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Note that equations numbered (P.x) are the same as equation (x) of the published paper.

1. Symmetric Equilibrium

This section provides alternative calculations for the value functions of a symmetric equilibrium
and calculates the equilibrium flow payoffs. It initially reproduces some calculations of Section II
in order to be self-contained.

Let Vi denote the value of skills to a worker. The fraction of new workers who become skilled
is

hw = C(Viy).

Since there is a death rate of ¢, the change in the stock of skilled workers is given by the difference
between the measure of newly entering workers acquiring skills, or éhyw, and the proportion of
skilled workers who die, or 6 Hyy, giving

Hy = 6(hw — Hy).
In a steady state equilibrium, Hy =0 and so
hw = Hy = C(Vy). (P.1)

We turn now to the determination of the vacancy rate among firms. There are two ways
that additional jobs appear in the vacancy pool: an occupied firm dies, and is replaced by a new
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firm without a worker, or an employed worker dies. Thus, new jobs join the vacancy pool at
rate (1 — pp)d + (1 — pp)d = 2(1 — pp)d. Vacancies are filled by successful searches on the part
of both firms and workers. There are pp firms searching at rate Appy Hw, so that the rate at
which vacancies are filled as a result of firm search is ppAppy Hw. There are also py Hyw workers
searching at rate Ay pp, so that the rate at which vacancies are filled as a result of worker search
is pyww HwAw pp. Thus, the change in the number of vacancies is given by

pr=2(1=pp)é — prpwHw (Ar + Aw),

giving, for a steady state equilibrium,

26(1 = pp) = prpwHw (Ar + Aw). (P.2)

Next, consider the unemployment rate among workers. This differs from the case of firms
because a newborn worker is unemployed only if she chooses to acquire skills, with unskilled workers
opting into the unskilled sector of the economy. If an occupied firm dies, the skilled worker is now
unemployed, which occurs at rate (1 — pp)d. There is an inflow of hy into the unemployed skilled
worker pool from newborns and an outflow of épy, Hy from death. Unemployed workers are hired
at the same rate as vacancies are filled (given by prpw Hw (Aw + Ar)). This yields

d

7 (pwHw) = pwHw + pwHw = (1 — pp)d + (hw — pywHw)6 — pppw Hw (A + Aw ).

Since the number of employed workers and filled jobs is the same, we have

Hy(1—pw) =1~ pp,

so that

pwHw + pwHw = (Hw (1 — py) + hw — pwHw)S — pppw Hw (Ap + Aw).

Since in a steady state, Hy = hw, py = 0, and Hy = 0, we have

26(1 = pw) = prpw (Ar + Aw). (P.3)

We next calculate Vi, the value to a worker of entering the skilled market. Since we are
constructing a symmetric equilibrium in which both red and green workers are searched, their
value functions, and hence skill decisions, will be identical, and so the firms will be indifferent over
all their search possibilities.

Let Zw (s) denote the expected value of an employed worker at time s. Then we have:

Zw(s) = / {/ {/ w(T)e—r(T—s)dT+e—r(v—s)VW(U’w)}56—6(1;—5) dv

+ 66(”8)/ w(T)efr(Tfs) dT}(Se‘S(“’S) dw,

where w is the date of the worker’s death, v is the date of the firm’s death, w(7) is the expected flow
payoff of an employed worker at date 7, and Vi (v|w) is the value of being an unemployed worker
at date v, conditional on death at date w. The first line of this expression captures the payoff in the
event that the firm dies before the worker, and consists of the sum of the wage payments received
from the firm and the value of being pushed back into unemployment. The second line captures



the payoff in the event the worker dies first. Since the value of being unemployed at time v is given
by

Vv (v) = Eu>y [Viv (v|w)] = / Vi (v]w)e 0@ du,

we can simplify to obtain

s):/ / / w(r)e T 5009 5 =0wW5) qr du duw

/ —r(v— S)VW( )5 26(v—s) dv

/ / "(7=8)§e=20w=5) dr do.

In a steady state, w(7) = w, Viy(v) = Viy, and Zw (s) = Zw, and so we can perform the integration

to find

w ~+ OV
Iy = ———
w r+ 26

If s is the time that a match arrives, then
Vw = Es [e*‘sse*”ZW} ,

where s is the time that a match with a vacant firm occurs, e % is the probability that the worker is
still alive at time s, and e~"® provides the appropriate discounting of the value Zyy (s) to the present.
The time s at which the worker meets a vacant firm has density pp(Ap + A )e PrOAFtAw)s 1 e
have an expected value of:
oo
Vw = (u()rt—égg/) /0 pr(Ap + Aw)e PrOrtiw)irtd)s gg
(w + 6Viy) pr(AF +Aw)
(T—FQ(S) (pF(AF+Aw) +T’—|—(5)'

Solving this equation for Vi yields

pr(AF + Aw)w
(r+6)(pp (A +Aw) +7+26)

Vi =

A similar calculation gives the value to a firm or participating in the market:

pw Hw (Ar + Aw) f

Vi = ,
70 +6) (owHw O + Aw) + 7 + 20)

where f is the expected steady-state flow payoff of an occupied firm and Vg is the steady-state
value of a vacant firm. We now determine the expected flow payoffs w and f. Firms and workers
bargain over the surplus created in a match by making wage proposals with equal probability, and
any such proposal will make the responding agent indifferent between accepting the proposal and
rejecting. Suppose the firm is chosen to make a proposal, and offers a wage of w to the worker.
Accepting this offer gives an expected payoff of (w + éViy)/(r + 26). which is the value of Zy

!The arrival rate of matches is the sum of matches from worker search (Awp) and firm search (Arpg).



calculated at the wage w. If the worker rejects this offer, her continuation value is Vjy. The firm
will choose w so as to make the worker indifferent between accepting and rejecting, giving:

w=(r+6)Vy.

Since the firm must similarly be made indifferent by an offer received from the worker, should the
worker be called upon to make the offer, the worker will offer (r 4 6)V} to the firm. We then have,
in the steady state

1 1
w = 5&4-5{33—(7'—0—5)‘/}?}
r 1
= §+§(T+5)(VW—VF%

and symmetrically for the firm,
z 1
Inserting the expressions for the value of a firm Ve and worker Vi, we then solve for:

_ pr(Ar +Aw) + 7+ 26 -
(pr + pwHw)(Ar + Aw) +2(r +26) "
pwHw (Ar +Aw) +1+26

f= (pF + pWva)()\F + Aw) + 2(7” + 25)%

giving
pr(AF + Aw)
Vv = x, P.6
W 8 r o Hw ) O ) 20 20) (P6)
and
Vi — pwHw Ar + Aw)

(r +0) [(pp + pw Hw)Ohr + ) +2(r +28)] (P.7)

2. Asymmetric Equilibria

This section presents the calculations leading to equations (13)—(15). Define \g = 2Ar + Aw, pg =
pcHa,pr = prHR, and
_ AePgLFEG + AWPRZFR

(AePg +Awpr)
The value Zp is the expected value of an occupied firm, where the probabilities reflect the relative
likelihood of meeting a red and green worker. This allows us to simplify the system of value
functions to:

Zp

T 1
Zr = 2(T+25)+2(T+25) ((T+35)VR—(T+5)VF),
v, — _PriwZr
R ppAw 71+ 6
T 1
Z = _
¢ = st o (T Ve () V),
Ve — PrAcZa
PFAG + T+
T 1 (r+96) . -
Zp = 38) Vi — AebeVe + AwirVa) |
P 20128 20+ 20) ((” VE = Darataman) NePaVa +Awir R)>
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and _ ~
(A\ePc + Awpr) ZF

(Aapa + A\wpr+r+6)

Eliminating the unmatched value functions gives

Vi =

PEAWZR (r +6) (AgPa + A\wpr) ZF )

PEAW + 1+ 0 (Aapg + A\wpr+1+9)
PrAcZc (r+6) (Achbg + A\wpr) ZF )

PrAG + 71+ 06 (Aapa + A\wpr +1+9)
(A\ePc + Awpr) ZF

(Agpa + A\wpr +1r+9)

2(r+20)Zr = :L“+<(7“+36)

2(r+20)Zq = x+<(r+36)

2(r+20)Zp = x+ {(r+36)

B (r+96) 5 PrAcLa 5 PFAW ZR
Mapg + i) o a+r+6 VPR, Aw+r+6) [
Simplifying,
g~ _(prAw +7+8) { r  (Aapc+Iwpr) Zr
R (praw +20r +20) L (r+6)  (Aapa + Awpg +1+06)
Zo = (prAc +1+9) { r_(Xape+Awpr) Zr }
(ppAG +2(r+20)) | (r+96) (Agpg+ Awpg +1+9)
. (Aapa + A\wpr +1+9) { r 1
F AP+ wpr+20r+26) L (r+6)  (Aapa + \wig)
. PEAGZG . PEAW ZR
x| A A )
( PG+ +0) PR A + 7 +0)

Substituting for Zr and Zg into the expression for Zp gives

Zn — (Agpg + Awpg +1+0) { r 1
(Aapbg + Awpr+2(r+26) L (r+6) (Aapg + Awpr)
« Aot PrAG ( r  (Aepc+Awpgr) Zr )
(ppAg+2(r+26) \(r+96) (Agpg+A\wpr+7r+9)
g PEAW < . (AepgtAwpr) Zr )] } _
(ppAw +2(r +26)) \(r+6)  (Aape + Awpr + 7 +0)

Collecting terms, the term involving x is

x (AcPg + Awpg +1+6) { _ 1 ( AGPaPrAc AW PRPFAW ) }
(r+6) (Aapa + Awpg + 2 (r +26)) (Aapa +Awpr) \(prAc +2(r+26))  (ppAw +2(r + 26))
r (paAc +Awpr+1+6)2(r+26) (Aapriw (Pg + Pr) +2(r +26) (AaPg + Awpr))
(r+8)  (Aghg+Awpr+2(r+26)) (baAc + Awpr) (pPrAc + 2r +46) (ppAw + 2r +46)
The coefficient of Zr on the right hand side is

(Achg + Awpg + 1 +6)
(AaPa + Awpr +2(r +26)) (Aapbg + Awpr)
< AePapPrAc (prAc + 1 +0) (Aapg + Awpr)
(prAG +1+6) (prAc +2(r +26)) (A\apg + Awpr + 7+ 6)
. AwPrPEAW (PpAw + 1 +6) (AcPg + AwPr) )
(ppAw + 71+ 06) (ppAw + 2(r + 26)) (A\gpg + Awpgr + 1+ 06)
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r (2AGPar + ANGPEO + AGPaprAw + 2\ PR + ANy BRSO + Ny PrAFAG)
(PrAW +2r +40) (ppAc + 2r + 40) (AaPe + Awpg + 2r + 46)

So, the equation determining Zr can be written as

L _PF (2XEPar + ANEPGO + NaPaprAw + 2Ny PrT + ANy PRE + Ay PRAFAG) 7
(prAw + 2r +46) (ppAc + 2r + 48) (Aape + A\wpg + 2r + 46) F

z(pcAa + \wpr+1r+6)2(r+26) (Aeprpiw (pe + pr) + 2 (r+26) (A\ape + A\wpgr))
(r46) (pgAc + Awpg +2r +46) (para + Awpgr) (prAa + 2r + 46) (ppAw + 2r + 46)’

or
{(opAw + 21 +46) (ppAc + 27 +46) (A\cPg + Awpp + 2 + 40)
—pp (20EDar + ANGDGS + NaDappiw + 2Ny prr + 4Ny PRé + Ny ProFAG) } Zr

_ 2 (pgAa +Awpr +1+6) 2(r +26) (Aappiw (pg + Pr) +2(r + 26) (AcPc + AwpR))
(r+9) (PaAc + Awpg)

)
and hence,

T (peAc + Awpr + 1+ 6) AaprAw (be + pr) + 2 (r +26) (A\ape + Awpr))
(r+0) (pgAa + Awpg) A ’

where A =2 (14 20) (ppAg + AgPg + PrAw + Awpr + 2 (1 +20)) + prAw A (pr + Pr + Da)-
We can use this result to calculate:

v (AgppIw (pg + pr) +2(r +20) (Aape + A\wpr)) .

Zp =

VP = g X (P.13)
Similarly,
_ z (ppAw +1+6) B L -
Zp = (r 1) (pphw + 2(r + 20)) {1 Y(AaprAw (pg + Pr) + 2 (r+26) (Aapg + Awpr))}

= (ppAw 47 +8) (ppAa + 2 (r + 26)),

(r+06)A
and
T (ppAg + 1+ 6) ) )
Z6 = 1 0) (ppra 1+ 2(r £ 20)) {1 = A" Naprdw (b + Pr) +2 (r +26) (A\ape + Awpr)) }
T
= o at PrAatr+) (ppdw +2(r +20),
giving
~ ppdw (ppAc + 2 (r + 26))

Vi = (r o)A (P.14)
and

Vi = prAG (prAw + 2 (r + 26)) (P15)

(r+6)A



Thus,

pr2(r+26) (Ag — Aw)
(r+6)A

_ PRAGPFAW t ppAc2(r +26)
Vo = O z=Vgp+
pr2(r+26) 2\p

(r+6)A

= Vrp+

> Vg.

3. The Extreme Asymmetric Steady State

This appendix verifies equation (17). In the extreme asymmetric steady state, Hg = 1/2 and
Hp =0, so the vacancies steady state condition is

46(1 — pp) = prpa(A + Ar). (1)

Similarly, the green unemployment steady state condition is

26(1 = pg) = papr(A + AF). (2)
These imply
pe =205 — 1. 3)
From (3) and (1),
dop _ 4 _ —pr(2pp — 1) (4)
dr T {464 (dpp — DA+ )}

We first show that Vg is increasing in Ap. The argument parallels our demonstration that
dViyy /dX > 0 in the symmetric steady state. First, we can write

Ve = pr(A+ AR)
(r+d)(pr + 306) A+ Ar) +2(r +26)]

Notice that this is (P.6), with py replaced by pg; and Hy by 3 (because only green workers enter,
and all green workers enter), and with the total search intensity given by 2Ap + Aw = A + Ap
(because the decision of firms to search only greens doubles the firm’s effective search intensity).
Alternatively, it is straightforward to verify that this expression equals (P.15). Using (3), we have

Ve = pr(A+ Ar)
(r+d)[(2pp — )X+ Ap) +2(r +26)]

Suppose dVG /dAp < 0. Then, taking the derivative, it must be the case that

d((2pr — 5) (A +Ar))
d\r

d(pp(A +Ar))

Dor < 0.

(20r = )+ AR) + 20 +26)] = pp(A+ Ar)

Simplifying, we must have

d(pp(\+ Ar)) d((—3)(A+ Arp))

dAF

[(~3) A+ Ar) +2(r +26)] — p(A -+ Ar)



It is immediate from (1)—(2) that d(pp(A + Ar))/dAr > 0. We can then delete the (positive) term
involving 2(r 4+ 26) and divide by A + A to find that a necessary condition is

d(pr(A + Ar))
oy > Pp-

But this implies that dpp/dAr > 0, which contradicts (1)-(2). Hence, Ve is increasing in Ap.
We next show that Vg is decreasing in Ap. From (P.14),

. Pa(A2 =A%) + pp(N = Ap)2(r +26) @

Vi = h :
R (r+6)A

where A = 2 (r + 28) {pp (A )+ AR pe /240 (A=Ar)+2 (r + 26)}+(N2=)2) (p% + ppog/2) =
PR =XE) +pp(A=AR)2 (r +26) +4 (r +26)°+2 (r + 26) A+ Ar){pp+0a/2} + (N =AE)pppc/2.
Now, Vg is decreasing in Ap if and only if ((r + 8)Vg/x)~! is increasing in Ap. Substituting,

T 4207 4200+ 28) O+ Ar){pr + pe/2} + (N = Xp)prc)/2

(r+6Va PN =A%) + pp(A — Ap)2 (r + 26)

Differentiating the denominator with respect to Ag yields
20pPp(N° = Xp) = 20FAF + pp(A = Ap)2 (r +26) — pp2 (r +26) <0,

since Ap < \.
Turning to the numerator, its derivative is

2(r+26) {pp+pa/2} +2(r +26) A+ Ap){pr + pa/2} — Arpppc + (A2 = XB) (Prpa/2+ proa/2)-

Using pi; = 2p} and (3), we can rewrite this as

(r 4 26) (4pp — 1) + 4 (1 +26) A+ Ap)plr — Appp(20p — 1) + (A2 = A2) (P(pr — 1/2) + prplp)
= (4 265) (dpp — 1)+ 40+ 25) (A ARl — App (2 — 1) + (02 — A3)0le(2pp — 1/2),

which has the same sign as, substituting (4) and ignoring the positive denominator {46 + (4pp — 1)(A + Ap)},

[(r+26) (4pp — 1) = Arpp(20p — )] {46 + (4pp — D)(A+ Ap)}
—pr(20p — DA (r +26) A+ Ap) — pp(20p — 1)(A? = AF) (20F — 1/2)
= (r+26) (4pp — 1) {46 + (4pp — )N+ Ar)} — Appp(2pp — 1)46
—pr(20F = 1)(A+ Ap)Ar(dpr — 1) = pp(20p — 14 (r +26) (A + Ap)
—pr(20p — (N - )‘%)(2PF - 1/2)
= (r+26) (4pp — 1) {46 + (dpp — (A + Ap)} — Appp(2pp — 1)46
—pr(2pp — DA+ Ar) {Ar(dpp — 1) +4(r +20) + (A = Ar)(2pp —1/2)} = O.

It suffices to show that © > 0. We first observe that variations in the interest rate r affect none of
the other variables appearing in ©. We can accordingly take the derivative

92 — (4pp — D5 + (4pr — DN+ Ap)] — 40p(200 — DO+ Ap),

which will be positive if

(4pp —1)> —4pp(2pp — 1) = 16p% — 8pp + 1 — 8pF — 4pp = 8pF — 4pp + 1 > 0,
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which holds for all pp € (%, 1]. As a result, it suffices to examine the value of r that minimizes O,
namely r = 0, giving

26(4pp — 1) {46 + (4pp — 1)(A+ Ar)} = Arpr(2pp — 1)46
—pr(2pr = DA+ Ar) {Ar(dpr — 1) +86 + (A = Ar)(2pp — 1/2)} = A

Next, we note that, from (1)—(2), the vacancy rate pp depends only upon the sum A+ Ap. We can
accordingly take a derivative of A with respect to A\p, letting dA\/dA\p = —1 to as to preserve the
sum A + Ap, to obtain

dA 1
Dr —pr(2pp — 1)46 — pp(2pp — 1)(A+ Ap)[dpr — 1 = 220 — 5)]

2

We can then again confine attention to the worst case, namely the value of A\p that minimizes A,
or A\p = A. Our task is then to show

26(4pp — 1) {46 + (4pp — 1)(2N)} — Aop(2pp — 1)46 — pp(2pp — 1)(2X) {A(4pp — 1) + 86} > 0.

Dividing by A2, this is

1) ) ) 1)
SUPPRY {4; +2(4p - 1>} ~4pp2pp ~ 12~ 20p(20p — 1) {<4pF 1)+ 8;} > 0.

From (1) and (3), we have
6 _ pr(2op—1)

A 2(1-pp)
Substituting, we have

2(1-pp) 2(1-pp) 2(1-pp)

20e@er=b) (g, 1) {4&“(&1?*_1) +2(dpp — 1)L — dpp(2pp — 1)2Cer=1)
~2pp(20p — 1) { (4op — 1) + 825722114 > 0.

2(1-pp

Extracting and deleting the positive factor pp(2pr — 1)/(1 — pg), we have

(1p — 1) { 2eeoeL 2o DU vl — 991 (2 — 1)

21— pp) {(4pr — 1) + 2R} > 0

Extracting and deleting the positive factor (1 — pp), we have

(4pp — 1) {4p3 — 2pp +2(4pp — 1 = 4pF + pp} — 2pp(1 — pp)(2pF — 1)
—2(1 = pp) {(4pr — 1)(1 — pp) +4pp(2pr — 1)} > 0.

A series of simplifications now gives:

(4pp — 1) {4p% — 2pp +8pp — 2 = 8p% + 2pp} — 2pp(20p — 1 — 20F + pp)
—2(1 = pp) {(4pr — 1)(1 — pp) +4pp(2pp — 1)} > 0.

(4pp — 1) {—4p% +8pp — 2} = 2pp(—2p% + 3pp — 1)
—2(1 — pp) {4pp — 1 — 4pF + pp + 8pF — 4pp) } > 0.

—16p}: + 32p5 — 8pp + 4pF — 8pp + 2 + 4ph — 6pp + 2pp — 2(1 — pp) {4pk + pp — 1)} > 0.

9



1203 + 30p% — 14pp + 2 = 2[4p% + pp — 1 — 4p — pi + pp) > 0.
1203 + 30p% — 14pp + 2 — 8p% — 2pp + 2 + 8pi + 203 — 2pp] > 0.
—4p% + 24p% — 18pp +4 > 0.

—2p% +12p% — 9pp +2=3 > 0.

We now examine the cubic equation ®. It is straightforward to calculate:

1 1

lim ®(pp) > 0, ®(0)=2, ®(z)=-,
PF——00 2 4
®(1) = 3, and lim ®(pp) <O.

In addition,

4
42pr) _ g2 4 24p, 9.

dpp
This derivative is positive for all p € [3,1], and hence ®(pp) > 0 for all pp € [1,1].
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