy contingent coordination (using Lemma 1).
In particular, {(c,c)} is (1 —e)-evident, while {(d,d)} is only e-evident. The
difficulty, of course, is that specifying B after a realization of ¢ (as would be
required by condition [2]) removes any incentive to choose C in the first stage.
From the induced probability distribution on the type space T1 x T we also see
that for o = 1, the types are independent.

On the other hand, mixed strategies generate correlated types. As e — 0
(holding « constant), the distribution over types tends to the distribution given
in Figure 2.5. In other words, for any p < 1, {Cc} x {Cc} and {Cd, D¢, Dd} x
{Cd, D¢, Dd} are both p-evident sets for e small. Thus, for small ¢ and mixed
first period strategies, there is no problem coordinating punishments in the second
period.

It is straightforward to construct symmetric mixed strategy equilibria using
the above insight. Consider the following mixed strategies:

1 1] «, 1fa11:C',
Ui[ai]_{l—a, if al = D,
and

1, ifa? =G and a} =w; =C,
o7 (all,wi) {aﬂ =< 1, ifa? = B and either a} = D or w; = D,
0, otherwise.

Second period optimality requires

a(l—e)? 1
a(l—e)+(1—a)e 1+ Kk’

9



ag? 4+ (1 —a)(1—e) S k

ac+(1—a)(1—¢) — 11k (2.1)
a(l—e+(1—-a)e .k
a(l—e)+(1—-a)e — 14k’
ac(l—e)+(1—-a)(1—¢) k
and ac+(1—a)(1—2¢) = 1+k

For the mixed strategy to be optimal in the first period, we must have the payoff
to co-operating,

« {x +(1—e)? k+e 1}—|—(1—a) {(-1+(1—¢)-1} = azta (1l —e)? k+ac®—(1-a)e,
equal to the payoff from defecting,
a{l+z+(1—-¢)- 1}+(1—-a){l} =ar+a(l —¢)+ 1.

Thus we must have

14¢
k(1—e)?+e242—1

a=al)=

Ase — 0, a(e) — 1/ (k — 1) and the inequalities (2.1) will be satisfied.®

Finally, imperfect monitoring may allow the mixed strategy equilibrium to be
purified. As an extreme example, add an earlier stage to the game. This earlier
stage, like the other two stages, is a simultaneous move stage game with two
actions, L and R. Suppose the payoffs in this stage game are such that L is a
dominant action in the overall game (not just in the first stage). Suppose, more-
over, that imperfect monitoring in this stage generates continuously distributed
signals w} € [0,1]. Let = satisfy Fr(x) = &(g), where Fy, is the distribution
function of w} when both players choose L. Then, the following pure strategy
profile is an equilibrium: In the first stage, both players choose L. In the second
stage, player i chooses C if he observed a signal w} < z, and D otherwise. In
the last stage, each player chooses G if he had chosen C' in the second stage and
observed ¢, and chooses B otherwise. Note that by choosing R in the first stage, a
player can influence (perhaps advantageously) the distribution of his opponent’s
play in the second stage. The assumption that L is dominant in the overall game
is a crude assumption ruling out the profitability of such a deviation. A similar
effect is obtained by finitely repeating the prisoner’s dilemma before playing the

8Since both players are randomizing in the first stage, a player’s probability of C is used to
make the opponent indifferent, and so the mixed strategy equilibrium exists for all small . In
contrast, the mixed strategy equilibrium of footnote 5 required a particular value of €.

10



coordination game, discounting payoffs, and only using the first period signal to
purify behavior in the penultimate stage. This example also requires continuously
distributed signals to ensure that the appropriate probability of C' in the second
stage can be achieved. Since the signals are not directly payoff relevant, each
player must be indifferent between the two choices in the second stage, and this
is guaranteed by the appropriate probability of C' by the opponent.

3. An Anti-Folk Theorem

In this section, we present an example of a stage game with multiple Nash equi-
libria with the property that for any number of finite repetitions and any full
support private monitoring technology, every equilibrium of the finitely repeated
game consists only of repetitions of static Nash equilibria.

We will be concerned with a two player “convention” game. There are two
players, 1 and 2. Player i chooses an action a; € [0, 1]. Payoff functions are

g1 (a17a2) =az— (al - a2)2

and
g2 (a1,a2) =1 —ay — B (a1 — az)?,

where § > 0. This is a special case of a class of games analyzed by Shin and
Williamson [21]. There is a continuum of Nash equilibria: since each player’s
best response is to copy his opponent’s action, (ai,as) is a Nash equilibrium if
and only if a; = as. Thus the sum of players’ payoffs is 1 in any equilibrium. But
if player 1 chooses action 0 and player 2 chooses action 1, both players receive
payoff 1 — 3. So for small 3, there is a feasible action profile Pareto-dominating
the symmetric Nash equilibrium.

We first analyze what happens when this game is played once, but each player
has access to some payoff irrelevant signal; specifically, each player observes a
payoff irrelevant signal w; € €;, where each ; is finite and (w1,w2) is drawn
according to some full support distribution 7 € A (1 x Q). For any z € [0,1],
this game has an equilibrium where each type of each player chooses action z.
Shin and Williamson [21] showed that there are no other equilibria. The argument
is elementary. Let T be the largest action chosen by any type in an equilibrium.
This is a best response only if every type of the other player chooses action Z.
Thus play contingent on (full support) payoff irrelevant signals is inconsistent
with equilibrium in this example.

Now we consider what happens when the convention game is repeated T' times.
With perfect monitoring, we could clearly obtain a finite folk theorem along the

11



lines of Benoit and Krishna [6]. We will show that if there is full support imperfect
private monitoring, Nash equilibrium play must involve a finite sequence of static
Nash equilibria.

Player ¢ observes a signal w; from a finite set €2;; let 7 ((w1,w2)|(a1,a2)) be
the probability that signals (wi,w2) are observed if actions are (ai,az); = has
full support. A player i period t history is hf = (al,w])!_}; write H} for the
set of such histories. Write A*(S) for the set of simple (i.e., finite support)
probability distributions on S. A player i period ¢ simple mixed strategy is a
function ot : Hf — A* ([0, 1]). A player i strategy is o; = (Uf);{:l. Given o;, write
;15 (o) for the set of action sequences up to ¢ played with positive probability by
player i, i.e.,

— / 12 T—1
A (o) = {(azf_l  o,11¢] forvome (D of ((a? wr),, ) [a7] > 0 } |

forT=1,..,t

Proposition 2. The strategy profile (01, 02) is a Nash equilibrium of the finitely
repeated convention game if and only if there exists (ZL‘t)Z;l e [0,1]7, such that

ot ((a[,w{)t;:ll) [#!] = 1 whenever (af)!_} € A7 (o).

Proof. Write 27 for the maximum of the set of x such that o ((a{, w[)f;ll ) [x] >
0 for some 4 and (a[)z;ll € AT=1(¢}) and (w:)f:_ll e []" . Since this history
is reached with positive probability, the equilibrium type playing #7 must be
playing a best response. Since any play by other players is consistent with player
i’s private history (by the full support assumption), every equilibrium type of
every other player must be playing 7. Thus every equilibrium type of player
i must choose 2. Now write 27! for the maximum of the set of 2 such that
ol 1 (h?_l) [2] > 0 for some i and h] ' with (a[)z;_f € AT=2(¢;). But the
equilibrium type playing 7~ knows that all types of all players will play xT
next period. Thus his best response depends only on payoffs in period T — 1.
Now the argument iterates to show the result.

|

The argument applies to a larger class of coordination games that satisfy the
condition (CC) of Shin and Williamson [21, p. 262]. Suppose the action space
for all players is the interval [0, 1] and let F' be a distribution on [0, 1]. Let ap,
(apr) denote the inf (respectively, sup) of the support of F. Then (CC) requires
that if a,, = aps then the best reply to F is a,,. In addition, if a,, < aps then
the best reply lies strictly between a,, and aps. Clearly, any game that falls into
this class after relabelling of actions is also covered.

12



4. Folk Theorems

In this section, we prove a folk theorem for infinitely repeated games with a
discrete action set, if we are allowed to choose a full support private monitoring
technology. Specifically, suppose that there is a pure strategy payoff profile u*
that strictly Pareto-dominates some strict pure strategy Nash equilibrium payoff
profile. Then there is an equilibrium of the infinitely repeated game supporting
payoffs arbitrarily close to u* for all discount rates close to 1.

We note two reasons why the construction is not trivial, even though we pick
the private monitoring technology. First, the previous section proved an anti-
folk theorem (with a finite horizon) for the convention game for any full support
private monitoring technology. Some special properties—including the continuum
of actions—were necessary for the result that no degree of approximate common
knowledge was sufficient to achieve contingent coordination. Nonetheless, this
result tells us that there are limits to what can be achieved with full support
private monitoring, uniformly across full support monitoring technologies.”

Second, an important paper by Compte [8] considered trigger-strategy equilib-
ria of the infinitely-repeated prisoner’s dilemma. A trigger-strategy equilibrium
has the property that if, in equilibrium, a player defects, he then defects forever
with probability one. Compte showed that, for some class of full support inde-
pendent signal private monitoring technologies and discount rates close to one,
the average expected payoff is close to the payoff from defection.!® We show how,
without independent signals, simple pure strategies can generate a folk theorem

Our results should be contrasted with positive folk theorem results that work
for a range of private monitoring technologies. Sekiguchi [20] proves a folk the-
orem, using mixed strategies, for a class of repeated prisoner’s dilemmas, for
sufficiently accurate private monitoring technologies that may be independent.
We discuss the relation to this result in more detail below.!!

Fix a finite stage game with players 7 = {1,..,I}, action sets {A;};.; and
payoff functions {u;};.7, each u; : A — R where A = Ay x .. x A;. Let a be
a strict pure strategy Nash equilibrium and write u; = u; (a). Let @ be another

9Recall that we only proved a finite horizon anti-folk theorem for the convention game. The
arguments of this section do not apply to games with a continuum of actions, and we do not
know if the arguments could be adapted to incorporate the convention game.

"Matsushima [17] also shows an anti-folk theorem. In particular, suppose that signals are
independent and that players are restricted to pure strategies which depend on payoff-irrelevant
histories only if that payoff-irrelevant history is correlated with other players’ future play. These
restrictions are enough to prevent co-ordination.

"Bhaskar and van Damme [7] prove a folk theorem in an infinitely repeated one-sided moral
hazard game using mixed strategies and sunspots.
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pure strategy profile with @; = u; (a) > w; for all i € Z.

Let
A= omax maxui(e) - (@)
g = min i lu; (a) — u; (d)].

min
i€l {a,a’€A:ui(a)Fu;(a’)}

The game is repeated infinitely often. Each player discounts the future with
discount rate 6 € (0,1). Each player ¢ observes a private signal w; € {H, L}
concerning the action profile in the previous period. Write (2 for the set of possible
signal profiles, {H, L}!; write w for a typical element of Q, H for the element
where all observe H and L for the element where all observe L. Write 7 (w|a)
for the probability of signal profile w given action profile a. We will be interested
in a class of full support private monitoring technologies parameterized by three
numbers, «, § and €, all in the interval (0, 1); let

a(l—2e), if w=H,
rwla)={ (1-a)(1-2), ifw=L,
ﬁ? lfw¢{H7L}7
and, for all a # a,'?
B(1—2¢e), if w=H,
W(w’a): (1—6)(1—26), ifw:L,
(2125—1,1)7 ifwé¢ {H,L}.

Writing w! for player i’s private signal in period ¢, a period ¢ private history for
player i is hf = (a7, w] )i}

i /r=1"

4.1. An “Alternating Nash” Folk Theorem

Our first result restricts attention to strategies that depend only on one-period his-
tories. Because we restrict attention to such strategies (and finite action spaces),
it is possible to impose restrictions on the private monitoring technologies suffi-
cient to ensure the requisite approximate common knowledge at any history. In
particular, these restrictions on the monitoring technology are independent of §.
In the next sub-section, with the same private monitoring technology, we prove
that Nash reversion is also an equilibrium.

12While the number of players, I, does not explicitly play a role, it is worth noting that the
signaling structure is more “discontinuous” for large I—only one player deviating from a; leads
to a big change in 7 independent of I.
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Consider the following simple strategy for player i:
a;, ift=1,

&t (hf) =< a; ift>landw H,
a;, ift>1andw!™t=L.

~+

t—1

o

~

We will be interested in the case where « is close to 1, G is close to 0 and ¢ is
much closer to 0 than either 1 —« or 5. Considering e small implies that whatever
signal a player observes, he expects that other players have observed the same
signal. This kind of information structure makes sense if there is a public outcome
H or L depending on players’ actions and with high probability players observe
the public outcome correctly. But with small probability (of order ¢) players’
private observations of the public outcome are corrupted. However, we also take
a close to 1 and (3 close to 0. This is necessary for both the profile to be an
equilibrium and for it to yield an average expected payoff close to w. For the
case of imperfect public monitoring, ¢ = 0, this strategy profile is not a Nash
equilibrium of the repeated game for a small or § large. Moreover, the signaling
structure violates the pairwise identification and pairwise full rank restrictions
of Fudenberg, Levine, and Maskin [11], so that we should not expect a public
monitoring folk theorem to hold for arbitrary a and 3.

We start by giving sufficient conditions for (5;);c; to be an equilibrium.
We impose the following joint restrictions on the private monitoring technology
(a, B, ¢) and the discount factor 6:

a>p, (4.1)

B —2) A 1
ﬂ(1—2s)+s>ﬁ<6(1—25)(a—5)_1>7and (4.2)
(1-a)(d—2) A )

(I—a)(1—-28)+e  A4+p(l—-6(1—-2¢)(a—p)
Lemma 1. If (o, 3, ¢, 0) satisty (4.1-4.3), then (3;),.7 is an equilibrium.

Restriction (4.1) can be viewed as a normalization on the interpretation of
the signals. If a = §, then of course conditioning behavior on the signal cannot
discipline behavior. If, on the other hand, o # (3 then the signal realized with
largest probability after a is labeled H. Restriction (4.2) comes from the H-
incentive constraint, i.e., it is the condition that guarantees that it is optimal
for player i to choose a; after observing w! = H in the previous period. This
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condition still has bite if ¢ = 0. Finally, restriction (4.3) comes from the L-
incentive constraint, i.e., it is the condition that guarantees that it is optimal for
player i to choose g; after observing w! = L in the previous period. This condition
is satisfied for all a, §, and ¢ if ¢ = 0, since @ is a Nash equilibrium of the stage
game and so is statically self-enforcing. Condition (4.3) is needed since, with
imperfect private monitoring, a player after observing L does not know whether
the other players have also observed L.

Proof. Write v; (w) for player i’s continuation value (under the proposed strate-
gies) when the private signal profile was w. Define a; (H) = a;, a;(L) = a;,
@ (w) = (& (i));er and i (@) = u; (@ (w)). Then,

v; (w) )+6 Y m (W a(w)) v (W) (4.4)

w'eN

We will be concerned with A; = v; (H) — v; (L). From (4.4), (since w(w|H) =
m(w|L) for w ¢ {H,L}) we have A; = @; —u; + 6 (1 — 2¢) (o — B) Ay, and so

U; — Uy

1-6(1—2¢)(a—7)

Now suppose player ¢ observes H and attaches probability £ to all his opponents

observing signal H. A sufficient condition for a; to be a best response is, for any
a = (aj,a_;) € A,

13 (uZ +6 Z 7 (W' a) v (w’))
w'eN
+(1-¢) (uz (@,a—)+6 > (| (i, a-4)) vi (w/))

A =

w’'eN

w'eN

> § ( a“ +5 Z w| a;, a )) Vi (w/)) (45)

+(1-9) ( (ai,a—g) +6 Y 7 ('] (ai,a—)) vs (w’)) :

w’'eN

For a_; = a—;, (4.5) reduces to 6 (1 — 2¢) (v — B) Ay > w; (a;, a—;) — u;, which is
implied by condition (4.2). If a_; # a_;, re-arranging and substituting for 7 gives

6 (1 —2¢) (a = B) Ai§ = & (ui (a5, a—i) — @) + (1 = &) (wi (i, a—i) — ui (@i, ) -
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The right hand side is at most A and A; is at least p/ (1 — 6 (1 — 2¢) (o — 3)), so
it is enough to have

= A 1
26 e Y o

It would be very complicated to calculate players’ posterior probabilities that all
other players will observe H under every possible history. But our information
structure allows us to bound these posteriors. If a player believed that action pro-
file @ was chosen last period, he attaches probability a (1 — 2¢) /[a (1 — 2¢) + €]
to the event that all other players observed H this period. On the other hand,
if he believed that some other action profile had been chosen last period, he
attaches probability (1 —2¢) /[ (1 —2¢) +¢] to that event. Since 8 < «a (by
condition 4.1), we know that, whatever his beliefs about the previous action pro-
file, he attaches probability at least 8 (1 — 2¢) /[B (1 — 2¢) 4 €] to his opponents
all observing H. But by condition (4.2), this exceeds &.

Now suppose player i observes L and attaches probability ( to all his oppo-
nents observing signal L. A sufficient condition for a; to be a best response is,
for any a = (ai,a—;) € A,

¢ (ui+5 Y m(w]a)v (w/))
w'eN
+(1-¢) (uZ a;,a—;)+06 Z (| (aj,a—i)) vi (w'))

w'eN

> C(ul ai,a_;)+96 Z (] (as,a_4)) vi (w/)) (4.7)

w’'eN

+(1-9) ( (ai,a—;) +6 Z (ai,a—;)) v (w')) )

w'eN

For a_; = a_;, (4.7) reduces to u; (a;,a_;) < u;, which holds because a is a Nash
equilibrium. If a_; # a_;, re-arranging and substituting for = gives

C(u; —ui(asa ;) > (1—4){(%(%@ i) — Ui (@, a-))
+6 > (m (| (ai,am)) =7 ('] (a5 a-3)) v (W)}

w'eN
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But u; — ui (a;,a ;) > p (if a; # a;), wi (ai,a—;) — ui (@;,a—;) < A, and

> (m (W] (ai,a-)) — 7 (] (@, a-0)) vi (W) < (1=2¢) (@ —B) A

w'eQ
(1—2¢) (=) A
S T-6(1-29)(a—3)

Thus, it is enough to have

5(1-2¢)(a—B)
¢ A (1 + ké(lﬂe)(wﬂ))

> )
1-¢ I

i.e.,

1
T+E(—6(1—29)(a—p)

(>(=

But (by a similar argument to that given above) any player observing L attaches
probability at least (1 —a) (1 —2¢)/[(1 —a)(1—2¢)+¢] to all others having
observed L. This expression is more than ¢ by condition (4.3).

|

We now give a parameter restriction that ensures that the average expected
payoff from the profile § is close to w. Note that if ¢ = 0, the inequality (4.8)

reduces to
l-—«a Ui

_— < _’

1-6(a=0) A
i.e., for n small, @ must be close to 1. As we indicated above, we need this
condition while Fudenberg, Levine, and Maskin [11] do not, because our signaling
structure when ¢ = (0 violates pairwise identifiability.

Lemma 2. If, for some n > 0,

1—a(l—2e) n
i T E <y (4.8)

then player i’s average payoff under (5;);.7 is at least w; — 6.

Proof. Since 7 (- |a) is constant for all a # a, v; (w) = v; (L) + (4; (w) — u;) for
all w # H. Thus (by (4.4))

v (H) = @+ 60 (H) =6 (1 —a (1-2)) A48 S ﬁ(&i(w) — ).
w¢{H,L}
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But since |; (w) — u;| < A and substituting for A; < m,

1—a(l—2¢)
1-6(1—-2¢)(a—p

ui—(l—é)vi(H)gé( )+25>/\.
Thus @; — (1 — 6) v; (H) < én by (4.8).
[ |

The sufficient conditions of Lemmas 1 and 2 can be expressed in a more
understandable form as follows. Define

A Bn
max{ﬁ—i-)\_i_lu,l— /\}, (4.9)
B(1—2¢) A 1 _

(1)- ﬂ(i:%))(irfzz) h ((1—28)(a—5) 1)
€ (ﬂ7 a’n) = max4e¢ (2> (l(—a())é(1—2a;+a 2 )\-i-u(l)\—a-&-b’) ’ (4’10)

1—a+p3

a(6,m)

and

A(B(1—2¢)+¢)

(1—2¢) (= B) (B(1—2¢) (A+ ) + Ae)
The expression &(3,7) is the lower bound on « that ensures that the three in-
equalities defining £ in (4.10) are all satisfied at ¢ = 0. Inequality (4.10.1) is (4.2)
evaluated at § = 1; this inequality becomes more binding as 6 is lowered from
6 = 1. Inequality (4.10.2) is (4.3) evaluated at 6 = 1; this inequality becomes
less binding as 6 is lowered from § = 1. And inequality (4.10.3) is (4.8) evaluated
at 0 = 1; this inequality also becomes less binding as ¢ is lowered from 6 = 1.
Finally, (8, av, €) is the lower bound on 8 for which (4.2) holds.

Tedious algebra confirms that if 0 < § < p/(A+p), then a(B8,n) < 1; if
in addition, & (8,7) < a < 1, then &(08,a,n) > 0; and finally, if in addition,
0 <e<Z(B,a,m), then 6 (8, ,¢) < 1. Summarizing:

S(ﬁ,a,s) =

(4.11)

Lemma 3. If0 < 3 < Xﬁ—u, a(Bn) <a<l,0<e<&(B,o,n) and é (8, a,e) <

6 < 1, then conditions (4.1) through (4.8) are satisfied.
From Lemmas 1, 2, and 3 we have:
Proposition 3. If 0 < S < pu/( A+ p), a(B,n) <a<land0<e<E&(B,a,m),

then § is an equilibrium in which each player i receives average utility at least
u; — n, for all 6 sufficiently close to 1.
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4.2. Nash Reversion

We now examine the possibility that static Nash reversion may be a Nash equi-
librium. We keep the previous signaling technology. Let § denote grim trigger,
i.e.,
a;, ift=1,
st(nt) ={ @; ift>2and Al =ht,
a;, ift>2and ht # ht,

t periods

~ /_,—
where hl =(a;H,...,a;H). Let m; = min, u;(a) and M; = max, u;(a). In con-
trast to the strategy profile of the previous section, this profile depends upon the
entire history, not just the last period. None the less, we claim

Proposition 4. Suppose (1 —ad) (1 -6 (1 —3)) M; < @; (1 —6)—6[a(1-6 (1 = 3))
— Blu;. There exists € > 0 such that for all € € (0,&), § is a Nash equilibrium.

It is worth noting that as 6 — 1, & — 0 (we return to this point below).
This is not true of the profile § analyzed in the previous section. While s is not
sequential, its outcome path can be supported by a sequential equilibrium when
it is Nash (Sekiguchi [20, Proposition 3]). It is useful to explain why the profile is
not sequential. First note that if player ¢ deviates in a period ¢ and then observes
H in that period, then due to the highly correlated information structure player
1 is reasonably confident that player j did not observe L and so i “got away with
it.” So at the very least a sequential profile cannot specify a; after a;H (for any
a; # a;). Let H; denote the set of player ¢’s private histories in which player ¢
has never observed the signal I and consider the profile which specifies a; after
every history in H; and a; otherwise. The profile differs from Nash reversion in
that it ignores the player’s own deviation. Play only switches to static Nash if
the player is sufficiently confident that the deviation was detected (indicated by
the player also receiving the signal L). This again is not sequential. After the
private history (a;L,a;H,...,a;H) ¢ H;, to the event that all the other players
are still playing a_;, player ¢ assigns a probability that converges to 1 as t — oo.
Sequential rationality would then require that player ¢ continue to play a;.

There is a close relationship between Proposition 4 and Sekiguchi [20, Propo-
sition 3] (indeed, the proof of Claim 1 below essentially reproduces the analogous
argument from that paper) which we discuss below.

Proof. We need to verify that player i finds it optimal to start with a;, to
continue with a; as long as H has been observed, and that if ever L was observed,
to play g, thereafter. It is easiest to think of §; as being in one of two states, C' or
D, with D being absorbing and play starting in C. Let vf be the value of player
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i when the state of all the players is described by ¢ € {C, D}!. While the values
of vf can be calculated recursively, it suffices for our purposes to calculate

oD :v(D,...,D) Y
i =l 1-38)
and
¢ = UZ(C""’C) = Uy +5{a(1 —2e) v + (1 —a) (1 —2¢) 0P +O(E)},
so that
B a@-+6{(1—a)(1—2€)v?+0(€)} (18 +6{(1—a)(1—-2)u +0(e)}
Y= 1—6a(l—2¢) - (1—6a(l—29)(1-29)
and _
i o€ — ui(1—5)+6(1—a)gi‘
25 Vi 1—6a)(1—0)

Claim 1 — a; is optimal in period ¢ after the history Ef_l =(a;H,...,a;H):

Let p! = Pr {at_i =a_;

fNLf_l } (this also covers the initial period, where E? =

{0} and p} = 1). An upper bound to deviating at ¢ is obtained by noting that
with probability p! the other players are still playing a_;, after choosing a; # a; at
t all players receive the signal L with probability (1 — 3) (1 — 2¢), and M;/(1—0)
is the highest payoff i could earn when players don’t play a_,. Thus, deviating is
not profitable at ¢ if

p{ars{a-pa-r s ra-a-ga-m) s

M; m;
+(1 —Pg)m < phof + (1 —pﬁ) a—0)

Since pt can be made arbitrarily close to 1 for all ¢ by choosing € sufficiently small,
this inequality will hold for all ¢ if £ is small and

(1-ab)(1-6(1—=0))M; <a;(1-06)=6(a(l—-6(1-0))—0)w:

Now we verify that p! can be made arbitrarily close to 1 for all ¢ by making ¢
small. Since

)

— _ T —1 ] A = i 0 Y
Pr{af:l: _i | Bt 1} =




((1—2¢)+e)p;

Pr {w’fl =H ﬁffz, aé*l = @i}
and
t—1 _ Ft—2  t—1 _ _ t—1 _ = t—1 _ 7t—2  t—1 _
Pr{wi =H\h; ", q; —ai} = Pr{aﬂ- =a—;, w; =H|N ", q —ai}
+ Pr {ai_ll % d_i, wﬁ—l =H E§_2, af_l = C_ll}
= Pr {w’fl =H ’atfl = &}p’fl
+Pr {w’fl =H ‘at_l # EL} (1—pih)
= (a(1—=2e)+e)pi ™t +(B(1—2¢)+e)(1—pth),
we have
pﬁ =Pr {at_i = a—; lefl} = Pr {a’:.1 =a—;, w:l =H_; fzf*l}
= Pr {wt__il =H_, | = a, w 1= H}Pr {at_il a—; fzf_l}

Letting ¢! denote the posterior odds ratio (1 — pt)/pt,

e+ (B(L-2¢) +2) (1-p}")
' a(l—2e)p™"

2 (B —=2¢)+e) 4
a(l—2e) a(l—2) &7

Since £} = 0, ¢! is monotonically increasing in ¢ and

3

SR (P Y

which implies
€

((a=pB)(1-2)—¢)
Claim 2 — g; is optimal in period ¢ after the history h! = (ﬁ’fl, diL):

pi>1—0>1—
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By Bayes’ rule,

¢t = Pr{ t+1 _

—1

a|(™ L)}

()}

Pr {at_i =a_;, w'=L ‘ (Ef_l,&i) }
Priwt = L| (@) }

(1 — o) (A = 2¢)p]

(L—a)(1—2¢e)+e)pi+ ((1 - B) (1 —2¢) +¢) (1 —pf)
— lase—0.

—1

> Pr {at C = Q_jg, w_i =L_;

The payoff to deviating after the history hf by choosing a; # a; and then following
some continuation strategy is no more than

i w1+ - {0 )

and so deviating after the history h! is not profitable if

- g2 b (=) (o <o (g - {2

i.e.,

(1 - qt“) {%} <y,

which holds for ¢ small. 5
Claim 3 — g; is optimal in period T after the history th*l = (h’fl, a; L, in§+1,
T—1
L qw; )

Agam from Bayes’ rule (and using the assumption that Pr { =1 ‘ a1 = a} =

Pr {%‘ - ‘aT_l # EL}),

¢ =Pr {ag

Thus, if a; is optimal in period t after the history h’?Jrl = (ht a ) then it is

optimal in period T > ¢t after the history hT e (ht L aL,a wt+1 o wT 1).
[ ]

=a_, h;T_l} > Pr {aff_l =a

(2

We now compare this result with the impressive result of Sekiguchi [20].
Sekiguchi [20] showed that, for some repeated prisoner’s dilemmas, there exists
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a nearly efficient sequential equilibrium, when private monitoring is arbitrarily
accurate and players are patient. There are three features we draw the reader’s
attention to. First, Sekiguchi’s result does not make any assumptions on the
nature of the private monitoring (it includes both independent and correlated
signals). Second, his equilibrium is in mixed strategies, while ours is in pure. Fi-
nally, while his equilibrium builds on grim trigger (Nash reversion in his context),
the final equilibrium is not grim trigger.

Crudely summarizing Sekiguchi’s argument, he begins by considering a strat-
egy profile that randomizes between always defection, and grim trigger. This
profile is an equilibrium (given a payoff restriction) for moderate discount factors
and sufficiently accurate private monitoring. Crudely, there are two things to
worry about. First, if a player has been cooperating for a long time and has
always received a cooperative signal, will the player continue to cooperate? The
answer here is yes, given sufficiently accurate private monitoring (this is Claim 1
above). Note that the bound on the accuracy of the monitoring depends on the
discount factor.

Second, will a player defect as soon as a defect signal is received? This is
where the randomization and upper bound on the discount factor comes in. For
illustrative purposes, suppose the players are playing the pure strategy profile
of grim trigger. After the initial period, if player ¢ observes the defect signal,
then the highest order probability events are that player j did not defect but
i received an erroneous signal (in which case j is still cooperative), and that
player j in the previous period had received an erroneous signal (in which case
j now defects forever). These two events have equal probability, and if players
are not too patient (so that they are not willing to experiment), player i will
defect. If players are patient, then even a large probability that the opponent is
already defecting may not be enough to ensure that the player defects: One more
observation before the player commits himself may be quite valuable. Of course,
in the initial period player j is not responding to any signal, so in order for player
1 to assign positive probability to the signal reflecting j’s behavior, j must defect
in the initial period with positive probability.'? Since we have assumed that the

13In other words, grim trigger is not a Nash equilibrium because players have an incentive to
ignore defect signals when first received (players believe their opponents are still cooperating
and do not want to initiate the defect phase) and so players have no incentive to cooperate in
the initial period.

Of course, the players must be indifferent between cooperation and defection in the initial
period, and this determines the randomization probability. Moreover, as long as the discount
is close to the value at which a player is indifferent between cooperation and defection against
grim trigger in a game with perfect monitoring, then for sufficiently accurate monitoring, this
randomization probability assigns small weight to initial defection.
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private signals are highly correlated, these latter considerations are irrelevant. As
soon as a player receives a defect signal, he assigns very high probability to his
opponents having received the same signal, and so will defect. This is why we do
not need randomization, nor an upper bound on the discount factor.

Sekiguchi then removes the upper bound on the discount factor by observing
(following Ellison [10]) that the repeated game can be divided into N distinct
games, with the kth game played in period k + tN, where ¢ € N. This gives
an effective discount rate of 8% on each game. Of course, the resulting strategy
profile does not look like grim trigger.

As a final comment on Nash reversion, note that approximating the payoff
vector @ as we consider ¢ large may require taking ¢ even smaller than the upper
bound & in Proposition 4. For fixed «, 3, §, and ¢ satisfying the hypotheses of
Proposition 4, there is an expected waiting time till the players switch from a
which depends on ¢, but is independent of §. Recall however, that § — 1 requires
¢ — 0 and the expected waiting time becomes infinite as ¢ — 0. An alternative
is to fix a, 3, 8, and ¢ satisfying the hypotheses of Proposition 4, and then apply
Ellison’s trick. This yields a profile for ¢ arbitrarily close to 1 while at the same
time not requiring ¢ — 0.
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