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Preface

These notes are based on my lecture notes for Economics 703, a
first-year graduate course that I have been teaching at the Economics
Department, University of Pennsylvania, for many years. It is im-
possible to understand modern economics without knowledge of
the basic tools of game theory and mechanism design. My goal
in the course (and this book) is to teach those basic tools so that
students can understand and appreciate the corpus of modern eco-
nomic thought, and so contribute to it.

A key theme in the course is the interplay between the formal
development of the tools and their use in applications. At the same
time, extensions of the results that are beyond the course, but im-
portant for context are (briefly) discussed.

While I provide more background verbally on many of the exam-
ples, I assume that students have seen some undergraduate game
theory (such as covered in Osborne, 2004, Tadelis, 2013, and Wat-
son, 2013). In addition, some exposure to intermediate microeco-
nomics and decision making under uncertainty is helpful.

Since these are lecture notes for an introductory course, I have
not tried to attribute every result or model described. The result is
a somewhat random pattern of citations and references.

There is much more here than can be covered in a one semester
course. I often do not cover Section 4.2 (Foundations of Nash Equi-
librium), selectively cover material in Section 3.3 and Chapter 7 (Re-
peated Games), and never both Sections 8.2 (Coase conjecture) and
8.3 (Reputations).

I have been very lucky in my coauthors and colleagues (particu-
larly Larry Samuelson and Andrew Postlewaite), from whom I learned
a tremendous amount. Thanks to the many generations of Penn
graduate students who were subjected to early versions of these
notes, and made many helpful comments. Thanks also to Larry
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iv Preface

Samuelson and Tilman Börgers for helpful comments. Finally, thanks
to Ashwin Kambhampati and Changhwa Lee, who did an outstand-
ing job proofreading these notes.

Game Theory in Economics

Game theory studies the strategic interactions of agents (often called
“players” or decision-makers). An example of a strategic interaction
is the pricing behavior of two petrol (gas) stations on the same inter-
section. Each station, in choosing its price, will both respond to the
current price of the other station and to how it believes the other
station will respond to its price.

To study strategic interactions, it is useful to use parlor games
such as chess and poker as examples. The first game theorists were
mathematicians, and viewed the study of strategic interactions (be-
ginning with parlor games) as applied mathematics.1 The goal was
to calculate a solution, which was a prediction: How would rational
players behave? A solution can also be a recommendation: How
should a rational player behave (assuming the other player is ratio-
nal)?

The perspective of these notes is that of an economist. Economists
are social scientists and, as such, want to understand social behav-
ior. Any model simplifies the situation being modeled, and models
of strategic interactions in an economic or social context are no dif-
ferent. The resulting modeling choices make the use of game the-
ory within economics very different from game theory as applied
mathematics (which takes the rules of the game as given). In par-
ticular, the modeling choices reflect the modeler’s judgment as to
what the players treat as strategically relevant. This judgment de-
termines both the choices of strategy spaces (the actions and infor-
mation players have), and the choice of solution concept. There is
often a subtle interplay between the question under investigation,
the modeling choices (including that of the solution concept), and
the resulting analysis.

1Leonard (2010) gives a fascinating history of the birth of game theory.
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Chapter 1

Normal and Extensive Form
Games

1.1 Normal Form Games

Most introductions to game theory start with the prisoner’s dilemma.1

Two suspects (I and II) are separately interrogated. The prosecutors
have sufficient evidence to convict each of a minor offence, but wish
to convict them of a major offence. The potential results of the inter-
rogation are illustrated in Figure 1.1.1. Clearly, no matter what the
other suspect does, it is always better to confess than not confess.

This game is often interpreted as a partnership game, in which
two partners simultaneously choose between exerting effort and
shirking. Effort E produces an output of 6 at a cost of 4, while shirk-
ing S yields no output at no cost. Total output is shared equally.
The result is given in Figure 1.1.2. With this formulation, no matter
what the other partner does (E or S), the partner maximizes his/her
payoff by shirking.

The scenarios illustrated in Figures 1.1.1 and 1.1.2 are examples
of normal form games.

Definition 1.1.1. An n-player normal (or strategic) form game G is
an n-tuple {(S1, U1), . . . , (Sn, Un)}, where for each player i,

• Si is a nonempty set, i’s strategy space, with typical element si,
and

1Poundstone (1993) discusses the prisoner’s dilemma and its role in the early
history of game theory in the context of the cold war.

1



2 Chapter 1. Normal and Extensive Form Games

II

Confess Don’t confess

I Confess −6,−6 0,−9

Don’t confess −9,0 −1,−1

Figure 1.1.1: The prisoner’s dilemma, with the numbers describing length
of sentence (the minus signs indicate that longer sentences
are less desirable). In each cell, the first number is player I’s
sentence, while the second is player II’s.

E S

E 2,2 −1,3

S 3,−1 0,0

Figure 1.1.2: The prisoner’s dilemma, as a partnership game. In each cell,
the first number is the row player’s payoff, while the second
number is the column player’s payoff.

• Ui :
∏n
k=1 Sk → R, i’s payoff function.

The normal form game G is finite if n <∞ and |Si| <∞ for all i.

Notation: The set of strategy profiles is S := ∏n
k=1 Sk, with a

strategy profile denoted by s := (s1, . . . , sn) ∈ S. The strategy pro-
file omitting player i’s strategy is s−i := (s1, . . . , si−1, si+1, . . . , sn) ∈
S−i := ∏

k≠i Sk. Finally, (s′i , s−i) := (s1, . . . , si−1, s′i , si+1, . . . , sn) ∈ S,
so that s = (si, s−i).

We sometimes write payoffs as a vector-valued function U : S → Rn,
or when S is finite, as the vector U ∈ Rn|S| (recall that a vector
x ∈ Rk can be viewed as the function x : {1, . . . , k} → R, and con-
versely, a function from the finite set {1, . . . , k} to a set Y can be
viewed as a vector in Y k).

Example 1.1.1 (Sealed-bid second-price auction). Two bidders simul-
taneously submit bids (in sealed envelopes) for an object. A bid is
a nonnegative number, with i’s bid denoted by bi ∈ R+. Bidder i’s
value for the object (reservation price, willingess to pay) is denoted
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by vi. The object is awarded to the highest bidder, who pays the
second highest bid. Ties are resolved by a fair coin toss. Then,
n = 2, Si = R+, and (taking expectations)

Ui(b1, b2) =




vi − bj, if bi > bj,
1
2(vi − bj), if bi = bj,
0, if bi < bj.

Example 1.1.2 (Sealed bid first price auction). The only change from
Example 1.1.1 is that the winning bidder pays their own bid. So,
n = 2, Si = R+, and

Ui(b1, b2) =




vi − bi, if bi > bj,
1
2(vi − bi), if bi = bj,
0, if bi < bj.

Example 1.1.3 (Cournot duopoly). Two firms simultaneously choose
quantities of goods that are perfect substitutes. The market clearing
price is given by P(Q) = max{a−Q,0}, where Q = q1 + q2. Firm i’s
cost function is C(qi) = cqi, 0 < c < a. Finally, n = 2.

Quantity competition: Si = R+, and Ui(q1, q2) = (P(q1 + q2) −
c)qi.

Example 1.1.4 (Bertrand duopoly). The economic environment is as
for example 1.1.3, but now firms engage in price competition (i.e.,
firms simultaneously choose prices). Since goods are perfect substi-
tutes, the lowest pricing firm gets the whole market (with the market
split in the event of a tie). We again have Si = R+, but now

U1(p1, p2) =




(p1 − c)max{a− p1, 0}, if p1 < p2,
1
2(p1 − c)max{a− p1, 0}, if p1 = p2,
0, if p1 > p2.

Example 1.1.5 (Voting by veto). Three outcomes: x,y, and z. Player
1 first vetoes an outcome, and then player 2 vetoes one of the re-
maining outcomes. The non-vetoed outcome results. Suppose 1
ranks outcomes as x ≻ y ≻ z (i.e., u1(x) = 2, u1(y) = 1, u1(z) = 0),
and 2 ranks outcomes as y ≻ x ≻ z (i.e., u2(x) = 1, u2(y) =
2, u2(z) = 0).

Player 1’s strategy is an uncontingent veto, so S1 = {x,y, z}.
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2

(yxx) (yxy) (yzx) (yzy) (zxx) (zxy) (zzx) (zzy)

x 0,0 0,0 0,0 0,0 1,2 1,2 1,2 1,2

1 y 0,0 0,0 2,1 2,1 0,0 0,0 2,1 2,1

z 1,2 2,1 1,2 2,1 1,2 2,1 1,2 2,1

Figure 1.1.3: The normal form of the voting by veto game in Example 1.1.5.

Player 2’s strategy is a contingent veto, so S2 = {(abc) : a ∈
{y,z}, b ∈ {x, z}, c ∈ {x,y}}. The interpretation of abc is that
player 2 vetoes a if 1 has vetoed x, b if y , and c if z.

The normal form is given in Figure 1.1.3. «

Definition 1.1.2. A strategy s′i strictly dominates another strategy
s′′i if for all s−i ∈ S−i,

Ui(s′i , s−i) > Ui(s
′′
i , s−i).

A strategy si is a strictly dominant strategy if it strictly dominates
every strategy s′′i ≠ si, s

′′
i ∈ Si.

If player i has a strictly dominant strategy, then

arg max
si

Ui(si,, s−i) =
{
si : Ui(si,, s−i) = max

s′i
Ui(s′i,, s−i)

}

is a singleton and is independent of s−i.

Remark 1.1.1. The definitions of a normal form game and strict
dominance make no assumption about the knowledge that players
have about the game. We will, however, typically assume (at least)
that players know the strategy spaces, and their own payoffs as a
function of strategy profiles. However, as the large literature on
learning and evolutionary game theory in biology suggests (briefly
sketched in Section 4.2), this is not necessary.

The assertion that a player will not play a strictly dominated
strategy is compelling when the player knows the strategy spaces
and his/her own payoffs. Or rather, a player’s payoffs capture the
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game as perceived by that player. This provides an important per-
spective on experimental studies of behavior in games. It is some-
times argued that in practice, people do not behave as “predicted”
by game theory, since a significant fraction of experimental subjects
will play the strictly dominated action in the prisoner’s dilemma.
This is, however, a misinterpretation of the evidence. In a typical
experiment, the subjects are asked to choose an action in a game
whose monetary payoffs are consistent with a prisoner’s dilemma
structure. But the players’ true payoffs may well (typically do) de-
pend upon other factors than money, such as fairness. The obser-
vation that a player deliberately chose an action that was strictly
dominated by another action in monetary terms is clear evidence
that the player cared about other considerations, and so the game
is not in fact a prisoner’s dilemma. We assume that payoffs in the
game capture all of these considerations.

Definition 1.1.3. A strategy s′i (weakly) dominates another strategy
s′′i if for all s−i ∈ S−i,

Ui(s′i , s−i) ≥ Ui(s′′i , s−i),

and there exists s′−i ∈ S−i such that

Ui(s′i , s
′
−i) > Ui(s

′′
i , s

′
−i).

Definition 1.1.4. A strategy is said to be strictly (or, respectively,
weakly) undominated if it is not strictly (or, resp., weakly) dominated
(by any other strategy). A strategy is weakly dominant if it weakly
dominates every other strategy.

If the adjective is omitted from dominated (or undominated),
weak is typically meant (but not always, unfortunately).

Lemma 1.1.1. If a weakly dominant strategy exists, it is unique.

Proof. Suppose si is a weakly dominant strategy. Then for all s′i ∈ Si,
there exists s−i ∈ S−i, such that

Ui(si, s−i) > Ui(s′i , s−i).

But this implies that s′i cannot weakly dominate si, and so si is the
only weakly dominant strategy.
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Remark 1.1.2. Warning! There is also a notion of dominant strategy:

Definition 1.1.5. A strategy s′i is a dominant strategy if for all s′′i ∈ Si
and all s−i ∈ S−i,

Ui(s′i , s−i) ≥ Ui(s′′i , s−i).
If s′i is a dominant strategy for i, then s′i ∈ arg maxsi Ui(si,, s−i),

for all s−i; but arg maxsi Ui(si,, s−i) need not be a singleton and it
need not be independent of s−i (construct an example to make sure
you understand). If i has only one dominant strategy, then that
strategy weakly dominates every other strategy, and so is weakly
dominant.

Dominant strategies have played an important role in mechanism
design and implementation (see Remark 1.1.3 and Section 11.2), but
not otherwise (since a dominant strategy–when it exists–will typi-
cally weakly dominate every other strategy, as in Example 1.1.6). ♦

Remark 1.1.3 (Strategic behavior is ubiquitous). Consider a society
consisting of a finite number n of members and a finite set of out-
comes Z . Suppose each member of society has a strict preference
ordering of Z , and let P be the set of all possible strict orderings
on Z . A profile (P1, . . . , Pn) ∈ Pn describes a particular society (a
preference ordering for each member).

A social choice rule or function is a mapping ξ : Pn → Z . A
social choice rule ξ is dictatorial if there is some i such that for all
(P1, . . . , Pn) ∈ Pn, [xPiy, ∀y ≠ x] =⇒ x = ξ(P1, . . . , Pn).

The direct mechanism is the normal form game in which all mem-
bers of society simultaneously announce a preference ordering and
the outcome is determined by the social choice rule as a function of
the announced preferences.

Theorem 1.1.1 (Gibbard-Satterthwaite). Suppose |ξ(Pn)| ≥ 3. An-
nouncing truthfully in the direct mechanism is a dominant strategy
for all preference profiles if, and only if, the social choice rule is dic-
tatorial.

A social choice rule is said to be strategy proof if announcing
truthfully in the direct mechanism is a dominant strategy for all
preference profiles. It is trivial that for any dictatorial social choice
rule, it is a dominant strategy to always truthfully report in the di-
rect mechanism. The surprising result, proved in Section 11.2,2 is
the converse.

2It is stated there in an equivalent form as Theorem 11.2.2.
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♦

Example 1.1.6 (Continuation of example 1.1.1). In the second price
auction (also called a Vickrey auction, after Vickrey, 1961), each
player has a weakly dominant strategy, given by b1 = v1.

It is sufficient to show this for player 1. First, we argue that
bidding v1 is a best response for 1, no matter what bid 2 makes (i.e.,
it is a dominant strategy). Recall that payoffs are given by

U1(b1, b2) =




v1 − b2, if b1 > b2,
1
2(v1 − b2), if b2 = b1,
0, if b1 < b2.

Two cases:

1. b2 < v1: Then, U1(v1, b2) = v1 − b2 ≥ U1(b1, b2) for any
b1 ∈ R+. [Bidding more than v1 does not change anything,
and bidding less only changes the outcome if player 1 bids less
than b2 and loses. But player 1 wants to win the auction in this
situation.]

2. b2 ≥ v1: Then, U1(v1, b2) = 0 ≥ U1(b1, b2) for any b1 ∈ R+.
[Player 1 does not want to win if this involves paying than v1.]

Thus, bidding v1 is optimal.
Bidding v1 also weakly dominates every other bid (and so v1

is weakly dominant). Suppose b1 < v1 and b1 < b2 < v1. Then
U1(b1, b2) = 0 < v1 − b2 = U1(v1, b2). If b1 > v1 and b1 > b2 > v1,
then U1(b1, b2) = v1 − b2 < 0 = U1(v1, b2). «

Example 1.1.7 (Provision of a public good). Society consists of n
agents, with agent i valuing the public good at ri. The total cost of
the public good is C .

Suppose costs are shared uniformly and utility is linear, so agent
i’s net utility is vi := ri − 1

nC .
Efficient provision requires that the public good be provided if,

and only if, 0 ≤∑vi, i.e., C ≤∑ ri.
Suppose the social planner does not know agents’ preferences

and so must elicit them. One possibility is to ask each agent to
announce (report) his/her valuation (denote the reported valuation
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by v̂i) and provide the public good if
∑
v̂i ≥ 0. The problem with

such a scheme is that it gives agents an incentive to overstate if
vi > 0 and understate if vi < 0.

The Groves mechanism addresses this incentive as follows: If
the public good is provided, pay agent i an amount

∑
j≠i v̂j (tax if

negative). This implies

payoff to agent i =


vi +

∑
j≠i v̂j, if v̂i +

∑
j≠i v̂j ≥ 0,

0, if v̂i +
∑
j≠i v̂j < 0,

where vi is agent i’s valuation and v̂i is i’s reported valuation. Note
that there is no budget balance requirement. It is a weakly dominant
strategy for i to announce v̂i = vi: If vi +

∑
j≠i v̂j > 0, announcing

v̂i = vi ensures good is provided, while if vi+
∑
j≠i v̂j < 0, announc-

ing v̂i = vi ensures good is not provided. Moreover, conditional on
provision, announcement does not affect payoff—note similarity to
second price auction.

A difficulty with the mechanism is that while there are no pay-
ments if no provision, payments can be large if provision: Payments

to the agents when the public good is provided total
∑
i

(∑
j≠i v̂j

)
=

(n − 1)
∑
i v̂i. This total can be reduced without altering incentives

by taxing agent i by an amount independent of i’s behavior. In par-
ticular, taxing agent i the amount max{∑j≠i v̂j,0} yields

payoff to agent i =




vi, if
∑
j v̂j ≥ 0 and

∑
j≠i v̂j ≥ 0,

vi +
∑
j≠i v̂j, if

∑
j v̂j ≥ 0 and

∑
j≠i v̂j < 0,

−∑j≠i v̂j, if
∑
j v̂j < 0 and

∑
j≠i v̂j ≥ 0,

0, if
∑
j v̂j < 0 and

∑
j≠i v̂j < 0.

This is the pivot mechanism. Note that i only pays a tax if i changes
social decision. Moreover, total taxes are no larger than

∑
imax{v̂i,0}

if the good is provided and no larger than
∑
imax{−v̂i,0} if the good

is not provided. For more on this, see Section 11.3. «

Example 1.1.8 (Continuation of Example 1.1.3, Cournot). There are
no weakly dominating quantities in the Cournot duopoly: Suppose
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L C R

T 1,0 1,2 0,1

B 0,3 0,1 2,0

Figure 1.2.1: A game to illustrate the iterative deletion of strictly domi-
nated strategies, Example 1.2.1.

q2 < a− c. Then arg maxq1 U1(q1, q2) = arg max(a− c − q1 − q2)q1.
The first order condition implies a− c − 2q1 − q2 = 0 or

q1(q2) = a− c − q2

2
.

Since arg maxU1 is unique and a nontrivial function of q2, there is
no weakly dominating quantity. «

1.2 Iterated Deletion of Dominated
Strategies

Example 1.2.1. In the game displayed in Figure 1.2.1, neither player
has an obvious way to play, in the sense that neither has a strictly
dominant strategy.

But, R is strictly dominated, and so will not be played. But if
the row player knows this then, in the game obtained by deleting
R, row’s strategy of B is now strictly dominated, and so will not be
played. If the column player knows that the row player will not play
B, then the column player will not play L. Note that this chain of
logic involves the column player knowing that the row player knows
the column player’s payoffs (as well as knowing the row player’s
payoffs).

Iteratively deleting strictly dominated strategies leads to (T ,C).«

Example 1.2.2 (Continuation of Example 1.1.5). Apply iterative dele-
tion of weakly dominated strategies to the veto game. After one
round of deletions, only (z, z,x) remains for player 2 (both y and z
remain for player 1), and so 1 vetoes y , and not z! See Figure 1.2.2.«



10 Chapter 1. Normal and Extensive Form Games

2

(z, z,x)

1 y 2,1

z 1,2

Figure 1.2.2: The result of iterative deleting weakly dominated strategies
in the voting-by-veto game.

L M R

T 1,1 1,1 0,0

B 1,1 0,0 1,1

Figure 1.2.3: A game illustrating that the order matters when iteratively
deleting weakly dominated strategies (Remark 1.2.1).

Remark 1.2.1. For finite games, the order of removal of strictly dom-
inated strategies is irrelevant (see Problem 1.4.2(a)). This is not true
for weakly dominated strategies, as illustrated by the game in Figure
1.2.3.

Both TL and BL can be obtained as the singleton profile that re-
mains from the iterative deletion of weakly dominated strategies. In
addition, {TL, TM} results from a different sequence, and {BL, BR}
from yet another sequence. (The order does not matter for games
like the veto game of example 1.1.5, see Theorem 2.2.2. See Marx
and Swinkels, 1997, for more general conditions that imply the or-
der does not matter.)

Similarly, the order of elimination of strictly dominated strate-
gies can matter for infinite games (see Problem 1.4.2(b) for a simple
example, and Dufwenberg and Stegeman (2002) for much more).

Because of this, the procedure of the iterative deletion of weakly
(or strictly) dominated strategies is often understood to require that
at each stage, all weakly (or strictly) dominated strategies be deleted.
These notes follow that understanding (unless explicitly stated oth-
erwise). With that understanding, the iterated deletion of weakly
dominated strategies in this example leads to {TL, BL}. ♦
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Remark 1.2.2. The plausibility of the iterated deletion of dominated
strategies requires something like players knowing the structure of
the game (including that other players know the game), not just their
own payoffs. For example, in Example 1.2.1, in order for the column
player to delete L at the third round, the column player needs to
know that the row player will not play B, which requires the column
player to know that the row player knows that the column player
will not play R.3

As illustrated in Section 4.2, this kind of iterated knowledge is
not necessary for the plausibility of the procedure (though in many
contexts it does provide the most plausible foundation). ♦

1.3 Extensive Form Games

Game trees look like decision trees. The role of the definition is
to make clear who does what, when, knowing what. It provides a
complete description of the environment.

Definition 1.3.1. A finite extensive form consists of the following:

1. A set of players {1, . . . , n} and nature, denoted player 0.

2. A game tree (T ,≺), where (T ,≺) is an arborescence: T is a
finite set of nodes and ≺ is a binary relation on T denoting
“precedence” satisfying

(a) ≺ is asymmetric (t ≺ t′ =⇒ t′ ̸≺ t),4
(b) transitive (for all t, t′, t′′ ∈ T , t ≺ t′, t′ ≺ t′′ =⇒ t ≺ t′′),5
(c) if t ≺ t′′ and t′ ≺ t′′ then either t ≺ t′ or t′ ≺ t, and finally,

(d) there is a unique initial node, t0 ∈ T , i.e., {t0} = {t ∈ T :
∄t′ ∈ T , t′ ≺ t}.

Let p(t) ∈ T denote the immediate predecessor of t, i.e., p(t) ≺
t and there is no t′ for which p(t) ≺ t′ ≺ t. The path to a
node t is the sequence t0 = pk(t), pk−1(t), . . . , p(t), t, where

3For more on the epistemic foundations of these procedures, see Remark 2.4.3.
4Note that this implies that ≺ is irreflexive: t ̸≺ t for all t ∈ T .
5A binary relation satisfying 2(a) and 2(b) is called a strict partial order.
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pℓ(t) = p(pℓ−1(t)) for ℓ ≥ 2.6 Requirement (d) implies that for
every noninitial node t, there is a unique path from the initial
node to t.

The set s(t) := {t′ ∈ T : t ≺ t′ and ∄t′′, t ≺ t′′ ≺ t′} = {t′ ∈ T :
p(t′) = t} is the set of immediate successors of t.

The set Z := {t ∈ T : ∄t′ ∈ T , t ≺ t′} is the set of terminal nodes,
with element z.

The set X := T \ Z is the set of decision nodes, with element x.

3. Assignment of players to decision nodes, ι : X → {0,1, . . . n}.
Define Xj := ι−1(j) = {t ∈ X : ι(t) = j}, for all j ∈ {0,1, . . . , n}.

4. Actions: Actions lead to (label) immediate successors, i.e., there
is a set A and a mapping

α : T\{t0} → A,

such that α(t′) ≠ α(t′′) for all t′, t′′ ∈ s(t). Define A(t) :=
α(s(t)), the set of actions available at t ∈ X.

5. Information sets: Hi is a partition of Xi for all i ≠ 0.7 For all
t, t′ ∈ h,

(a) t ̸≺ t′, t′ ̸≺ t,8
(b) A(t) = A(t′) := A(h), and

(c) perfect recall (every player knows whatever he knew pre-
viously, including own previous actions).9 Two extensive
forms that violate perfect recall are in Figure 1.3.1.

Definition 1.3.2. A finite extensive form game Γ consists of is a finite
extensive form with

6Note that the equality t0 = pk(t) determines the value of k, that is, the path has
k steps from t to the initial node.

7A partition Hi is a collection of subsets of Xi such that (i) for all t ∈ Xi, there
exists h ∈ Hi such that t ∈ h, and (ii) for all h,h′ ∈ Hi, if h ≠ h′ then h∩ h′ = ∅.

8This is often viewed as one of the restrictions implied by perfect recall.
9Denote the information set containing t ∈ Ti by h(t) ∈ Hi. The formal require-

ment is:
If t, t′, t′′ ∈ Ti, t ≺ t′, and t′′ ∈ h(t′), then there exists t† ∈ h(t) with t† ≺ t′′.

Moreover, if ℓ andm are defined by t = pℓ(t′) and t† = pm(t′′), then α(pℓ−1(t′)) =
α(pm−1(t′′)).
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It0

L

II

R

IIt1

`

z1

r

t2

`

z2

r

t4t3 I

L′

z3

R′

z4

L′

z5

R′

z6

It0

L

II

R
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`
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t2

`

z2

r

t4t3 II

L′

z3

R′

z4

L′

z5

R′

z6

Figure 1.3.1: Two extensive forms without perfect recall. An arrow con-
nects a node with its immediate predecessor, and is labelled
by the action associated with that node.

1. payoffs, ui : Z → R, and

2. a probability distribution for nature, ρ : X0 →
⋃
t∈X0

∆(A(t))
such that ρ(t) ∈ ∆(A(t)).

Definition 1.3.3. An extensive form strategy for player i is a function

si : Hi →
⋃
hA(h) such that si(h) ∈ A(h), ∀h ∈ Hi.

The set of player i’s strategies is i’s strategy space, denoted Si,
and as before, a strategy profile is (s1, . . . , sn).

Definition 1.3.4. Suppose there are no moves of nature.
The outcome path of (or induced by) a strategy profile is the se-

quence of nodes reached by that strategy profile, or equivalently, the
sequence of specified actions.

The outcome is the unique terminal node reached by the strategy
profile s, denoted z(s). In this case, the normal form representation
is given by {(S1, U1), . . . , (Sn, Un)}, where Si is the set of i’s extensive
form strategies, and

Ui(s) = ui(z(s)).
If there is one or more moves of nature, actions by players re-

sults in a probability distribution over terminal nodes. In this case,
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we assume players are expected utility maximizers. The payoff func-
tion ui is called a Bernoulli utility function, and the payoff from
any distribution over terminal nodes is the expected value of the
Bernoulli utility function (the resulting payoff function is called the
von-Neumann-Morgenstern utility function).

Definition 1.3.5. When there are moves of nature, the outcome of a
strategy profile s is the implied probability distribution over terminal
nodes, denoted Ps ∈ ∆(Z). In this case, in the normal form repre-
sentation given by {(S1, U1), . . . , (Sn, Un)}, where Si is the set of i’s
extensive form strategies, we have

Ui(s) =
∑
z

Ps(z)ui(z).

For an example, see Example 3.1.1. Section 5.1 explores the struc-
ture of Ps in more detail.

The assumption that players are expected utility maximizers al-
lows players to be risk averse. See Kreps (1988), Kreps (1990, Chap-
ter 3), or Mas-Colell, Whinston, and Green (1995, Chapter 6) for
much more on the theory of choice and how the von-Neumann-
Morgenstern theory captures players’ attitudes towards risk.

Example 1.3.1. The extensive form for Example 1.1.5 is described
as follows: The game starts at the node t0, owned by player 1,
(ι(t0) = 1), and t0 has three immediate successors, t1, t2, t3 reached
by vetoing x, y , and z (so that α(t1) = x, and so on). These immedi-
ate successors are all owned by player 2 (i.e., ι(tj) = 2 for j = 1,2,3).
At each of these nodes, player 2 vetoes one of the remaining out-
comes, with each veto leading to a distinct node. See Figure 1.3.2
for a graphical representation.

The result of the iterative deletion of weakly dominated strate-
gies is (y, zzx), implying the outcome (terminal node) t7.

Note that this outcome also results from the profiles (y,yzx)
and (y, zzy), and (y,yzy). «

Definition 1.3.6. A game has perfect information if all information
sets are singletons.

Example 1.3.2 (Simultaneous moves). The extensive form for the
prisoner’s dilemma is illustrated in Figure 1.3.3. «
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1 t0
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0
0
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x
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0
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2
1

t3
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t8
1
2

y

t9
2
1

Figure 1.3.2: The extensive form for Example 1.1.5.

1.3.1 The Reduced Normal Form

Example 1.3.3. Consider the extensive form in Figure 1.3.4. Note
that payoffs have not been specified, just the terminal nodes. The
normal form is displayed in Figure 1.3.5. Observe that I’s strate-
gies Stop,Stop1 and Stop,Go1 are equivalent (in that the rows have
identical entries), as are II’s strategies Stop,Stop1 and Stop,Go1. «

Definition 1.3.7. Two strategies si, s′i ∈ Si are strategically equiva-
lent if Uj(si, s−i) = Uj(s′i , s−i) for all s−i ∈ S−i and all j.

In the (pure strategy) reduced normal form of a game, every set
of strategically equivalent strategies is treated as a single strategy.

Example 1.3.3 (continued). The reduced normal form of Figure 1.3.5
is displayed in Figure 1.3.6. The strategy Stop for player I, for exam-
ple, in the reduced normal form should be interpreted as the equiv-
alence class of extensive form strategies {Stop,Stop1, Stop,Go1},
where the equivalence relation is given by strategic equivalence.

Notice that this reduction occurs for any specification of payoffs
at the terminal nodes. «

The importance of the reduced normal form arises from the re-
duction illustrated in Example 1.3.3: Whenever a player’s strategy
specifies an action that precludes another information set owned
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I
t0

S E

t1S

t3
0
0

E

t4
3
−1

II
t2S

t5−1
3

E

t6
2
2

Figure 1.3.3: The extensive form for the prisoner’s dilemma. Player II’s
information set is indicated by the dashed line.

I
Go

Stop

z1

II Go

Stop

z2

I Go1

Stop1

z3

II Go1 z5

Stop1

z4

Figure 1.3.4: A simple extensive form game.

Stop, Stop1 Stop, Go1 Go, Stop1 Go, Go1

Stop,Stop1 u(z1) u(z1) u(z1) u(z1)

Stop,Go1 u(z1) u(z1) u(z1) u(z1)

Go,Stop1 u(z2) u(z2) u(z3) u(z3)

Go,Go1 u(z2) u(z2) u(z4) u(z5)

Figure 1.3.5: The normal form of the extensive form in Figure 1.3.4, where
u(z) = (u1(z),u2(z)).
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Stop Go, Stop1 Go, Go1

Stop u(z1) u(z1) u(z1)

Go,Stop1 u(z2) u(z3) u(z3)

Go,Go1 u(z2) u(z4) u(z5)

Figure 1.3.6: The reduced normal form of the normal form in Figure 1.3.5.

by the same player, that strategy is strategically equivalent to other
strategies that only differ at such information sets. As in Example
1.3.3, this is true for arbitrary specifications of payoffs at the termi-
nal nodes.

When developing intuition about the relationship between the
normal and extensive form, it is often helpful to assume that exten-
sive form payoffs have no ties, i.e., for all players i and all pairs of
terminal nodes, z, z′ ∈ Z , ui(z) ≠ ui(z′). Under that restriction,
marginally changing payoffs at terminal nodes does not change the
set of reduced normal form strategies for any player.

However, if for example, ui(z) = ui(z′) for all players i and all
pairs of terminal nodes, z, z′ ∈ Z , then the reduced normal form
consists of one strategy for each player. Changing payoffs now does
change the set of reduced normal form strategies.

When describing the normal form representation of an extensive
form, it is common to (and we will typically) use the reduced normal
form.

An extensive form strategy always has the form given by Defini-
tion 1.3.3, while a normal form strategy may represent an equiva-
lence class of extensive form strategies (and a reduced normal form
strategy always does).

1.4 Problems

1.4.1. Consider the Cournot duopoly example (Example 1.1.3).

(a) Characterize the set of strategies that survive iterated dele-
tion of strictly dominated strategies.



18 Chapter 1. Normal and Extensive Form Games

(b) Formulate the game when there are n ≥ 3 firms and iden-
tify the set of strategies surviving iterated deletion of strictly
dominated strategies.

1.4.2. (Note that this question does not follow the convention of Re-
mark 1.2.1 that all possible deletions are done at each round.)

(a) Prove that the order of deletion does not matter for the
process of iterated deletion of strictly dominated strate-
gies in a finite game (Remark 1.2.1 shows that strictly can-
not be replaced by weakly).

(b) (Dufwenberg and Stegeman, 2002, Example 1) Show that
the order of deletion matters for the process of iterated
deletion of strictly dominated strategies for the following
infinite game: S1 = S2 = [0,1] and payoffs

ui(s1, s2) =




si, if si < 1,
0, if si = 1, sj < 1,
1, if si = sj = 1.

1.4.3. Suppose T = {a,b, c, d, e, f , g,h} and ≺ is given by (i) a ≺ b,
c, d, e, f , g, h, (ii) b ≺ c, e, and (iii) d ≺ f , g.

(a) Draw the implied tree. Be sure to label all nodes.

(b) Suppose this is a two player game, with player 2 owning b
and d. Specify an action labeling for the game, and a pair
of strategies for each of players 1 and 2 with the prop-
erty that the four resulting strategy profiles have precisely
c, f , g as outcomes.

(c) Suppose now that player 2 cannot distinguish between the
two nodes b and d. Describe player 2’s information set(s).
Is it possible to specify an action labeling for the game,
and a pair of strategies for each of players 1 and 2 with
the property that the four resulting strategy profiles have
precisely c, f , g as outcomes? Why or why not?

(d) What is the implied tree if (ii) is given by b ≺ c,d, e?

1.4.4. Define the “follows” relation ≺∗ on information sets by: h′ ≺∗
h if there exists x ∈ h and x′ ∈ h′ such that x′ ≺ x.
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(a) Prove that each player i’s information sets Hi are strictly
partially ordered by the relation ≺∗ (recall footnote 5 on
page 11).

(b) Perfect recall implies that the set of i’s information sets
satisfy Property 2(c) of Definition 1.3.1, i.e., for all h,h′, h′′ ∈
Hi, if h ≺∗ h′′ and h′ ≺∗ h′′ then either h ≺∗ h′ or
h′ ≺∗ h. Give an intuitive argument.

(c) Give an example showing that the set of all information
sets is not similarly strictly partially ordered by ≺∗.

(d) Prove that if h′ ≺∗ h for h,h′ ∈ Hi, then for all x ∈ h,
there exists x′ ∈ h′ such that x′ ≺ x. (In other words, an
individual player’s information is refined through play in
the game. Prove should really be in quotes, since this is
trivial.)

1.4.5. Consider a sealed bid second price auction with two bidders.
Suppose bidder i’s payoffs from owning the object being sold
after paying an amount p is given by Ui(p), where Ui is contin-
uous and strictly decreasing on R, Ui(0) > 0, and there exists
P such that Ui(P) < 0. What is the unique weakly dominant
strategy for bidder i?

1.4.6. A sealed bid third price auction with n bidders is a sealed bid
auction in which the highest bidder wins the auction, and pays
the third highest bid. As in Example 1.1.2, let vi denote bidder
i’s reservation price for the object.

(a) Carefully describe the normal form of the three bidder ver-
sion of this game.

(b) Do bidders in this game have a weakly dominant strategy?
If so, prove it. If not, provide a counterexample.
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Chapter 2

A First Look at Equilibrium

2.1 Nash Equilibrium

Most games do not have an “obvious” way to play.

Example 2.1.1 (Battle of the sexes). The game displayed in Figure
2.1.1 has no strategy iteratively dominating all the other strategies.«

The standard solution concept for games is Nash equilibrium
(Section 2.1.1 addresses why this is the standard solution concept).

Definition 2.1.1. The strategy profile s∗ ∈ S is a Nash equilibrium of
G = {(S1, U1), . . . , (Sn, Un)} if for all i and for all si ∈ Si,

Ui(s∗i , s
∗
−i) ≥ Ui(si, s∗−i).

The battle of the sexes in Figure 2.1.1 has two Nash equilibria,
(Opera, Opera) and (Ballet, Ballet).

Example 2.1.2. Consider the simple extensive form in Figure 2.1.2.
The strategy spaces are S1 = {L,R}, S2 = {ℓℓ′, ℓr ′, rℓ′, rr ′}.

Payoffs are Uj(s1, s2) = uj(z), where z is terminal node reached
by (s1, s2).

The normal form is given in Figure 2.1.3.
Two Nash equilibria: (L, ℓℓ′) and (R, ℓr ′). Though ℓr ′ is a best

reply to L, (L, ℓr ′) is not a Nash equilibrium.
Note that the equilibria are strategy profiles, not outcomes. The

outcome path for (L, ℓℓ′) is Lℓ, while the outcome path for (R, ℓr ′)
is Rr ′. In examples where the terminal nodes are not separately

21
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Sheila

Opera Ballet

Bruce Opera 3,1 0,0

Ballet 0,0 1,3

Figure 2.1.1: A Battle of the Sexes.
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Figure 2.1.2: A simple extensive form.

labeled, it is common to also refer to the outcome path as simply the
outcome—recall that every outcome path reaches a unique terminal
node, and conversely, every terminal node is reached by a unique
sequence of actions (and moves of nature).

NOTE: (R, rr ′) is not a Nash equilibrium, even though the out-
come path associated with it, Rr ′, is a Nash outcome path.

«

Denote the collection of all subsets of Y by ℘(Y).
A function φ : X → ℘(Y)\{∅} is a correspondence from X to Y ,

sometimes written φ : X ⇒ Y .
Note that φ(x) is simply a nonempty subset of Y . If f : X → Y is

a function, thenφ(x) = {f(x)} is a correspondence and a singleton-
valued correspondence can be naturally viewed as a function.
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II

ℓℓ′ ℓr ′ rℓ′ rr ′

I L 2,3 2,3 4,2 4,2

R 1,0 3,1 1,0 3,1

Figure 2.1.3: The normal form of the extensive form in Figure 2.1.2.

Definition 2.1.2. The best reply correspondence for player i is

φi(s−i) := arg max
si∈Si

Ui(si, s−i)

= {si ∈ Si : Ui(si, s−i) ≥ Ui(s′i , s−i),∀s′i ∈ Si}.
Without assumptions on Si and ui, φi need not be well defined.

When it is well defined everywhere, φi : S−i ⇒ Si.
Ifφi(s−i) is a singleton for all s−i, thenφi is i’s reaction function.

Remark 2.1.1. Defining φ : S ⇒ S by

φ(s) :=
∏

i
φi(s−i) = φ1(s−1)× · · · ×φn(s−n),

the profile s∗ is a Nash equilibrium if, and only if, s∗ is a fixed point
of φ:

s∗ ∈ φ(s∗). ♦

Example 2.1.3 (Continuation of Example 1.1.8, Cournot). Recall that,
if q2 < a− c, arg maxui(q1, q2) is unique and given by

q1(q2) = a− c − q2

2
.

More generally, i’s reaction function is

φi(qj) = max{1
2
(a− c − qj),0}.

A Nash equilibrium profile (q∗1 , q
∗
2 ) solves

q∗1 =φ1(q∗2 )
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q1

(a− c)/2

a− c

q2

(a− c)/2 a− c

φ1

φ2

(q∗1 , q∗2 )

Figure 2.1.4: The reaction (or best reply) functions for the Cournot game.

and

q∗2 =φ2(q∗1 ).

This is illustrated in Figure 2.1.4.
So (temporarily ignoring the boundary conditions),

q∗1 =
1
2
(a− c − q∗2 )

=1
2
(a− c − 1

2
(a− c − q∗1 ))

=1
2
(a− c)− 1

4
(a− c)+ q

∗
1

4

=1
4
(a− c)+ q

∗
1

4

and so

q∗1 =
1
3
(a− c).
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Thus,

q∗2 =
1
2
(a− c)− 1

6
(a− c) = 1

3
(a− c),

and the boundary conditions are not binding.
The market-clearing price is given by

P = a− q∗1 − q∗2 = a−
2
3
(a− c) = 1

3
a+ 2

3
c > 0.

Note also that there is no equilibrium with price equal to zero. «

Example 2.1.4 (Example 1.1.6 cont., sealed-bid second-price auc-
tion). Suppose v1 < v2, and the valuations are commonly known.
There are many Nash equilibria: Bidding vi for each i is a Nash equi-
librium (of course?). But so is any bidding profile (b1, b2) satisfying
b1 < b2, b1 ≤ v2 and v1 ≤ b2. And so is any bidding profile (b1, b2)
satisfying b2 ≤ v1 < v2 ≤ b1! (Why? Make sure you understand why
some inequalities are weak and some are strict). «

Example 2.1.5 (Example 1.1.2 cont., sealed-bid first-price auction).
Suppose v1 = v2 = v , and the valuations are commonly known. The
unique Nash equilibrium is for both bidders to bid bi = v . But this
equilibrium is in weakly dominated strategies. But what if bids are
in pennies? «

2.1.1 Why Study Nash Equilibrium?

Nash equilibrium is based on two principles:

1. each player is optimizing given beliefs/predictions about the
behavior of the other players; and

2. these beliefs/predictions are correct.

Optimization is not in principle troubling, since a player chooses
an action he/she believes is optimal. For if he/she believed another
action was optimal, (surely) it would have been chosen. This re-
flects our assumption that a player’s payoffs capture the game as
perceived by that player (recall Remark 1.1.1).1

1This is a little cavalier (but perhaps appropriately so at this point). For a more
nuanced discussion, see Section 4.2.
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In contrast, consistency of beliefs with the actual behavior is a
strong assumption. Several justifications have been suggested:

1. Self-fulfilling prophecy.

Suppose an advisor (oracle) recommends (publicly predicts) a
pattern of behavior for all the players. If the announcement is
not a Nash equilibrium and the players believe others will play
as announced, then there is at least one player who has a strict
incentive not do so, undermining the recommendation.

2. Preplay communication.

Before playing, the players discuss and reach an agreement on
what to play. Such an agreement needs to be a Nash equilib-
rium, since the agreement needs to be a self-fulfilling prophecy,
otherwise at least one player will not honor the agreement. But,
the game with the preplay communication should be viewed as
a (bigger) game, since players may disagree as to the preferred
play (Example 2.1.1) and so bargaining and renegotiation be-
comes relevant (see Section 2.5.2),

3. Obvious or natural way to play.

These are often called focal points, see Example 2.5.3.

4. Learning.

Games are played within a (social) context with a history. Play-
ers may learn how others have played from either their own
previous experience (individual learning) or from observing how
others have played (social learning). A brief introduction to
learning foundations is given in Section 4.2 (with an important
caveat in Section 4.2.3).

5. Provides an important discipline on modeling.

In the absence of consistency, many seemingly inconsistent
patterns of behavior are consistent with optimal play. For ex-
ample, in the battle of the sexes (Example 2.1.1), (Opera, Ballet)
is consistent with each player optimally best responding to be-
liefs about the play of the other player (indeed, this profile is
rationalizable). In the absence of consistency, it is too easy to
“explain” seemingly perverse group behavior by the assertion
that each individual’s behavior is optimal with respect to some
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Entrant

Out

0
4

Incumbent

In

Fight

−1
1

Accommodate

1
2

Figure 2.2.1: An entry game.

beliefs. The difficulty is that in the absence of consistency, be-
liefs are effectively untethered from the actual play in the game
being studied.

Nash equilibrium is typically viewed (particularly in applications)
as a necessary condition for a strategy profile to be worthy of in-
vestigation. It is not sufficient. In many settings, there are multiple
Nash equilibria and not all Nash equilibria are equally plausible. The
next two sections introduce some considerations that can eliminate
some Nash equilibria (Section 2.5 expands on this discussion).

2.2 Credible Threats and Backward
Induction

Example 2.2.1 (Entry deterrence). The entry game illustrated in Fig-
ure 2.2.1 has two Nash equilibria: (In, Accommodate) and (Out,
Fight). The latter profile is implausible. Suppose the incumbent firm
threatens to fight entry (while the possibility of announcing such a
threat is outside the model, the thought exercise is useful nonethe-
less). The entrant knows that when the incumbent is faced with the
fait accompli of entry, the incumbent will not carry out the threat (it
is not credible), and so the entrant ignores the threat.
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«

In the (Out, Fight) equilibrium of Example 2.2.1, the incumbent
is indifferent between Accommodate and Fight; because the entrant
chooses Out, the incumbent’s information set is off-the-path-of-play,
and so the incumbent’s choice is irrelevant. The credibility logic es-
sentially breaks (resolves) the indifference by having the incumbent
evaluate the payoff implications of his choice conditional on the in-
formation set being reached. In Example 2.2.1, this evaluation is
trivial, since that information set is the last information set and is a
singleton information set (i.e., the information set contains a single
node).

More generally, if there are many singleton information sets, it is
natural to make such evaluations at the last information sets. Such
evaluations determine behavior at those last information sets, re-
sulting in a shorter game and we can then proceed recursively.

Definition 2.2.1. Fix a finite extensive form game of perfect informa-
tion. A backward induction solution is a strategy profile ŝ obtained
as follows:

1. Since the game is finite, there is at least one “last” decision node,
t∗. Since the game has perfect information, the information set
containing t∗ is the singleton {t∗}. With only a slight abuse
of notation, denote the information set by t∗. Player ι(t∗)’s
action choice under ŝ at t∗, ŝι(t∗)(t∗), is an action reaching a
terminal node that maximizes ι(t∗)’s payoff (over all terminal
nodes reachable from t∗).2

2. With player ι(t∗)’s action at t∗ fixed, we now have a finite ex-
tensive form game with one less decision node. Now apply step
1 again. Continue till an action has been specified at every de-
cision node.

A backward induction outcome is the terminal node reached by a
backward induction solution.

Example 2.2.2 (Rosenthal’s (1981) centipede game). The perils of
backward induction are illustrated in Figure 2.2.2, with reduced nor-
mal form given in Figure 2.2.3.

2This action is often unique, but need not to be. If it is not unique, each choice
leads to a distinct backward induction solution.
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I
Go

Stop

1
0

II Go

Stop

0
10

I Go1 10
1,000

Stop1

100
1

Figure 2.2.2: A short centipede game.

Stop Go

Stop 1,0 1,0

Go,Stop1 0,10 100,1

Go,Go1 0,10 10,1000

Figure 2.2.3: The reduced normal form for the short centipede in Figure
2.2.2.

A longer (and more dramatic) version of the centipede is given in
Figure 2.2.4.

The backward induction solution in both cases is that both play-
ers choose to stop the game at every decision point. «

Example 2.2.3 (Another cautionary example). The backward solu-
tion for the game in Figure 2.2.5 is (D1R2, r ).

But if II is asked to make a move, how confident should she be
that I will play R2 after r? After all, she already has evidence that
I is not following the backward induction solution (i.e., she already
has evidence that I may not be “rational,” or perhaps that her beliefs
about I’s payoffs may be incorrect). And 9 is close to 10. But then
playing d may be sensible. Of course, that action seems to justify
I’s original “irrational” action. «

Since every backward induction solution is pure strategy Nash
equilibrium, we immediately have the following trivial existence the-
orem.
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I
Go

Stop

1
0

II Go

Stop

0
10

I Go1

Stop1

100
1

II Go1

Stop1

10
1,000

I Go2 1,000
100,000

Stop2

10,000
100

Figure 2.2.4: A long centipede game.

I
R1

D1

15
0

II r

d

20
10

I R2 10
1,000

D2

9
1

Figure 2.2.5: Another cautionary example.

Theorem 2.2.1. A finite game of perfect information has a pure strat-
egy Nash equilibrium.

Schwalbe and Walker (2001) describe the role of this result (and
its misattribution) in the early history of game theory.

Remark 2.2.1. Games with ties arise naturally. For example, the
ultimatum game (Problem 2.6.7) has ties because all terminal nodes
reached by a rejection give both players a zero payoff. Ties can
result in multiple best replies at an information set. If multiple best
replies do arise, then (as should be clear from Definition 2.2.1), there
is a (different) backward induction solution for each best reply.

The restriction to finite games is important. If multiple best
replies do arise in a non-finite game, then there need not be a “back-
ward induction” solution corresponding to each best reply (the ul-
timatum game of Problem 2.6.7 is a simple, but important, exam-
ple). Moreover, there need not be any “backward induction” solution
(Problem 4.3.3(c)). ♦
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2.2.1 Backward Induction and Iterated Weak
Dominance

“Generically in extensive form payoffs,” the terminal node reached
by the backward induction solution agrees with the terminal node
reached by any strategy profile left after the iterated deletion of
weakly dominated strategies. Given the distinction between exten-
sive form and reduced normal form strategies, there is no hope for
anything stronger.

Theorem 2.2.2 (Rochet, 19803). Suppose Γ is a finite extensive form
game of perfect information with no ties, i.e., for all players i and
all pairs of terminal nodes z and z′, ui(z) ≠ ui(z′).4 The game has
a unique backward induction outcome. Let s be a strategy profile
that remains after some maximal sequence of iterated deletions of
weakly dominated strategies (i.e., the order of deletions is arbitrary
and no further deletions are possible). The outcome reached by s is
the backward induction outcome.

Example 2.2.4 (An example with ties). If the game has ties, then it-
erated deletion of weakly dominated strategies can be stronger than
backward induction (see Figure 2.2.6). «

2.3 Subgame Perfection

Example 2.3.1. In the game illustrated in Figure 2.3.1, the profile
(L, T , r) is Nash. Is it plausible? «

Define S(t) := {t′ ∈ T : t ≺ t′}.
Definition 2.3.1. The subset T t := {t} ∪ S(t), of T , together with
payoffs, etc., restricted to T t , is a subgame if for all information sets
h,

h∩ T t ≠∅⇒ h ⊂ T t.
3See also Marx and Swinkels (1997).
4This property is generic in extensive form payoffs in the following sense: Fix an

extensive game tree (i.e., everything except the assignment of payoffs to terminal
nodes z ∈ Z). The space of games (with that tree) is the space of all payoff assign-
ments to the terminal nodes, Rn|Z|. The space of games is thus a finite dimensional
Euclidean space. The set of payoff assignments that violate the property of no ties
is a subset of a closed Lebesgue measure zero subset of Rn|Z|.
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I

L

2
2

R
II

`

0
1

r

2
1

Figure 2.2.6: An example with ties. The backward induction solutions are
Lℓ, Lr , and Rr . But R is weakly dominated for I.

Observe that the information set containing the initial node of a
subgame is necessarily a singleton.

Definition 2.3.2. A strategy profile is a subgame perfect equilibrium
if it specifies a Nash equilibrium in every subgame.

Example 2.3.2 (augmented PD). A (once-)repeated stage game with
perfect monitoring. The stage game in Figure 2.3.2 is played twice,
action choices in the first round are observed by both players (i.e.,
perfectly monitored), and payoffs are added.

Nash strategy profile: Play E in first period, and S in second pe-
riod as long as opponent also cooperated (played E) in the first pe-
riod, and play P if opponent didn’t. Every first period action profile
describes an information set for each player. Player i’s strategy is

s1
i = E,

s2
i (ai, aj) =

{
S, if aj = E,
P, if aj ≠ E.

This profile is not subgame perfect: Every first period action pro-
file induces a subgame, on which SS must be played. But the profile
specifies PS after ES, for example.

The only subgame perfect equilibrium is to always play S.
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I

R

L

2
−1
−1

II

T B

`

0
0
0

r

0
0
1

III
`

3
1
1

r

0
1
0

Figure 2.3.1: The profile (L, T , r) is Nash. Is it plausible?

«

Remark 2.3.1. Why was the prisoner’s dilemma augmented in Exam-
ple 2.3.2? The prisoner’s dilemma has the property that the unique
Nash equilibrium gives each player the lowest payoff that the player
can guarantee him/herself, i.e., 0 is each player’s security level (see
Definition 2.4.2). In order to sustain E in the first period, a player
who chooses S in the first period must receive a lower payoff in the
second than if he/she had chosen E. But the player already receives
the lowest possible payoff after E, and so the only Nash equilibrium
outcome is SS in both periods. ♦

Example 2.3.3 (A different repeated game). The stage game in Figure
2.3.3 played played twice with first round actions observed by both
players.

The action profiles (T , L) and (M,C) are both Nash equilibria of
the stage game. The following profile (s1, s2) of the once-repeated
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E S P

E 2,2 −1,3 −1,−1

S 3,−1 0,0 −1,−1

P −1,−1 −1,−1 −2,−2

Figure 2.3.2: The augmented prisoner’s dilemma for Example 2.3.2.

L C R

T 4,6 0,0 9,0

M 0,0 6,4 0,0

B 0,0 0,0 8,8

.

Figure 2.3.3: The stage game for Example 2.3.3.

game with payoffs added is subgame perfect:

s1
1 = B,

s2
1(x,y) =

{
M, if x = B,
T , if x ≠ B,

s1
2 = R,

and

s2
2(x,y) =

{
C, if x = B,
L, if x ≠ B.

The outcome path induced by (s1, s2) is (BR,MC). The first period
actions coordinate the play in the second period.

These are strategies of the extensive form of the repeated game,
not of the reduced normal form. The reduced form strategies corre-
sponding to (s1, s2) are

ŝ1
1 = B,

ŝ2
1(y) = M, for all y,

ŝ1
2 = R,
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I

R

L

2
0 I

T B

`

−1
1

r

4
0

II
`

0
0

r

5
1

Figure 2.3.4: A game with “nice” subgames.

and

s2
2(x) =

{
C, if x = B,
L, if x ≠ B. «

Example 2.3.4. Consider the extensive form in Figure 2.3.4.
The game has three Nash equilibria: (RB, r), (LT , ℓ), and (LB, ℓ).

Note that (LT , ℓ), and (LB, ℓ) are distinct extensive form strategy
profiles.

The only subgame perfect equilibrium is (RB, r).
But (L, ℓ) is also subgame perfect in the extensive form in Figure

2.3.5. Both games have the same reduced normal form, given in
Figure 2.3.6. «

Remark 2.3.2 (Equivalent representations?). A given strategic set-
ting has both a normal form and an extensive form representation.
Moreover, the extensive form apparently contains more information
(since it contains information about dynamics and information). For
example, in Example 2.2.1, the application of weak domination to
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I
L

2
0 T B

`

−1
1

r

4
0

II
`

0
0

r

5
1

Figure 2.3.5: A game “equivalent” to the game in Figure 2.3.4 with no
“nice”subgames.

ℓ r

L 2,0 2,0

T −1,1 4,0

B 0,0 5,1

Figure 2.3.6: The reduced form for the games in Figures 2.3.4 and 2.3.5.

rule out the (Out, Fight) equilibrium can be argued to be less com-
pelling than the backward induction (ex post) argument in the ex-
tensive form: faced with the fait accompli of Enter, the incumbent
“must” Accommodate. As Kreps and Wilson (1982, p. 886) write:
“analysis based on normal form representation inherently ignore
the role of anticipated actions off the equilibrium path ... and in
the extreme yields Nash equilibria that are patently implausible.”

However, backward induction and the iterated deletion of weakly
dominated strategies lead to the same outcomes in finite games of
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H T

H 1,−1 −1,1

T −1,1 1,−1

Figure 2.4.1: Matching Pennies.

perfect information (Theorem 2.2.2). Motivated by this and other
considerations, a “classical” argument holds that all extensive forms
with the same reduced normal form representation are strategically
equivalent (Kohlberg and Mertens, 1986, is a well known statement
of this position; see also Elmes and Reny, 1994). Such a view im-
plies that “good” extensive form solutions should not depend on
the extensive form in the way illustrated in Example 2.3.4. For more
on this issue, see van Damme (1984) and Mailath, Samuelson, and
Swinkels (1993, 1997). ♦

2.4 Mixing

2.4.1 Mixed Strategies and Security Levels

Example 2.4.1 (Matching Pennies). A game with no Nash equilibrium
is illustrated in Figure 2.4.1.

The greatest payoff that the row player, for example, can guar-
antee himself may appear to be −1 (the unfortunate result of the
column player correctly anticipating his choice).

But suppose that the row player uses a fair coin toss to deter-
mine his action. Then the column player cannot anticipate the row
player’s choice, and so presumably the row player would be able to
do better. «

How can we capture the possibility that a player may randomize
(such as in Matching Pennies)?

Definition 2.4.1. Suppose {(S1, U1), . . . , (Sn, Un)} is an n-player nor-
mal form game. A mixed strategy for player i is a probability distri-
bution over Si, denoted σi. Strategies in Si are called pure strategies.
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If Si is countable, a strategy σi is completely mixed if σi(si) > 0 for
all si ∈ Si.

In order for the set of mixed strategies to have a nice mathemat-
ical structure (such as being metrizable or compact), we need the
set of pure strategies to also have a nice structure (often complete
separable metric, i.e., Polish). For our purposes here, it will suffice
to consider countable sets, or nice subsets of Rk. More generally, a
mixed strategy is a probability measure over the set of pure strate-
gies. The set of probability measures over a set A is denoted ∆(A).

If Si is countable, think of a mixed strategy σi as a mapping
σi : Si → [0,1] such that

∑
si∈Si σi(si) = 1.

Since players are expected utility maximizers, extend Ui to
∏n
j=1∆(Sj)

by taking expected values, so that Ui is i’s expected payoff under
randomization.

If Si is countable,

Ui(σ1, . . . , σn) =
∑

s1∈S1

· · ·
∑

sn∈Sn
Ui(s1, . . . , sn)σ1(s1) · · ·σn(sn).

Writing

Ui(si, σ−i) =
∑

s−i∈S−i
Ui(si, s−i)

∏

j≠i
σj(sj),

we then have

Ui(σi, σ−i) =
∑

si∈Si
Ui(si, σ−i)σi(si).

Definition 2.4.2. Player i’s security level (or payoff) is the greatest
payoff that i can guarantee himself:

vi = sup
σi∈∆(Si)

inf
σ−i∈

∏
j≠i∆(Sj)

Ui(σi, σ−i).

If σ∗i achieves the sup, then σ∗i is a security strategy for i.

In matching pennies, each player’s security level is 0, guaranteed
by the security strategy 1

2 ◦H + 1
2 ◦ T .
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L R

T 3 0

M 2 2

B 0 3

Figure 2.4.2: In this game (payoffs are for the row player), M is not dom-
inated by any strategy (pure or mixed) and it is the unique
best reply to 1

2 ◦ L+ 1
2 ◦ R.

L R

T 5 0

M 2 2

B 0 5

Figure 2.4.3: In this game (payoffs are for the row player), M is not dom-
inated by T or B, it is never a best reply, and it is strictly
dominated by 1

2 ◦ T + 1
2 ◦ B.

2.4.2 Domination and Optimality

Example 2.4.2. In the game in Figure 2.4.2, M is not strictly domi-
nated by any strategy (pure or mixed) and it is the unique best reply
to 1

2 ◦ L + 1
2 ◦ R. In the game in Figure 2.4.3, M is not strictly domi-

nated by T or B, it is never a best reply, and it is strictly dominated
by 1

2 ◦ T + 1
2 ◦ B. «

Definition 2.4.3. The strategy s′i ∈ Si is strictly dominated by the
mixed strategy σi ∈ ∆(Si) if

Ui(σi, s−i) > Ui(s′i , s−i) ∀s−i ∈ S−i.

The strategy s′i ∈ Si is weakly dominated by the mixed strategy σi ∈
∆(Si) if

Ui(σi, s−i) ≥ Ui(s′i , s−i) ∀s−i ∈ S−i
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and there exists s∗−i ∈ S−i such that

Ui(σi, s∗−i) > Ui(s
′
i , s

∗
−i).

A strategy is admissible if it not weakly dominated. A strategy is
inadmissible if it is weakly dominated (by some mixed strategy).

Henceforth, a strategy is (strictly) undominated if there is no
mixed strategy that strictly dominates it.5

It is immediate that Definition 2.4.3 is equivalent to the same re-
quirement with the displayed inequalities in Definition 2.4.3 holding
with “σ−i” and “for all σ−i ∈

∏
j≠i∆(Sj)” replacing “s−i” and “for all

s−i ∈ S−i” (respectively).

Lemma 2.4.1. Suppose n = 2 and the game is finite. The strategy
s′1 ∈ S1 is not strictly dominated by a pure or mixed strategy if, and
only if, s′1 ∈ arg maxu1(s1, σ2) for some σ2 ∈ ∆(S2).

For more than two players, it is possible that a strategy can fail
to be a best reply to any mixed profile for the other players, and
yet that strategy is not strictly dominated (see Problem 2.6.17 for an
example).

The proof for infinite Si is similar, after appropriate assumptions
are made. The equivalence does not hold for infinite non-compact
Si.6

Proof. (⇐= ) If there exists σ2 ∈ ∆(S2) such that s′1 ∈ arg maxU1(s1, σ2),
then it is straightforward to show that s′1 is not strictly dominated
by any other pure or mixed strategy (left as an exercise).

( =⇒) We prove this direction by proving the contrapositive.7 So,
suppose s′1 is a player 1 strategy satisfying

s′1 ̸∈ arg max U1(s1, σ2) ∀σ2 ∈ ∆(S2). (2.4.1)

5Recall that a pure strategy is a special case of a mixed strategy, so an undomi-
nated strategy is not dominated by any pure strategy.

6The following example is from Bergemann and Morris (2005a, footnote 8), who
credit Andrew Postlewaite: Each player i chooses a non-negative integer ki. Player
1’s payoff is ui(k1, k2) = 1 if k1 = 0, 2 if k1 > k2 (and so k1 ≥ 1), and 0 if 1 ≤
k1 ≤ k2. Action k1 = 0 is not a best reply to any σ2 ∈ ∆(S2), but it is not strictly
dominated.

7The contrapositive of the conditional statement (A ⇒ B) is (¬B ⇒ ¬A), and
has the same truth value as the original conditional statement.
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x(·, s2)

x(·, s′2)

x(·, ŝ2)
x(·, s̃2)

X

R|S1|−1
−

s1

ŝ1

Figure 2.4.4: The sets X and R|S1|−1
− . The horizontal axis measures the pay-

off difference from playing s1, while the vertical axis mea-
sures that from playing ŝ1.

We need to find a mixed strategy σ∗1 strictly dominating s′1.

For s1 ≠ s′1, define x(s1, s2) = U1(s1, s2)−U1(s′1, s2). Observe that
for any s2 ∈ S2, we can represent the vector of payoff differences
{x(s1, s2) : s1 ≠ s′1} as a point x = (xs1)s1≠s′1 ∈ R|S1|−1. Define

X := conv{x ∈ R|S1|−1 : ∃s2 ∈ S2, xs1 = x(s1, s2) ∀s1 ≠ s′1}.

Denote the closed negative orthant by R|S1|−1
− := {x ∈ R|S1|−1 :

xs1 ≤ 0, ∀s1 ≠ s′1}. Equation (2.4.1) implies that for all σ2 ∈ ∆(S2),
there exists s1 such that

∑
x(s1, s2)σ2(s2) > 0, and so R|S1|−1

− ∩ X =
∅. Moreover, X is closed, since it is the convex hull of a finite num-
ber of vectors. See Figure 2.4.4.

By an appropriate strict separating hyperplane theorem (see, for
example, Vohra, 2005, Theorem 3.7), there exists λ ∈ R|S1|−1 \ {0}
such that λ·x > λ·x′ for all x ∈ X and all x′ ∈ R|S1|−1

− . Since R|S1|−1
−

is unbounded below, λ(s1) ≥ 0 for all s1 (otherwise making |x′(s1)|
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large enough for s1 satisfying λ(s1) < 0 ensures λ·x′ > λ·x). Define

σ∗1 (s
′′
1 ) =



λ(s′′1 )

/∑
s1≠s′1 λ(s1) , if s′′1 ≠ s

′
1,

0, if s′′1 = s′1.

We now argue that σ∗1 is indeed a mixed strategy for 1 strictly dom-

inating s′1: Since 0 ∈ R|S1|−1
− , we have λ · x > 0 for all x ∈ X, and

so ∑

s1≠s′1

σ∗1 (s1)
∑
s2
x(s1, s2)σ2(s2) > 0, ∀σ2,

i.e., for all σ2,

U1(σ∗1 , σ2) =
∑

s1≠s′1,s2

U1(s1, s2)σ∗1 (s1)σ2(s2)

>
∑

s1≠s′1,s2

U1(s′1, s2)σ
∗
1 (s1)σ2(s2) = U1(s′1, σ2).

Remark 2.4.1. This proof requires us to strictly separate two dis-
joint closed convex sets (one bounded), rather than a point from a
closed convex set (the standard separating hyperplane theorem). To
apply the standard theorem, define Y := {y ∈ R|S1|−1 : ∃x ∈ X,yℓ ≥
xℓ∀ℓ}. Clearly Y is closed, convex and 0 ∉ Y . We can proceed
as in the proof, since the normal vector for the separating hyper-
plane must again have only nonnegative coordinates (use now the
unboundedness of Y ). ♦

Remark 2.4.2. There is a similar result for admissibility:

Lemma 2.4.2. Suppose n = 2 and the game is finite. The strategy
s′1 ∈ S1 is admissible if, and only if, s′1 ∈ arg maxU1(s1, σ2) for some
full support σ2 ∈ ∆(S2).

A hint is given in Problem 2.6.15. ♦

A mixed strategy with full support is said to be completely mixed.
At least for two players, iterated strict dominance is thus iterated

non-best replies—the rationalizability notion of Bernheim (1984) and
Pearce (1984). For more than two players, as illustrated in Problem
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2.6.17, there is an issue of correlation: A strategy may be a best re-
ply to a correlated strategy profile of two other players, but not a
best reply to any profile of mixed strategies (which requires inde-
pendent randomization across players). The rationalizability notion
of Bernheim (1984) and Pearce (1984) does not allow such correla-
tion, since it focuses on deleted strategies that are not best replies
to any mixed profile of the other players.

Lemma 2.4.1 holds for mixed strategies (see Problem 2.6.14).

Remark 2.4.3. Fix a two player game played by Bruce and Sheila, and
interpret rationality as not playing an action that is not a best reply
to some belief over the opponent’s play. Then if Sheila knows that
Bruce is rational, she knows he will not play an action that is not a
best reply to some belief over her play, that is, Bruce will not play a
strictly dominated action. Hence, the result of the iterative deletion
of strictly dominated actions can be interpreted as the result of the
assumption that rationality is common knowledge between Bruce
and Sheila (i.e., each is rational, each knows each is rational, each
knows that each knows that each is rational, and so on). Hence
the use of the term rationalizability by Bernheim (1984) and Pearce
(1984).

What about the iterative deletion of weakly dominated actions?
There is a similar interpretation, but complicated by the kinds of
issues raised in Remark 1.2.1 (first raised by Samuelson, 1992).8 See
Brandenburger, Friedenberg, and Keisler (2008) for (much) more on
this; their Section 2 provides a nice heuristic introduction to the
issues. ♦

2.4.3 Equilibrium in Mixed Strategies

Definition 2.4.4. Suppose {(S1, U1), . . . , (Sn, Un)} is an n-player nor-
mal form game. A Nash equilibrium in mixed strategies is a profile

8In Figure 1.2.3, M is deleted because the column player believes that the row
player may play B, and indeed if only M is deleted, then T is deleted for the row
player. Of course, a similar logic (with a different conclusion!) applies if R is
deleted first. But if the row player is truly convinced that the column player will
play L then there is no reason to delete any strategy for the row player. This
is sometimes called the “inclusion-exclusion” problem: a strategy is deleted for
reasons that are subsequently excluded.
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L R

T 2,1 0,0

B 0,0 1,1

Figure 2.4.5: The game for Example 2.4.3.

(σ∗1 , . . . , σ∗n ) such that, for all i and for all σi ∈ ∆(Si),

Ui(σ∗i , σ
∗
−i) ≥ Ui(σi, σ∗−i). (2.4.2)

Since

Ui(σi, σ∗−i) =
∑

si∈Si
Ui(si, σ∗−i)σi(si) ≤ max

s′i
Ui(s′i , σ

∗
−i),

the requirement (2.4.2) can be equivalently written as for all si ∈ Si,

Ui(σ∗i , σ
∗
−i) ≥ Ui(si, σ∗−i).

Lemma 2.4.3. Suppose Si is countable. A strategy σ∗i is a best reply
to σ∗−i (i.e., satisfies (2.4.2)) if, and only if,

σ∗i (s
′
i) > 0 =⇒ s′i ∈ arg max

si
Ui(si, σ∗−i).

Proof. Left as an exercise (Problem 2.6.18).

Corollary 2.4.1. A strategy σ∗i is a best reply to σ∗−i (i.e., satisfies
(2.4.2)) if, and only if, for all si ∈ Si,

Ui(σ∗i , σ
∗
−i) ≥ Ui(si, σ∗−i).

Example 2.4.3. Consider the game displayed in Figure 2.4.5. For this
game, ∆(S1) = ∆(S2) = [0,1], p = Pr(T), q = Pr(L).

The best reply correspondences in mixed strategies for the two
players are

φ1(q) =




{1}, if q > 1
3 ,

[0,1], if q = 1
3 ,

{0}, if q < 1
3 ,
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p

q

0 11
2

1

1
3

φ1

φ2

Figure 2.4.6: The best reply mappings for Example 2.4.3.

and

φ2(p) =




{1}, if p > 1
2 ,

[0,1], if p = 1
2 ,

{0}, if p < 1
2 .

The best replies are graphed in Figure 2.4.6. «

For games like auctions, the strategy space is a continuum, often
R+. For such games, a mixed strategy for a player i is a probability
distribution on R+ (which we can denote Fi). Player 1’s expected
payoff from an action b1 is

∫
U1(s1, s2)dF2(s2).

As an aside, note that this notation covers all relevant possibilities:
If the mixed strategy of player 2 has a countable support {sk} with
action sk having probability σ2(sk) > 0 (the distribution is said to
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be discrete in this case), we have
∫
U1(s1, s2)dF2(s2) =

∑

sk
U1(s1, sk)σ2(sk).

Of course,
∑
sk σ2(sk) = 1. Any single action receiving strictly pos-

itive probability is called an atom. If the distribution function de-
scribing player 2’s behavior has a density f2 (in which case, there
are no atoms), then

∫
U1(s1, s2)dF2(s2) =

∫
U1(s1, s2)f2(s2)ds2.

Finally, combinations of distributions with densities on part of the
support and atoms elsewhere, as well as more esoteric possibilities
(that are almost never relevant) are also covered.

Suppose F1 is a best reply for player 1 to player 2’s strategy F2.
Then

∫∫
U1(s1, s2)dF2(s2)dF1(s1) = max

s1

∫
U1(s1, s2)dF2(s2).

Observe first that if F1 is discrete with support {sk} and action sk
having probability σ1(sk) > 0 , then

∫∫
U1(s1, s2)dF2(s2)dF1(s1) =

∑

sk

∫
U1(sk, s2)dF2(s2)σ1(sk),

and so we immediately have

∑

sk

∫
U1(sk, s2)dF2(s2)σ1(sk) = max

s1

∫
U1(s1, s2)dF2(s2)

and so, for all sk,
∫
U1(sk, s2)dF2(s2) = max

s1

∫
U1(s1, s2)dF2(s2).

This is just Lemma 2.4.3 and Corollary 2.4.1.
What is the appropriate version of this statement for general F1?

The key observation is that zero probability sets don’t matter. Thus,
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the statement is: Let Ŝ1 be the set of actions that are suboptimal
against F2, i.e.,

Ŝ1 =
{
ŝ1 :

∫
U1(ŝ1, s2)dF2(s2) <max

s1

∫
U1(s1, s2)dF2(s2)

}
.

Then the set Ŝ1 is assigned zero probability by any best response
F1. [If such a set received positive probability under some F1, then
F1 could not be a best reply, since expected payoffs are clearly in-
creased by moving probability off the set Ŝ1.]

In most applications, the set Ŝ1 is disjoint from the support of
F1, in which case player 1 is indeed indifferent over all actions in
his support, and each such action maximizes his payoff against F2.
However, Example 2.4.4 is an example where Ŝ1 includes one point
of the support. More generally, the set S1 \ Ŝ1 must be dense in the
support of F1.9

Example 2.4.4. Consider a first-price sealed-bid auction. There are
two risk neutral bidders with values v1 < v2. These values are pub-
lic.

We first prove that this game does not have an equilibrium in
pure strategies by contradiction. So, suppose (b1, b2) is a pure strat-
egy equilibrium. If b1 = b2 = b and b < v2, then bidder 2 has as a
profitable deviation outbidding the other player and so avoiding the
tie. If b ≥ v2, then bidder 1 lowering b1 to avoid a loss is a profitable
deviation. Hence, b1 ≠ b2. But then there is a single winner i with
payoff vi−bi. If vi−bi < 0, then i has any losing bid as a profitable
deviation. If vi − bi ≥ 0, then i has any lower bid (strictly higher
than bj) as a profitable deviation. Therefore, no pure strategy pair
is an equilibrium. (If bids are restricted to come from a discrete set,
so that lowering a bid and still winning for sure may not be feasible,
then pure strategy equilibria exist, see Problem 2.6.19.)

We now claim that the following is a mixed strategy equilibrium
in which bidder 1 randomizes and bidder 2 does not. Denote by

¯
b

the minimum of the support of bidder 1’s bids, and by b̄ the maxi-
mum of the support of bidder 1’s bids. Any mixed strategy profile in

9The support of a probability distribution is the smallest closed set receiving
probability one. If S1 \ Ŝ1 is not dense in the support of F1, then F1 must assign a
probability strictly less than 1 to the closure of S1 \ Ŝ1; but this is impossible if F1

is a best response, since then F1 would be assigning strictly positive probability to
Ŝ1.
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which v1 ≤ b̄ < v2, bidder 1 does not bid b̄ with positive probability
(i.e., Pr1(b1 = b̄) = 0),10 and for all b2 < b̄,

[Pr1(b1 < b2)+ 1
2 Pr1(b1 = b2)](v2 − b2) ≤ v2 − b̄; (2.4.3)

and bidder 2 bids b̄ with probability 1 is a Nash equilibrium. Un-
der this profile, bidder 2 wins the auction for sure, so bidder 1 is
indifferent over all bids strictly less than b̄. Inequality (2.4.3) is the
requirement that bidder 2 not find it profitable to bid less than b̄; it
is clearly suboptimal to bid more than b̄.

There are many such equilibria, differing in the behavior of bid-
der 1 (which may, but need not, involve atoms at b1 < b̄). Note also
that the only requirement on

¯
b is

¯
b < b̄. In particular, there is a se-

quence of mixed strategy equilibria in which
¯
b → b̄. The limit is not

a Nash equilibrium, but the limit outcome can be described as both
bidders bid b̄, and the tie is broken in favor of the high value bid-
der. Unless b̄ = v1, the mixed strategy equilibrium involves weakly
dominated strategies for bidder 1. It is worth noting that there are
analogous pure strategy equilibria in the game with a discrete set of
bids.

Note that if b̄ > v1, b1 = b̄ is not a best reply for bidder 1 to the
bid of b2 = b̄ by bidder 2. As discussed before the example, this
does not contradict Lemma 2.4.3 since each bidder’s pure strategy
space is not countable. «

2.4.4 Behavior Strategies

How to model mixing in extensive form games? Recall Definition
1.3.3:

Definition 2.4.5. A pure strategy for player i is a function

si : Hi →
⋃
hA(h) such that si(h) ∈ A(h) ∀h ∈ Hi.

We can think of a pure strategy for i as a book:11 The book has
|Hi| pages (one page for each information set), and on each page is

10Since bidder 1 is randomizing, bidder 1’s bid b1 is a random variable; its prob-
ability distribution is denoted by Pr1.

11I can’t remember where I first encountered this interpretation, but it is too good
not to use.
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written the action the pure strategy specifies for the corresponding
information set. The collection of i’s pure strategies is denoted by
Si; of course, |Si| < ∞ for finite extensive form games. The collec-
tion Si is a library, consisting of all of i’s “books.” A mixed strategy
for i is a probability distribution over the library:

Definition 2.4.6. A mixed strategy for player i, σi, is a probability
distribution over Si, i.e., σi ∈ ∆(Si).

We now introduce a different kind of book. The book again has
|Hi| pages, but now there is a probability distribution written on
each page, describing the randomization player i will use at each
information set:

Definition 2.4.7. A behavior strategy for player i is a function

bi : Hi →
⋃
h∆(A(h)) such that bi(h) ∈ ∆(A(h)), ∀h ∈ Hi.

Write bi(h)(a) for the probability assigned to the action a ∈
A(h) by the probability distribution bi(h). At times (particularly
in the proof of Theorem 2.4.1 and Chapter 5), we assume actions
have been labeled so that A(h) ∩ A(h′) = ∅ for all h ≠ h′; an ac-
tion uniquely identifies the information set at which it is taken. In
that case, we can write bi(a), rather than the more cumbersome
bi(h)(a). With this notational convention, it is straightforward to
define, for any behavior strategy profile b, the induced probability
distribution on Z , Pb (see Section 5.1).

Note that if |Hi| = 3 and |A(h)| = 2 ∀h ∈ Hi, then |Si| = 8 and
so ∆(Si) is a 7-dimensional simplex. A behavior strategy in this case
requires only 3 numbers (the probability on the first action in each
information set).

The behavior strategy corresponding to a pure strategy si is given
by

bi(h) = δsi(h), ∀h ∈ Hi,
where δx ∈ ∆(X), x ∈ X, is the degenerate distribution,

δx(y) =
{

1, if y = x,

0, otherwise.

Definition 2.4.8. Two strategies for a player i are realization equiv-
alent if, for any specification of strategies for the other players, the
two strategies induce the same distribution over outcomes (terminal
nodes).
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Thus, two strategies that are realization equivalent are strategi-
cally equivalent (Definition 1.3.7).

Moreover, if two extensive form strategies only differ in the spec-
ification of behavior at an information set that one of those strate-
gies had precluded, then the two strategies are realization equiva-
lent. For example the strategies Stop,Stop1 and Stop,Go1 in Example
2.2.2 are realization equivalent.

Given a behavior strategy bi, a realization-equivalent mixed strat-
egy σi ∈ ∆(Si) is

σi(si) =
∏

h∈Hi
bi(h)(si(h)),

where bi(h)(ai) is the probability assigned to the action ai ∈ A(h)
by bi(h).

Theorem 2.4.1 (Kuhn, 1953). Every mixed strategy has a realization
equivalent behavior strategy.

The behavior strategy realization equivalent to the mixture σi
can be calculated as follows: Fix an information set h for player i
(i.e., h ∈ Hi). Suppose h is reached with strictly positive probability
under σi, for some specification ŝ−i. Then, bi(h) is the distribu-
tion over A(h) implied by σi conditional on h being reached. While
this calculation appears to depend on the particular choice of ŝ−i, it
turns out it does not. (If for all specifications s−i, h is reached with
zero probability under σi, then bi(h) can be determined arbitrarily.)
The proof of Theorem 2.4.1 is in Appendix 14.1.

Using behavior strategies, mixing can be easily accommodated in
subgame perfect equilibria (for an example, see Problem 2.6.21).

2.5 Dealing with Multiplicity

In many situations, the multiplicity of Nash equilibria appropriately
reflects an inherent indeterminacy in the theory. Any game is an
abstraction, studied out of context. It should not be surprising that,
once the detail and context of a strategic interaction have been elim-
inated, theory often does not yield a unique equilibrium. As a trivial
example, consider the interaction between two pedestrians. Passing
on the right and passing on the left are both Nash equilibria. The
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particular equilibrium played is determined by context (people in
the U.S. pass on the right, in Australia on the left).

Nonetheless, not all Nash equilibria are equally deserving of our
attention. Broadly speaking, there are two approaches to identifying
those equilibria: refinement and selection.

2.5.1 Refinements

As we have seen in Example 2.1.2, sometimes Nash equilibria require
the “right” specification of behavior for a player who has multiple
best responses. But more careful, or refined, consideration of the
game may lead the analyst to conclude that the “right” specification
is implausible, suggesting that the Nash equilibrium is implausible
(that is, the Nash equilibrium is, in fact, not self-enforcing). In such
a case, the Nash equilibrium can be said to have failed this more re-
fined consideration. A Nash equilibrium refinement effectively im-
poses constraints that the choice from multiple best responses must
satisfy.

A Nash equilibrium of a game with a nontrivial extensive form
typically involves a selection from multiple best replies, since a
player will be indifferent between strategies that only differ at un-
reached information sets. Requiring that the behavior at unreached
information sets be optimal (credible, sequential rational) underlies
many refinements. We have already seen two well-known instances
of such equilibrium refinements: backward induction and subgame
perfection. We explore these ideas in more detail in Chapter 5. Here,
I briefly introduce two other important refinements.

Forward Induction

Example 2.5.1. Consider the game in Figure 2.5.1. This game has
two pure strategy subgame perfect equilibria: (RT , ℓ) and (LB, r).
However, the second equilibrium fails to be “self-enforcing” in the
following sense: Suppose II expects I to choose L, and then sees
that I has not chosen L. What should II think? The only possible
reason I could have for deviating is that she is expecting a larger
payoff from the deviation, which leads II to infer that I intends to
choose T after the deviation, which “rationalizes” the deviation.

This logic is mirrored in the iterated deletion of weakly domi-
nated strategies in the reduced normal form of this game, which
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Figure 2.5.1: The game for Example 2.5.1.

eliminates (LB, r). «

The logic underlying the failure of the equilibrium in which II
chooses L to be self-enforcing is an example of forward induction
(Kohlberg and Mertens, 1986), which essentially requires that re-
sponses to deviations from equilibrium be, if possible, consistent
with some rationalization of the deviation. In the words of Kohlberg
and Mertens (1986, p. 1013):

Essentially, what is involved here is an argument of
“forward induction”: a subgame should not be treated as
a separate game, because it is preceded by a very specific
form of preplay communication–the play leading to the
subgame. In the above example, it is common knowledge
that, when player II has to play in the subgame, preplay
communication (for the subgame) has effectively ended
with the following message from player I to player II:
“Look, I had the opportunity to get 2 for sure, and never-
theless I decided to play in this subgame, and my move is
already made. And we both know that you can no longer
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L R

U 2,1 0,0

D 2,0 1,1

Figure 2.5.2: The game for Example 2.5.2.

talk to me, because we are in the game, and my move is
made. So think now well, and make your decision.”

While seemingly compelling, forward induction has strong and
sometimes surprising implications. For example, Kohlberg and Mertens’s
(1986) implementation of forward induction implies separation in
canonical signaling games (Section 6.2.3). For more on this, see
Kohlberg (1990), Osborne and Rubinstein (1994, Section 6.6.2), van
Damme (2002), and Hillas and Kohlberg (2002).

Trembling Hand Perfection in the Normal Form

Example 2.5.2. The game in Figure 2.5.2 has two Nash equilibria
(UL and DR), but only DR is plausible. The other equilibrium is in
weakly dominated strategies. «

It is natural to require that equilibria be “robust” to small mis-
takes. The following notion captures the minimal requirement that
behavior should be robust at least to some mistakes. The stronger
requirement that behavior be robust to all mistakes is too strong, in
the sense that typically, no behavior satisfies that requirement, and
so is rarely imposed (see Problem 2.6.24 for an example).

Definition 2.5.1. An equilibrium σ of a finite normal from game G
is (normal form) trembling hand perfect if there exists a sequence(
σk
)
k

of completely mixed strategy profiles converging to σ such

that σi is a best reply to every σk−i in the sequence.

This is not the standard definition in the literature, but is equiv-
alent to it (see Subsection 14.2.1).

Every finite normal form game has a trembling hand perfect equi-
librium (see Subsection 14.2.1).
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Weakly dominated strategies cannot be played in a trembling
hand perfect equilibrium:

Theorem 2.5.1. If a strategy profile in a finite normal form game is
trembling hand perfect then it is a Nash equilibrium in weakly un-
dominated strategies. If there are only two players, every Nash equi-
librium in weakly undominated strategies is trembling hand perfect.

Proof. The proof of the first statement is straightforward and left as
an exercise (Problem 2.6.22). A proof of the second statement can
be found in van Damme (1991, Theorem 3.2.2).

Problem 2.6.23 illustrates the two statements of Theorem 2.5.1.
Note that normal form trembling hand perfection does not imply

subgame perfection (Problem 2.6.25). We explore the role of trem-
bles in extensive form games in Section 5.3.

Section 14.2 contains additional material on trembling hand per-
fect equilibria.

2.5.2 Selection

Even when a game has multiple strict Nash equilibria, we may be
able to select between them on various grounds. Unlike equilib-
rium refinements, an equilibrium selection argument often invokes
a broader context. Learning is one context (i.e., it may be that
some Nash equilibria can be learned, while others cannot), which
we briefly discuss in Section 4.2.

Example 2.5.3 (Focal Points). The game in Figure 2.5.3 has three
pure strategy equilibria. If players engage in preplay communica-
tion, we can be confident the players would agree on one of these
equilibria, but in the absence of other considerations, not know
which one. But the distinguished nature of AA is one such con-
sideration, and so AA is focal. Even in the absence of preplay com-
munication, the distinguished nature of AA makes it the natural
prediction for this game. «

Example 2.5.4 (Payoff Dominance). One source of focalness is pay-
offs. The game in Figure 2.5.4 has two pure strategy Nash equilibria.
The profile Tℓ is a Nash equilibrium that payoff dominates the other
equilibrium, and indeed dominates every other cell. If players can
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A a b

A 2,2 0,0 0,0

a 0,0 0,0 2,2

b 0,0 2,2 0,0

Figure 2.5.3: A game with three pure strategy equilibria, but only one, AA,
is focal.

ℓ r

T 2,2 0,0

B 0,0 1,1

Figure 2.5.4: The game for Example 2.5.4.

engage in preplay communication, then this increases the persua-
siveness of payoff dominance. «

Example 2.5.5 (Renegotiation). The stage game is displayed in Fig-
ure 2.5.5.

The profiles (T , L) and (M,C) are both Nash equilibria of the
stage game. The following profile (s1, s2) of the once-repeated game
with payoffs added is subgame perfect:

s1
1 = B,

s2
1(x,y) =

{
M, if x = B,
T , if x ≠ B,

L C R

T 4,4 0,0 9,0

M 0,0 6,6 0,0

B 0,0 0,0 8,8

Figure 2.5.5: The stage game for Example 2.5.5.
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A B

A 9,9 0,5

B 5,0 7,7

Figure 2.5.6: The stag hunt.

s1
2 = R,

s2
2(x,y) =

{
C, if x = B, and

L, if x ≠ B.

The outcome path induced by (s1, s2) is (BR,MC). But TL is Pareto
dominated by MC , and so players may renegotiate (which presum-
ably involves some preplay communication) from TL to MC after
1’s deviation. But then 1 has no incentive not to play T in the first
period.

It is worth contrasting this example with Example 2.3.3. «

Example 2.5.6 (Stag hunt game; illustration of risk dominance). Fig-
ure 2.5.6 is essentially Rousseau’s (1984) stag hunt, where A is hunt-
ing the stag and B is catching the hare.

The profile AA is the efficient profile (or is payoff dominant). But
B is “less risky” than A: Technically, it is risk dominant since B is
the unique best reply to the uniform lottery over {A,B}, i.e., to the
mixture

1
2
◦A+ 1

2
◦ B.

It turns out that the risk dominant equilibrium is selected by stochas-
tic evolutionary arguments (Kandori, Mailath, and Rob, 1993). «

2.6 Problems

2.6.1. Suppose {(Si, Ui)ni=1} is a normal form game, and ŝ1 ∈ S1 is
a weakly dominated strategy for player 1. Let S′1 = S1 \ {ŝ1},
and S′i = Si for i ≠ 1. Suppose s is a Nash equilibrium of
{(S′i , Ui)ni=1}. Prove that s is a Nash equilibrium of {(Si, Ui)ni=1}.
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2.6.2. Suppose {(Si, Ui)ni=1} is a normal form game, and s is a Nash
equilibrium of {(Si, Ui)ni=1}. Let {(S′i , Ui)ni=1} be the normal
form game obtained by the iterated deletion of some or all
strictly dominated strategies. Prove that s is a Nash equilib-
rium of {(S′i , Ui)ni=1}. (Of course, you must first show that
si ∈ S′i for all i.) Give an example showing that this is false
if strictly is replaced by weakly.

2.6.3. Consider (again) the Cournot example (Example 1.1.3). What
is the Nash Equilibrium of the n-firm Cournot oligopoly? [Hint:
To calculate the equilibrium, first solve for the total output in
the Nash equilibrium.] What happens to both individual firm
output and total output as n approaches infinity?

2.6.4. Consider now the Cournot duopoly where inverse demand is
P(Q) = a−Q but firms have asymmetric marginal costs: ci for
firm i, i = 1,2.

(a) What is the Nash equilibrium when 0 < ci < a/2 for i =
1,2? What happens to firm 2’s equilibrium output when
firm 1’s costs, c1, increase? Can you give an intuitive ex-
planation?

(b) What is the Nash equilibrium when c1 < c2 < a but 2c2 >
a+ c1?

2.6.5. Consider the following Cournot duopoly game: The two firms
are identical. The cost function facing each firm is denoted
by C(q), is continuously differentiable with C(0) = 0, C′(0) =
0, C′(q) > 0 ∀q > 0. Firm i chooses qi, i = 1,2. Inverse de-
mand is given by p = P(Q), where Q = q1 + q2 is total sup-
ply. Suppose P is continuous and there exists Q > 0 such that
P(Q) > 0 for Q ∈ [0,Q) and P(Q) = 0 for Q ≥ Q. Assume
firm i’s profits are strictly concave in qi for all qj, j ≠ i.

(a) Prove that for each value of qj , firm i (i ≠ j) has a unique
profit maximizing choice. Denote this choice Ri(qj). Prove
that Ri(q) = Rj(q), i.e., the two firms have the same reac-
tion function. Thus, we can drop the subscript of the firm
on R.

(b) Prove that R(0) > 0 and that R(Q) = 0 < Q.



58 Chapter 2. A First Look at Equilibrium

(c) We know (from the maximum theorem) that R is a con-
tinuous function. Use the Intermediate Value Theorem to
argue that this Cournot game has at least one symmetric
Nash equilibrium, i.e., a quantity q∗, such that (q∗, q∗) is
a Nash equilibrium. [Hint: Apply the Intermediate Value
Theorem to the function f(q) = R(q) − q. What does
f(q) = 0 imply?]

(d) Give some conditions on C and P that are sufficient to
imply that firm i’s profits are strictly concave in qi for all
qj, j ≠ i.

2.6.6. In the canonical Stackelberg model, there are two firms, I and
II, producing the same good. Their inverse demand function is
P = 6−Q, where Q is market supply. Each firm has a constant
marginal cost of $4 per unit and a capacity constraint of 3
units (the latter restriction will not affect optimal behavior, but
assuming it eliminates the possibility of negative prices). Firm
I chooses its quantity first. Firm II, knowing firm I’s quantity
choice, then chooses its quantity. Thus, firm I’s strategy space
is S1 = [0,3] and firm II’s strategy space is S2 = {τ2 | τ2 : S1 →
[0,3]}. A strategy profile is (q1, τ2) ∈ S1 × S2, i.e., an action
(quantity choice) for I and a specification for every quantity
choice of I of an action (quantity choice) for II.

(a) What are the outcome and payoffs of the two firms implied
by the strategy profile (q1, τ2)?

(b) Show that the following strategy profile does not consti-
tute a Nash equilibrium: (1

2 , τ2), where τ2(q1) = (2−q1)/2.
Which firm(s) is (are) not playing a best response?

(c) Prove that the following strategy profile constitutes a Nash
equilibrium: (1

2 , τ̂2), where τ̂2(q1) = 3
4 if q1 = 1

2 and τ̂2(q1) =
3 if q1 ≠

1
2 , i.e., II threatens to flood the market unless I

produces exactly 1
2 . Is there any other Nash equilibrium

which gives the outcome path (1
2 ,

3
4)? What are the firms’

payoffs in this equilibrium?

(d) Prove that the following strategy profile constitutes a Nash
equilibrium: (0, τ̃2), where τ̃2(q1) = 1 if q1 = 0 and τ̃2(q1) =
3 if q1 ≠ 0, i.e., II threatens to flood the market unless
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I produces exactly 0. What are the firms’ payoffs in this
equilibrium?

(e) Given q1 ∈ [0,2], specify a Nash equilibrium strategy pro-
file in which I chooses q1. Why is it not possible to do this
for q1 ∈ (2,3]?

(f) What is the unique backward induction solution of this
game?

2.6.7. Player 1 and 2 must agree on the division of a pie of size
1. They are playing an ultimatum game (sometimes called a
take-it-or-leave-it-offer game): Player 1 makes an offer x from
a set S1 ⊂ [0,1], which player 2 accepts or rejects. If player 2
accepts, the payoffs are 1 − x to player 1 and x to player 2; if
player 2 rejects, both players receive a zero payoff.

(a) Describe the strategy spaces for both players.

(b) Suppose S1 =
{
0, 1
n , . . . ,

n−1
n ,1

}
, for some positive integer

n ≥ 2. Describe all the backward induction solutions.

(c) Suppose S1 = [0,1]. Describe the unique backward induc-
tion solution. (While the game is not a finite game, it is a
game of perfect information and has a finite horizon, and
so the notion of backward induction applies in an “obvi-
ous” way.) Why is it unique?

2.6.8. Consider the extensive form in Figure 2.6.1.

(a) What is the normal form of this game?

(b) Describe the pure strategy Nash equilibrium strategies and
outcomes of the game.

(c) Describe the pure strategy subgame perfect equilibria (there
may only be one).

2.6.9. Consider the following game: Player 1 first chooses between
A or B, with A giving a payoff of 1 to each player, and B giving
a payoff of 0 to player 1 and 3 to player 2. After player 1
has publicly chosen between A and B, the two players play the
game G (with 1 being the row player) in Figure 2.6.2.

Payoffs in the overall game are given by the sum of payoffs
from 1’s initial choice and the bimatrix game.
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I

L R

I

L′ R′
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3
1
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−4
0

II
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1
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−5
1
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`′

2
1

r ′

0
0

Figure 2.6.1: The game for Problem 2.6.8.

L R

U 1,1 0,0

D 0,0 3,3

Figure 2.6.2: The game G for Problem 2.6.9.
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(a) What is the extensive form of G?

(b) Describe a subgame perfect equilibrium strategy profile in
pure strategies in which 1 chooses B.

(c) What is the reduced normal form of G?

(d) What is the result of the iterated deletion of weakly domi-
nated strategies?

2.6.10. Suppose s is a pure strategy Nash equilibrium of a finite
extensive form game, Γ . Suppose Γ ′ is a subgame of Γ that
is on the path of play of s. Prove that s prescribes a Nash
equilibrium on Γ ′. (It is probably easier to first consider the
case where there are no moves of nature. The result is also
true for mixed strategy Nash equilibria, though the proof is
more notationally intimidating.)

2.6.11. Prove that player i ’s security level (Definition 2.4.2) is also
given by

vi = sup
σi∈∆(Si)

inf
s−i∈

∏
j≠i Sj

ui(σi, s−i).

Prove that
vi ≥ sup

si∈Si
inf

s−i∈
∏
j≠i Sj

ui(si, s−i),

and give an example illustrating that the inequality can be strict.

2.6.12. Suppose the 2 × 2 normal form game G has a unique Nash
equilibrium, and each player’s Nash equilibrium strategy and
security strategy are both completely mixed.

(a) Describe the implied restrictions on the payoffs in G.

(b) Prove that each player’s security level is given by his/her
Nash equilibrium payoff.

(c) Give an example showing that (in spite of part (b)), the
Nash equilibrium profile need not agree with the strategy
profile in which each player is playing his or her security
strategy. (This is not possible for zero-sum games, see
Problem 4.3.2.)

(d) For games like you found in part (c), which is the better
prediction of play, security strategy or Nash equilibrium?
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L R

T 5,0 0,1

C 2,6 4,0

B 0,0 5,1

Figure 2.6.3: The game for Problem 2.6.14(b).

2.6.13. Suppose {(S1, U1), . . . , (Sn, Un)} is a finite normal form game.
Prove that if s′1 ∈ S1 is strictly dominated in the sense of Def-
inition 2.4.3, then it is not a best reply to any belief over S−i.
[While you can prove this by contradiction, try to obtain the
direct proof, which is more informative.] (This is the contra-
positive of the “straightforward” direction of Lemma 2.4.1.)

2.6.14. (a) Prove that Lemma 2.4.1 also holds for mixed strategies,
i.e., prove that σ1 ∈ ∆(S1) is strictly dominated by some
other strategy σ ′1 (i.e., U1(σ ′1, s2) > U1(σ1, s2) for all s2 ∈
S2) if and only if σ1 is not a best reply to any mixture
σ2 ∈ ∆(S2).

(b) For the game illustrated in Figure 2.6.3, prove that 1
2◦T+1

2◦
B is not a best reply to any mixture over L and R. Describe
a strategy that strictly dominates it.

2.6.15. Prove Lemma 2.4.2. [For the nontrivial direction, consider
the linear program maxx∈∆(S1),η≥0

∑
s2∈S2

ηs2 subject to Ax −
η ≥ u, where A is the matrix of of player 1 payoffs, rows corre-
sponding to player 2 strategies and columns corresponding to
player 1 strategies. Verify that this linear program has a feasi-
ble solution when u = Aσ1 for an admissible strategy σ1. What
is its value? Finally, consider the dual of the program.12]

2.6.16. Suppose {(S1, U1), (S2, U2)} is a two player finite normal form
game and let Ŝ2 be a strict subset of S2. Suppose s′1 ∈ S1 is not
a best reply to any strategy σ2 with support Ŝ2. Prove that
there exists ε > 0 such that s′1 is not a best reply to any strat-

12Thanks to Rakesh Vohra for showing me this beautiful application of linear
programing.
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ℓ r

t 3 0

b 0 0

L

ℓ r

t 2 −4

b −4 2

M

ℓ r

t 0 0

b 0 3

R

Figure 2.6.4: The game for Problem 2.6.17. Player 1 chooses rows (i.e.,
s1 ∈ {t, b}), player 2 chooses columns (i.e., s2 ∈ {ℓ, r}), and
player 3 chooses matrices (i.e., s3 ∈ {L,M,R}). Only player
3’s payoffs are given.

egy σ2 ∈ ∆(S2) satisfying σ2(Ŝ2) > 1 − ε. Is the restriction to
two players important?

2.6.17. Consider the three player game in Figure 2.6.4 (only player
3’s payoffs are presented).

(a) Prove that player 3’s strategy of M is not strictly domi-
nated.

(b) Prove that player 3’s strategy of M is not a best reply to
any mixed strategy profile (σ1, σ2) ∈ ∆(S1) × ∆(S2) for
players 1 and 2. (The algebra is a little messy. Given the
symmetry, it suffices to show that L yields a higher ex-
pected payoff than M for all mixed strategy profiles satis-
fying σ1(t) ≥ 1

2 .)

2.6.18. Prove Lemma 2.4.3.

2.6.19. (a) Prove that the game in Example 2.4.4 has no other Nash
equilibria than those described.

(b) Suppose that in the game in Example 2.4.4, bidders are
restricted to a discrete set of bids, {0, 1

n ,
2
n , . . . }, with n >

2/(v2 − v1). The game with the discrete set of possible
bids does have pure strategy Nash equilibria. What are
they?

2.6.20. Consider the following variant of a sealed bid auction: There
are two bidders who each value the object at v , and simulta-
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t h

t 1,−1 −1,1

h −1,1 1,−1

T H

T 3,−1 −1,1

H −1,1 1,−1

Figure 2.6.5: The game for Problem 2.6.21.

neously submit bids. As usual, the highest bid wins and in
the event of a tie, the object is awarded on the basis of a fair
coin toss. But now all bidders pay their bid. (This is an all-pay
auction.)

(a) Formulate this auction as a normal form game.

(b) Show that there is no equilibrium in pure strategies.

(c) This game has an equilibrium in mixed strategies. What is
it? (You should verify that the strategies do indeed consti-
tute an equilibrium).

2.6.21. Suppose player 1 must publicly choose between the game
on the left and the game on the right in Figure 2.6.5 (where
player 1 is choosing rows and player 2 is choosing columns).
Prove that this game has no Nash equilibrium in pure strate-
gies. What is the unique subgame perfect equilibrium (the equi-
librium is in behavior strategies)?

2.6.22. Is it necessary to assume that σ is a Nash equilibrium in
the definition of normal form trembling hand perfection (Def-
inition 2.5.1)? Prove that every trembling hand perfect equi-
librium of a finite normal form game is a Nash equilibrium in
weakly undominated strategies.

2.6.23. Two examples to illustrate Theorem 2.5.1.

(a) For the game in Figure 2.6.6, verify that TL is trembling
hand perfect by explicitly describing the sequence of trem-
bles.

(b) The game in Figure 2.6.7 has an undominated Nash equi-
librium that is not trembling hand perfect. What is it?
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L C R

T 2,2 1,1 0,0

B 2,0 0,0 4,2

Figure 2.6.6: The game for Problem 2.6.23(a).

ℓ r

T 1,1,1 1,0,1

B 1,1,1 0,0,1

L

ℓ r

T 1,1,0 0,0,0

B 0,1,0 1,0,0

R

Figure 2.6.7: The game for Problem 2.6.23(b). Player 1 chooses a row (T or
B), player 2 chooses a column (ℓ or r ), and player 3 chooses a
matrix (L or R). In each cell, the first payoff is player 1’s, the
second is player 2’s, and the third is player 3’s.
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L M R

T 1,5 2,3 0,0

B 1,5 0,0 3,2

Figure 2.6.8: The game for Problem 2.6.24.

L M R

T 1,5 2,6 0,0

B 1,5 0,3 3,2

Figure 2.6.9: The game for Problem 2.6.25.

2.6.24. Say a profile σ is robust to all trembles if for all sequences(
σk
)
k

of completely mixed strategy profiles converging to σ ,

σi is eventually a best reply to every σk−i in the sequence.13

(a) Prove that no profile in the game in Figure 2.6.8 is robust
to all trembles.

(b) There is an extensive form with a nontrivial subgame that
has as its normal the game in Figure 2.6.8. This extensive
form game has two subgame perfect equilibria. What are
they? Compare with your analysis of part (a).

2.6.25. It is not true that every trembling hand perfect equilibrium
of a normal form game induces subgame perfect behavior in
an extensive game with that normal form. Illustrate using the
game in Figure 2.6.9.

2.7 Additional Problems

2.7.1. Consider a market in which the products (boomerangs) of two
firms, 1 and 2, are perfect substitutes. The demand curve for

13By eventually, I mean there exists K such that σi is a best reply to σ k−i for all
k > K. Note that K depends on the sequence.
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boomerangs is given by

Q = 100− p,

Each firm i has a zero constant marginal cost, and a capacity
of K > 0. The firms simultaneously announce prices. As usual,
the lower pricing firm captures the market, but now since the
firm is capacity constrained, it can only produce up to its ca-
pacity. Any rationed consumers can buy from the higher pric-
ing firm. If p1 = p2, then the market is evenly divided and firm
i sells the quantity

max
{
0,min

{
K, 1

2(100− pi)
}}
.

If pi < pj , firm i sells the quantity

max
{
0,min{K,100− pi}

}
.

If pi > pj ≥ 100−K, then there are no rationed consumers and
firm i makes no sales. If pi > pj and pj < 100 − K, there are
rationed consumers, and firm i sells the quantity

max
{
0,min{K,100−K − pi}

}
.

Suppose the above description is commonly known.

(a) Give a complete description of game in which the two
profit maximizing firms are simultaneously choosing prices.

(b) Suppose K = 100. Describe all the Nash equilibria.

(c) Suppose K = 45. Are the equilibria you identified in part
(b) still equilibria.

(d) Continuing with our supposition that K = 45, prove that
the game does not have any pure strategy equilibria.

(e) Continuing with our supposition that K = 45, the game
has a symmetric equilibrium in mixed strategies. What is
it? Remember to verify that it is indeed an equilibrium.
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Chapter 3

Games with Nature

3.1 An Introductory Example

Example 3.1.1 (A variant of Example 1.1.3). Firm 1’s costs are pri-
vate information, while firm 2’s are public. Nature determines the
costs of firm 1 at the beginning of the game, which are either high
cH or low cL, with Pr(c1 = cL) = θ ∈ (0,1). The terminal nodes
of the extensive form are given by (c1, q1, q2). As in Example 1.1.3,
firm i’s ex post profit is

πi(c1, q1, q2) = [(a− q1 − q2)− ci]qi,
where ci is firm i’s cost.

Assume cL, cH , c2 < a/2. A strategy for player 2 is a quantity q2.
A strategy for player 1 is a function q1 : {cL, cH} → R+. For simplic-
ity, write qL for q1(cL) and qH for q1(cH).

Note that for any strategy profile ((qL, qH), q2), the associated
outcome distribution is

θ ◦ (cL, qL, q2)+ (1− θ) ◦ (cH , qH , q2),

that is, with probability θ, the terminal node (cL, qL, q2) is realized
and with probability 1−θ, the terminal node (cH , qH , q2) is realized.

To find a Nash equilibrium, we must solve for three numbers
q∗L , q

∗
H , and q∗2 .

Assume interior solution. We must have

(q∗L , q
∗
H) = arg max

qL,qH
θ[(a− qL − q∗2 )− cL]qL

+ (1− θ)[(a− qH − q∗2 )− cH]qH .

69
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This implies pointwise maximization, i.e.,

q∗L = arg max
q1

[(a− q1 − q∗2 )− cL]q1

= 1
2
(a− q∗2 − cL),

and, similarly,

q∗H =
1
2
(a− q∗2 − cH).

We must also have

q∗2 = arg max
q2

θ[(a− q∗L − q2)− c2]q2

+ (1− θ)[(a− q∗H − q2)− c2]q2

= arg max
q2

[(a− θq∗L − (1− θ)q∗H − q2)− c2]q2

=1
2

(
a− c2 − θq∗L − (1− θ)q∗H

)
.

Solving,

q∗H =
a− 2cH + c2

3
+ θ

6
(cH − cL) ,

q∗L =
a− 2cL + c2

3
− (1− θ)

6
(cH − cL),

and

q∗2 =
a− 2c2 + θcL + (1− θ)cH

3
. «

3.2 Purification

The assumption that players can randomize is sometimes criticized
on three grounds:

1. players don’t randomize;
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A B

A 9,9 0,5

B 5,0 7,7

Figure 3.2.1: The benchmark game for Example 3.2.1.

2. there is no reason for a player randomize with just the right
probability, when the player is indifferent over all possible ran-
domization probabilities (including 0 and 1); and

3. a randomizing player is subject to ex post regret.

Purification (to be described soon) provides a persuasive response
to the first two criticisms. Turning to the third, a player is said to
be subject to ex post regret if after all uncertainty is resolved, a
player would like to change his/her decision (i.e., has regret). In a
game with no moves of nature, no player has ex post regret in a pure
strategy equilibrium. This is clearly false in an equilibrium with non-
trivial mixing, since players are best responding to the randomizing
behavior of other players.

But any pure strategy equilibrium of a game with moves of nature
will typically also have ex post regret. Ex post regret should not be
viewed as a criticism of mixing, but rather a caution to modelers.
If a player has ex post regret, then that player has an incentive to
change his/her choice. Whether a player is able to do so depends
upon the scenario being modeled. If the player cannot do so, then
there is no issue. If, however, the player can do so, then that option
should be included in the game description.

Player i’s mixed strategy σi of a game G is said to be purified
if in an “approximating” version of G with private information (with
player i’s private information given by Ti), that player’s behavior can
be written as a pure strategy si : Ti → Ai such that

σi(ai) ≈ Pr{si(ti) = ai},

where Pr is given by the distribution over Ti (and so describes player
j ≠ i beliefs over Ti).
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A B

A 9+ εt1,9+ εt2 0,5

B 5,0 7,7

Figure 3.2.2: The game G(ε) for Example 3.2.1. Player i has private infor-
mation ti, with ti ∼ U([0,1]), and t1 and t2 are independent.

Example 3.2.1. The game in Figure 3.2.1 has two strict pure strategy
Nash equilibria and one symmetric mixed strategy Nash equilibrium.
Let p = Pr {A}, then (using Lemma 2.4.3)

9p = 5p + 7
(
1− p)

⇐⇒ 9p = 7− 2p
⇐⇒ 11p = 7 ⇐⇒ p = 7/11.

Trivial purification: Give player i payoff-irrelevant information ti,
where ti ∼ U([0,1]), and t1 and t2 are independent. This is a game
with private information, where player i learns ti before choosing
his or her action. The mixed strategy equilibrium is purified by many
pure strategy equilibria in the game with private information, such
as

si(ti) =
{
A, if ti ≥ 4/11,

B, if ti < 4/11.

Harsanyi (1973) purification: Consider the game G(ε) displayed
in Figure 3.2.2. This is again a game with private information, where
player i learns ti before choosing his or her action, ti ∼ U([0,1])
and t1 and t2 are independent. But now the information is payoff
relevant.

A pure strategy for player i is si : [0,1] → {A,B}. Suppose 2 is
following a cutoff strategy,

s2(t2) =
{
A, t2 ≥ t̄2,
B, t2 < t̄2,

with t̄2 ∈ (0,1).



3.2. Purification 73

Type t1 expected payoff from A is

U1 (A, t1, s2) = (9+ εt1)Pr {s2(t2) = A}
= (9+ εt1)Pr

{
t2 ≥ t̄2

}

= (9+ εt1)(1− t̄2),
while from B is

U1 (B, t1, s2) = 5 Pr
{
t2 ≥ t̄2

}+ 7 Pr
{
t2 < t̄2

}

= 5(1− t̄2)+ 7t̄2
= 5+ 2t̄2.

Thus, A is optimal if and only if

(9+ εt1)(1− t̄2) ≥ 5+ 2t̄2,

i.e.,

t1 ≥ 11t̄2 − 4
ε(1− t̄2).

Thus the best reply to the cutoff strategy s2 is a cutoff strategy with
t̄1 = (11t̄2 − 4)/ε(1 − t̄2).1 Since the game is symmetric, we con-
jecture there is a symmetric equilibrium: t̄1 = t̄2 = t̄. In such an
equilibrium, the common cutoff value t̄ solves

t̄ = 11t̄ − 4
ε(1− t̄) ,

or
εt̄2 + (11− ε)t̄ − 4 = 0. (3.2.1)

Let t(ε) denote the value of t̄ satisfying (3.2.1). Note first that
t(0) = 4/11. Writing (3.2.1) as g(t̄, ε) = 0, we can apply the implicit
function theorem (since ∂g/∂t̄ ≠ 0 at ε = 0) to conclude that for
ε > 0 but close to 0, the cutoff value of t̄, t(ε), is close to 4/11,
the probability of B in the mixed strategy equilibrium in the unper-
turbed game.2 In other words, for ε small, there is a symmetric

1Indeed, even if player 2 were not following a cutoff strategy, payer 1’s best
reply is a cutoff strategy.

2Since (3.2.1) is a quadratic, we could have obtained the same conclusion by
solving the equation for t̄. The advantage of the approach in the text is that it
makes clear that the precise form of (3.2.1) is irrelevant for the conclusion; see the
discussion after this example.
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equilibrium in cutoff strategies, with interior cutoff t̄ ∈ (0,1). This
equilibrium is not only pure, but almost everywhere strict.

The interior cutoff equilibrium of G(ε) approximates the mixed
strategy equilibrium of G(0) in the following sense: Let p(ε) be the
probability assigned to A by the symmetric cutoff equilibrium strat-
egy of G(ε). Then, p(0) = 7/11 and p(ε) = 1−t(ε). Since we argued
in the previous paragraph that t(ε) → 4/11 as ε → 0, we have that
for all η > 0, there exists ε > 0 such that

|p(ε)− p(0)| < η. «

Harsanyi’s (1973) purification theorem provides a compelling jus-
tification for mixed equilibria in finite normal form games. Intu-
itively, it states that for almost all finite normal form games, and
any sequence of games in which each player’s payoffs are subject
to independent non-atomic private shocks (i.e, known only to the
player whose payoffs are perturbed), converging to the complete-
information normal form game, the following is true: every equilib-
rium (pure or mixed) of the original game is the limit of equilibria of
these close-by games with payoff shocks. Moreover, in these games
with private information, players have essentially strict best replies,
and so will not randomize. Consequently, a mixed strategy equilib-
rium can be viewed as a pure strategy equilibrium of any close-by
game with private payoff shocks.

Govindan, Reny, and Robson (2003) provide a modern exposition
and generalization of Harsanyi (1973). A brief introduction can also
be found in Morris (2008).

3.3 Auctions and Related Games

An auction (or a similar environment) is said to have private val-
ues if each buyer’s (private) information is sufficient to determine
his value (i.e., it is a sufficient statistic for the other buyers’ infor-
mation). The values are independent if each buyer’s private infor-
mation is stochastically independent of every other bidder’s private
information.

An auction (or a similar environment) is said to have interdepen-
dent values if the value of the object to the buyers is unknown at the
start of the auction, and if a bidder’s (expectation of the) value can
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be affected by the private information of other bidders. If all bidders
have the same value, then we have the case of common value.

Example 3.3.1 (First-price sealed-bid auction—private values).
Bidder i’s value for the object, vi is known only to i. Nature

chooses vi, i = 1,2 at the beginning of the game, with vi being
independently drawn from the interval [

¯
vi, v̄i], with distribution Fi

and density fi. Bidders know Fi (and so fi).
This is an example of independent private values.
The set of possible bids is R+.
Bidder i’s ex post payoff as a function of bids b1 and b2, and

values v1 and v2:

ui(b1, b2, v1, v2) =




0, if bi < bj,
1
2 (vi − bi) , if bi = bj,
vi − bi, if bi > bj.

Suppose bidder 2 uses a strategy σ2 : [
¯
v2, v̄2] → R+. Then,

bidder 1’s expected (or interim) payoff from bidding b1 at v1 is

U1 (b1, v1;σ2) =
∫
u1 (b1, σ2 (v2) , v1, v2) dF2(v2)

= 1
2
(v1 − b1)Pr {σ2(v2) = b1}

+
∫

{v2:σ2(v2)<b1}
(v1 − b1) f2 (v2) dv2.

Player 1’s ex ante payoff from the strategy σ1 is given by

∫
U1(σ1(v1), v1;σ2)dF1(v1),

and so for an optimal strategy σ1, the bid b1 = σ1(v1) must maxi-
mize U1(b1, v1;σ2) for almost all v1.

I proceed by “guess and verify,” that is, I impose a sequence
of increasingly demanding conditions on the strategy of player 2,
and prove that there is a best reply for player 1 satisfying these
conditions. I begin by supposing σ2 is strictly increasing, so that
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Pr {σ2 (v2) = b1} = 0. Without loss of generality, I can restrict at-
tention to bids b1 in the range of σ2,3 so that

U1 (b1, v1;σ2) =
∫

{v2:σ2(v2)<b1}
(v1 − b1) f2 (v2) dv2

= E[v1 − b1 | winning]Pr{winning}
= (v1 − b1)Pr {σ2 (v2) < b1}
= (v1 − b1)Pr{v2 < σ−1

2 (b1)}
= (v1 − b1)F2(σ−1

2 (b1)).

Assuming σ2 is, moreover, differentiable, and that the bid b1 =
σ1(v1) is an interior maximum, the first order condition is

0 = −F2

(
σ−1

2 (b1)
)
+ (v1 − b1) f2

(
σ−1

2 (b1)
) dσ−1

2 (b1)
db1

.

But
dσ−1

2 (b1)
db1

= 1

σ ′2(σ
−1
2 (b1))

,

so
F2

(
σ−1

2 (b1)
)
σ ′2
(
σ−1

2 (b1)
)
= (v1 − b1) f2

(
σ−1

2 (b1)
)
,

i.e.,

σ ′2
(
σ−1

2 (b1)
)
=
(v1 − b1) f2

(
σ−1

2 (b1)
)

F2

(
σ−1

2 (b1)
) .

To proceed further, assume the environment is symmetric, so that
F1 = F2, and suppose the equilibrium is symmetric, so that σ1 =
σ2 = σ̃ , and b1 = σ1 (v) implies v = σ−1

2 (b1). Then, dropping
subscripts,

σ̃ ′(v) = (v − σ̃ (v))f (v)
F(v)

,

or
σ̃ ′(v)F(v)+ σ̃ (v)f(v) = vf(v). (3.3.1)

But
d
dv
[σ̃(v)F(v)] = σ̃ ′(v)F(v)+ σ̃ (v)f(v),

3It is clearly suboptimal for player 1 to submit a bid that is strictly greater
than any bid submitted by player 2. Moreover, any bid strictly less than any bid
submitted by player 2 yields the same payoff (of 0) as bidding the smallest bid
submitted by player 2 (since the probability of a tie is zero).
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so

σ̃ (v̂)F(v̂) =
∫ v̂

¯
v
vf(v)dv + k,

where k is a constant of integration. Moreover, evaluating both sides
at v̂ =

¯
v shows that k = 0, and so

σ̃ (v̂) = 1
F(v̂)

∫ v̂

¯
v
vf(v)dv = E[v | v ≤ v̂]. (3.3.2)

Each bidder bids the expectation of the other bidder’s valuation,
conditional on that valuation being less than his (i.e., conditional on
his value being the highest). As will be clear later (in particular, from
Problem 12.5.2), the form of (3.3.2) is not an accident.

Summarizing the calculations till this point, I have shown that
if (σ̃ , σ̃ ) is a Nash equilibrium in which σ̃ is a strictly increasing
and differentiable function, and σ̃ (v̂) is interior (which here means
strictly positive for v̂ >

¯
v), then it is given by (3.3.2). Note that

E[v | v ≤ v̂] is increasing in v̂ and lies in the interval [
¯
v,Ev].

It remains to verify the hypotheses. It is immediate that the func-
tion in (3.3.2) is strictly increasing and differentiable. Moreover, for
v >

¯
v , σ̃ (v) is strictly positive. It remains to verify the optimality of

bids (i.e., we still need to verify that bidding b1 = σ̃ (v1) is optimal
when bidder 2 is bidding according to σ̃ ; given the symmetry, this
is enough).

Showing optimality is a little more involved (see Problem 3.7.3),
but is easily done for a special case: suppose v̄ =

¯
v + 1 and the

values are uniformly distributed on [
¯
v,

¯
v + 1]. Then

σ̃ (v) = 1
2

(
v +

¯
v
)

and bidder 1’s interim payoff is (since σ̃ (v2) ∈ [
¯
v,

¯
v + 1

2] for all
v2 ∈ [

¯
v,

¯
v + 1])

U1 (b1, v1; σ̃2) = (v1 − b1)F2(σ−1
2 (b1))

=




v1 − b1, if b1 >
¯
v + 1

2 ,
(v1 − b1)(2b1 − 2

¯
v), if b1 ∈ [

¯
v,

¯
v + 1

2],
0, if b1 <

¯
v.
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This function is strictly concave for b1 ∈ [
¯
v,

¯
v + 1

2], and it is clearly
not optimal to bid outside the interval, and so bidding b1 = σ̃ (v1)
is optimal.

As an illustration of the kind of arguments that are useful, I now
argue that every Nash equilibrium must be in nondecreasing strate-
gies.

Lemma 3.3.1. Suppose (σ1, σ2) is a Nash equilibrium of the first-price
sealed-bid auction with independent private values. Suppose type v′i
wins the auction with positive probability. Then, σi(v′′i ) ≥ σi(v′i) for
all v′′i > v

′
i .

Proof. Without loss of generality, consider i = 1. Suppose the lemma
is false. Then there exists v′′1 > v′1 with σ1(v′1) =: b′1 > b′′1 :=
σ1(v′′1 ).

Since σ1 is a best response to σ2,

U1(b′1, v
′
1;σ2) ≥ U1(b′′1 , v

′
1;σ2)

and U1(b′1, v
′′
1 ;σ2) ≤ U1(b′′1 , v

′′
1 ;σ2).

Note that

U1(b1, v′1;σ2)−U1(b1, v′′1 ;σ2) =
1
2
(v′1 − v′′1 )Pr{σ2(v2) = b1} + (v′1 − v′′1 )Pr{σ2(v2) < b1}.

Subtracting the second from the first inequality gives

U1(b′1, v
′
1;σ2)−U1(b′1, v

′′
1 ;σ2) ≥ U1(b′′1 , v

′
1;σ2)−U1(b′′1 , v

′′
1 ;σ2),

and so substituting,

1
2
(v′1 − v′′1 )Pr{σ2(v2) = b′1} + (v′1 − v′′1 )Pr{σ2(v2) < b′1} ≥

1
2
(v′1 − v′′1 )Pr{σ2(v2) = b′′1 } + (v′1 − v′′1 )Pr{σ2(v2) < b′′1 },

and simplifying (and dividing by (v′1 − v′′1 ) < 0) we get

0 ≥ Pr{b′′1 ≤ σ2(v2) < b′1}
+ 1

2

(
Pr{σ2(v2) = b′1} − Pr{σ2(v2) = b′′1 }

)

= Pr{b′′1 < σ2(v2) < b′1}
+ 1

2

(
Pr{σ2(v2) = b′1} + Pr{σ2(v2) = b′′1 }

)
.
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This implies

0 = Pr{σ2(v2) = b′1},
0 = Pr{σ2(v2) = b′′1 },

and 0 = Pr{b′′1 < σ2(v2) < b′1}.
That is, bidder 2 does not make a bid between b′′1 and b′1, and there
are no ties at b′1 or b′′1 . A bid of b′1 and b′′1 therefore wins with the
same probability. But this implies a contradiction: Since b′1 wins
with positive probability, v′1 strictly prefers to win with the same
probability at the strictly lower bid of b′′1 .

It turns out that under relatively mild conditions, the equilibrium
is unique (Lebrun, 2006).

«

Example 3.3.2 (An example of mixed strategies). Maintaining the as-
sumptions of Example 3.3.1, except that the value for each bidder is
drawn independently from a uniform distribution on the two point
set {

¯
v, v̄}, with

¯
v < v̄ . For similar reasons to Example 2.4.4, this

game has no equilibrium in pure strategies (see Problem 3.7.6). It
is also worth noting that rather than working directly with mixed
strategies (which are randomizations over pairs of bids (b′, b′′),
where b′ is the bid of

¯
v and b′′ is the bid of v̄), it is convenient to

work with behavior strategies.4 In a behavior strategy, the random-
izations over bids are specified separately for the bidder of value

¯
v

and v̄ .
Suppose bidder 2 follows the strategy σ2 of bidding

¯
v if v2 =

¯
v

(why is that a reasonable “guess”?), and of bidding according to the
distribution function F2(b) if v2 = v̄ . Then, assuming there are no
atoms in F2, player 1 has interim payoffs from b >

¯
v given by

U1(b, v̄ ;σ2) =1
2
(v̄ − b)+ 1

2
(v̄ − b)F2(b)

=1
2
(v̄ − b)(1+ F2(b)).

Note that the minimum of the support of F2 is given by
¯
v (why?).

Denote the maximum of the support by b̄.

4Moreover, behavior strategies are also more natural when viewing the game as
one of incomplete information (Section 3.4).
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Suppose 1 is also randomizing over the set of bids, (
¯
v, b̄]. The

indifference condition will require that 1 is indifferent over all b ∈
(
¯
v, b̄]. The bid b =

¯
v is excluded because there is a positive prob-

ability of a tie at
¯
v (from the low-value bidder) and so it cannot be

optimal for v̄ to bid
¯
v . Indifference requires for all small ε > 0,

1
2
(v̄ − b)(1+ F2(b)) = U1(

¯
v + ε, v̄ ;σ2),

where

U1(
¯
v + ε, v̄ ;σ2) = 1

2
(v̄ −

¯
v − ε)(1+ F2(

¯
v + ε)).

Since limε→0 F2(
¯
v + ε) = F2(

¯
v) = 0 (where the first equality follows

from the continuity of probabilities and the second equality follows
from the assumption of no atoms), and so

(v̄ − b)(1+ F2(b)) = v̄ −
¯
v,

yielding

F2(b) = b − ¯
v

v̄ − b, ∀b ∈ (
¯
v, b̄].

Note that F2(
¯
v) = 0.

Moreover, F2(b̄) = 1 implies b̄ = (v̄ +
¯
v)/2.

An alternative derivation of the value of b̄ is to note that bidder
1 should be indifferent between bidding b̄ (at which 1 wins for sure,
since there are no atoms) and winning only when the other bidder
has value

¯
v by bidding arbitrarily above

¯
v (which gives a payoff

1
2(v̄ − ¯

v)), or
1
2
(v̄ −

¯
v) = v̄ − b̄.

It is straightforward to verify that the symmetric profile in which
each bidder bids

¯
v if v =

¯
v , and bids according to the distribution

function F(b) = (b −
¯
v)/(v̄ − b) if v = v̄ is a Nash equilibrium.

Reminiscent of Example 2.4.4, the high-value bidder is not indif-
ferent over every bid in the support [

¯
v, b̄]:

U1(b, v̄ ;σ2) =




v̄ − b, if b > b̄,
1
2(v̄ − ¯

v), if b ∈ (
¯
v, b̄],

1
4(v̄ − ¯

v), if b =
¯
v,

0, if b <
¯
v .
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b

U1

¯
v v̄1

2(¯
v + v̄)

1
2(v̄ − ¯

v)

1
4(v̄ − ¯

v)

Figure 3.3.1: The equilibrium payoff function U1(·, v̄ ;σ2) for Example
3.3.2.

Figure 3.3.1 graphs this payoff function. «

Remark 3.3.1. Given the discontinuities in the payoff functions of
a first-price auction, it should not be surprising that, when the dis-
tribution over valuations is discrete, equilibrium requires random-
ization. Example 3.3.1 illustrates a version of purification: even in
the presence of discontinuities, if the private information is continu-
ously distributed, pure strategy equilibria exist and mixed strategies
can be “purified” without perturbing the game (Aumann, Katznel-
son, Radner, Rosenthal, and Weiss, 1983; Milgrom and Weber, 1985)♦

Example 3.3.3 (independent private values, symmetric n bidders).
Suppose now there n identical bidders, with valuations vi indepen-
dently distributed on [

¯
v, v̄] according to F with density f .

We are interested in characterizing the symmetric Nash equilib-
rium (if it exists). Let σ be the symmetric strategy, and suppose it
is strictly increasing. Consequently, the probability of a tie is zero,
and so bidder i’s interim payoff from the bid bi is

Ui(bi, vi;σ) = E[vi − bi | winning]Pr{winning}
= (vi − bi)Pr{vj < σ−1(bi), ∀j ≠ i}
= (vi − bi)

∏

j≠i
Pr{vj < σ−1(bi)}

= (vi − bi)Fn−1(σ−1(bi)).
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As before, assuming σ is differentiable, and an interior solution, the
first order condition is

0 = −Fn−1(σ−1(bi))

+ (vi − bi)(n− 1)Fn−2(σ−1(bi))f (σ−1(bi))
dσ−1(bi)
dbi

,

and simplifying (similarly to (3.3.1)), we get

σ ′(v)Fn−1(v)+σ(v)(n−1)Fn−2(v)f(v) = v(n−1)Fn−2(v)f(v),

that is,
d
dv
σ(v)Fn−1(v) = v(n− 1)Fn−2(v)f(v),

or (where the constant of integration is zero, since F(
¯
v) = 0),

σ(v) = 1
Fn−1(v)

∫ v

¯
v
xdFn−1(x).

Remark 3.3.2 (Order statistics). Given n independent draws from
a common distribution F , denoted v1, . . . , vn, let yn(1), y

n
(2), . . . , y

n
(n)

denote the rearrangement satisfying yn(1) ≤ yn(2) ≤ . . . ≤ yn(n). The

statistic yn(k) is the kth-order statistic from the sample of n draws.
The distribution of yn(n) is Pr{yn(n) ≤ y} = Fn(y). ♦

If σ is a symmetric Nash equilibrium, then

σ(v) = E[yn−1
(n−1) | yn−1

(n−1) ≤ v].
That is, each bidder bids the expectation of the maximum of all the
other bidders’ valuation, conditional on that valuation being less
than his (i.e., conditional on his value being the highest). Equiv-
alently, the bidder bids the expected value of the (n − 1)th order
statistic of values, conditional on his value being thenth order statis-
tic. «

Example 3.3.4 (First-price sealed-bid auction—common values). Each
bidder receives a private signal about the value of the object, ti, with
ti ∈ Ti = [0,1], uniformly independently distributed. The common
(to both players) value of the object is v = t1 + t2.
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Ex post payoffs are given by

ui(b1, b2, t1, t2) =




t1 + t2 − bi, if bi > bj ,
1
2(t1 + t2 − bi), if bi = bj ,
0, if bi < bj .

Suppose bidder 2 uses strategy σ2 : T2 → R+. Suppose σ2 is
strictly increasing. Then, t1’s expected payoff from bidding b1 is

U1(b1, t1;σ2) = E[t1 + t2 − b1 | winning]Pr{winning}
= E[t1 + t2 − b1 | t2 < σ−1

2 (b1)]Pr{t2 < σ−1
2 (b1)}

= (t1 − b1)σ−1
2 (b1)+

∫ σ−1
2 (b1)

0
t2 dt2

= (t1 − b1)σ−1
2 (b1)+ (σ−1

2 (b1))2/2.

If σ2 is differentiable, the first order condition is

0 = −σ−1
2 (b1)+ (t1 − b1)

dσ−1
2 (b1)
db1

+ σ−1
2 (b1)

dσ−1
2 (b1)
db1

,

and so
σ−1

2 (b1)σ ′2(σ
−1
2 (b1)) = (t1 + σ−1

2 (b1)− b1).

Suppose the equilibrium is symmetric, so that σ1 = σ2 = σ , and
b1 = σ1(t) implies t = σ−1

2 (b1). Then,

tσ ′(t) = 2t − σ(t).

Integrating,
tσ(t) = t2 + k,

where k is a constant of integration. Evaluating both sides at t = 0
shows that k = 0, and so

σ(t) = t.
Note that this is not the profile that results from the analysis of

the private value auction when
¯
v = 1/2 (the value of the object in

the common value auction, conditional on only t1, is E[t1+t2 | t1] =
t1 + 1/2). In particular, letting v′ = t + 1

2 , we have

σprivate value(t) = σ̃ (v′) = v
′ + 1/2

2
= t + 1

2
> t = σcommon value(t).
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This illustrates the winner’s curse: E[v | t1] > E[v|t1, winning]. In
particular, in the equilibrium just calculated,

E[v | t1, winning] = E[t1 + t2 | t1, t2 < t1]
= t1 + 1

Pr {t2 < t1}
∫ t1

0
t2 dt2

= t1 + 1
t1

[
(t2)2 /2

]t1
0
= 3t1

2
,

while E[v | t1] = t1 + 1
2 > 3t1/2 (recall t1 ∈ [0,1]). «

Example 3.3.5 (War of attrition).
Two players compete for a prize by engaging in a costly game of

waiting. The first player to drop out loses to the other player. The
action spaces are Si = R+, where si ∈ Si is the time at which player
i stops competing (drops out) and so loses. Both players incur the
same disutility of competing: staying until si costs si.

The value of the prize to player i, denoted by ti ∈ Ti = R+, is
private information, with distribution Fi. Assume Fi has a density
fi and fi is strictly positive on Ti.

To simplify calculations, assume that in the event of a tie (both
players drop out at the same time), neither player wins. Ex post pay-
offs (effectively a second-price all-pay auction, see Problem 2.6.20)
are given by

ui(s1, s2, t1, t2) =
{
ti − sj, if sj < si,
−si, if sj ≥ si.

Suppose player 2 uses strategy σ2 : T2 → S2. Then, t1’s expected
(or interim) payoff from stopping at s1 is

U1 (s1, t1;σ2) =
∫
u1 (s1, σ2 (t2) , t1, t2) dF2 (t2)

= −s1 Pr {σ2 (t2) ≥ s1}
+
∫

{t2:σ2(t2)<s1}
(t1 − σ2 (t2))dF2 (t2) .

Every Nash equilibrium is sequentially rational on the equilib-
rium path. In the current context, this can be restated as: Suppose
σ1 is a best reply to σ2, τ < σ1(t1), and Pr{σ2(t2) > τ} > 0 (so that
play reaches τ with positive probability when player 1 has value t1).
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Suppose player 1 has value t1 and τ is reached (i.e., 2 has not yet
dropped out). Then, stopping at σ1 (t1) is still be optimal.

I provide a direct proof by contradiction. Suppose that, condi-
tional on play reaching τ , the stopping time ŝ1 > τ yields a higher
payoff than the original stopping time s1 = σ1(t1), i.e.,

Et2[u1(s1, σ2(t2), t) | σ2(t2) > τ] < Et2[u1(ŝ1, σ2(t2), t) | σ2(t2) > τ]

Then,

U1(s1, t1;σ2) = Et2[u1(s1, σ2(t2), t) | σ2(t2) ≤ τ]Pr{σ2(t2) ≤ τ}
+ Et2[u1(s1, σ2(t2), t) | σ2(t2) > τ]Pr{σ2(t2) > τ}
< Et2[u1(s1, σ2(t2), t) | σ2(t2) ≤ τ]Pr{σ2(t2) ≤ τ}
+ Et2[u1(ŝ1, σ2(t2), t) | σ2(t2) > τ]Pr{σ2(t2) > τ}
= Et2[u1(ŝ1, σ2(t2), t) | σ2(t2) ≤ τ]Pr{σ2(t2) ≤ τ}
+ Et2[u1(ŝ1, σ2(t2), t) | σ2(t2) > τ]Pr{σ2(t2) > τ}
= U1(ŝ1, t1;σ2),

and so s1 cannot have been the unconditionally optimal stopping
time. This is an application of the principle of Problem 2.6.10 to an
infinite game.

Define s̄i := inf{si : Pr{σi(ti) ≤ si} = 1} = inf{si : Pr{σi(ti) >
si} = 0}, where inf{∅} = ∞.

Lemma 3.3.2. Suppose σ2 is a best reply to σ1. If s̄1, s̄2 > 0, then
s̄1 ≤ s̄2.

The proof is left as an exercise (Problem 3.7.10). The intuition is
that if s̄2 < s̄1, for sufficiently large types for player 2, there are late
stopping times that are profitable deviations.

Lemma 3.3.2 implies that in in any Nash equilibrium with s̄1, s̄2 >
0, s̄1 = s̄2.

Lemma 3.3.3. Suppose (σ1, σ2) is a Nash equilibrium profile. Then,
σi is nondecreasing for i = 1,2.

Proof. We use a standard revealed preference argument (similar to
the proof Lemma 3.3.1). Let s′1 = σ1(t′1) and s′′1 = σ1(t′′1 ), with
s′1, s

′′
1 ≤ s̄1. If σ1 is a best reply to σ2,

U1(s′1, t
′
1;σ2) ≥ U1(s′′1 , t

′
1;σ2)
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and
U1(s′′1 , t

′′
1 ;σ2) ≥ U1(s′1, t

′′
1 ;σ2).

Thus,

U1(s′1, t
′
1;σ2)−U1(s′1, t

′′
1 ;σ2) ≥ U1(s′′1 , t

′
1;σ2)−U1(s′′1 , t

′′
1 ;σ2).

Since,

U1(s1, t′1;σ2)−U1(s1, t′′1 ;σ2) = (t′1 − t′′1 )Pr{t2 : σ2(t2) < s1}
we have

(t′1 − t′′1 )Pr{t2 : σ2(t2) < s′1} ≥ (t′1 − t′′1 )Pr{t2 : σ2(t2) < s′′1 },
i.e.,

(t′1 − t′′1 )
[
Pr{t2 : σ2(t2) < s′1} − Pr{t2 : σ2(t2) < s′′1 }

] ≥ 0.

Suppose t′1 > t
′′
1 . Then, Pr{t2 : σ2(t2) < s′1} ≥ Pr{t2 : σ2(t2) <

s′′1 }. If s′1 < s
′′
1 , then Pr{t2 : s′1 ≤ σ2(t2) < s′′1 } = 0. That is, 2 does

not stop between s′1 and s′′1 .
The argument to this point has only used the property that σ1 is

a best reply to σ2. To complete the argument, we appeal to Lemma
3.3.2, i.e., that s̄1 ≤ s̄2 (an implication of σ2 being a best reply to
σ1), which implies Pr{σ2(t2) ≥ s′′1 } > 0, and so stopping earlier (at
a time s1 ∈ (s′1, s

′′
1 )) is a profitable deviation for t′′1 . Thus, s′1 =

σ1(t′1) ≥ s′′1 = σ1(t′′1 ).

It can also be shown that in any Nash equilibrium, σi is a strictly
increasing and continuous function. Thus,

U1 (s1, t1;σ2)

= −s1 Pr
{
t2 ≥ σ−1

2 (s1)
}
+
∫

{t2<σ−1
2 (s1)}

(t1 − σ2 (t2)) f2 (t2) dt2

= −s1
(
1− F2

(
σ−1

2 (s1)
))
+
∫ σ−1

2 (s1)

0
(t1 − σ2 (t2)) f2 (t2) dt2.

Assuming σ2 is, moreover, differentiable, the first-order condition
is

0 = −
(
1− F2

(
σ−1

2 (s1)
))

+ s1f2

(
σ−1

2 (s1)
) dσ−1

2 (s1)
ds1

+ (t1 − s1) f2

(
σ−1

2 (s1)
) dσ−1

2 (s1)
ds1

.
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But
dσ−1

2 (s1)
ds1

= 1
/
σ ′2
(
σ−1

2 (s1)
)
,

so [
1− F2

(
σ−1

2 (s1)
)]
σ ′2
(
σ−1

2 (s1)
)
= t1f2

(
σ−1

2 (s1)
)
,

i.e.,

σ ′2
(
σ−1

2 (s1)
)
=
t1f2

(
σ−1

2 (s1)
)

1− F2

(
σ−1

2 (s1)
) .

Assume the environment is symmetric, i.e., F1 = F2, and suppose
the equilibrium is symmetric, so that σ1 = σ2 = σ , and s1 = σ1 (t)
implies t = σ−1

2 (s1). Then,

σ ′ (t) = tf (t)
1− F (t).

Since σ (0) = 0,

σ (t) =
∫ t

0

τf (τ)
1− F (τ) dτ.

If f (t) = e−t , then F (t) = 1− e−t , and

σ (t) =
∫ t

0

τe−τ

e−τ
dτ = t2/2.

I leave as an exercise that the first order condition is indeed suf-
ficient for optimality, when σ(t) = t2/2 (the hint to Problem 3.7.3
also works here).

Note that σ (t) > t for t > 2. That is, it is possible for a player to
have a negative ex post payoff. This does not contradict sequential
rationality on the equilibrium path: at time t, the player with value t
has a strictly positive continuation value (i.e., value from continuing)
since the cost of staying until t is sunk and so irrelevant for incen-
tives. But, of course, each player’s interim payoff is strictly positive
for all t.5 A straightforward calculation shows that

U(t2/2, t;σ) = t + e−t − 1 > 0.
5Why of course? If there were a player valuation with negative interim payoff,

that valuation player would have a profitable deviation to s = 0.



88 Chapter 3. Games with Nature

If we extend the strategy space to allow for never stopping, i.e.,
Si = R+∪{∞} and allow payoffs to take on the value −∞, then there
are also two asymmetric equilibria, in which one player drops out
immediately, and the other never drops out. «

Example 3.3.6 (Double Auction). A seller owns a good that a (po-
tential) buyer is interested in purchasing. The seller’s valuation of
the good is vs , and the buyer’s valuation is vb. The valuations are
private information, with each being independently and uniformly
distributed on [0,1]. If a sale occurs at price p, the buyer receives a
payoff of vb − p and the seller receives a payoff of p − vs .

In a double auction, the seller and buyer simultaneously propose
ask and bid prices ps ∈ [0,1] and pb ∈ [0,1], respectively. Trade
occurs at a price 1

2

(
ps + pb

)
if ps ≤ pb; otherwise, there is no trade.

The buyer’s strategy is a function p̃b : [0,1] → [0,1] and the
seller’s strategy is a function p̃s : [0,1] → [0,1]. We check for in-
terim optimality (i.e., optimality of a strategy conditional on a value).
(Recall that with a continuum of strategies, ex ante optimality re-
quires only that the strategy is optimal for almost all vales.)

Fix the seller’s strategy, p̃s : [0,1] → [0,1], the buyer’s valuation
vb and her bid price pb. The buyer’s (conditional) expected payoff
is:

Ub
(
pb, vb; p̃s

) =
∫

{vs :pb≥p̃s(vs)}

(
vb − 1

2

(
p̃s (vs)+ pb

))
dvs

=Pr
({
vs : pb ≥ p̃s (vs)

})

×
(
vb − 1

2
pb − 1

2
E
(
p̃s (vs)

∣∣{vs : pb ≥ p̃s (vs)
}))

.

Suppose the seller’s strategy is linear in his valuation, i.e. p̃s (vs) =
as + csvs , with as ≥ 0, cs > 0 and as + cs ≤ 1. Then,

Pr
({
vs : pb ≥ p̃s (vs)

}) = Pr
({
vs : vs ≤ pb − ascs

})
.

So,

Pr
({
vs : pb ≥ p̃s (vs)

}) =




0, if pb ≤ as ,
pb−as
cs , if as ≤ pb ≤ as + cs ,

1, if pb ≥ as + cs ,
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and so

E
(
p̃s (vs)

∣∣{vs : pb ≥ p̃s (vs)
}) = as + csE

(
vs
∣∣∣∣
{
vs : vs ≤ pb − ascs

})

(and if as ≤ pb ≤ as + cs)

= as + cs 1
2
pb − as
cs

= pb + as
2

.

So,

E
(
p̃s (vs)

∣∣{vs : pb ≥ p̃s (vs)
}) =




not defined, if pb < as ,
pb+as

2 , if as ≤ pb ≤ as + cs ,
as + 1

2cs , if pb ≥ as + cs ,

and

Ub
(
pb, vb; p̃s

) =




0, if pb ≤ as ,(
pb−as
cs

)(
vb − 3

4pb − 1
4as

)
, if as ≤ pb ≤ as + cs ,

vb − 1
2pb − 1

2as − 1
4cs , if pb ≥ as + cs .

The interior expression is maximized by solving the first-order
condition

0 = 1
cs

[
vb − 3

4
pb − 1

4
as − 3

4
pb + 3

4
as
]
,

and so

6
4
pb =vb − as4 + 3

4
as

=vb + 1
2
as

=⇒ pb =1
3
as + 2

3
vb.

Thus any bid less than as is optimal if vb ≤ as , 1
3as + 2

3vb is the

unique optimal bid if as < vb ≤ as + 3
2cs and as + cs is the unique

optimal bid if vb ≥ as + 3
2cs . Thus, the strategy p̃b (vb) = 1

3as + 2
3vb

is a best response to p̃s (vs) = as + csvs as long as 1 ≤ as + 3
2cs .

A symmetric argument shows that if p̃b (vs) = ab + cbvb, then
the seller’s optimal bid (if interior) is p̃s (vs) = 2

3vs + 1
3 (ab + cb).
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Thus a linear equilibrium must have ab = 1
3as , as = 1

3 (ab + cb),
cb = 2

3 and cs = 2
3 , so as = 1

4 and ab = 1
12 . There is then a linear

equilibrium with

p̃s (vs) = 1
4
+ 2

3
vs

and

p̃b (vb) = 1
12
+ 2

3
vb.

Ex post efficient trade requires trade if vs < vb, and no trade if
vs > vb.

Under the linear equilibrium, trade occurs if, and only if, p̃s(vs) ≤
p̃b(vb), which requires

vs + 1
4
≤ vb.

Thus, for valuations in the set
{
(vs , vb) | vs < vb < vs + 1

4

}
, trade is

efficient but does not occur in equilibrium.
Not only is there is no equilibrium of this game with ex post

efficient trade, there is no game respecting the private information
of the players with an ex post efficient equilibrium (Section 12.3.1).
This linear equilibrium does maximize the ex ante gains from trade,
across all games respecting the private information of the players
(Section 12.3.2).

Note: There are other equilibria (see Problem 3.7.12). «

3.4 Games of Incomplete Information

Example 3.4.1. Suppose payoffs of a two player two action game are
given by one of the two bimatrices in Figure 3.4.1. Interpret this as
a setting where player II knows that the game is described by the
game on the right, but that player I does not know the game, and in
particular, thinks that the game on the left is also a possibility.

Suppose first that x = 0. Either player II has a strictly dominant
strategy to play L or a strictly dominant strategy to play R. Suppose
that II knows his own payoffs but player I thinks there is a proba-
bility α that payoffs are given by the left matrix, and a probability
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θL L R

T 1,1 0,0

B 0,1 1,0

θR L R

T 1, x 0,1

B 0,0 1,1

Figure 3.4.1: The payoff matrices for Example 3.4.1.

1− α that they are given by the right matrix. Clearly, “equilibrium”
must have: II plays L if payoffs are given by the left matrix, R if by
the right matrix; I plays T if α > 1

2 , B if α < 1
2 .

But suppose now x = 2. Should player II still feel comfortable
playing R if the payoffs are the right matrix? The optimality of II’s
action choice of R depends on his believing that I will play B, which
only occurs if I assigns probability at most 1

2 to the right matrix. But
suppose II does not know I’s beliefs α. Then, II has beliefs over I’s
beliefs and so II finds R optimal if he assigns probability at least 1

2

to I assigning probability at least 1
2 to the right matrix.

But, we are not done: how confident is I that II will play R in the
right matrix? Now we need to deal with I’s beliefs over II’s beliefs.
Player I will only play B if he assigns probability at least 1

2 to II
assigning probability at least 1

2 to I assigning probability at least 1
2

to the right matrix.
This leads us into an infinite regress, since now I’s beliefs about

II’s beliefs about I’s beliefs become relevant for II! «

So, how can we analyze such problems in general?

Definition 3.4.1 (Harsanyi (1967, 1968a,b)). A game of incomplete

information or Bayesian game is the collection
{
(Ai, Ti, pi, ui)ni=1

}
,

where

• Ai is i’s action space,

• Ti is i’s type space,

• pi : Ti → ∆
(∏

j≠i Tj
)

is i’s subjective beliefs about the other
players’ types, given i’s type and

• ui :
∏
j Aj ×

∏
j Tj → R is i’s payoff function.
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We think of a player’s type ti as describing everything that player
i knows that is not common knowledge (including player i ’s beliefs).
The function pi is common knowledge, so that player j (say) knows
how player i’s beliefs depend upon player i’s type ti. But player j
may not know ti, and so may not know player i’s beliefs.

Example 3.4.2. We return to Example 3.4.1. Suppose, as in that ex-
ample, that player II knows θR, and knows I does not. Moreover,
suppose that player I thinks θL is also possible and assigns prob-
ability 1

3 to that possibility. Finally, player II is unsure about I’s
beliefs, assigning equal probability to the possibilities 1

3 and 2
3 for

the probability that I assigns to θL. Notice that in this description,
θL is only there because it is in the support of I’s beliefs. Player II
knows that the world is described by θR.

Player I’s type space is T1 = {a,b} and player II’s type space is
T2 = {c,d}. Payoff u1 does not depend upon types, u2 is given by
player II’s payoffs in the θL bimatrix for c and by the θR bimatrix
for d. The belief mappings are given by

p1(a) = 1
3
◦ c + 2

3
◦ d; p1(b) = 2

3
◦ c + 1

3
◦ d;

p2(c) = 1 ◦ a; and p2(d) = 1
2
◦ a+ 1

2
◦ b.

Finally, in terms of the description in the first paragraph, I’s type
is a and II’s type is d. The other types are there to capture the
uncertainty that a and d have about the other player. As will become
clear, this simple example imposes significant restrictions on higher
order beliefs. For example, with this specification, if II had known
θL, then II also believes that I assigns probability 1

3 to θL (i.e., II is
not uncertain about I’s beliefs in that case). «

A strategy for i is
si : Ti → Ai.

Let s(t) := (s1(t1), . . . , sn(tn)), etc.

Definition 3.4.2. The profile (ŝ1, . . . , ŝn) is a Bayes-Nash (or Bayesian
Nash) equilibrium if, for all i and all ti ∈ Ti,

Et−i[ui(ŝ(t), t)] ≥ Et−i[ui(ai, ŝ−i(t−i), t)], ∀ai ∈ Ai, (3.4.1)
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where the expectation over t−i is taken with respect to the probability
distribution pi(ti).

If the type spaces are finite, then the probability i assigns to
the vector t−i ∈

∏
j≠i Tj =: T−i when his type is ti can be denoted

pi(t−i; ti), and (3.4.1) can be written as

∑

t−i

ui(ŝ(t), t)pi(t−i; ti) ≥
∑

t−i

ui(ai, ŝ−i(t−i), t)pi(t−i; ti), ∀ai ∈ Ai.

Example 3.4.3 (Revisiting Example 3.1.1). The Cournot game is rep-
resented as a game of incomplete information, as follows: The ac-
tion spaces are Ai = R+. Firm 1’s type space is T1 = {t′1, t′′1 } while
firm 2’s type space is a singleton T2 = {t2}. The belief mapping p1

for firm 1 is trivial: both types assign probability one to the type
t2 (since T2 is a singleton, there is no alternative), while the belief
mapping for firm 2 is

p2(t2) = θ ◦ t′1 + (1− θ) ◦ t′′1 ∈ ∆(T1).

Finally, payoffs are

u1(q1, q2, t1, t2) =
{
[(a− q1 − q2)− cH]q1, if t1 = t′1,
[(a− q1 − q2)− cL]q1, if t1 = t′′1 ,

and

u2(q1, q2, t1, t2) = [(a− q1 − q2)− c2]q2.

In this example, it is of course more natural to denote the type t′1
by cH and t′′1 by cL. See Problem 3.7.11 for a version of this game
capturing “higher order” beliefs of the kind hinted at in the end of
Example 3.4.1. «

Remark 3.4.1. The idea that games of incomplete information (as
defined in Definition 3.4.1) formally capture hierarchies of beliefs
can be made precise, and leads to the notion of the universal type
space (which describes all possible hierarchies). This is clearly well
beyond the scope of this course. For a (relatively) gentle introduc-
tion to this, see Myerson (1991, Section 2.9). ♦
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The perspective of a game of incomplete information is interim:
the beliefs of player i are specified type by type. Nonetheless, it is
possible to specify a prior for player i such that the interim sub-
jective beliefs can be interpreted as the conditional beliefs derived
from that prior.

To simplify the discussion, suppose the type spaces are finite or
countably infinite. Let q̂i be an arbitrary full support distribution on
Ti, i.e., q̂i ∈ ∆(Ti). Then, defining

qi(t) := q̂i(ti)pi(t−i | ti) ∀t
generates a prior qi ∈ ∆(T) for player i with the property that pi(· |
ti) ∈ ∆(T−i) is the belief on t−i conditional on ti. Indeed, there
are many priors consistent with the subjective beliefs (since q̂i is
arbitrary). In general, these priors have no inherent meaning (as
reflected in their multiplicity).

There is one special case when these priors do have inherent
meaning.

Definition 3.4.3. The subjective beliefs are consistent or satisfy the
Common Prior Assumption (CPA) if there exists a single probability
distribution p ∈ ∆ (∏i Ti

)
such that, for each i, pi(ti) is the proba-

bility distribution on T−i conditional on ti implied by p.

If the type spaces are finite, this is equivalent to

pi(t−i; ti) = p(t−i|ti) = p (t)
∑
t′−i p

(
t′−i, ti

) .

The common prior assumption is trivially not satisfied in Exam-
ple 3.4.2, since the beliefs for I imply a positive prior probability on
the type profile bc, while the beliefs for type c of II imply zero prior
probability on the same type profile.

If beliefs are consistent, a Bayesian game can be interpreted as
having an initial move by nature, which selects t ∈ T according
to p. The Common Prior Assumption is controversial, sometimes
viewed as a mild assumption (Aumann, 1987) and sometimes not
(Gul, 1998). Nonetheless, in applications it is standard to assume
it. One common justification for the CPA is that in its absence, too
much “crazy” behavior is permitted.6

6For example, if Bruce and Sheila have inconsistent beliefs about the probability
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t′2 t′′2
p1(t′1)

5
9

4
9

p1(t′′1 )
2
3

1
3

p2(t′2) p2(t′′2 )

t′1
5
7

4
5

t′′1
2
7

1
5

t′2 t′′2
t′1

5
12

4
12

t′′1
2

12
1

12

Figure 3.4.2: The subject beliefs for Example 3.4.4, and the common prior
consistent with these subjective beliefs.

Example 3.4.4. Suppose n = 2 and Ti = {t′i, t′′i }. The subjective
beliefs are given in the first two matrices of Figure 3.4.2, with the
CPA consistent with them on the right.

Consider now a slight perturbation: Change p2(t′2) to the subjec-
tive belief assigning probability 6

7 to t′1 (and 1
7 to t′′1 ). The CPA is now

not satisfied. The easiest way to see this is to observe that, in this
example, a common prior is an element of the 3-dimensional sim-
plex (i.e., there are three degrees of freedom). This implies that the
collection of conditional beliefs can also only have three degrees of
freedom. In particular, in this example, the values of p1(t′1), p1(t′′1 ),
and p2(t′′2 ) determine the common prior and so p2(t′2). We are not
free to perturb the latter while keeping a common prior. «

While there is a unique common prior in Example 3.4.4, if the
subjective beliefs do not have full support, there may be multiple
common priors. For example, modify the subjective beliefs in Figure
3.4.2 so that pi(t′i) = 1 ◦ t′j and pi(t′′i ) = 1 ◦ t′′j . Then, any common
prior q ◦ (t′1t′2)+ (1−q) ◦ (t′′1 t′′2 ), q ∈ (0,1), is consistent with these
beliefs.

We continue with our supposition that type spaces are finite.
Viewed as a game of complete information, a profile ŝ is a Nash
equilibrium if, for all i,
∑

t
ui(ŝ(t), t)p(t) ≥

∑

t
ui(si(ti), ŝ−i(t−i), t)p(t), ∀si : Ti → Ai.

of heads on a coin toss, say Bruce assigns probability 0.4 and Sheila assigns prob-
ability 0.6 to heads, and these beliefs are commonly known, then the two agents
are happy to take the opposite sides of a bet, and even happy to pay a small fee
to do so. This trade looks Pareto improving and yet, this trade would seem to
have no real economic value. See Gilboa, Samuelson, and Schmeidler (2014) for a
discussion and a notion of Pareto dominance in the absence of the CPA.
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This inequality can be rewritten as (where p∗i (ti) :=∑t−i p (t−i, ti))

∑

ti



∑

t−i

ui (ŝ (t) , t)pi (t−i; ti)


p

∗
i (ti) ≥

∑

ti



∑

t−i

ui (si (ti) , ŝ−i (t−i) , t)pi (t−i; ti)


p

∗
i (ti) ,

∀si : Ti → Ai.
If p∗i (ti) ≠ 0, this is then equivalent to the definition of a Bayes-
Nash equilibrium.

Remark 3.4.2. To reiterate, a game of incomplete information is a
game as described in Definition 3.4.1. If the CPA is satisfied (i.e.,
there is a common prior), then the game of incomplete information
has a complete information representation (where the game starts
explicitly with a move of nature). But the game as described in Defi-
nition 3.4.1 is still a game of incomplete information. The games in
the earlier sections of this chapter are all more naturally described
as games of incomplete information satisfying CPA.

A Bayes-Nash equilibrium is always the equilibrium (in the sense
of Definition 3.4.2) of a Bayesian game, i.e., of a game of incomplete
information.

While the literature appears to have settled on the term game of
incomplete information for games as described in Definition 3.4.1,
the alternative Bayesian game seems more appropriate, since the
notion involves the explicit description of beliefs. These notes will
follow the literature (though this does leave us with the quandary of
what to call games with truly incomplete information and unspeci-
fied beliefs). ♦

3.5 Higher Order Beliefs and Global Games

Example 3.5.1. Consider the game in Figure 3.5.1. For θ = 9, this is
the game studied in Examples 2.5.6 and 3.2.1.

Suppose, as in example 3.2.1, that there is incomplete infor-
mation about payoffs. However, now the information will be cor-
related. In particular, suppose θ ∈ {4,9}, with prior probability
Pr {θ = 9} > 7/9.
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A B

A θ,θ θ − 9,5

B 5, θ − 9 7,7

Figure 3.5.1: The game for Example 3.5.1. For θ = 9, this is the game
studied in examples 3.2.1 and 2.5.6.

If players have no information about θ, then there are two pure
strategy Nash equilibria, with (A,A) Pareto dominating (B, B).

Now suppose players have private information represented as
follows: There is an underlying state space Ω := {ω1,ω2, . . . ,ωM},
where M is odd. In state ω1, we have θ = 4, while in all other states
ωℓ, ℓ ≥ 2, we have θ = 9. Player 1’s information is described by the
partition on Ω given by

{{ω1}, {ω2,ω3}, . . . , {ωM−1,ωM}} ;

we denote {ω1} by t01 , and
{
ω2ℓ,ω2ℓ+1

}
by tℓ1 for 1 ≤ ℓ ≤ (M−1)/2.

Player 2’s information is described by the partition

{{ω1,ω2}, {ω3,ω4}, . . . , {ωM−2,ωM−1}, {ωM}} ;

we denote
{
ω2ℓ+1,ω2ℓ+2

}
by tℓ2 for 0 ≤ ℓ < (M − 1)/2, and {ωM}

by t(M−1)/2
2 . Each player knows only his own type (the element of

his information partition that contains the realized ω). Finally, the
probability distribution on Ω is uniform. Figure 3.5.2 illustrates Ω
for M = 9.

Say that a player knows θ if the player assigns probability 1 to
a particular value of θ (this clearly depends on ω). So, player 1
knows the value of θ at every ω, while player 2 only knows θ for
ω ∉ {ω1,ω2} = t02 . Write KiE if player i knows the event E. Then,
at ω1, we only have K1{θ = 4}, and at ω2, we only have K1{θ = 9}.
At ω3, we have K1{θ = 9} and K2{θ = 9} (both players know θ = 9)
and K2K1{θ = 9} (player 2 knows that player 1 knows θ = 9), but
no more. Note that moving from ω2 to ω3 does not change what
player 1 knows, since both states are in the same element of player
1’s partition. As a final illustration, consider ω4. Since ω3 and ω4

are in the same element of 2’s partition, player 2’s knowledge does
not change, and so for 2 we only have K2{θ = 9} and K2K1{θ = 9}.
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ω1 θ = 4

ω2 ω3

ω4 ω5

ω6 ω7

ω8 ω9

θ = 9

Figure 3.5.2: The solid lines describe player 1’s information sets, while the
dashed lines describe player 2’s. Player 1 knows the row and
player 2 knows the column containing the realized state.

In stateω3, both players know θ = 9, player 2 knows that
player 1 knows that θ = 9, but player 1 assigns probability
1/2 to ω2, and so to the event that player 2 does not know
that θ = 9.

In state ω4, both players know θ = 9, both players know
that both players know that θ = 9, player 1 knows that player
2 knows that player 1 knows that θ = 9, but player 2 does not
know that player 1 knows that player 2 knows that θ = 9.

But player 1 knows what player 2 knows at ω3, so in addition to
K1{θ = 9}, we also have K1K2{θ = 9} and K1K2K1{θ = 9}.7

A pure strategy for player 1 is

s1 : {t01 , t11 , . . . , t(M−1)/2
1 } → {A,B},

while a pure strategy for player 2 is

s2 : {t12 , t22 , . . . , t(M−1)/2
2 } → {A,B}.

7This is more formally described as follows: An event is simply a subset of Ω. A
player knows an event (such as the value of θ) if the player assigns probability 1 to
that event. The event consisting of all states at which player i assigns probability
1 to the event E is denoted by KiE. The event KiE is a union of elements of player
i’s partition. The event E could itself be the event KjF for some other event F .
In particular, K1{θ = 4} = {ω1}, K1{θ = 9} = {ω2 . . . ,ωM}, K2{θ = 4} = ∅,
K2{θ = 9} = K2K1{θ = 9} = {ω3, . . . ,ωM}, and K1K2{θ = 9} = K1K2K1{θ = 9} =
{ω4, . . . ,ωM}.
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Before we begin examining equilibrium behavior, note that Pr {θ = 9} =
(M − 1) /M , and this converges to 1 as M →∞.

This game of asymmetric information has a unique equilibrium.

Claim 3.5.1. This game has a unique Nash equilibrium (ŝ1, ŝ2), and
in this equilibrium, both players necessarily choose B, i.e., ŝ1(t1) =
ŝ2(t2) = B for all t1 and t2.

Proof. (by induction) Let s∗ be a Nash equilibrium. Note first s∗1 (t
0
1) =

B, since B is strictly dominant. By the risk dominance of B, it is the
unique best response for player 2 at t02 and so s∗2 (t

0
2) = B.

Suppose s∗2
(
tℓ−1
2

)
= B for 1 ≤ ℓ < (M − 1)/2. Then, since

Pr
{
tℓ−1
2 |tℓ1

}
= Pr

{{
ω2ℓ−1,ω2ℓ

} | {ω2ℓ,ω2ℓ+1
}}

= Pr
{
ω2ℓ

}

Pr
{
ω2ℓ,ω2ℓ+1

} = 1/M
2/M

= 1
2
,

s∗1
(
tℓ1
)
= B (the probability that 2 plays B is at least 1/2). Moreover,

if s∗1
(
tℓ1
)
= B, then since

Pr
{
tℓ1|tℓ2

}
= Pr

{{
ω2ℓ,ω2ℓ+1

} | {ω2ℓ+1,ω2ℓ+2
}}

= Pr
{
ω2ℓ+1

}

Pr
{
ω2ℓ+1,ω2ℓ+2

} = 1
2
,

we also have s∗2
(
tℓ2
)
= B.

The proof actually proves something a little stronger, that the
only profile that survives the iterated deletion of strictly dominated
strategies involves both players always choosing B. Since B is the
unique best response at t02 , any strategy s′2 satisfying s′2(t

0
2) = A

is strictly dominated by the strategy ŝ′2 given by ŝ′2(t
0
2) = B and

ŝ′2(t2) = s′(t2) for all other t2. We now proceed by iteratively delet-
ing strictly dominated strategies. «

Remark 3.5.1. Rubinstein’s (1989) email game is essentially the in-
finite version (M = ∞) of Example 3.5.1 (with slightly different pay-
offs): if θ = 9, player 1 sends a message to player 2 that θ = 9 (no
message is sent if θ = 4). This message is exogenous. Moreover, the
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message does not arrive with some probability ε > 0. Players then
exchange confirmations, with each confirming message having the
same exogenous probability of not arriving. When a message does
not arrive (which will occur with probability one), communication
stops and players choose. Each player’s type (information) is de-
termined by the number of messages that player sent, so player i’s
type if he sent ℓ messages is tℓi . A similar argument to the proof of
Claim 3.5.1 shows that, for ε small, this game also has a unique Nash
equilibrium, and in this game both players choose B at all types.
This imples that equilibria are not lower hemicontinuous in levels
of knowledge: AA is a Nash equilibrium when θ = 9 is common
knowledge, and yet no player will play A in the email game, no mat-
ter how many messages were exchanged. One interpretation of this
example is that, from a strategic point of view, “almost common
knowledge” is not captured by “mutual knowledge of an arbitrary
high, but finite, level.” Monderer and Samet (1989) describe a way of
approximating common knowledge (by common p-belief) that main-
tains the lower hemicontinuity of equilibria.

♦

Remark 3.5.2. As another illustration of the explicit representa-
tion of games with the incomplete information, we represent the
game of Example 3.5.1 as follows. The action spaces for both play-
ers are {A,B}. The types spaces are T1 = {t01 , t11 , . . . , t(M−1)/2

1 } and

T2 = {t02 , t12 , . . . , t(M−1)/2
2 }. From the proof of Claim 3.5.1, the belief

mappings are

p1(tℓ1) =
{1

2 ◦ tℓ−1
2 + 1

2 ◦ tℓ2 , if ℓ ≥ 1,
1 ◦ t02 , if ℓ = 0,

and

p2(tℓ2) =



1
2 ◦ tℓ1 + 1

2 ◦ tℓ+1
1 , if ℓ < (M − 1)/2,

1 ◦ t(M−1)/2
1 , if ℓ = (M − 1)/2.
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Finally, payoffs are given by, for i = 1,2,

ui(a1, a2, t1, t2) =




9, if a = AA, and t1 ≠ t01 ,
4, if a = AA, and t1 = t01 ,
0, if ai = A, aj = B, and t1 ≠ t01 ,
−5, if ai = A, aj = B, and t1 = t01 ,
5, if ai = B, aj = A,
7, if a = BB. ♦

Remark 3.5.3 (Payoff and belief types). In many situations (such as
Example 3.4.1 and 3.5.1), there is common knowledge of the en-
vironment, but beliefs are not common knowledge. It is becom-
ing common (particularly in the study of robust mechanism design,
see Bergemann and Morris, 2005b) to distinguish between a player’s
payoff type and a player’s belief type. Each player has a payoff and a
belief type, with each player’s payoffs depending only on (possibly
all) players’ payoff types. In Example 3.1.1, firm 1 has two payoff
types, and firm 2 has one payoff type (since firm 2’s payoffs are
common knowledge). Each firm has only one belief type, since firm
2’s beliefs over firm 1’s payoff type are common knowledge.

In Example 3.5.1, the set of payoff types is Θ := Θ1×Θ2 := {4,9}×
{θ2}, and both players payoffs depend on the actions chosen and
the vector of payoff types (note that player 2’s payoff type space is
degenerate8). We add to the type space representation from Remark
3.5.2 the additional mappings θ̂i : Ti → Θi for i = 1,2 given by

θ̂1(tℓ1) =
{

9, ℓ > 0,
4, ℓ = 0,

and
θ̂2(tℓ1) = θ1, ∀ℓ.

Player i’s payoff type is θ̂i(ti) and belief type is pi(ti) ∈ ∆(T−i). ♦

8Payoffs are determined by θ, which is not known to player 2, but is known
to player 1, so both players’ payoffs depend nontrivially on player 1’s payoff type
(i.e., the value of θ). Since player 2 does not privately know anything that is payoff
relevant, his space of payoff types is degenerate.
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Remark 3.5.4 (States of nature and of the world). Once we allow
for the possibility that player beliefs are not common knowledge,
it is useful to distinguish between the state of nature, which is the
value of the parameter that determines payoffs (in Example 3.5.1,
this is θ), and the state of the world, which resolves all uncertainty
(in Example 3.5.1, this is the triple of the state of the nature together
with both players’ types, (θ, t1, t2)). While not completely standard,
this language has the advantiage of separating out different sources
of uncertainty. The language is motivated by Savage (1972), which
introduced the term “state of the world” to describe information
that resolves all uncertainty (though beliefs are not discussed there
as a source of uncertainty). ♦

The complete information version of the game with θ = 9 has
two strict equilibria. Nonetheless, by making a small perturbation
to the game by introducing a particular form of incomplete informa-
tion, the result is stark, with only BB surviving, even in a state like
ωM , where each player knows the state, knows that the other knows
the state, and so on, to some large finite order.

Carlsson and van Damme (1993) introduced the term global games
to emphasize the importance of viewing the benchmark complete in-
formation game in a broader (global), i.e., perturbed, context. The
term global game is now commonly understood to refer to a model
that incorporates both a richness assumption on the uncertainty (so
that each action is dominant for at least one value of the uncertainty)
and small noise (as illustrated next).

Example 3.5.2 (Global Games). The stage game is as in Example
3.5.1. We change the information structure: We now assume θ is
uniformly distributed on the interval [0,20]. For θ < 5, B is strictly
dominant, while if θ > 16, A is strictly dominant.

Each player i receives a signal xi, with x1 and x2 independently
and uniformly drawn from the interval [θ − ε, θ + ε] for ε > 0. A
pure strategy for player i is a function

si : [−ε, 20+ ε]→ {A,B}.

First observe that, for xi ∈ [ε, 20 − ε], player i’s posterior on θ
is uniform on [xi − ε, xi + ε]. This is most easily seen as follows:
Letting g be the density of θ and h be the density of x given θ, we
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immediately have g(θ) = 1
20 for all θ ∈ [0,20] and

h(x | θ) =
{ 1

2ε , if x ∈ [θ − ε, θ + ε],
0, otherwise.

Since

h(x | θ) = f(x, θ)
g(θ)

,

where f is the joint density, we have

f(x, θ) =
{ 1

40ε , if x ∈ [θ − ε, θ + ε] and θ ∈ [0,20],
0, otherwise.

The marginal density for x ∈ [ε, 20− ε] is thus simply the constant
function 1

20 , and so the density of θ conditional on an x ∈ [ε, 20−ε]
is the constant function 1

2ε on the interval [x − ε, x + ε].
Similar considerations show that for xi ∈ [ε, 20 − ε], player i’s

posterior on xj is symmetric around xi with support [xi − 2ε, xi +
2ε]. Hence, for xi ∈ [ε, 20− ε], we have Pr{xj > xi | xi} = Pr{xj <
xi | xi} = 1

2 and E(θ | xi) = xi.
Claim 3.5.2. For ε < 5

2 , the game has an essentially unique Nash
equilibrium (s∗1 , s

∗
2 ), given by

s∗i (xi) =
{
A, if xi ≥ 101

2 ,

B, if xi < 101
2 .

Proof. We again apply iterated deletion of dominated strategies. Sup-
pose xi < 5 − ε. Then, player i’s conditional expected payoff from
A is less than that from B irrespective of player j’s action, and so
i plays B for xi < 5 − ε (as does j for xj < 5 − ε). But then at

xi = 5− ε, since ε < 5− ε, player i assigns at least probability 1
2 to j

playing B, and so i strictly prefers B. Let x∗i be the largest signal for
which B is implied by iterated dominance (ı.e., x∗i = sup{x′i | B is
implied by iterated strict dominance for all xi < x′i}). By symmetry,
x∗1 = x∗2 = x∗. At xi = x∗, player i cannot strictly prefer B to A
(otherwise, we can expand the set of signals for which iterated dom-
inance implies B), and he assigns at least probability 1

2 to j playing
B. The expected payoff from B is at least 6, while the payoff from A
is at most x∗ − 41

2 , and so, x∗ ≥ 101
2 .
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Similarly, for xi > 16, player i’s conditional expected payoff from
A is greater than that from B irrespective of player j’s action, and
so i plays A for xi > 16 (as does j for xj > 16). Let x∗∗i be the
smallest signal for which A is implied by iterated dominance (ı.e.,
x∗∗i = inf{x′i | A is implied by iterated strict dominance for all
xi > x′i}). By symmetry, x∗∗1 = x∗∗2 = x∗∗. At xi = x∗∗, player i
cannot strictly prefer A to B, and he assigns at least probability 1

2 to

j playing A. Hence, x∗∗ ≤ 101
2 .

But then

10
1
2
≤ x∗ ≤ x∗∗ ≤ 10

1
2
.

The iterated deletion argument connecting xi in the dominance
regions to values not in the dominance regions is often called an
infection argument.

This idea is not dependent on the particular distributional as-
sumptions made here. The property that Pr{xj > xi | xi} = Pr{xj <
xi | xi} = 1

2 is key (and holds under quite weak assumptions, see
Morris and Shin, 2003, for details). «

Remark 3.5.5 (CAUTION). Some people have interpreted the global
games literature as solving the multiplicity problem, at least in some
settings. There is in fact a stronger result: Weinstein and Yildiz
(2007) show that “almost all” games have a unique rationalizable
outcome (which of course implies a unique Nash equilibrium)!

Does this mean that we don’t need to worry about multiplicity?
Of course not: This is a result about robustness. The uniqueness of
the rationalizable outcome is driven by similar ideas to that in Exam-
ple 3.5.1—“almost all” simply means that all information structures
can be approximated by information structures allowing an infec-
tion argument. In order for a modeler to be confident that he knows
the unique rationalizable outcome, he needs to be confident of the
information structure.

Indeed, the stronger result in Weinstein and Yildiz (2007) proves
even more: for “almost all” games, the following is true: Fix any
rationalizable action a′i. There are games close by (terms of play-
ers’ beliefs) for which that action is the unique rationalizable action
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for player i.9,10 This means that, in this setting at least, there are
no robust refinements of rationalizability: If there were, then some
rationalizable action a′i would have failed the refinement, and yet
it must pass the refinement for some games close by (since it is
the only rationalizable action on those games). In particular, Nash
equilibrium is not a robust concept, at least in this belief setting! ♦

Remark 3.5.6. Superficially, purification and global games appear
very similar. In both cases, we take a benchmark game, and con-
sider perturbations in which players have small amounts of private
information. Yet the conclusions are very different: With Harsanyi
purification, given any equilibrium (pure or mixed), we obtain es-
sentially strict equilibria of the perturbed game that approximate
that equilibrium. With global games, given a benchmark game with
multiple equilibria, we obtain a unique essentially strict equilibrium
of the perturbed game. This difference arises from the private infor-
mation in purification being independently distributed (one player’s
type is uninformative about the realized type of the other player),
while this is not true for global games (one player’s type can be very
informative about the realized type of the other player). ♦

3.6 Correlated Equilibrium

Nash equilibrium effectively assumes that the description of the
game captures all relevant information. But what if players have
access to payoff-irrelevant information before play? If this informa-
tion is correlated across players, then players actions may be corre-
lated. This leads to Aumann’s (1974) notion of correlated equilib-
rium.

9I have not introduced rationalizability for games of incomplete information.
For our purposes here, interpret the phrase “an action is rationalizable” to mean
that the action is consistent with common knowledge of rationality.

10As Example 3.5.1 suggests, this result requires common knowledge of ratio-
nality. The result is not true once we admit the possibility that rationality is not
common knowledge (see Heifetz and Kets, 2018, and Germano, Weinstein, and
Zuazo-Garin, 2020).
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Dare Chicken

Dare −1,−1 7,3

Chicken 3,7 6,6

Dare Chicken

Dare 0 2/5

Chicken 2/5 1/5

Figure 3.6.1: The payoff matrix for chicken, Example 3.6.1 is on the left,
and a correlated equilibrium is on the right.

Suppose (Ai, Ui)ni=1 is a finite normal form game. A correlated
strategy profile is a probability distribution α ∈ ∆(A1 × . . . An). De-
note by αi the marginal distribution of α on Ai and α−i(· | ai) the
distribution on A−i conditional on ai ∈ suppαi.

Definition 3.6.1. The correlated strategy profile α is a correlated
equilibrium if for all ai ∈ suppαi,
∑
a−i
Ui(ai, a−i)α−i(a−i | ai) ≥

∑
a−i
Ui(a′i, a−i)α−i(a−i | ai) ∀a′i ∈ Ai.

Example 3.6.1. The game of chicken is presented in Figure 3.6.1.
This is also called the hawk-dove game, where hawk is dare, and
dove is chicken. The game has two strict pure strategy equilibria,
(Dare, Chicken) and (Chicken, Dare), as well as a mixed strategy equi-
librium, with payoffs (10/3,10/3).

The mixed strategy equilibrium is Pareto dominated by the cor-
related equilibrium that randomizes between the two pure strategy
equilibria with equal probability. But that equilibrium is Pareto dom-
inated by the correlated equilibrium given in Figure 3.6.1, which
gives each player an expected payoff of 26/5. «

It is immediate that equivalently, α is a correlated equilibrium
if there exists a finite space of uncertainty (Ω, ρ), ρ ∈ ∆(Ω) with
a profile of signaling functions (τ1, . . . , τn), τi : Ω → Mi, where Mi
is a finite space of signals for player i, such that for some Nash
equilibrium σ of the associated game with nature,

α(a) = ρ({ω : σ(τ(ω)) = a}).
In this equivalent formulation, nature first determines ω according
to ρ, and then privately sends a signal mi = τi(ω) to each player i.
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A B

A 9,9 0,5

B 4,0 7,7

Figure 3.7.1: The game for Problem 3.7.2.

The players then simultaneously choose actions, given their private
information. Note that ρ is a common prior.

In other words, the set of correlated equilibria covers all pos-
sible behavior that could arise if players have access to possibly
correlated private information before playing the game.

3.7 Problems

3.7.1. There are two firms, 1 and 2, producing the same good. The
inverse demand curve is given by P = θ−q1−q2, where qi ∈ R+
is firm i’s output. (Note that we are allowing negative prices.)
There is demand uncertainty with nature determining the value
of θ, assigning probability α ∈ (0,1) to θ = 3, and complemen-
tary probability 1 − α to θ = 4. Firm 2 knows (is informed of)
the value of θ, while firm 1 is not. Finally, each firm has zero
costs of production. As usual, assume this description is com-
mon knowledge. Suppose the two firms choose quantities si-
multaneously. Define a strategy profile for this game. Describe
the Nash equilibrium behavior (which may be unique).

3.7.2. Redo Example 3.2.1 for the game in Figure 3.7.1.

3.7.3. Prove that it is optimal for bidder 1 to bid according to the
strategy in (3.3.2) when bidder 2 is following that strategy in
the sealed bid first price auction of Example 3.3.1. [Hint: First
show that it is not optimal to bid b1 <

¯
v or b1 > Ev . Since σ̃

is strictly increasing and continuous, any bid in [
¯
v,Ev] is the

bid of some valuation v . Prove that bidding as if valuation v
has valuation v′ is suboptimal.]

3.7.4. Consider the following variant of a sealed-bid auction in a
setting of independent private values. The highest bidder wins,
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and pays a price determined as the weighted average of the
highest bid and second highest bid, with weight α ∈ (0,1) on
the highest bid (ties are resolved by a fair coin). Suppose there
are two bidders, with bidder i’s value vi randomly drawn from
the interval [

¯
vi, v̄i] according to the distribution function Fi,

with density fi.

(a) What are the interim payoffs of player i?
(b) Suppose (σ1, σ2) is a Nash equilibrium of the auction, and

assume σi is a strictly increasing and differentiable func-
tion, for i = 1,2. Describe the pair of differential equations
the strategies must satisfy.

(c) Suppose v1 and v2 are uniformly and independently dis-
tributed on [0,1]. Describe the differential equation a
symmetric increasing and differentiable equilibrium bid-
ding strategy must satisfy.

(d) Solve the differential equation found in part (c). [Hint:
Conjecture a functional form.]

(e) For the assumptions under part (c), prove the strategy
found in part (d) is a symmetric equilibrium strategy.

3.7.5. Consider the two bidder sealed-bid auction of Example 3.3.1,
when the two bidders’ valuations are independent uniform draws
from the interval [0,1].

(a) What is the expected revenue of the symmetric equilib-
rium?

In a first price sealed bid auction with reserve price r , the high-
est bidder only wins the auction (and pays his bid) if the bid is
at least r .

(b) What is the symmetric Nash equilibrium of the first-price
sealed-bid auction with reserve price r ∈ [0,1]? [Hint:
Since any winning bid must be no less than r , bidders
with a value less than r can be assumed to bid 0 (there
are multiple symmetric equilibria that only differ in the
losing bids of bidders with values less than r ). It remains
to determine the bidding behavior of those bidders with
values ≥ r . Prove that any bidder with value r must bid r .
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While the equilibrium is not linear in valuation, the recipe
from Example 3.3.1 still works.]

(c) What reserve price maximizes expected revenue?

3.7.6. This question asks you to fill in the details of Example 3.3.2.

(a) Prove that in any equilibrium, any bidder with value
¯
v

must bid
¯
v .

(b) Prove that there is no equilibrium in pure strategies.

(c) Prove that in any mixed strategy equilibrium, the mini-
mum of the support of F2 is given by

¯
v .

(d) Prove that it is not optimal for v̄ to bid
¯
v .

(e) Prove that the symmetric profile in which each bidder bids

¯
v if v =

¯
v , and according to the distribution function

F(b) = (b −
¯
v)/(v̄ − b) if v = v̄ , is a Nash equilibrium.

3.7.7. A variant of Example 3.3.2. The two bidders have indepen-
dent private values drawn independently and identically from
the common three point set {v1, v2, v3}, with v1 < v2 < v3.
The common distribution assigns probability pk to value vk,
k = 1,2,3. There is a symmetric equilibrium in which the low
value bidders bid v1, the mid value bidders randomize over a
support [v1, b̄2], and the high value bidders randomize over a
support [b̄2, b̄3]. Fully describe the equilibrium, and verify that
it is indeed an equilibrium.

3.7.8. Consider again the two bidder sealed-bid auction of Example
3.3.1, but with a different valuation structure. In particular,
the two bidders valuations are independent draws from the
interval [1,2], with each bidder’s valuation being a uniform
draw from that interval with probability p ∈ (0,1) and with
complementary probability 1− p equaling some v∗ ∈ [1,2].
(a) Suppose v∗ = 1. What is the symmetric Nash equilibrium?

[Hint: What must v∗ bid?]

(b) Suppose v∗ = 2. What is the symmetric Nash equilibrium?
[Hint: Type v∗ must randomize. Why? Can v∗ have an
atom in his bid distribution?]

(c) Suppose v∗ ∈ (1,2). What is the symmetric Nash equilib-
rium?
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(d) Compare and contrast the comparative statics with respect
to v∗ of the equilibria for different values of p.

3.7.9. An asymmetric variant of Example 3.3.2. The two bidders
have independent private values drawn independently from
the common two point set {

¯
v, v̄}, with

¯
v < v̄ . The probability

that bidder i has value v̄ is pi ∈ (0,1), and p1 < p2. Ties are
broken in favor of bidder 2.

(a) As in Problem 3.7.6, in any equilibrium any bidder with
value

¯
v must bid

¯
v . Prove that in any equilibrium, the

support of the bids made by bidder 1 of type
¯
v is the same

as that of bidder 2 of type
¯
v , and the minimum of the

common support is
¯
v . Denote the common support by

[
¯
v, b̄].

(b) Prove that one of the bidder’s behavior strategies has an
atom at

¯
v (the other does not). What is the size of the

atom?

(c) Describe the equilibrium.

(d) Suppose now that the high value bidder 1 has value v̄1,
while the high value bidder 2 has value v̄2, with the two
values not necessarily equal. This game only has an equi-
librium if ties are broken in the “right” way. What is that
way?

3.7.10. This question asks you to prove Lemma 3.3.2:

(a) Suppose s̄2 < s̄1, and set δ := Pr{s̄2 < σ1(t1) ≤ s̄1} > 0.
Prove that there exists s̃1 satisfying Pr{σ1(t1) > s̃1} < δ/2.
[Hint: This is trivial if s̄1 < ∞ (why?). The case where
s̄1 = ∞ uses a basic continuity property of probability.]

(b) Show that a deviation by type t2 > 2s̃1 to a stopping time
s2 > s̃1 (which implies that t2 wins the war of attrition with
probability of at least δ/2) satisfying s2 < t2/2 is strictly
profitable.

3.7.11. This question builds on Example 3.1.1 to capture the possi-
bility that firm 2 may know that firm 1 has low costs, cL. This
can be done as follows: Firm 1’s space of uncertainty (types) is,
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as before, {cL, cH}, while firm 2’s is {tI , tU}. Nature determines
the types according to the distribution

Pr(t1, t2) =




1− p − q, if (t1, t2) = (cL, tI),
p, if (t1, t2) = (cL, tU),
q, if (t1, t2) = (cH , tU),

where 0 < p,q and p + q < 1. Firm 2’s type, tI or tU , does not
affect his payoffs (in particular, his cost is c2, as in Example
3.1.1). Firm 1’s type is just his cost, c1.

(a) What is the probability firm 2 assigns to c1 = cL when his
type is tI? When his type is tU?

(b) What is the probability firm 1 assigns to firm 2 knowing
firm 1’s cost? [This may depend on 1’s type.]

(c) Solve for the values of p and q that imply that tU has the
beliefs of player 2 in Example 3.1.1 and cL assigns proba-
bility 1−α to tI .

(d) For these values of p and q, solve for the Nash equilibrium
of this game. Compare your analysis to that of Example
3.1.1.

3.7.12. The linear equilibrium of Example 3.3.6 is not the only equi-
librium of the double auction.

(a) Fix a price p ∈ (0,1). Show that there is an equilibrium at
which, if trade occurs, then it occurs at the price p.

(b) What is the probability of trade?

(c) At what p is the probability of trade maximized?

(d) Compare the expected gains from trade under these “fixed
price” equilibria with the linear equilibrium of Example
3.3.6.

3.7.13. In Example 3.5.1, suppose that in the stateω1, θ = 20, while
in states ωm, 2 ≤ m ≤ M − 1, θ = 9 and in state ωM , θ =
4. Suppose the information partitions are as in the example.
In other words, apart from the probability distribution over Ω
(which we have not yet specified), the only change is that in
state ω1, θ = 20 rather than 9.
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(a) Suppose the probability distribution over Ω is uniform (as
in the lecture notes). What is the unique Nash equilibrium,
and why? What is the unconditional probability of both
players choosing A in the equilibrium?

(b) Suppose now the probability of ωm is 410−mα, for m =
1, . . . ,9, where α is chosen so that

∑9
m=1 410−mα = 1. What

is the unique Nash equilibrium, and why? What is the un-
conditional probability of both players choosing A in the
equilibrium?

3.7.14. This question asks you to fill in some of the details of the
calculations in Example 3.5.2.

(a) What is the marginal density of x for x ∈ [−ε,20+ ε]?
(b) What is the expected value of θ conditional on x, for x ∈
[−ε,20+ ε]?

(c) Derive player i’s posterior beliefs about player j’s signal
xj , conditional on xi ∈ [−ε,20+ ε].



Chapter 4

Nash Equilibrium: Existence
and Foundations

4.1 Existence

The next section briefly discusses some learning foundations for
Nash equilibrium (which is concerned with the question of why agents
may play their part of a Nash equilibrium when such equilibria ex-
ist). But Nash equilibria need not always exist (Example 4.1.1 and
Problem 4.3.4 are two examples). Before I describe some general re-
sults on the existence of Nash equilibrium, I make a few remarks on
why nonexistence is problematic.

• Most applied work is concerned with properties of equilbrium
behavior (like their comparative statics). But this presumes
equilibrium exists.

• If equilibria don’t exist, it is unclear what behavior to analyze.

• More importantly, nonexistence is often an indication that the
model is misspecified.

• An intermediate situation often arises: A general existence re-
sult has proved elusive, yet existence can be demonstrated in
some special cases. Then, this provides some reassurance that
the model is not misspecified, though the lack of a general ex-
istence result leaves open the possibilty that a model misspec-
ification lurks in the general model.

113
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Recall from Remark 2.1.1 that Nash equilibria are fixed points of
the best reply correspondence:

s∗ ∈ φ(s∗).

When does φ have a fixed point?
The simplest fixed point theorem is the intermediate value theo-

rem: For f : [0,1] → [0,1], define g(x) = f(x)− x. Then, g(0) ≥ 0
and g(1) ≤ 1, and so if g (so f ) is continuous, there exists x∗ such
that g(x∗) = 0, which implies f(x∗) = x∗.

But this only works in one dimension. For more dimensions, we
have the Brouwer’s fixed point theorem: Every continuous function
f : [0,1]n → [0,1]n has a fixed point. However, the assumptions for
Brouwer are restrictive: We need the best reply correspondence to
be a continuous and singleton-valued self-map on a compact convex
set. Convex strategy spaces and strictly quasiconcave payoffs jointly
do imply that the best replies are continuous and single-valued.

Unfortunately, these assumptions are violated by finite games.
Allowing for mixed strategies recovers convexity of the strategy
spaces, but best replies cannot always be unique (though the set
of best replies is always convex), hence our study of best reply cor-
respondences.

Theorem 4.1.1 (Kakutani’s fixed point theorem). Suppose X ⊂ Rm

for some m and F : X ⇒ X. Suppose

1. X is nonempty, compact, and convex;

2. F has nonempty convex-values (i.e., F(x) is a convex set and
F(x) ≠∅ ∀x ∈ X); and

3. F has closed graph: (xk, x̂k)→ (x, x̂), x̂k ∈ F(xk)⇒ x̂ ∈ F(x).

Then F has a fixed point.

Remark 4.1.1. A correspondence F : X ⇒ X is upper hemicontinu-
ous at x ∈ X if for all open sets O ⊂ Rm satisfying F(x) ⊂ O, there
exists δ such that for all x′ ∈ X satisfying |x − x′| < δ, F(x′) ⊂ O.
A correspondence F : X ⇒ X is upper hemicontinuous if it is upper
hemicontinuous at all x ∈ X. A singleton-valued correspondence is
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a function,1 and the notion of upper hemicontinuity for singleton-
valued correspondences is precisely that of continuity of the func-
tion.

An upper hemicontinuous correspondence with closed values
has a closed graph.2 Unlike upper hemicontinuity, the closed graph
property by itself does not imply continuity of functions: the func-
tion f : R → R given by f(x) = 1/x for x > 0 and f(0) = 0 has a
closed graph but is not continuous. But if F has a closed graph and
X is compact, then F is upper hemicontinuous; for more on this, see
Ok (2007, §E.2).

So, the hypotheses of Theorem 4.1.1 could have been written
as F is closed- and convex-valued and upper hemicontinuous. See
Problem 4.3.1 for an illuminating example. ♦

Theorem 4.1.2. Given a normal form game G = {(Si, Ui) : i =
1, . . . , n}, if for all i,

1. Si is a nonempty, convex, and compact subset of Rk for some k,
and

2. Ui : S1 × · · · × Sn → R is continuous in s ∈ S1 × · · · × Sn and
quasiconcave in si,

then G has a Nash equilibrium strategy profile.

Proof. Since Ui is continuous, the Maximum Theorem (Mas-Colell
et al., 1995, Theorem M.K.6) implies that φi has a closed graph.

The quasiconcavity of Ui implies that φi is convex-valued: For
fixed s−i ∈ S−i, suppose s′i , s

′′
i ∈ arg maxUi(si, s−i). Then, from the

quasiconcavity of Ui, for all α ∈ [0,1],
Ui(αs′i + (1−α)s′′i , s−i) ≥ min{Ui(s′i , s−i), Ui(s′′i , s−i)},

and so
Ui(αs′i + (1−α)s′′i , s−i) ≥ maxUi(si, s−i)

so that αs′i + (1−α)s′′i ∈ arg maxUi(si, s−i).
The theorem then follows from Kakutani’s fixed point theorem

by taking X = S1 × · · · × Sn and F = (φ1, . . . ,φn).
1This is a slight abuse of language. Technically, a singleton valued correspon-

dence is not a function, since its value is a subset of X with only one element, i.e.,
{x}, while the value of a function is a point in x in X.

2The correspondence F(x) := (0,1) is trivially upper hemicontinuous, does not
have closed-values, and does not have a closed graph.
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Theorem 4.1.3 (Nash, 1950b). Every finite normal form game, {(Si, Ui)i},
has a mixed strategy Nash equilibrium.

Proof. Define Xi = ∆(Si) and X := ∏
iXi. Then X ⊂ RΣ|Si| and X is

nonempty, convex and compact.
In this case, rather than appealing to the maximum theorem, it is

an easy (and worthwhile!) exercise to prove that φi is convex-valued
and has a closed graph. Now apply Kakutani.3

In some applications, we need an infinite-dimensional version of
Kakutani’s fixed point theorem. In the following theorem, a topo-
logical space X is Hausdorff if for all x1 ≠ x2 ∈ X, there exist two
disjoint neighborhoods Ui, i = 1,2, with xi ∈ Ui. A topological
space is locally convex if there is a base for the topology consisting
of convex sets. In particular, every normed vector space is locally
convex Hausdorff.

Theorem 4.1.4 (Fan-Glicksberg fixed point theorem). Suppose X is a
nonempty, compact, and convex subset of a locally convex Hausdorff
space, and suppose F : X ⇒ X. Suppose

1. F has nonempty convex-values (i.e., F(x) is a convex set and
F(x) ≠∅ ∀x ∈ X); and

2. F has closed graph: (xk, x̂k)→ (x, x̂), x̂k ∈ F(xk)⇒ x̂ ∈ F(x).

Then, F has a fixed point.

Locally convex Hausdorff spaces generalize many of the nice
properties of normed vector spaces. This generalization is needed
in the following theorem, since the spaces are typically not normed.

Theorem 4.1.5. Suppose X is a compact metric space. The space
of probability measures on X is a nonempty, compact, and convex
subset of a locally convex Hausdorff space. Moreover, if f : X → R is
a continuous function, then

∫
fdµ is a continuous function of µ.

Corollary 4.1.1. Suppose Si is a compact subset of a finite dimen-
sional Euclidean space Rmi , and suppose ui : S → R is continuous.
The normal form game {(Si, ui)i} has a Nash equilibrium in mixed
strategies.

3This is the original proof from Nash (1950b). Nash (1951) provides a proof
based on Brouwer.
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v2 = 3 v2 = 4

v1 = 3 1
3

1
3

v1 = 4 1
3 0

Figure 4.1.1: The joint distribution for nonexistence in Example 4.1.1.

Proof. The proof mimics that of Theorem 4.1.3.

Example 4.1.1 (Examples of nonexistence). See Problem 4.3.4 for a
simple example of nonexistence in a game of complete information.

Nonexistence in games of incomplete information arises more
naturally. Consider the following example of a private-value first-
price auction with ties broken using a fair coin. Bidder 1 has value 3
and bidder 2 has value 3 with probability 1

2 and value 4 with proba-

bility 1
2 . An intuition for nonexistence can be obtained by observing

that since there is positive probability that 2 has value 3, neither
bidder will bid over 3 when their value is 3 (since he may win). More-
over, neither bidder can randomize on bids below 3 when their value
is 3 for standard reasons (see Problem 4.4.2). But if bidder 1 bids
3, then bidder 2 of value 4 does not have a best reply. Existence is
restored if ties are broken in favor of bidder 2. If we discretize the
space of bids, then there is an equilibrium in which bidder 2 with
value 4 bids 3 + ∆, where ∆ > 0 is the grid size, and the other bid-
ders bid 3. This equilibrium, for ∆ small, effectively breaks ties in
favor of the high value bidder.

Suppose now the joint distribution over bidder valuations is given
by the table in Figure 4.1.1. The critical feature of this joint distri-
bution is that the bidder with value 4 knows that the other bidder
has value 3 (and so the valuations are not independent). For any
tie breaking rule, the value 4 bidder has no best reply, and so there
is no equilibrium (in pure or mixed strategies). Existence can only
be restored by using a tie breaking rule that awards the item to the
highest value bidder. If we again discretize the space of bids, then
there is an equilibrium in which the bidders with value 4 bid 3+ ∆,
where ∆ > 0 is the grid size, and the other bidders bid 3. This equi-
librium, for ∆ small effectively breaks ties in favor of the high value
bidder. For (much) more on this, see Jackson, Simon, Swinkels, and
Zame (2002).
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One possible response is that the nonexistence arises for tech-
nical reasons (a lack of discreteness), and addressing the lack of
discreteness yields existence. But such a response is a little naïve:
As illustrated in Problem 4.4.2, for priors with close-by supports,
equilibria do exist but will be quite different for different supports.4

This discontinuity will presumably persist when bid spaces are dis-
cretized. Part c of that problem illustrates a more striking issue:
If the low value for bidder 2 is 3 − ε (rather than 3), then the auc-
tion has an equilibrium in mixed strategies. While the limiting bid
distributions (as ε vanishes) coincide, the implied tie-breaking rule
requires knowledge of player 2’s private information. «

An accessible reference on fixed point theorems and their appli-
cation to economics is Border (1985) (though it does not cover the
more advanced material briefly mentioned here). A reference that
does cover that material is Aliprantis and Border (1999, Sections
14.3 and 16.9).

Existence results that replace continuity assumptions on pay-
offs with complementarity or supermodularity assumptions (and
use Tarski’s fixed point theorem) are of increasing importance. For
an introduction, see Chapter 7 in Vohra (2005).

4.2 Learning/Evolutionary Foundations

Nash equilibrium requires that players are playing optimally given
beliefs about the play of other players (call this the optimization hy-
pothesis) and that these beliefs are correct (call this the consistency
hypothesis).

There is a sense in which the optimization hypothesis is almost
true by definition: a player chooses an action he/she believes is op-
timal. For if he/she believed another action was optimal, (surely)
it would have been chosen. This reflects our assumption that a
player’s payoffs capture the game as perceived by that player (re-
call Remark 1.1.1). The optimization hypothesis does require that
each player is not boundedly rational, in the sense that he or she

4This discussion and Problem 4.4.2 were inspired by Ron’s Siegel’s presentation
of his work with Wojciech Olszweski and Phil Reny on equilibrium existence in
auctions.
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does not face any computational or other constraints on calculat-
ing optimal behavior. In some cases, this is a heroic assumption.
For example, under tournament rules,5 chess is a finite game of per-
fect information and so has a backward induction solution. But that
solution is unknown.

The consistency hypothesis requires that all players have correct
beliefs about other players’ behavior, including how other players
would respond to possible deviations. This is a strong hypothesis.
In some settings, the best justification is that it constrains model-
ers. For example, in the battle of the sexes (Example 2.1.1), the out-
come (Opera, Ballet) conforms with the optimization, but not with
the consistency, hypothesis. More generally, optimization without
constraints on beliefs only implies that players do not play strictly
dominated strategies. Unfortunately, most games have large sets of
undominated strategies.

At the same time, the assumptions used to constrain modelers
need to be themselves disciplined in some way. Considerable energy
has been devoted to obtaining other justifications for consistency.

One obvious path is learning. Suppose two players are repeat-
edly playing the same stage game. Will they eventually learn to play
a Nash equilibrium of the stage game? A few minutes of reflection
suggests that the answer is not obvious. For example, if players are
not myopic, then we should not expect the players to be maximizing
stage game payoffs (in which case, a player may have an incentive
to manipulate the future player of the other player). But such a sce-
nario seems to be a worse case scenario, since it lacks important
context (in particular, if this “repeated play” occurs in a social con-
text, there may be a relevant history that aids in coordinating play).

In this section, I give a very brief introduction to two more fruit-
ful approaches. The first considers a scenario of social learning
(which has strong connections to evolutionary game theory) and the
second of individual learning. Both share the following features:

• the analysis is dynamic, focusing on asymptotic properties,

• the assumed behavior respects myopic optimality, and

5Strictly speaking, chess is only finite under the assumption that players claim
a draw when the rules permit: when either the position is repeated three times, or
50 moves are made without a capture or a pawn move.
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• a focus on the interaction of learning with the evolution of the
system.

The second bullet point needs some explanation. Since players
are learning in some way, it is not necessary to assume that players
know (or behave as if they know) the optimal actions given beliefs.
Rather, players may learn (discover) the optimal actions through ex-
perimentation or observation. It is worth noting that this argument
is in the same vein as the arguments economists have given for why
we should expect markets to be in equilibrium. Economic actors
set prices, buy and sell goods and services, revise prices, proceed-
ing by trial and error until the process settles down at an equilib-
rium where supply equals demand. Evolutionary game theory can
be viewed as a return to the traditional interpretation of economic
models (in contrast to the “ultrarational” view of traditional game
theory).6

In Section 2.5, I argued that not all Nash equilibria are equally
deserving of investigation, and commented that equilibrium selec-
tion often invokes a broader context, such as learning. Many of the
games in that section have multiple equilibria, not all of which can
be learned.

Finally, very strong assumptions are required for learning to pro-
vide a foundation for consistency in the context of extensive form
games. I discuss this briefly in Section 4.2.3.

A good book length treatment of the general topic covered here
is Fudenberg and Levine (1998). For much more on evolution, see
Samuelson (1997) and Weibull (1995) (or Mailath, 1998, for a longer
nontechnical introduction than here).

4.2.1 Social Learning (Evolutionary Game Theory)

In the social learning approach, the players in a game are drawn
from a large population repeatedly over time, learn by observing the
history of play, and choose an action. In the basic models, players
are not modeled as sophisticated decision makers updating beliefs
over their uncertainty over their environment (which includes the
behavior of other players). Rather, players adjust their behavior in

6In his Ph.D. dissertation (Nash, 1950c), Nash gave two interpretations of equi-
librium, one corresponding to the rational view, and the other corresponding to
evolutionary game theory.
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A B

A 1 0

B 0 1

Figure 4.2.1: The game for Example 4.2.1.

0 1
2

1

Figure 4.2.2: The dynamics for Example 4.2.1.

response to social evidence that suggests that another action may
be myopically superior. The analysis provides a foundation for both
the consistency and the optimization hypotheses.

Example 4.2.1. There is a large population of players whose mem-
bers are repeatedly randomly paired to play the game displayed in
Figure 4.2.1. Assume there is no role identification, so the payoff
represents the payoff to a player who chooses the row action, when
facing the column action. If α is fraction of population playing A,
then average payoff is given by

u(A;α) =α,
and u(B;α) =1−α.

Social learning is captured by the assumption that over time, the
fraction of the population playing A (B) increases if A (B) has a
higher average payoff. Then,

α̇ = dα
dt
> 0 ⇐⇒ u(A;α) > u(B;α) ⇐⇒ α >

1
2

and

α̇ < 0 ⇐⇒ u(A;α) < u(B;α) ⇐⇒ α <
1
2
.

The dynamics are illustrated in Figure 4.2.2. Clearly, the two sym-
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A B

A 1 2

B 2 1

Figure 4.2.3: The game for Example 4.2.2.

0 1
2

1

Figure 4.2.4: The dynamics for Example 4.2.2.

metric pure strategy equilibria are stable rest points of the dynam-
ics,7 while the symmetric mixed strategy equilibrium 1

2 ◦A+ 1
2 ◦B is

unstable.
This is an example of the equilibrating process eliminating an

equilibrium from the set of equilibria. «

Example 4.2.2. Now suppose the players are playing the game in
Figure 4.2.3.

We again assume no role identification, so that AB and BA are
infeasible. If α is the fraction of population playing A, then

u(A;α) =α+ 2(1−α) = 2−α,
and u(B;α) =2α+ 1−α = 1+α.

Then,

α̇ > 0 ⇐⇒ 2−α > 1+α ⇐⇒ 1
2
> α

and

α̇ < 0 ⇐⇒ 2−α < 1+α ⇐⇒ 1
2
< α.

The symmetric mixed strategy equilibrium is now the only stable
equilibrium. The dynamics are illustrated in Figure 4.2.4. «

7For now, interpret stable intuitively; this is defined below in Definition 4.2.1.
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Let S denote a finite set of strategies in a symmetric game. In the
above examples, S = {A,B}. The payoff to playing the strategy s ∈ S
against an opponent who plays r ∈ S is u(s, r).

The state of society is σ ∈ ∆(S). The expected payoff to s when
state of society is σ is

u(s,σ) =
∑
r
u(s, r)σ(r).

The dynamics are described by a function

F : ∆(S)×R+ → ∆(S);

if the initial state is σ , then under the dynamic F , the state at time
t is given by F(σ, t). For this interpretation of F to make sense, we
clearly must require

F(σ, t′ + t) = F(F(σ, t′), t),
since if the population strategy profile is σ ′ at t′, then at time t′ + t
it will be F(σ ′, t).

Definition 4.2.1. A state σ∗ is a rest (or stationary) point of F if

σ∗ = F(σ∗, t) ∀t.
A rest point σ∗ is asymptotically stable under F if there exists ε > 0
such that if | σ ′ − σ∗ |< ε, then limt→∞ F(σ ′, t) = σ∗.

Assume F is continuously differentiable in all its arguments (on
the boundaries, assume the appropriate one-sided derivatives exist
and are continuous). Write σ̇ for ∂F(σ, t)/∂t|t=0.

Note that ∑
s
σ(s) = 1 =⇒

∑
s
σ̇ (s) = 0.

Definition 4.2.2. The dynamic F is a myopic adjustment dynamic if
for all σ , s, r ∈ S satisfying σ(s),σ(r) > 0,

u(s,σ) > u(r ,σ) =⇒ σ̇ (s) > σ̇(r).

Theorem 4.2.1. Suppose F is a myopic adjustment dynamic.

1. If σ∗ is asymptotically stable under F , then it is a symmetric
Nash equilibrium.
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2. If σ∗ is a strict Nash equilibrium, then σ∗ is asymptotically
stable under F .

Proof. 1. Left as an exercise.

2. Suppose σ∗ is a strict Nash equilibrium. Then, σ∗ is a pure
strategy s and u(s, s) > u(r , s) for all r ≠ s. This implies that
there exists ε > 0 such that for all σ satisfying σ(s) > 1− ε,

u(s,σ) > u(r ,σ), ∀r ≠ s.
Suppose 1 > σ(s) > 1 − ε and σ(r) > 0 for all r . Myopic
adjustment implies σ̇ (s) >max{σ̇ (r) : r ≠ s}, and so σ̇ (s) > 0
(since

∑
r∈S σ̇ (r) = 0).

Consider now σ satisfying 1 > σ(s) > 1 − ε with σ(r) = 0
for some r . Since σ̇ is continuous in σ (since F is continu-
ously differentiable, including on the boundaries), σ̇ (s) ≥ 0
and σ̇ (s) ≥ σ̇ (r). Suppose σ̇ (s) = 0 (so that σ̇ (r) ≤ 0). Then,
σ̇ (r ′) < 0 for all r ′ satisfying σ(r ′) > 0 and so σ̇ (r) > 0, a
contradiction.

Hence, if 1 > σ(s) > 1 − ε, then σ̇ (s) > 0. Defining σ t :=
F(σ, t) ∈ ∆(S), this implies σ t(s) > 1 − ε for all t, and so
σ t(s)→ 1 .

There are examples of myopic adjustment dynamics that do not
eliminate strategies that are iteratively strictly dominated by mix-
tures. Stronger conditions (such as aggregate monotonicity) are
needed—see Fudenberg and Levine (1998). These conditions are sat-
isfied by the replicator dynamic, which I now describe.

This dynamic comes from biology and, more specifically, evolu-
tionary game theory. Payoffs are now interpreted as reproductive
fitness (normalize payoffs so u(s, r) > 0 for all s, r ∈ S). At the end
of each period, each agent is replaced by a group of agents who play
the same strategy, with the size of the group given by the payoff
(fitness) of the agent. Let xs(t) be the size of the population playing
s in period t. Then,

xs(t + 1) = xs(t)u(s,σ t),
where

σ t(s) = xs(t)∑
r xr (t)

=:
xs(t)
x̄(t)

.
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L R

T 1,1 1,0

B 1,1 0,0

Figure 4.2.5: The game for Example 4.2.3.

Then, since x̄(t + 1) = x̄(t)u(σ t, σ t),

σ t+1(s) = σ t(s) u(s,σ
t)

u(σ t, σ t)
,

so the difference equation is

σ t+1(s)− σ t(s) = σ t(s)u(s,σ
t)−u(σ t, σ t)
u(σ t, σ t)

.

Thus, as long as σ t(s) > 0, we have σ t+1(s) > (<)σ t(s) if, and only
if, u(s,σ t) > (<)u(σ t, σ t). In continuous time, this is

σ̇ (s) = σ(s)u(s,σ)−u(σ,σ)
u(σ,σ)

.

This dynamic has the same trajectories (paths) as

σ̇ (s) = σ(s)[u(s,σ)−u(σ,σ)].
Note that under the replicator dynamic, every pure strategy pro-

file is a rest point: if σ(s) = 0 then σ̇ (s) = 0 even when u(s,σ) >
u(σ,σ).

Idea extends in straightforward fashion to games with role iden-
tification. In that case, we have

σ̇i(si) = σi(si)[ui(si, σ−i)−ui(σi, σ−i)].
Example 4.2.3 (Domination). The game is displayed in Figure 4.2.5.
Let pt be the fraction of row players choosing T , while qt is the
fraction of column players choosing L. The replicator dynamics are

ṗ = p(1− p)(1− q)
and q̇ = q(1− q).
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0 p 1

1

q

Figure 4.2.6: The phase diagram for Example 4.2.3.

The phase diagram is illustrated in Figure 4.2.6.8 No rest point is
asymptotically stable. «

Example 4.2.4 (Simplified ultimatum game). In the simplified ulti-
matum game, the proposer offer either an equal split, or a small
payment. The responder only responds to the small payment (he
must accept the equal split). The extensive form is given in Figure
4.2.7, and the normal form is in Figure 4.2.8.

Let p be the fraction of row players choosing equal split, while q
is the fraction of column players choosing N .

The subgame perfect profile is (0,0). There is another Nash out-
come, given by the row player choosing equal division. The set of
Nash equilibrium yielding this outcome is N = {(1, q) : 3/8 ≤ q}.

The replicator dynamics are

ṗ = p(1− p)(80q − 30)
and q̇ = −20q(1− q)(1− p).

8The phase diagram in Mailath (1998, Figure 11) is incorrect.



4.2. Learning/Evolutionary Foundations 127

row

equal split

50
50

column

small offer

N

0
0

Y

80
20

Figure 4.2.7: The extensive form of the simplified ultimatum game.

N Y

equal split 50,50 50,50

small offer 0,0 80,20

Figure 4.2.8: The normal form of the simplified ultimatum game.
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0 p 1

1

q

A

N

B

Figure 4.2.9: The phase diagram for the simplified ultimatum example. A
is the nonsubgame perfect equilibrium (1,3/8), and B is the
subgame perfect equilibrium.

Note that ṗ > 0 if q > 3/8 and ṗ < 0 if q < 3/8, while q̇ < 0 for all
(p, q).

The phase diagram is illustrated in Figure 4.2.9. The subgame
perfect equilibrium B is the only asymptotically stable rest point.

In the presence of drift, the dynamics are now given by

ṗ = p(1− p)(80q − 30)+ δ1(
1
2
− p)

and q̇ = −20q(1− q)(1− p)+ δ2(
1
2
− q).

For small δi, with δ1 sufficiently smaller than δ2, the dynamics
have two asymptotically stable rest points, one near B and one near
A (see Samuelson (1997, chapter 5)). «

4.2.2 Individual learning

Fix an n-player finite normal form game, G = (S,U), S := S1 × · · · ×
Sn, U : S → Rn. Players play the infinitely repeated game G∞ with
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perfect monitoring, so that players observe in period t the history
of play ht := (s0, ..., st−1) ∈ Ht := St .

In each period, after observing a history ht , player i forms a
belief over the play of the other players in the next period. Call the
function assigning a belief to every history an assessment, denoted
µi : Ht → ∆(S−i). Player i ’s behavior is described by a behavior rule
φi : Ht → ∆(Si).

Definition 4.2.3. A behavior rule φi is myopic with respect to the
assessment µi if, for all t and ht , φi(ht) maximizes Ui(σi, µi(ht)).

Definition 4.2.4. An assessment µi is adaptive if, for all ε > 0 and
t, there exists T(ε, t) such that for all t′ > T(ε, t) and ht′ , the be-
lief µi(ht

′) assigns no more than ε probability to pure strategies not
played by −i between t and t′ in ht′ .

Examples of adaptive assessments are last period’s play, the em-
pirical distribution of past play in the history, and exponential weight-
ing of past plays. A myopic behavior rule with the first adaptive as-
sessment yields Cournot dynamics, and with the second is fictitious
play.

Behavior rules that are myopic with respect to adaptive assess-
ments do not directly build in rationalizability-type sophisticated
analysis of the behavior of the other players, since adaptivity does
not impose restrictions on the relative weight on strategies that are
not excluded.

Definition 4.2.5. A history h := (s0, s1, . . .) is compatible with the
behavior rules φ if sti is in the support of φi(ht), for all i and t.

Theorem 4.2.2. Suppose (s0, s1, . . .) is compatible with behavior that
is myopic with respect to an adaptive assessment.

1. There exists T such that st ∈ S̄ for all t ≥ T , where S̄ is the
result of the iterative deletion of all strictly dominated strategies
(which is equivalent to the set of rationalizable strategies when
n = 2).

2. If there exists T such that st = s∗ for all t > T , then s∗ is a
(pure-strategy) Nash equilibrium of G.

Proof. 1. Let Ski denote the set of player i’s strategies after k
rounds of deletions of strictly dominated strategies. Since S
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is finite, there exists K < ∞ such that S̄ = SK . The proof pro-
ceeds by induction.

There exists T such that st ∈ S1 for all t ≥ T : Any si ∉ S1
i is

not a best reply to any beliefs, and so myopia implies that such
a strategy is never chosen.

Suppose there exists T such that st ∈ Sk for all t ≥ T . If
si ∉ Sk+1

i , then si is not a best reply to any beliefs with support

in Sk−i. But then there exists ε > 0 such that si is not a best reply

to any belief µi ∈ ∆(S−i) satisfying µi(Sk−i) > 1 − ε. (Exercise:
Calculate the bound on ε.) Since assessments are adaptive,
there exists T ′ > T such that µi(ht)(Sk−i) > 1− ε for all t > T ′.
Since behavior is myopic, st ∈ Sk+1 for all t ≥ T ′.

2. Suppose there exists T such that st = s∗ for all t > T and
s∗ is not a Nash equilibrium of G. Then, there exists i and
s′i ∈ Si such that Ui(s′i , s

∗
−i) > Ui(s

∗). Further, there exists
ε > 0 such that Ui(s′i , σ−i) > Ui(s

∗
i , σ−i) if σ−i(s∗) > 1 − ε.

But then adaptive assessments with myopic behavior implies
sti ≠ s

∗
i for t large, a contradiction.

Stronger results on convergence (such as to mixed strategy equi-
libria) require more restrictions on assessments. For more, see Fu-
denberg and Levine (1998).

Convergence of beliefs need not imply imply convergence in be-
havior. For example, in matching pennies, the empirical distribution
converges to (1

2 ,
1
2), but players always play a pure strategy.

4.2.3 Self-confirming equilibrium

Example 4.2.5. The game in Figure 4.2.10 has a unique Nash equi-
librium outcome. In this outcome, player I plays D and player III
plays L (there is no restriction on player II’s behavior). Nonetheless,
players may not learn to play a Nash equilibrium: Suppose players
are myopic and repeatedly play this game with the outcome (termi-
nal node) observed. Suppose player I believes player II plays a and
that player III will play R if reached, and so best responds with A.
Similarly, suppose player II believes player III will play L if reached,
and so best responds with a. Observe that players I and II have
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I A

D

II a 1
1
1

d

III

L

4
0
1

R

0
4
0

L

3
0
0

R

−3
3
1

Figure 4.2.10: The game for Example 4.2.5.

inconsistent beliefs, and so observing the play of player III would
contradict the beliefs of one of the players. But player III’s informa-
tion set is never reached, and player I and II never learn player III’s
actual behavior. «

Example 4.2.5 illustrates the general phenomenon that players
may not learn about behavior at information sets not often reached.9

Of course, players will learn about behavior at reached information
sets. This motivated Fudenberg and Levine’s (1993a) definition of a
self-confirming equilibrium. Informally, a strategy profile is a self-
confirming equilibrium if each player’s strategy is a best reply to
some beliefs over the other players’ strategies, and on the path-of-
play, the beliefs are correct. To define formally, we first need some
notation. If Bj denotes the set of player j’s behavior strategies, then
νi ∈ ∆(B−i) is player i’s beliefs over the other players’ behavior
strategies. For any information set h, Pb(h) denotes the probability
that the information set h is reached under the behavior profile b
(see Definition 5.2.1 for the explicit expression).

9This sentence is somewhat tortured, since we might expect players to exper-
iment to learn about play at unreached information sets. If there is enough ex-
perimentation, then players may learn about behavior at all information sets, see
Fudenberg and Levine (1993b).
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Definition 4.2.6. The behavior strategy profile b̂ is a self-confirming
equilibrium if for each player i, for all ŝi in the support of b̂i, there
is a belief νi ∈ ∆(B−i) such that ŝi is a best response to νi and

νi{b−i : bj(h) = b̂j(h)∀h s.t. P(ŝi,b̂−i)(h) > 0} = 1.

Note that in a self-confirming equilibrium, players can have in-
consistent beliefs about the play of a third, different pure strategies
to which a player assigns positive probability may be best responses
to different beliefs, and a player’s beliefs over other players’ behav-
ior strategies may be correlated.

4.3 Problems

4.3.1. Consider the correspondence F : [−1,1]⇒ [−1,1] defined as

F(x) =


(0,1) if x ≤ 0,

(0, x2 ] if x > 0.

(a) Prove that F is upper hemicontinuous (i.e., prove that for
all x ∈ [−1,1], for all open sets O ⊂ R satisfying F(x) ⊂
O, there exists δ such that for all x′ ∈ (x − δ,x + δ) ∩
[−1,1], F(x′) ⊂ O).

(b) Does F have a fixed point?

(c) Which hypothesis of Theorem 4.1.1 fails for F?

(d) (A simple exercise to clarify the definition of upper hemi-
continuity.) Consider the correspondences G : [−1,1] ⇒
[−1,1] and H : [−1,1]⇒ [−1,1] defined as

G(x) =


(0,1), if x ≤ 0,(
0, x2

)
, if x > 0,

and

H(x) =


(0,1), if x ≤ 0,[
−x2 , x2

]
, if x > 0.

For which values of x is G not upper hemicontinuous? For
which values of x is H not upper hemicontinuous?



4.3. Problems 133

4.3.2. (a) Suppose f : X × Y → R is a continuous function and X
and Y are compact subsets of R. Prove that

max
x∈X

min
y∈Y

f(x,y) ≤ min
y∈Y

max
x∈X

f(x,y).

Give an example showing that the inequality can hold strictly
(it suffices to do this for X and Y each only containing two
points—recall matching pennies from Section 2.4.1).

(b) von Neumann’s celebrated Minmax Theorem states the fol-
lowing equality: Suppose X and Y are finite sets, f : X ×
Y → R, and f : ∆(X) × ∆(Y) → R is given by f(α,β) =∑
x,y f(x,y)α(x)β(y). Then,

max
α∈∆(X)

min
β∈∆(Y)

f(α,β) = min
β∈∆(Y)

max
α∈∆(X)

f(α,β).

Prove this theorem by applying Theorem 4.1.3 to the game
G given by S1 = X, S2 = Y , u1(s1, s2) = f(s1, s2), and
u2(s1, s2) = −u1(s1, s2).10 (Any two-player normal form
game satisfying u1(s) = −u2(s) for all s ∈ S is said to be
zero sum.)

(c) Prove that (σ∗1 , σ
∗
2 ) is a Nash equilibrium of a zero sum

game if and only if σ∗i is a security strategy for player i,
and that player i’s security level vi is given by i’s payoff
in any Nash equilibrium. (Compare with Problem 2.6.12.)
There is a continuation of this problem in Problem 4.4.1.

(d) Prove the following generalization of Problem 2.6.12(b):
Suppose a two-player normal form game (not necessar-
ily zero sum) has a unique Nash equilibrium, and each
player’s Nash equilibrium strategy and security strategy
are both completely mixed. Prove that each player’s secu-
rity level is given by his/her Nash equilibrium payoff.

4.3.3. (a) Prove that every finite extensive form game has a sub-
game perfect equilibrium.

10von Neumann’s original 1928 argument significantly predates Nash’s existence
theorem, and the result is true more generally. There are elementary proofs of the
minmax theorem (based on the basic separating hyperplane theorem) that do not
rely on a fixed point theorem. See, for example, Owen (1982, §II.4) for the finite
dimensional case, and Ben-El-Mechaiekh and Dimand (2011) for the general case.
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(b) (Harris, Reny, and Robson, 1995, Section 2.1) Verify that
the following two-stage extensive-form game does not have
a subgame perfect equilibrium (it is worth noting that this
game has continuous payoffs and compact actions spaces).
There are four players. In stage 1, players 1 and 2 si-
multaneously choose a1 ∈ [−1,1] and a2 ∈ {L,R} re-
spectively. In stage 2, players 3 and 4 are informed of
the choices of players 1 and 2, and then simultaneously
choose a3 ∈ {L,R} and a4 ∈ {L,R} respectively. Payoffs
are

u1(a1, a2, a3, a4) =


−|a1| − 1
2|a1|2, if a2 = a3 and a3 = a4,

|a1| − 1
2|a1|2, if a2 ≠ a3 and a3 = a4,

−|a1| − 10− 1
2|a1|2, if a2 = a3 and a3 ≠ a4,

|a1| − 10− 1
2|a1|2, if a2 ≠ a3 and a3 ≠ a4,

u2(a1, a2, a3, a4) =




1, if a2 = a3 = L,
−1, if a2 = L,a3 = R,

2, if a2 = a3 = R,
−2, if a2 = R,a3 = L,

u3(a1, a2, a3, a4) =
{
a1, if a3 = L,

−a1, if a3 = R,
and

u4(a1, a2, a3, a4) =
{
a1, if a4 = L,

−a1, if a4 = R.
(c) (Luttmer and Mariotti, 2003) Prove that the following con-

tinuous game with perfect information does not have a
subgame perfect equilibrium. The game has five stages. In
stage 1, player 1 chooses a1 ∈ [0,1]. In stage 2, player 2,
knowing player 1’s choice, chooses a2 ∈ [0,1]. In stage 3,
Nature chooses x by randomizing uniformly over the in-
terval [−2+a1+a2, 2−a1−a2]. After observing x, player
3 chooses between U and D. The choice of D ends the
game, resulting in payoffs (a1,2a2,1,1). After U , player 4,
knowing everything that has happened, chooses between
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u and d, with u yielding payoffs (2a1, a2,2,0) and d yield-
ing payoffs (0,0,0, x).

4.3.4. Two psychologists have to choose locations on a portion of
Interstate 5 running through California and Oregon. The rele-
vant portion of Interstate 5 is represented by the interval [0,4];
the California portion is represented by [0,3] and the Oregon
portion by [3,4]. There is a continuum of potential clients,
uniformly distributed on the Interstate; each client patronizes
the psychologist located closest to him (irrespective of state).
If the two psychologists are at the same location, each receives
half the market. Finally, assume each psychologist chooses lo-
cation to maximize his or her number of clients.

(a) (The classic Hotelling location model.) Suppose both psy-
chologists are licensed to practice in both states, and so
can locate anywhere in the interval [0,4]. What is the pure
strategy equilibrium? Is it unique?

(b) Suppose now that one psychologist is only licensed to prac-
tice in California (so his/her location is restricted to [0,3]),
while the other is licensed to practice in both states. How
does this change your answer to part (a)?

(c) (The next two parts are based on Simon and Zame, 1990.)
Suppose that one psychologist is only licensed to practice
in California, while the other is only licensed to practice in
Oregon. Prove that this game now has no equilibrium (in
either pure or mixed strategies).

(d) Finally, maintain the licensing assumptions of part (c), but
suppose that when the two psychologists both locate at
3, the Californian psychologist receives 3

4 of the market.
What is the pure strategy equilibrium?

4.3.5. Fill in the details of Example 4.1.1.

4.3.6. This question is a variation of the Cournot duopoly of Ex-
ample 1.1.3. The market clearing price is given by P(Q) =
max{a−Q,0}, whereQ = q1+q2 is total quantity and qi is firm
i’s quantity. There is a constant marginal cost of production c,
with 0 < c < a. Finally, there is a fixed cost of production κ.
Suppose (a− c)2/9 < κ < (a− c)2/4.
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(a) Suppose firm i only incurs the fixed cost of production
when qi > 0. Then, firm i’s profits are given by

Ui(q1, q2) =
{
(P(q1 + q2)− c)qi − κ, if qi > 0,

0, if qi = 0.

This game has two pure strategy Nash equilibria. What
are they? Why doesn’t this game have a symmetric pure
strategy Nash equilibrium? Since firm payoffs are not con-
tinuous functions (why not?), the existence of a symmetric
Nash equilibrium in mixed strategies is not implied by any
of the theorems in Section 4.1.

(b) Suppose the fixed cost is an entry cost (and so is sunk).
The game is still a simultaneous move game, but now firm
i’s strategy space is {−1}∪R+, with the strategy −1 mean-
ing “don’t enter”, and a number qi ∈ R+ meaning “enter”
and choose qi ≥ 0 (note the weak inequality). Then, firm
i’s profits are given by

Ui(s1, s2) =




(P(q1 + q2)− c)qi − κ, if (s1, s2) = (q1, q2),
(P(qi)− c)qi − κ, if si = qi and sj = −1,

0, if si = −1.

The existence of a symmetric Nash equilibrium in mixed
strategies is implied by Theorems 4.1.4 and 4.1.5 as fol-
lows:

i. Argue that we can restrict the strategy space of firm i
to {−1}∪[0, a], and so the strategy space is closed and
bounded (i.e., compact). Note that the strategy space
is not convex. (In contrast, the strategy spaces in part
(a) are convex. But see part iii below!)

ii. Prove that Ui is continuous function of the strategy
profiles.

iii. We can make the strategy space convex, while main-
taining continuity as follows. Define Si := [−1, a], and
extend Ui to Si be setting

Ui(s1, s2) =




(P(s1 + s2)− c)si − κ, if sj ≥ 0,

(P(si)− c)si − κ, if si ≥ 0 and sj < 0,

−(1+ si)κ, if si < 0.
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Prove Ui is continuous on Si. Prove that every strategy
in (−1,0) is strictly dominated (and so the addition of
these strategies has no strategic impact). In particular,
the set of Nash equilibria (in pure or mixed strategies)
is unaffected by this change. Prove that Ui is not qua-
siconcave.

iv. As for finite games, since the payoff defined on pure
strategies is continuous, by considering mixed strate-
gies, we obtain convex strategy spaces and payoffs
that are continuous and quasiconcave. This yields for
firm each i, a best reply correspondence (where j ≠ i)

φi : ∆(Sj)⇒ ∆(Si)

that satisfies all the conditions of Theorem 4.1.4. So,
there is nothing to prove here.

v. Explain why Theorem 4.1.4 implies the existence of a
symmetric Nash equilibrium in mixed strategies.

(c) The symmetric mixed strategy equilibrium of the game in
part (b) can be easily calculated for this parameterization
(and coincides with the symmetric mixed strategy equilib-
rium of the game in part (a)).

i. In the mixed strategy equilibrium, the support must
be {−1, q∗}, for some q∗ > 0, since firm payoffs are a
strictly concave function of q > 0. Explain the role of
strict concavity.

ii. The symmetric mixed strategy equilibrium is thus de-
termined by two numbers, q∗ and α, the probability of
q∗. Express q∗ as a function of α using an appropriate
first-order condition.

iii. Finally, solve for α from the appropriate indifference
condition.

4.3.7. Prove that the phase diagram for Example 4.2.3 is as por-
trayed in Figure 4.2.6. [This essentially asks you to give an
expression for dq/dp.]

4.3.8. Prove that if σ∗ is asymptotically stable under a myopic ad-
justment dynamic defined on a game with no role identifica-
tion, then it is a symmetric Nash equilibrium.
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A B C

A 1 1 0

B 0 1 1

C 0 0 1

Figure 4.3.1: The game for Problem 4.3.10.

4.3.9. Suppose F : ∆(S) × R+ → ∆(S) is a dynamic on the strategy
simplex with F is continuously differentiable (including on the
boundaries). Suppose that if

η < σ(s) < 1,

for some η ∈ (0,1), then

σ̇ (s) > 0,

where

σ̇ := ∂F(σ, t)
∂t

∣∣∣∣
t=0
.

Fix σ 0 satisfying σ 0(s) > η. Prove that

σ t(s)→ 1,

where σ t := F(σ 0, t).

4.3.10. Suppose a large population of players are randomly paired
to play the game (where the payoffs are to the row player) dis-
played in Figure 4.3.1 (such a game is said to have no role iden-
tification). Let α denote the fraction of the population play-
ing A, and γ denote the fraction of the population playing C
(so that 1 − α − γ is the fraction of the population playing B).
Suppose the state of the population adjusts according to the
continuous-time replicator dynamic.

(a) Give an expression for α̇ and for γ̇.

(b) Describe all the rest points of the dynamic.

(c) Describe the phase diagram in the space {(α, γ) ∈ R2+ :
α + γ ≤ 1}. Which of the rest points are asymptotically
stable?
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A B C

A 1,−1 −1,1 2,−2

B −1,1 1,−1 −2,2

Figure 4.4.1: The game for Problem 4.4.1(b).

4.4 Additional Problems

4.4.1. (A continuation of Problem 4.3.2(c).)

(a) Prove that the set of Nash equilibria are exchangeable:
Suppose (σ∗1 , σ

∗
2 ) and (σ†1 , σ

†
2 ) are two Nash equilibria of

a zero sum game. Then, (σ∗1 , σ
†
2 ) and (σ†1 , σ

∗
2 ) are also

Nash equilibria.

(b) Describe the set of Nash equilibria of the zero sum game
in Figure 4.4.1.

(c) How does your answer to part (b) change if the payoffs at
AC are 1,−1 rather than 2,−2?

(d) Give an example of a zero sum game with multiple Nash
equilibria with the property that for two Nash equilibria,
for each player, the supports of the equilibrium strategies
are disjoint.

4.4.2. Consider again the first-price sealed-bid auction with two bid-
ders when ties are resolved with a fair coin. Bidder 1’s value is
known while bidder 2’s is not. Denote bidder 1’s value by v1.
Bidder 2’s value v2 equals

¯
v2 and v̄2 >

¯
v2 with equal probabil-

ity.

(a) Suppose v1 =
¯
v2. Prove that in any Nash equilibrium, both

bidder 1 and the low value bidder 2 must bid v1 for sure
by the following steps. As we saw in Example 4.1.1, this
then implies that the auction has no equilibrium in this
case.

i. Suppose bidder 1’s bids have support [
¯
b1, b̄1]. Then

b̄1 ≤ v1.
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ii. Denote the unconditional support of bidder 2’s bids
by [

¯
b2, b̄2] (i.e., this is the union of

¯
v2 and v̄2 bid sup-

ports). Then,
¯
b1 =

¯
b2.

iii. Suppose
¯
b1 =

¯
b2 < v1. Then neither bid distribution

can have an atom at
¯
b1 =

¯
b2.

iv. Complete the argument that
¯
b1 =

¯
b2 = v1. This im-

plies bidder 1 must bid v1.

v. The value-
¯
v2 bidder 2 must also bid his value

¯
v2 = v1.

(b) Suppose v1 <
¯
v2 < v̄2. Describe a Nash equilibrium. What

is the limit of this equilibrium as
¯
v2 ↘ v1. [Hint: Example

2.4.4 is helpful.]

(c) Suppose
¯
v2 < v1 < v̄2. Describe a Nash equilibrium. What

is the limit of this equilibrium as
¯
v2 ↗ v1. [Hint: All bid-

ders are randomizing, but one has an atom. Moreover,
both bidder 1 and v̄2 have positive expected payoff.]
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Nash Equilibrium
Refinements in Dynamic
Games

5.1 Sequential Rationality

Example 5.1.1 (Selten’s (1975) horse). Consider the game illustrated
in Figure 5.1.1. Let (p1, p2, p3) denote the mixed strategy profile
where

Pr(I plays A) = p1,
Pr(II plays a) = p2,

and Pr(III plays L) = p3.

The Nash equilibrium profile (0,1,0) (i.e., DaR) is subgame perfect,
and yet player II is not playing sequentially rationally: Even though
player II’s information is off the path of play, if player I did deviate
and II played d, player III would not know that player I had deviated
and so would play R, implying that II has a higher payoff from d.

The profile is also not trembling hand perfect (Definition 2.5.1):
playing a is not optimal against any mixture close to DR.

The only trembling hand perfect equilibrium outcome is Aa. The
set of Nash equilibria with this outcome is {(1,1, p3) : 3

4 ≤ p3 ≤ 1}.
In these equilibria, player III’s information set is not reached, and
so the profile cannot be used to obtain beliefs for III. However,
each Nash equilibrium in the set is trembling hand perfect: Fix an

141
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I A

D

II a 1
1
1

d

III
L

0
0
0

R

3
3
2

L

0
0
1

R

4
4
0

Figure 5.1.1: Selten’s horse.

equilibrium (1,1, p3). Suppose first that p3 ∈ [3
4 ,1) (so that p3 ≠ 1!)

and consider the completely mixed profile

pn1 =1− 1
n
,

pn2 =1− 2
(n− 1)

,

and pn3 =p3.

Note that pn1 , p
n
2 → 1 as n → ∞. Suppose n ≥ 4. It is easy to ver-

ify that both I and II are playing optimally against the mixed profile
in (1,1, p3). What about III? The probability that III is reached is

1
n
+ (n− 1)

n
× 2
(n− 1)

= 3
n
,

and so the induced beliefs for III at his information set assign prob-
ability 1

3 to the left node and 2
3 to the right. Player III is therefore

indifferent and so willing to randomize.

The same argument shows that (1,1,1) is trembling hand per-
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fect, using the trembles

pn1 =1− 1
n
,

pn2 =1− 2
(n− 1)

,

and pn3 =1− 1
n
.

Indeed, any sequence of trembles satisfying pn1 → 1, pn2 → 1, and
pn3 → 1 will work, providing

lim sup
n→∞

(1− pn1 )
(1− pn1pn2 )

≤ 1
3
.

(It is not even necessary for (1 − pn1 )/(1 − pn1pn2 ) to have a well-
defined limit.)

«

Example 5.1.1 illustrates an observation made at the beginning of
Section 2.5.1. The Nash equilibrium DaR involves a selection from
the multiple best replies a and d for player II, and requiring that
the behavior at player II’s unreached information sets be optimal
(sequentially rational) precludes the selection of a from the multiple
best replies. We now explore sequential rationality in more detail.

Recall that X := T \ Z is the set of decision nodes (nonterminal
nodes) of an extensive form (Definition 1.3.1); we denote a typical
element of X by x.

Definition 5.1.1. A system of beliefs µ in a finite extensive form is
a specification of a probability distribution over the decision nodes in
every information set, i.e., µ : X → [0,1] such that

∑
x∈h µ(x) = 1, ∀h.

Note that µ ∈ ∏
h∈∪iHi ∆(h), a compact set. We can write µ as a

vector (µh)h specifying µh ∈ ∆(h) for each h ∈ ∪iHi.
We interpret µ as describing player beliefs. In particular, if h is

player i’s information set, then µh ∈ ∆(h) describes i’s beliefs over
the nodes in h.

Let Pb denote the probability distribution on the set of termi-
nal nodes Z implied by the behavior profile b (with b0 describing
nature’s moves ρ).
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I, t1
[p]

R
U z5

D z6

L
Uz1

Dz2

I, t2
[1− p]

R
U z7

D z8

L
Uz3

Dz4

IIII

Figure 5.1.2: Game for Example 5.1.2.

Example 5.1.2. Consider the extensive form displayed in Figure 5.1.2.
The label [p] indicates that nature chooses the node t1 with prob-
ability p (so that ρ(t1) = p and ρ(t2) = 1 − p). As indicated, both
nodes are owned by player I, and each is a singleton information
set.1 The induced distribution Pb on Z by the profile (LR,UD) is
p ◦ z1 + (1− p) ◦ z8.

«

In what follows, it is helpful to be more explicit about the deter-
mination of Pb. In what follows, to avoid expressions of the form
bι(ℓ)(hℓ)(aℓ), where hℓ is the ℓ-th information set on the path to
a terminal node, label actions so that A(h) ∩ A(h′) = ∅ for all
h ≠ h′ ∈ Hi. Under this labeling convention, actions uniquely iden-
tify information sets and hℓ can be suppressed.2

For all noninitial nodes t ∈ T = X ∪ Z , there is a unique path
from the initial node x0 ∈ X to t. Denote the unique sequence of
actions on the path from x0 to t by a0, a1, . . . , aL (where aℓ may be
an action of nature), with player ι(ℓ) choosing the action aℓ. For any

1In subsequent extensive forms with an initial move by nature, if all the nodes
reached by the move of nature are owned by the same player (typically player I),
that player name is typically omitted.

2Equivalently, when A(h) ∩ A(h′) = ∅ for all h ≠ h′ ∈ Hi, every behavior
strategy bi can be viewed as a function

bi :
⋃
h∈Hi A(h)→ [0,1] such that

∑
a∈A(h) bi(a) = 1 ∀h ∈ Hi.
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behavior profile b (with b0 describing nature’s moves ρ), we define

Pb(t) :=
∏L

ℓ=0
bι(ℓ)(aℓ). (5.1.1)

In particular, this gives the expression for the probability of reach-
ing any terminal node z ∈ Z , and the expected payoff to player i is
(recalling Definition 1.3.1)

Eb[ui] :=
∑
z∈Z ui(z)P

b(z).

Exercise 5.1.1. Prove that for any x ∈ X,

Pb(x) =
∑
{z∈Z :x≺z} Pb(z).

Similarly, for any decision node x ∈ X, we can calculate the prob-
ability of reaching a terminal node z ∈ Z(x) := {z ∈ Z : x ≺ z} from
x; clearly the probability is zero for any z ̸∈ Z(x): For z ∈ Z(x),
denoting the unique sequence of actions on the path from x to z by
a0, . . . , aL, we have

Pb(z | x) =
∏L

ℓ=0
bι(ℓ)(aℓ).

Let Z(h) := {z ∈ Z : ∃x ∈ h,x ≺ z} = ⋃
x∈h Z(x). Define

Pµ,b(· | h) ∈ ∆(Z(h)) by, for all z ∈ Z(h),
Pµ,b(z | h) := µh(x′)Pb(z | x′),

where x′ is the unique decision node in h that precedes z. The dis-
tribution Pµ,b(·|h) is the probability distribution on Z(h) implied by
µh ∈ ∆(h) (the beliefs specified by µ over the nodes in h), the behav-
ior profile b (interpreted as describing behavior at the information
set h and any that could be reached from h, and nature ρ if there
are any moves of nature following h). By setting Pµ,b(z|h) = 0 for
all z ̸∈ Z(h), Pµ,b(·|h) can be interpreted as the distribution on Z ,
“conditional” on h being reached. Note that Pµ,b(·|h) only depends
on µ through µh; it does not depend on µh′ for any h′ ̸= h. With this
in mind, I no longer include the subscript h on µ. Note the different
roles µ and b play in the expression for Pµ,b.

Player i’s expected payoff conditional on h is

Eµ,b[ui | h] : =
∑
z∈Z Pµ,b(z|h)ui(z)

=
∑
x∈h

∑
{z:x≺z} µ(x)P

b(z | x)ui(z).
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Figure 5.1.3: The game for Example 5.1.3.

Definition 5.1.2. A behavior strategy profile b in a finite extensive
form is sequentially rational at h ∈ Hi, given a system of beliefs µ,
if

Eµ,b[ui | h] ≥ Eµ,(b̂i,b−i)[ui | h],
for all b̂i.

A behavior strategy profile b in an extensive form is sequentially
rational, given a system of beliefs µ, if for all players i and all infor-
mation sets h ∈ Hi, b is sequentially rational at h.

A behavior strategy profile in an extensive form is sequentially
rational if it is sequentially rational given some system of beliefs.

Definition 5.1.3. A one-shot deviation by player i from b is a strat-
egy b′i with the property that there exists a unique information set
h′ ∈ Hi such that bi(h) = b′i(h) for all h ≠ h′, h ∈ Hi, and
bi(h′) ≠ b′i(h

′).
A one-shot deviation b′i (from b, given a system of beliefs µ) is

profitable if
Eµ,(b

′
i,b−i)[ui | h′] > Eµ,b[ui | h′],

where h′ ∈ Hi is the information set for which b′i(h
′) ≠ bi(h′).

Example 5.1.3. Consider the profile ((D1, A′1),A2) in the game in
Figure 5.1.3. Player I is not playing sequentially rationally at his
first information set h, but does not have a profitable one-shot devi-
ation there. Player I does have a profitable one-shot deviation at his
second information set h′. Player II also has a profitable one-shot
deviation.

Consider now the profile ((D1, A′1),D2). Now, player I is playing
sequentially rationally at h, even though he still has a profitable
one-shot deviation from the specified play at h′.
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Figure 5.1.4: The game for Example 5.1.4. Player I’s beliefs at his nontriv-
ial information set is indicated near the relevant two nodes
in square brackets. Player I is not playing sequentially ratio-
nally at h. Nonetheless, player I does not have a profitable
one-shot deviation at any information set (given the beliefs
specified).

«

The following result is obvious.

Lemma 5.1.1. If a strategy profile b of a finite extensive form game
is sequentially rational given µ, then there are no profitable one-shot
deviations from b.

Without further restrictions on µ (see Theorems 5.1.1 and 5.3.2
for examples), the converse need not hold: Even if a profile has no
profitable one-shot deviations, it may fail to be sequentially rational.

Example 5.1.4. Consider the profile ((D1, A′1),A2) in the game in
Figure 5.1.4. Player I is not playing sequentially rationally at his first
information set h, but does not have a profitable one-shot deviation
at any information set, given the system of beliefs indicated. «

The following is the first instance of what is often called the
one-shot deviation principle (it appears again in Theorems 5.3.2 and
7.1.3).
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Theorem 5.1.1. The following three statements about a strategy pro-
file b in a finite game of perfect information are equivalent:

1. The strategy profile b is subgame perfect.

2. The strategy profile b is sequentially rational.

3. The strategy profile b has no profitable one-shot deviations.

Proof. Recall from Definition 1.3.6 that a game of perfect informa-
tion has singleton information sets. In such a case, the system of
beliefs is trivial, and sequential rationality is equivalent to subgame
perfection.

By Lemma 5.1.1, a sequentially rational strategy profile has no
profitable one-shot deviations.

The proof of the remaining direction is left as an exercise (Prob-
lem 5.4.2).

5.2 Perfect Bayesian Equilibrium

Without some restrictions connecting beliefs to behavior, even Nash
equilibria need not be sequentially rational.

Definition 5.2.1. The information set h in a finite extensive form
game is reached with positive probability under b, or is on the path-
of-play, if

Pb(h) =
∑

x∈h
Pb(x) > 0.

Theorem 5.2.1. The behavior strategy profile b of a finite extensive
form game is Nash if and only if it is sequentially rational at every in-
formation set on the path of play, given a system of beliefs µ obtained
using Bayes’ rule at those information sets, i.e., for all h satisfying
Pb(h) > 0,

µ(x) = Pb(x)
Pb(h)

∀x ∈ h. (5.2.1)

The proof of Theorem 5.2.1 is left as an exercise (Problem 5.4.3).

Example 5.2.1. Recall the extensive form from Example 2.3.4, repro-
duced in Figure 5.2.1. The label [p] indicates that the player owning
that information set assigns probability p to the labeled node. The
profile RBr (illustrated) is Nash and satisfies the conditions of the
theorem.
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Figure 5.2.1: Game for Example 5.2.1.

«

Theorem 5.2.1 implies the result in Problem 2.6.10.
In Theorem 5.2.1, sequential rationality is only imposed at infor-

mation sets on the path of play. Strengthening this to all informa-
tion sets yields:

Definition 5.2.2. A strategy profile b of a finite extensive form game
is a weak perfect Bayesian equilibrium (weak PBE) if there exists a
system of beliefs µ such that

1. b is sequentially rational given µ, and

2. for all h on the path of play,

µ(x) = Pb(x)
Pb(h)

∀x ∈ h.

Thus, a strategy profile b is a weak perfect Bayesian equilibrium
if, and only if, it is a Nash equilibrium that is sequentially rational.
A simple example of a Nash strategy profile that fails to be weak
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Figure 5.2.2: The profile LBℓ (illustrated) is weak perfect Bayesian, but not
subgame perfect.

perfect Bayesian is a Nash equilibrium of a perfect information game
that is not subgame perfect, such as (Out, Fight) in Example 2.2.1.

While weak perfect Bayesian equilibrium does impose sequential
rationality everywhere, it is insufficiently demanding in the follow-
ing sense: It places no restrictions on the system of beliefs on in-
formation sets off the path of play. In particular, this means that
for games that do not have perfect information, there will be strat-
egy profiles that are weak perfect Bayesian, and yet are not subgame
perfect, as illustrated in Example 5.2.2.

Example 5.2.2. Continuing with the extensive form from Example
2.3.4 displayed in Figure 5.2.2: The profile LBℓ (illustrated) is weak
perfect Bayesian, but not subgame perfect. Note that LTℓ is not
weak perfect Bayesian. The only subgame perfect equilibrium is
RBr . «

A minimum desiderata for a solution concept to capture sequen-
tial rationality with respect to sensible beliefs is that the solution
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concept imply subgame perfection. This we now do by taking se-
riously the phrase that we should use Bayes’ rule “where possi-
ble.” The phrase “where possible” is meant to suggest that we apply
Bayes’ rule in a conditional manner.

This involves a change in the interpretation of the system of be-
liefs µ. The discussion after Definition 5.1.1 invited us to think of
µh as describing the beliefs of the player ι(h) (the player owning h)
over the decision nodes in h. But in order to conduct the exercise of
using Bayes’ rule where possible, we now interpret µh as describing
the common belief of all players over the decision nodes in h.

To motivate the next definition, consider the following example.

Example 5.2.3. In the extensive form in Figure 5.2.3, given the be-
havior of II with p > 0, player III’s information set is reached with
positive probability from II’s information set. It then seems reason-
able to require β2/(β2 + β3 + β4) = α/(α + (1 − α)p) and so on.
But to accommodate β1 = 1 (which would imply β2 = β3 = β4 = 0),
require β2 = (β2 + β3 + β4)α/(α+ (1−α)p). «

We need the “follows” relation ≺∗ from Problem 1.4.4 (recall also
from Problem 1.4.4 that information sets are not partially ordered
by ≺∗). Note that the two information sets h and h′ need not be
owned by the same player.

Definition 5.2.3. The information set h *-follows h′ (written h′ ≺∗ h)
if there exists x ∈ h and x′ ∈ h′ such that x′ ≺ x. If h′ ≺∗ h,
define hh′ as the set of nodes in h that can be reached from h′, i.e.,
hh′ := {x ∈ h : ∃x′ ∈ h′, x′ ≺ x}.

An information set h (*-following h′) is reached with positive
probability from h′ under (µ, b) if

Pµ,b(h | h′) = Pµ,b(hh′ | h′) =
∑

x∈hh′
Pµ,b(x | h′) > 0.

Since ≺∗ is not antisymmetric,3 care must be taken in the fol-
lowing definition (see Problem 5.4.4). We must also allow for the

3That is, there can be two information sets h and h′, owned by different players,
with h *-following h′ and h′ *-following h; this cannot occur if the information sets
are owned by the same player.
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Figure 5.2.3: The game for Example 5.2.3. Player I plays A and player II
randomizes with probability p > 0 on ℓ.

possibility that
∑
x̂∈hh′ µ(x̂) = 0.4

Definition 5.2.4. A strategy profile b of a finite extensive form game
is an almost perfect Bayesian equilibrium (almost PBE) if there exists
a system of beliefs µ such that

1. b is sequentially rational given µ, and

2. for any information set h′ and *-following information set h
reached with positive probability from h′ under (µ, b) (that is,

4A simple example illustrating the need to allow for µ(hh′) = 0 is the following:
Modify Selten’s horse (Figure 5.1.1) as follows: u1(DL) = 1, u1(DR) = 5, and
u2(Aa) = −1. With this modification, the game has a unique weak perfect Bayesian
equilibrium, given by (DdR). Note that µ is determined by Bayes’ rule since the
only nontrivial information is on the path-of-play. Labeling player II’s information
set h′ and player III’s information set h, we have h′ ≺∗ h, Pµ,(DdR)(hh′ | h′) > 0,
and µ(hh′) = 0.
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Pµ,b(hh′ | h′) > 0),

µ(x) = Pµ,b(x | h′)
Pµ,b(hh′ | h′)

∑
x̂∈hh′ µ(x̂) ∀x ∈ hh′ . (5.2.2)

This strengthens weak perfect Bayesian by imposing a consis-
tency requirement (motivated by Bayes’ rule) on beliefs across mul-
tiple information sets related by *-follows, where the “first” (and so
subsequent) information set is off the path of play.

Theorem 5.2.2. Every almost perfect Bayesian equilibrium is sub-
game perfect.

The proof is left as an exercise (Problem 5.4.5).

Example 5.2.4. In the game displayed in Figure 5.2.4, for x = −3, the
indicated profile (C,R, (TL, TR)) is not an almost perfect Bayesian
equilibrium: If (C,R, (TL, TR)) was an almost perfect Bayesian equi-
librium, then Definition 5.2.4 requires that in any beliefs supporting
this equilibrium, players II and III after R assign the same proba-
bility to I’s initial deviation being U . But any beliefs that make II’s
behavior sequentially rational must put significant probability on I’s
initial deviation being U , while the only belief that makes III’s behav-
ior after R sequentially rational puts zero probability on I’s initial
deviation being U , a contradiction. «

While almost perfect Bayesian equilibria are subgame perfect,
they still allow “unreasonable” behavior. In particular, players can
be interpreted as “signaling what they don’t know.”

Example 5.2.5. Continuing with the game displayed in Figure 5.2.4,
for x = 0, the indicated profile (C,R, (TL, TR)) is an almost per-
fect Bayesian equilibrium. In the beliefs supporting this equilibrium,
player III after L must assign at least probability 1

2 to I’s initial devi-
ation having been U , while after R, III must assign zero probability
to that deviation. For the profile under consideration, Definition
5.2.4 does not impose any joint restriction on the beliefs at II’s in-
formation set and the information set reached by L. But II cannot
distinguish between U and D, so it seems unreasonable that a play
by II is interpreted by III as a signal about the nature of I’s deviation.
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Figure 5.2.4: A game illustrating almost perfect Bayesian equilibrium. The
indicated profile is not an almost perfect Bayesian equilib-
rium for x = −3, but is for x = 0.

«

While it is straightforward to directly deal with the issue raised
by Example 5.2.5 (a failure of “not signaling what you don’t know”)
in simple examples, the conditions that deal with the general phe-
nomenon are complicated and can be hard to interpret. It is rare
for the complicated conditions to be used in practice, though no
signaling what you don’t know is often directly imposed (as in our
discussion of incomplete information bargaining in Section 8.2).5

The term perfect Bayesian equilibrium (or PBE) is often used in
applications to describe the collections of restrictions on the system
of beliefs that “do the right/obvious thing,” and as such is one of
the more abused notions in the literature. I will similarly abuse the
term. See Fudenberg and Tirole (1991) for an early attempt and
Watson (2017) for a recent attempt at a general definition.

As observed in Remark 3.4.2, when some player characteristics
are determined by nature, the interim perspective is often most
natural, and so the definitions given in this section naturally ap-
ply to dynamic games of incomplete information. When requiring

5Problem 8.4.6 illustrates the importance of doing so in that application.
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sequentially-rational play in dynamic games of incomplete informa-
tion, it is natural to label the resulting equilibrium notion a perfect
Bayes-Nash or perfect Bayesian-Nash equilibrium. When doing so, it
is common to drop “Nash” and refer to such equilibrium notions as
a perfect Bayes or perfect Bayesian equilibrium.

5.3 Sequential Equilibrium

A natural way of restricting the system of beliefs without simply
adding one seemingly ad hoc restriction after another is to use Bayes’
rule on completely mixed profiles as follows:

Definition 5.3.1 (Kreps and Wilson, 1982). In a finite extensive form
game, a system of beliefs µ is consistent with the strategy profile b
if there exists a sequence of completely mixed sequence of behavior
strategy profiles (bk)k converging to b such that the associated se-
quence of system of beliefs (µk)k obtained via Bayes’ rule converges
to µ.

A strategy profile b is a sequential equilibrium if, for some consis-
tent system of beliefs µ, b is sequentially rational at every information
set.

We first observe that sequential equilibria are Nash. Since ev-
ery information set is reached with positive probability, the beliefs
obtained by Bayes’ rule are, for all information sets h,

µk(x) = Pb
k
(x | h) = Pb

k(x)
Pbk(h)

= Pb
k(x)∑

x′∈h Pbk(x′)
∀x ∈ h.

Since bk → b, from (5.1.1) we have Pb
k(x)→ Pb(x), and so if h is on

the path of play of b (i.e., Pb(h) > 0), we immediately have

µk(x) = Pb
k(x)

Pbk(h)
-→ Pb(x)

Pb(h)
,

the expression for µ(x) in (5.2.1).

Example 5.3.1. We first apply consistency to the profile (C,R, (TL, TR))
in the game in Figure 5.2.4. The tremble probabilities for I are
bkI (U) = ηk, bkI (D) = ζk, and complementary probability on C , and
for II are bkII(L) = αk, and complementary probability on R. Since
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the completely mixed behavior strategies converge to C and R, ηk,
ζk and αk all converge to 0. Note that player II’s trembles must be
equal at the nodes of his information set.

Let pk denote the conditional probability that II’s information
set is reached by U (i.e., that II is at the top decision node). Similarly
let qk and rk denote the conditional probability that III’s left (right,
respectively) information set is reached by U (i.e., that III is at the
top decision node after L, R respectively).

We then have

pk = ηk

ηk + ζk .

Any probability can be obtained in the limit through appropriate
choices of the rates at which ηk and ζk converge to 0 (depending on
the limiting behavior of ηk/ζk).

In addition, we also have

qk = ηkαk

ηkαk + ζkαk ,

which equals pk for all k, since αk > 0. In other words, if players
cannot signal what they don’t know, pk = qk, and so the limit beliefs
must agree. Finally,

rk = ηk(1−αk)
ηk(1−αk)+ ζk(1−αk),

which also equals pk, and so once again the limit beliefs must agree.
Hence, while the profile (C,R, (TL, TR)) is almost perfect Bayesian

for x = 0, it cannot be a sequential equilibrium. «

Problem 5.4.10 illustrates further restrictions that consistency
places on beliefs.

Theorem 5.3.1. A sequential equilibrium is almost perfect Bayesian.

Proof. While this is “obvious,” it is again useful to spell out the de-
tails.

Suppose b is a sequential equilibrium, with associated system
of beliefs µ and sequence (bk, µk). We need to prove that (5.2.2)
holds for all x ∈ hh′ , where the information set h *-follows the
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information set h′ and is reached with positive probability from h′
under (b, µ).

For any x ∈ hh′ , there is a unique path from some x0 ∈ h′.
Denote the unique sequence of actions on the path from x0 to x
by a1, . . . , aL, with player ι(ℓ) choosing the action aℓ. Then, for all
x ∈ hh′ , from (5.1.1) we have

Pb
k
(x) = Pb

k
(x0)

∏L

ℓ=0
bkι(ℓ)(a

ℓ),

and so

Pb
k
(x | h′) =

Pb
k(x0)

∏L
ℓ=0 b

k
ι(ℓ)(a

ℓ)

Pbk(h′)

= Pb
k
(x0 | h′)

∏L

ℓ=0
bkι(ℓ)(a

ℓ)

= µk(x0)
∏L

ℓ=0
bkι(ℓ)(a

ℓ)

→ µ(x0)
∏L

ℓ=0
bι(ℓ)(aℓ) = Pµ,b(x | h′).

If
∑
x̂∈hh′ µ(x̂) = 0, then (5.2.2) trivially holds.

Suppose
∑
x̂∈hh′ µ(x̂) > 0. Then, for all x ∈ hh′ ,

µk(x)∑
x̂∈hh′ µ

k(x̂)
= Pb

k(x)/Pbk(h)∑
x̂∈hh′ Pbk(x̂)/Pbk(h)

= Pb
k(x)∑

x̂∈hh′ Pbk(x̂)

= Pb
k(x)

Pbk(hh′)

= Pb
k(x)/Pbk(h′)

Pbk(hh′)/Pbk(h′)

= Pb
k(x | h′)

Pbk(hh′ | h′)
.

The equality is preserved when taking limits (since the limits of the
first and last denominator are both strictly positive), and so (5.2.2)
again holds.

Sequential equilibrium improves on almost perfect Bayesian by
capturing “no signaling what you don’t know.” It is also easier
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to check than almost perfect Bayesian equilibrium, since sequen-
tial equilibria satisfy the one-shot deviation principle, which we first
saw in Theorem 5.1.1. In contrast, a profile can be almost perfect
Bayesian and yet not satisfy the one-shot deviation principle (see
Problem 5.5.1).

Theorem 5.3.2. In a finite extensive form game, suppose µ is consis-
tent with a profile b. The profile b is sequentially rational given µ
(and so a sequential equilibrium) if and only if there are no profitable
one-shot deviations from b (given µ).

Proof. Lemma 5.1.1 is the easy direction.
Suppose b is not sequentially rational given µ. Then there is a

player, denoted i, with a profitable deviation. Denote the profitable
deviation (by player i) by b′i and the information set h′. Player i’s
information sets Hi are strictly partially ordered by ≺∗. Let Hi(h′)
denote the finite (since the game is finite) collection of information
sets that follow h′. Let K be the length of the longest chain inHi(h′),
and say an information set h ∈ Hi(h′) is of level k if the successor
chain from h′ to h has k links (h′ is 0-level and its immediate suc-
cessors are all 1-level). If i has a profitable deviation from bi (given
µ) at any K-level information set, then that deviation is a profitable
one-shot deviation (given µ), and we are done (note that this includes
the possibility that K = 0).

Suppose i does not have a profitable deviation from bi at any
K-level information set and K ≥ 1. Define a strategy b(K)i by

b(K)i (h) =
{
bi(h), if h is a K-level information set or h ̸∈ Hi(h′),
b′i(h), if h is a k-level information set, k = 0, . . . , K − 1.

Then Eµ,(b
(K)
i ,b−i)[ui|h′] ≥ Eµ,(b

′
i,b−i)[ui|h′]. (This requires proof,

which is left as an exercise, see Problem 5.4.13. This is where con-
sistency is important.)

But this implies that, like b′i, the strategy b(K)i is a profitable de-
viation at h′. We now induct on k. Either there is profitable one-shot
deviation from bi at a (K−1)-level information set (in which case we
are again done), or we can define a new strategy b(K−1)

i that is a prof-
itable deviation at h′ and which agrees with bi on the (K − 1)-level
as well as the K-level information sets.
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Proceeding in this way, we either find a profitable one-shot devi-
ation at some k-level information set, or the action specified at h′
by b′i is a profitable one-shot deviation.

Remark 5.3.1. Sequential equilibrium is only defined for finite games.
For some informative examples of what can go wrong when consid-
ering finite horizon games with infinite action spaces, see Myerson
and Reny (2020). ♦

Remark 5.3.2. Sequential equilibrium is very close to (and is implied
by) trembling hand perfect in the extensive form. Roughly speaking
(see Section 14.2.2 for a more precise description), sequential equi-
librium requires behavior to be sequentially rational against a limit
assessment, while trembling hand perfection in the extensive form
requires the behavior to be sequentially rational along the sequence
as well. Problem 2.6.25 shows that trembling hand perfect in the
normal form does not imply sequential equilibrium. ♦

Remark 5.3.3. Sequential equilibrium does not require that zero be-
liefs remain at zero. In the extensive form in Figure 5.3.1, the profile(
L1L2L3L4, r1ℓ2

)
, with the indicated system of beliefs, is a sequen-

tial equilibrium. This example demonstrates that sequentiality does
not preclude switching away from probability one beliefs. In many
applications, a further refinement of a support restriction (preclud-
ing switching away from probability zero beliefs) on sequentiality is
imposed to prevent such switching. However, in some cases this can
result in nonexistence (Problem 5.4.11 is an example due to Madri-
gal, Tan, and Werlang, 1987), as well as the elimination of plausible
equilibria (Nöldeke and van Damme, 1990). ♦

5.4 Problems

5.4.1. This problem concerns the game given in Figure 5.4.1.

(a) Show that (GoStop1Stop2, StopGo1) is a Nash equilibrium.
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Figure 5.3.1: The game for Remark 5.3.3.

(b) Identify all of the profitable one-shot deviations.

(c) Does player I choose Go in any subgame perfect equilib-
rium?

5.4.2. Complete the proof of Theorem 5.1.1.

5.4.3. Prove Theorem 5.2.1 (recall Problem 2.6.10).
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Figure 5.4.1: The game for Problem 5.4.1.

5.4.4. This problem illustrates how badly behaved the “*-follows” re-
lation ≺∗ on information sets can be, and the reason for the in-
troduction of hh′ into the definition of almost perfect Bayesian
equilibria. Consider the game in Figure 5.4.2.

(a) Verify that the profile (1
2 ◦ U + 1

2 ◦D,B,A) is a Nash equi-
librium.

(b) Denote player II’s information set by h and player III’s in-
formation set by h′. Verify that h *-follows h′ and that h′
*-follows h. Evaluate

Pµ,b(x | h′) and Pµ,b(h | h′)

for all x ∈ h. Conclude that µ(x) should not equal their
ratio.

5.4.5. Prove Theorem 5.2.2. [Hint: If h′ is the singleton information
at the beginning of a subgame, then for any information set h
that ∗-follows h′, h = hh′ .]

5.4.6. Show that (A,a, L) is a sequential equilibrium of Selten’s horse
(Figure 5.1.1) by exhibiting the sequence of converging com-
pletely mixed strategies and showing that the profile is sequen-
tially rational with respect to the limit beliefs.

5.4.7. Prove by direct verification that the only sequential equilib-
rium of the first extensive form in Example 2.3.4 is (RB, r), but
that (L, ℓ) is a sequential equilibrium of the second extensive
form.
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Figure 5.4.2: The game for Problem 5.4.4.

5.4.8. We return to the environment of Problem 3.7.1, but with one
change. Rather than the two firms choosing quantities simul-
taneously, firm 1 is a Stackelberg leader: Firm 1 chooses its
quantity, q1, first. Firm 2, knowing firm 1’s quantity choice
then chooses its quantity. Describe a strategy profile for this
dynamic game. What is the appropriate equilibrium notion for
this game and why? Describe an equilibrium of this game. Is it
unique?

5.4.9. Consider the game in Figure 5.4.3.6

(a) Prove that player I plays r in the unique sequential equi-
librium.

(b) Does the analysis of the sequential equilibria of this game
change if the two types of player II are modeled as distinct
players (receiving the same payoff)?

(c) Prove that (ℓd,UD) is an almost perfect Bayesian equilib-
rium.

6This example was motivated by Section 8.2.1.
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Figure 5.4.3: The game for Problem 5.4.9. The two types of player II are
equally likely.

5.4.10. Consider the game in Figure 5.4.4.

(a) Suppose x = 0. Verify that (L, ℓ, r ′) is an almost perfect
Bayesian equilibrium that is not a sequential equilibrium.

(b) Describe a pure strategy sequential equilibrium for this
game for x = 0.

(c) Suppose x = 3. Verify that (L, ℓ, r ′) is a sequential equi-
librium, and describe the supporting beliefs, showing they
are consistent.

5.4.11. (Madrigal et al., 1987) Consider the game in Figure 5.4.5.

(a) What is the unique Nash equilibrium of this game?

Suppose this game is played twice. Nature chooses t1 or t2 only
once at the very beginning of the game, and it remains fixed for
both periods. Player I is informed of tk and chooses an action
L or R in period one. Player II observes I’s action but not the
value of tk, and chooses an action U or D in period one. In
period two, I again moves first and II observes that action and
moves again. The payoff to each player in the two period game
is the sum of what they get in each period individually. They
receive the payoffs only at the end of the second period and do
not observe their interim payoffs at the end of the first period.
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Figure 5.4.4: The game for Problem 5.4.10.

t1
[p]

R
U 1,1

D 3,0

L
U−2,2

D0,0

t2
[1− p]

R
U 0,0

D −2,2

L
U3,0

D1,1

IIII

Figure 5.4.5: The game for Problem 5.4.11.
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(b) Prove that the only Nash equilibrium outcome of the re-
peated game is the repetition of the static Nash equilib-
rium outcome of the one period game.

(c) Prove every sequential equilibrium with this outcome vio-
lates the support restriction (see Remark 5.3.3).

5.4.12. Fix a finite extensive form game. Suppose µ is consistent
with b. Suppose for some player i there are two information
sets h,h′ ∈ Hi with h′ ≺∗ h and Pµ,b(h|h′) = 0. Prove that if
there exists another strategy b̂i for player i with the property

that Pµ,(b̂i,b−i)(h|h′) > 0, then

µ(x) = Pµ,(b̂i,b−i)(x|h′)
Pµ,(b̂i,b−i)(h|h′) , ∀x ∈ h.

5.4.13. Complete the proof of Theorem 5.3.2 by showing that

Eµ,(b
(K)
i ,b−i)[ui|h′] ≥ Eµ,(b′i,b−i)[ui|h′]

using the following steps.

(a) Let

Z† := {z ∈ Z : ̸ ∃x ∈ h,h a K-level information set, with x ≺ z}

be the set of terminal nodes that cannot be reached from
any K-level information set. Prove that for any b̂i,

Eµ,(b̂i,bi)[ui | h′] =∑

{h a K-level info set}

∑

x∈h
Pµ,(b̂i,b−i)(x | h′)

∑

{z:x≺z}
P(b̂i,b−i)(z | x)ui(z)

+
∑

z∈Z†
Pµ,(b̂i,b−i)(z | h′)ui(z),

where P(b̂i,b−i)(z | x) := ∏
ℓ bι(ℓ)(aℓ) and (aℓ) is the se-

quence of actions on the path from x to z.

(b) Complete the argument using Problem 5.4.12.
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Figure 5.5.1: The game for Problem 5.5.1.
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5.5 Additional Problems

5.5.1. Consider the game in Figure 5.5.1. Player I has two types, t1
and t2, with each type having ex ante probability 1

2 .

(a) Suppose x = 2. What is a system of beliefs for which the
profile

(
L1L2R3R4, ℓ1r2

)
has no profitable one-shot devia-

tion. Is the profile almost perfect Bayesian?

(b) Suppose x = 0. What is a system of beliefs for which the
profile

(
L1L2R3R4, ℓ1r2

)
is almost perfect Bayesian? Is it

unique? Is the profile a sequential equilibrium? If it is,
provide the consistent system of beliefs, and if it is not,
describe a sequential equilibrium.



168 Chapter 5. Refinements in Dynamic Games



Chapter 6

Signaling

6.1 General Theory

The canonical signaling game has one informed player (the sender)
sending a signal (message) to one uninformed player. The sender’s
type t ∈ T ⊂ R is first drawn by nature according to a probability
distribution ρ ∈ ∆(T). The sender then chooses a signal m ∈ M ⊂
R. After observing the signal, the responder then chooses r ∈ R ⊂
R.

Payoffs are u(m, r , t) for the sender and v(m, r , t) for the re-
sponder.

A pure strategy for the sender is τ : T → M .
A pure strategy for the responder is σ : M → R.
A strategy profile (equilibrium) (τ,σ) is separating if τ is one-

to-one (so that different types choose different actions). A strategy
profile (equilibrium) (τ,σ) is pooling if τ is constant (so that all
types choose the same action).

Example 6.1.1. In the game given in Figure 6.1.1, the profile (qq,pf)
is a pooling Nash equilibrium,1 but it is not even weak perfect Bayesian
(why?).

The profile (bq, fr) is a separating Nash equilibrium. Since this
equilibrium has no information sets off the path of play, this Nash
equilibrium satisfies all the refinements of Nash described in Chap-

1The sender’s strategy lists actions in the order of types, and the responder’s
strategy lists actions by information set, left to right (so pf is p after b and f after
q).

169
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Figure 6.1.1: A signaling game. Footnote 1 on page 144 explains the nota-
tion.

ter 5 (weak perfect Bayesian, almost perfect Bayesian, sequential).
«

Since the different information sets for the responder are not
ordered by ≺∗ (recall Problem 1.4.4), consistency places no restric-
tions on beliefs at different information sets of the responder. This
implies the following result (which Problem 6.3.3 asks you to prove).

Theorem 6.1.1. Suppose T , M , and R are finite. A profile is a weak
perfect Bayesian equilibrium if, and only if, it is a sequential equilib-
rium.

We often wish to study signaling games where T ,M , and/or R are
infinite sets (typically continua). If any of these sets are continua,
then consistency (and so sequentiality) is not defined.2

Weak perfect Bayesian equilibrium is well defined when T , M ,
and/or R are infinite sets. It is Nash equilibrium plus sequential
rationality at all information sets with respect to some set of beliefs.
Due to Theorem 6.1.1, we drop the qualifer “weak” and define a
notion of perfect Bayesian equilibrium for signaling games.

Definition 6.1.1. The pure strategy profile (τ̂, σ̂ ) is a perfect Bayesian
equilibrium of the signaling game if

2The difficulty is that there is no single “obvious” notion of convergence.
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1. for all t ∈ T ,

τ̂(t) ∈ arg max
m∈M

u(m, σ̂(m), t),

2. for all m, there exists some µm ∈ ∆(T) such that

σ̂ (m) ∈ arg max
r∈R

Eµm[v(m, r , t)],

where Eµm denotes expectation with respect to µm, and

3. for m ∈ τ̂(T), µm in part 2 is given by

µm(t) = ρ{t |m = τ̂(t)}.

We have already seen (in Chapter 5) that sequential rationality
can eliminate (refine) Nash equilibria by restricting the selection
from the multiple best replies at unreached information sets; Ex-
ample 6.1.1 is another illustration. However, in many games, not
all sequential equilibria are plausible (self-enforcing). Example 6.1.2
gives an example of an intuitive argument that further restricts se-
quential rationality by imposing restrictions on the beliefs a player
can have at unreached information sets. This argument is formal-
ized after the example.

Example 6.1.2 (Beer-quiche). In the game in Figure 6.1.2, (bb, rf )
and (qq, fr) are both pooling equilibria.3

The equilibrium in which the types pool on q is often argued to
be unintuitive: Would the w type ever “rationally” deviate to b? In
this pooling equilibrium,w receives 0, and this is strictly larger than
his payoff from b no matter how II responds. On the other hand,
if by deviating to b, s can “signal” that he is indeed s, he is strictly
better off, since II’s best response is r , yielding payoff of 0. This is
an example of the intuitive criterion. «

3This is the beer-quiche game (Cho and Kreps, 1987, Section II): the two types of
sender are wimpy (w) and surly (s), q is quiche while b is beer for breakfast, f is
fight, and r is runaway (player II is a bully). The labels are an allusion to a popular
1982 book, “Real Men Don’t Eat Quiche” by Bruce Feirstein.
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Figure 6.1.2: The beer-quiche game.

Let BR(T ′,m) be the set of best replies to m of the responder,
when the beliefs have support in T ′, i.e.,

BR(T ′,m) := {r ∈ R : ∃µ ∈ ∆(T ′), r ∈ arg max
r ′∈R

Eµ[v(m, r ′, t)]}

=
⋃

µ∈∆(T ′)
arg max
r ′∈R

Eµ[v(m, r ′, t)].

Definition 6.1.2 (Cho and Kreps, 1987). Fix a perfect Bayesian equi-
librium (τ̂, σ̂ ), and set û(t) := u(τ̂(t), σ̂ (τ̂(t)), t). Define D(m) ⊂ T
as the set of types satisfying

û(t) > max
r∈BR(T ,m)

u(m, r , t).

The equilibrium (τ̂, σ̂ ) fails the intuitive criterion if there exists m′
(necessarily not in τ̂(T), i.e., an unsent message) and a type t′ (nec-
essarily not in D(m′)) such that

û(t′) < min
r∈BR(T\D(m′),m′)

u(m′, r , t′).

Remark 6.1.1. The test concerns equilibrium outcomes, and not the
specification of behavior after out-of-equilibrium messages. In par-
ticular, if an equilibrium (τ̂, σ̂ ) fails the intuitive criterion, then ev-
ery equilibrium with the same outcome as that implied by (τ̂, σ̂ )
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fails the intuitive criterion. (Such equilibria differ from (τ̂, σ̂ ) in the
specification of the responses to out-of-equilibrium messages.)

For messagesm′ that satisfy∅ ≠ D(m′) Î T , it is in the spirit of
the test to require responses r to out-of-equilibrium messages m′
satisfy r ∈ BR(T \D(m′),m′). ♦

Remark 6.1.2. The intuitive criterion is an example of the forward
induction notion discussed in Example 2.5.1, which requires responses
to deviations from equilibrium be, if possible, consistent with some
rationalization of the deviation (much as the choice of b in Example
6.1.2 is rationalized as coming from s). It is worth rereading Exam-
ple 2.5.1 and the following discussion; in particular, the argument
underlying the elimination of the qq equilibrium in Example 6.1.2 is
very similar to that which eliminates (LB, r) in Example 2.5.1.

The intuitive criterion is implied by Kohlberg and Mertens’s (1986)
implementation of forward induction. ♦

6.2 Job Market Signaling

There is a worker with private ability θ ∈ Θ ⊂ R. The worker can
signal ability through choice of level of education, e ∈ R+. The
worker’s utility is

w − c(e, θ),
where w is the wage, and c is the disutility of education. Assume c
is C2 and satisfies the single-crossing condition:

∂2c(e, θ)
∂e∂θ

< 0.

Also assume c(e, θ) ≥ 0, ce(e, θ) := ∂c(e, θ)/∂e ≥ 0, ce(0, θ) = 0,
cee(e, θ) := ∂c(e, θ)/∂e2 > 0, and lime→∞ ce(e, θ) = ∞.

Two identical firms compete for the worker by simultaneously
posting a wage. Each firm values a worker of type θ with education
e at f(e, θ). Neither firm knows the worker’s ability and has prior
ρ ∈ ∆(Θ) on θ.

Since the notions of almost perfect Bayesian and sequential equi-
librium are defined only for finite games, we will occasionally con-
sider discretizations of the game. In any discretization of the game,
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in any almost perfect Bayesian equilibrium, after any e, firms have
identical beliefs µ ∈ ∆(Θ) about worker ability (see Problem 6.3.6).
Consequently, the two firms are effectively playing a sealed-bid common-
value first-price auction, and so both firms bid their value Eµf(e, θ).4
To model as a signaling game, replace the two firms with a single un-
informed receiver (the “market”) with payoff

−(f (e, θ)−w)2.

Strategy for worker, e : Θ → R+.
Strategy for “market”, w : R+ → R+.
Assume f is C2. Assume f(e, θ) ≥ 0, fe(e, θ) := ∂f(e, θ)/∂e ≥

0, fθ(e, θ) > 0, fee(e, θ) := ∂2f(e, θ)/∂e2 ≤ 0, and feθ(e, θ) :=
∂2f(e, θ)/∂e∂θ ≥ 0.

1. Unproductive education. When f is independent of e, we can
interpret θ as the productivity of the worker, and so assume
f(e, θ) = θ.

2. Productive education. fe(e, θ) > 0.

If the market believes the worker has ability θ̂, it pays a wage of
f(e, θ̂). The result is a signaling game as described in Section 6.1,
and so we can apply the equilibrium notion of perfect Bayesian as
defined there.

This scenario is often called Spence job-market signaling, since
Spence (1973) introduced it.

6.2.1 Complete Information

If firms know the worker has ability θ, the worker chooses e to max-
imize

f(e, θ)− c(e, θ). (6.2.1)

4The uniqueness of the equilibrium in the sealed-bid common-value first-price
auction is only true in the nondiscretized verision, where all bids in R+ are possible.
In the discretized version, there is another equilibrium at the “next” wage in the
discrete grid. Since this equilibrium approximates the other for sufficiently fine
discretizations, we ignore this and assume firms bid their value. Alternatively, a
few minutes reflection should convince you that we really only need to discretize
the type and message spaces in order to obtain a useful version of the refinements.



6.2. Job Market Signaling 175

For each θ there is a unique e∗ maximizing (6.2.1) (this is the effi-
cient level of education), that is,

e∗(θ) := arg max
e≥0

f(e, θ)− c(e, θ).

Assuming fe(0, θ) > 0 (together with the assumption on c above) is
sufficient to imply that e∗(θ) is interior for all θ and so

de∗

dθ
= −feθ(e, θ)− ceθ(e, θ)

fee(e, θ)− cee(e, θ) > 0.

6.2.2 Incomplete Information

Define
U(θ, θ̂, e) := f(e, θ̂)− c(e, θ).

Note that
e∗(θ) = arg max

e≥0
U(θ, θ, e). (6.2.2)

We are first interested in separating perfect Bayesian equilibria,
i.e., an equilibirum in which education separates workers of differ-
ent abilities. The profile (ê, ŵ) is separating if ê is one-to-one, so
that after observing e ∈ ê(Θ) an uninformed firm infers the worker
has ability ê−1(e).

The outcome associated with a profile (ê, ŵ) is

(ê(θ), ŵ(ê(θ)))θ∈Θ.

If e′ = ê(θ′) for some θ′ ∈ Θ, then ŵ(e′) = f(e′, (ê)−1(e′)) =
f(e′, θ′), and so the payoff to the worker of type θ is

ŵ(e′)− c(e′, θ) = f(e′, θ′)− c(e′, θ) = U(θ, θ′, e′).

A separating strategy ê is incentive compatible if no type strictly
benefits from mimicking another type, i.e.,

U(θ′, θ′, ê(θ′)) ≥ U(θ′, θ′′, ê(θ′′)), ∀θ′, θ′′ ∈ Θ. (6.2.3)

Figure 6.2.1 illustrates the case Θ = {θ′, θ′′}.
Definition 6.2.1. The separating strategy profile (ê, ŵ) is a perfect
Bayesian equilibrium if
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θ̂
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U(θ′, θ̂, e) = k′
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U(θ′′, θ̂, e) = k′′

e∗(θ′)

θ′′

e∗(θ′′)

θ′

e′′

“E[θ|e]”

Figure 6.2.1: Indifference curves in θ̂ − e space. Space of types is Θ =
{θ′, θ′′}. The arrow indicates increasing worker prefer-
ence. Note that k′ = U(θ′, θ′, e∗(θ′)) = maxe U(θ′, θ′, e),
k′′ = U(θ′′, θ′′, e′′), and k0 = U(θ′′, θ′′, e∗(θ′′)) =
maxe U(θ′′, θ′′, e), and incentive compatibility is satisfied at
the indicated points: U(θ′′, θ′′, e′′) ≥ U(θ′′, θ′, e∗(θ′)) and
U(θ′, θ′, e∗(θ′)) ≥ U(θ′, θ′′, e′′). For any e < e′′, firms believe
θ = θ′, and for any e ≥ e′′, firms believe θ = θ′′.
The figures in this subsection are drawn using the production
function f(e, θ) = eθ and cost function c(e, θ) = e5/(5θ), so
that U(θ, θ̂, e) = eθ̂ − (e5)/(5θ). The set of possible θ’s is
{1,2}, with full information optimal educations of 1 and

√
2.
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1. ê satisfies (6.2.3), i.e., ê is incentive compatible,

2. ŵ(e) = f(e, ê−1(e)) for all e ∈ ê(Θ),
3. for all e ̸∈ ê(Θ) and all θ ∈ Θ,

U(θ, θ, ê(θ)) ≥ ŵ(e)− c(e, θ),
and

4. ŵ is sequentially rational, i.e., for all e ∈ R+, there is some
µ ∈ ∆(Θ) such that

ŵ(e) = Eµf(e, θ).

For e ∈ ê(Θ), µ is of course given by the belief that assigns proba-
bility one to the type for which e = ê(θ), i.e. θ̂ = ê−1(e)). Sequential
rationality restricts wages for w ̸∈ ê(Θ).

The Intermediate Value Theorem implies that for all e ∈ R+ and
all µ ∈ ∆(Θ), there exists a unique θ̂ ∈ conv(Θ) such that

f(e, θ̂) = Eµf(e, θ). (6.2.4)

(This extends to “canonical” signaling games, see Problem 6.3.5(a).)
Thus, condition 4 in Definition 6.2.1 can be replaced by: for all e ∈
R+, there is some θ̂ ∈ conv(Θ) = [minΘ, maxΘ] such that

ŵ(e) = f(e, θ̂).
In particular, if Θ = {θ′, θ′′}, then θ̂ ∈ [θ′, θ′′]. The importance of
the replacement of beliefs µ by types θ is that it is easier dealing
with a one-dimensional object (type) than with a multi-dimensional
object (beliefs, which live in a |Θ − 1|-dimensional simplex). As one
illustration, this allows us to interpreting the vertical axes in the
figures in this section as capturing both on-path and off-path beliefs.

Sequential rationality implies that the worker cannot be treated
worse than the lowest ability worker after any deviation. This im-
plies that in any separating equilibrium, the lowest ability worker’s
education choice cannot be distorted from the full information op-
timum.

Lemma 6.2.1. Let
¯
θ = minΘ. In any separating perfect Bayesian

equilibrium,
ê(

¯
θ) = e∗(

¯
θ). (6.2.5)
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Proof. This is a straightforward implication of sequential rational-
ity: Suppose (6.2.5) does not hold, and let θ̂ solve ŵ(e∗(

¯
θ)) =

f(e∗(
¯
θ), θ̂). Recall that θ̂ ≥

¯
θ. The payoff to

¯
θ from deviating

to e∗(
¯
θ) is U(

¯
θ, θ̂, e∗(

¯
θ)), and we have

U(
¯
θ, θ̂, e∗(

¯
θ)) ≥ U(

¯
θ,

¯
θ, e∗(

¯
θ)) > U(

¯
θ,

¯
θ, ê(

¯
θ)),

where the first inequality is an implication of fθ > 0 and the second
from the strict concavity of U with respect to e (which is implied by
cee > 0 and fee ≤ 0).

It is important to understand the role of sequential rationality in
Lemma 6.2.1. Equation (6.2.5) typically need not hold in separating
Nash equilibria: Suppose f(e∗(

¯
θ),

¯
θ) > 0. Specifying a wage of 0 af-

ter e∗(
¯
θ) (which is inconsistent with sequential rationality) gives the

type-
¯
θ worker negative (or zero if e∗(

¯
θ) = 0) payoffs from choosing

that level of education.
The set of separating perfect Bayesian equilibrium outcomes is

illustrated in Figure 6.2.2. Note that in this figure, the full informa-
tion choices are not incentive compatible (i.e., they violate (6.2.3)).
This means that in any separating equilibrium, the choice of θ′′ is
distorted from the full information choice of e∗(θ′′).

The Riley outcome (Riley, 1979) is the separating outcome that
minimizes the distortion (as measured by |ê(θ)− e∗(θ)|). If the full
information choices are consistent with (6.2.3), then no distortion is
necessary.

Suppose there are two types (as in Figure 6.2.2). Suppose more-
over, as in the figures, that the full information choices are not con-
sistent with (6.2.3). The Riley outcome is

((e∗(θ′), f (e∗(θ′), θ′)), (e′′1 , f (e
′′
1 , θ

′′))).

It is the separating outcome that minimizes the distortion, since θ′
is indifferent between ((e∗(θ′), f (e∗(θ′), θ′)) and (e′′1 , f (e

′′
1 , θ′′))).

Any lower education level for θ′′ violates (6.2.3).
Finally, worth noting that inequality (6.2.3) can be rewritten as

U(θ′, θ′, ê(θ′)) ≥ U(θ′, (ê)−1(e), e) ∀e ∈ ê(Θ).
That is, the function ê : Θ → R+ satisfies the functional equation

ê(θ′) ∈ arg max
e∈ê(Θ)

U(θ′, (ê)−1(e), e), ∀θ′ ∈ Θ. (6.2.6)
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e

θ̂ e∗
U(θ′, θ̂, e) = k′

U(θ′′, θ̂, e) = k′′

e∗(θ′)

θ′′

θ′

e′′1 e′′2

Figure 6.2.2: Separating equilibria when space of types is Θ = {θ′, θ′′}.
The separating perfect Bayesian equilibrium outcomes set
is {((e∗(θ′), f (e∗(θ′), θ′)), (e′′, f (e′′, θ′′))) : e′′ ∈ [e′′1 , e′′2 ]}.
Note that k′ = maxe U(θ′, θ′, e) and θ′′ cannot receive a lower
payoff than maxe U(θ′′, θ′, e) = k′′.
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Note that (6.2.2) and (6.2.6) differ in two ways: the set of possible
maximizers and how e enters into the objective function.

6.2.3 Refining to the Riley Outcome

In addition to the plethora of separating equilibria, signaling games
typically have nonseparating equilibria as well. A pooling equilib-
rium is illustrated in Figure 6.2.3, for the case of two types, θ′ and
θ′′.

Suppose f is affine in θ, so that Ef(e, θ) = f(e, Eθ) (this is
unnecessary, see (6.2.4) and Problem 6.3.5(a), but simplifies the dis-
cussion).

The pooling outcome in Figure 6.2.3 is a perfect Bayesian out-
come, but is ruled out by the intuitive criterion. To see this, consider
the out-of-equilibrium message ẽ in the figure. Note first that (using
the notation from Definition 6.1.2) D(ẽ) = {θ′}. Then, the market
wage after ẽ must be θ′′ (since the market puts zero probability on
θ′). Since

U(θ′′, θ′′, ẽ) > k′′p = U(θ′′, E[θ], ep),
the equilibrium fails the intuitive criterion.

Indeed, for two types, the intuitive criterion selects the Riley sep-
arating outcome, i.e., the separating outcome that minimizes the
signaling distortion. Consider a separating outcome that is not the
Riley outcome. Then, e(θ′′) > e′′1 (see Figure 6.2.2). Consider an out-
of-equilibrium message ẽ ∈ (e′′1 , e(θ′′)). Since ẽ > e′′1 , D(ẽ) = {θ′}.
Then, as above, the market wage after ẽ must be θ′′, and so since
ẽ < e(θ′′),

U(θ′′, θ′′, ẽ) > U(θ′′, θ′′, e(θ′′)),

and non-Riley separating equilibria also fail the intuitive criterion.
Similarly, every pooling outcome fails the intuitive criterion (see

Figure 6.2.3).
With three or more types, many equilibrium outcomes in addi-

tion to the Riley equilibrium outcome survive the intuitive criterion.
Suppose we add another type θ′′′ to the situation illustrated in Fig-
ure 6.2.3 (see Figure 6.2.4). Then, for any education that signals that
the worker is not of type θ′ (i.e., e > ē), there is still an inference
(belief) putting zero probability on θ′ that makes the deviation un-
profitable for the worker of type θ′′.
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e

θ̂ e∗

U(θ′, θ̂, e) = k′
U(θ′, θ̂, e) = k′p

U(θ′′, θ̂, e) = k′′p

e∗(θ′)

θ′′

E[θ]

ep ẽ

θ′

“E[θ|e]”

Figure 6.2.3: A pooling outcome at e = ep when the space of types is
Θ = {θ′, θ′′}. The constants are k′p = U(θ′, Eθ, ep), k′′p =
U(θ′′, Eθ, ep). Note that the firms’ beliefs after potential de-
viating e’s (denoted E[θ | e]) must lie below the θ′ and θ′′
indifference curves indexed by k′p and k′′p , respectively. This
outcome fails the intutive criterion: consider a deviation by
θ′′ to ẽ. Finally, ep need not maximize U(θ′′, Eθ, e) (indeed,
in the figure ep is marginally larger than the optimal e) for
θ′′.



182 Chapter 6. Signaling

e

θ̂
e∗

U(θ′, θ̂, e) = k′p

U(θ′′′, θ̂, e) = k′′′

U(θ′′, θ̂, e) = k′′p

e∗(θ′)

θ′′

E[θ | θ′, θ′′]

ep

θ′′′

ē

θ′

e′′′

Figure 6.2.4: A semi-pooling outcome, with θ′ and θ′′ pooling on e = ep
(as in Figure 6.2.3). Type θ′′′ separates out at e′′′. For any ed-
ucation level e ≤ ē, D(e) = ∅, and so this equilibrium passes
the intuitive criterion (a semi-pooling equilibrium where θ′′′
chooses an education level strictly larger than e′′′ fails the
intuitive criterion-why?).
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There are stronger refinements (also implied by the Kohlberg and
Mertens (1986) version of forward induction) that do select the Riley
outcome (Cho and Kreps, 1987; Cho and Sobel, 1990).

6.2.4 Continuum of Types

Suppose Θ = [
¯
θ, θ̄] (so that there is a continuum of types), and

suppose ê is differentiable (this can be justified, see Mailath, 1987,
and Mailath and von Thadden, 2013).

Then the first derivative of the objective function in (6.2.6) with
respect to e is

Uθ̂(θ, (ê)
−1(e), e)

d(ê)−1(e)
de

+Ue(θ, (ê)−1(e), e)

= Uθ̂(θ, (ê)−1(e), e)
(
dê(θ)
dθ

∣∣∣∣
θ=(ê)−1(e)

)−1

+Ue(θ, (ê)−1(e), e).

The first-order condition is obtained by evaluating this derivative at
e = ê(θ) (so that (ê)−1(e) = θ) and setting the result equal to 0:

Uθ̂(θ, θ, e)
(
dê(θ)
dθ

)−1

+Ue(θ, θ, e) = 0.

The result is a differential equation characterizing ê,

dê
dθ

= −Uθ̂(θ, θ, ê)
Ue(θ, θ, e)

= − fθ(ê, θ)
fe(ê, θ)− ce(ê, θ). (6.2.7)

Together with (6.2.5), we have an initial value problem that char-
acterizes the unique separating perfect Bayesian equilibrium strat-
egy for the worker. In contrast to the situation with a finite set of
types, there is only one separating perfect Bayesian equilibrium, and
so its outcome is the Riley outcome.5

Note that because of (6.2.5), as θ →
¯
θ, dê(θ)/dθ → +∞, and that

for θ >
¯
θ, ê(θ) > e∗(θ), that is, there is necessarily a signalling

distortion (see Figure 6.2.5).

5As the set of types becomes dense in the interval, all separating perfect
Bayesian outcomes converge to the unique separating outcome of the model with
a continuum of types, (Mailath, 1988).
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e

θ̂

e∗
U(

¯
θ, θ̂, e) =

¯
k

e∗(
¯
θ)

θ

ê

ê(θ)

θ̄

U(θ, θ̂, e) = U(θ, θ, ê(θ))

¯
θ

Figure 6.2.5: The separating equilibrium strategy ê for the continuum
types case. As usual,

¯
k = maxe U(

¯
θ,

¯
θ, e). The separat-

ing strategy is the lower envelope of the indifference curves
U(θ, θ̂, e) = U(θ, θ, ê(θ)), since ê must be tangential to each
indifference curve (by (6.2.7)) at (ê(θ), θ) and lie below all the
indifference curves.
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t1

[1
2]

R
U 6,3

D 0,0

L
2,0

t2

[1
2]

R
U x,0

D 0,2

L
2,0

II

Figure 6.3.1: Game for Problem 6.3.1. The probability that player I is type
t1 is 1/2 and the probability that he is type t2 is 1/2. The first
payoff is player I’s payoff, and the second is player II’s.

Remark 6.2.1. The above characterization of separating strategies
works for any signaling game for which the payoff to the informed
player of type θ, when the uninformed player best responds to a be-
lief that the type is θ̂, and e is chosen by the informed player can be
written as a function U(θ, θ̂, e). See Problem 6.3.5 for a description
of the canonical signaling model. ♦

6.3 Problems

6.3.1. Show that for the game in Figure 6.3.1, for all values of x, the
outcome in which both types of player I play L is sequential
by explicitly describing the converging sequence of completely
mixed behavior strategy profiles and the associated system of
beliefs. For what values of x does this equilibrium pass the
intuitive criterion?

6.3.2. (a) Verify that the signaling game illustrated in Figure 6.3.2
has no Nash equilibrium in pure strategies.

(b) Definition 6.1.1 gives the definition of a pure strategy per-
fect Bayesian equilibrium for signaling games. How should
this definition be changed to cover behavior (mixed) strate-
gies? More precisely, give the definition of a perfect Bayesian
equilibrium for the case of finite signaling games.



186 Chapter 6. Signaling

t1
[p]

R
TR 3,0

BR −3,1

LML2,2

TL−2,0

BL1,3

t2
[1− p]

R
TR −3,1

BR 3,0

LML2,2

TL1,3

BL−2,0

IIII

Figure 6.3.2: Figure for Problem 6.3.2.

(c) For the game in Figure 6.3.2, suppose p = 1
2 . Describe a

perfect Bayesian equilibrium.

(d) How does your answer to part (c) change if p = 0.1?

6.3.3. Prove Theorem 6.1.1.

6.3.4. Fill in the details of the proof of Lemma 6.2.1.

6.3.5. The canonical signaling game has a sender with private in-
formation, denoted θ ∈ Θ ⊂ R choosing a message m ∈ R,
where Θ is compact. A receiver, observing m, but not knowing
θ then chooses a response r ∈ R. The payoff to the sender is
u(m, r , θ) while the payoff to the receiver is v(m, r , θ). As-
sume both u and v are C2. Assume v is strictly concave in r ,
so that v(m, r , θ) has a unique maximizer in r for all (m,θ),
denoted ξ(m,θ). Define

U(θ, θ̂,m) = u(m,ξ(m, θ̂), θ).
Assume u is strictly increasing in r , and ξ is strictly increasing
in θ̂, so that U is also strictly increasing in θ̂. Finally, assume
that for all (θ, θ̂), U(θ, θ̂,m) is bounded above (and so has a
well-defined maximum).

(a) Given a message m∗ and a belief F over θ, suppose r∗
maximizes the receiver’s expected payoff. Prove there ex-
ists θ̂ such that r∗ = ξ(m∗, θ̂). Moreover, if the support
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of F is a continuum, convΘ, prove that θ̂ is in the support
of F .

Assume u satisfies the single-crossing condition:

If θ < θ′ and m < m′, then u(m, r , θ) ≤ u(m′, r ′, θ)
implies u(m, r , θ′) < u(m′, r ′, θ′).

(Draw the indifference curves for different types inm−r space
to see that they can only cross once.)

(b) Provide restrictions on the productive education case cov-
ered in Section 6.2 so that the sender’s payoff satisfies the
single-crossing condition as defined here.

(c) Prove that U satisfies an analogous version of the single-
crossing condition: If θ < θ′ andm <m′, then U(θ, θ̂,m) ≤
U(θ, θ̂′,m′) implies U(θ′, θ̂,m) < U(θ′, θ̂′,m′).

(d) Prove that the messages sent by the sender in any separat-
ing Nash equilibrium are strictly increasing in type.

(e) Prove that in any separating perfect Bayesian equilibrium,
type θ := minΘ chooses the actionmmaximizingu(m,ξ(m,θ), θ)
(recall (6.2.5)). How is this implication of separating per-
fect Bayesian equilibrium changed if u is strictly decreas-
ing in r? If ξ is strictly decreasing in θ̂?

6.3.6. Prove that in any discretization of the job market signaling
game, in any almost perfect Bayesian equilibrium, after any e,
firms have identical beliefs about worker ability.

6.3.7. Suppose that, in the incomplete information model of Section
6.2, the payoff to a firm from hiring a worker of type θ with
education e at wage w is

f(e, θ)−w = 3eθ −w.
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The utility of a worker of type θ with education e receiving a
wage w is

w − c(e, θ) = w − e
3

θ
.

Suppose the support of the firms’ prior beliefs ρ on θ is Θ =
{1,3}.
(a) Describe a perfect Bayesian equilibrium in which both types

of worker choose their full information eduction level. Be
sure to verify that all the incentive constraints are satis-
fied.

(b) Are there other separating perfect Bayesian equilibria? What
are they? Do they depend on the prior distribution ρ?

Now suppose the support of the firms’ prior beliefs on θ is
Θ = {1,2,3}.
(c) Why is it no longer consistent with a separating perfect

Bayesian equilibrium to have θ = 3 choose his full infor-
mation eduction level e∗(3)? Describe the Riley outcome
(the separating equilibrium outcome that minimizes the
distortion), and verify that it is indeed the outcome of a
perfect Bayesian equilibrium.

(d) What is the largest education level for θ = 2 consistent
with separating perfect Bayesian equilibrium? Prove that
any separating equilibrium in which θ = 2 chooses that
level of education fails the intuitive criterion. [Hint: con-
sider the out-of-equilibrium education level e = 3.]

(e) Describe the separating perfect Bayesian equilibria in which
θ = 2 chooses e = 2.5. Some of these equilibria fail the in-
tuitive criterion and some do not. Give an example of one
of each (i.e., an equilibrium that fails the intuitive crite-
rion, and an equilibrium that does not fail).

6.3.8. Verify the claims in the caption of Figure 6.2.4.
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6.3.9. The owner of a small firm is contemplating selling all or part
of his firm to outside investors. The profits from the firm are
risky and the owner is risk averse. The owner’s preferences
over x, the fraction of the firm the owner retains, and p, the
price “per share” paid by the outside investors, are given by

u(x,θ,p) = θx − x2 + p(1− x),

where θ > 1 is the value of the firm (i.e., expected profits). The
quadratic term reflects the owner’s risk aversion. The outside
investors are risk neutral, and so the payoff to an outside in-
vestor of paying p per share for 1− x of the firm is then

θ(1− x)− p(1− x).

There are at least two outside investors, and the price is de-
termined by a first price sealed bid auction: The owner first
chooses the fraction of the firm to sell, 1 − x; the outside in-
vestors then bid, with the 1 − x fraction going to the highest
bidder (ties are broken with a coin flip).

(a) Suppose θ is public information. What fraction of the firm
will the owner sell, and how much will he receive for it?

(b) Suppose now θ is privately known by the owner. The out-
side investors have common beliefs, assigning probabil-
ity α ∈ (0,1) to θ = θ1 > 0 and probability 1 − α to
θ = θ2 > θ1. Characterize the separating perfect Bayesian
equilibria. Are there any other perfect Bayesian equilibria?

(c) Maintaining the assumption that θ is privately known by
the owner, suppose now that the outside investors’ beliefs
over θ have support [θ1, θ2], so that there a continuum
of possible values for θ. What is the initial value problem
(differential equation plus initial condition) characterizing
separating perfect Bayesian equilibria?

6.3.10. Firm 1 is an incumbent firm selling widgets in a market in
two periods. In the first period, firm 1 is a monopolist, facing a
demand curve P1 = A−q1

1, where q1
1 ∈ R+ is firm 1’s output in
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period 1 and P1 is the first period price. In the second period,
a second firm, firm 2, will enter the market, observing the first
period quantity choice of firm 1. In the second period, the two
firms choose quantities simultaneously. The inverse demand
curve in period 2 is given by P2 = A − q2

1 − q2
2, where q2

i ∈ R+
is firm i’s output in period 2 and P2 is the second period price.
Negative prices are possible (and will arise if quantities exceed
A). Firm i has a constant marginal cost of production ci > 0.
Firm 1’s overall payoff is given by

(P1 − c1)q1
1 + (P2 − c1)q2

1,

while firm 2’s payoff is given by

(P2 − c2)q2
2.

Firm 2’s marginal cost, c2, is common knowledge (i.e., each firm
knows the marginal cost of firm 2), and satisfies c2 < A/2.

(a) Suppose c1 is also common knowledge (i.e., each firm knows
the marginal cost of the other firm), and also satisfies
c1 < A/2. What are the subgame perfect equilibria and
why?

(b) Suppose now that firm 1’s costs are private to firm 1. Firm
2 does not know firm 1’s costs, assigning prior probability
p ∈ (0,1) to cost cL1 and complementary probability 1−p
to cost cH1 , where cL1 < c

H
1 < A/2.

i. Define a pure strategy almost perfect Bayesian equilib-
rium for this game of incomplete information . What
restrictions on second period quantities must be satis-
fied in any pure strategy almost perfect Bayesian equi-
librium? [Make the game finite by considering dis-
cretizations of the action spaces. Strictly speaking,
this is not a signaling game, since firm 1 is choosing
actions in both periods, so the notion from Section 6.1
does not apply.]

ii. What do the equilibrium conditions specialize to for
separating pure strategy almost perfect Bayesian equi-
libria?
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(c) Suppose now that firm 2’s beliefs about firm 1’s costs have
support [cL1 , c

H
1 ]; i.e., the support is now an interval and

not two points. What is the direction of the signaling
distortion in the separating pure strategy almost perfect
Bayesian equilibrium? What differential equation does the
function describing first period quantities in that equilib-
rium satisfy?

6.3.11. Suppose that in the setting of Problem 3.7.1, firm 2 is a
Stackelberg leader, i.e., we are reversing the order of moves
from Problem 5.4.8.

(a) Illustrate the preferences of firm 2 in q2-θ̂ space, where q2

is firm 2’s quantity choice, and θ̂ is firm 1’s belief about θ.

(b) There is a separating perfect Bayesian equilibrium in which
firm 2 chooses q2 = 1

2 when θ = 3. Describe it, and prove it
is a separating perfect Bayesian equilibrium (the diagram
from part (a) may help).

(c) Does the equilibrium from part (b) pass the intuitive crite-
rion? Why or why not? If not, describe a separating perfect
Bayesian equilibrium that does.

6.3.12. We continue with the setting of Problem 3.7.1, but now sup-
pose that firm 2 is a Stackelberg leader who has the option of
not choosing before firm 1: Firm 2 either chooses its quantity,
q2, first, or the action W (for wait). If firm 2 chooses W , then
the two firms simultaneously choose quantities, knowing that
they are doing so. If firm 2 chooses its quantity first (so that
it did not choose W ), then firm 1, knowing firm 2’s quantity
choice then chooses its quantity.

(a) Describe a strategy profile for this dynamic game. Follow-
ing the practice in signaling games, say a strategy profile
is perfect Bayesian if it satisfies the conditions implied by
sequential equilibrium in discretized versions of the game.
(In the current context, a discretized version of the game
restricts quantities to some finite subset.) What conditions
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must a perfect Bayesian equilibrium satisfy, and why?

(b) For which parameter values is there an equilibrium in which
firm 2 waits for all values of θ.

(c) Prove that the outcome in which firm 2 does not wait for
any θ, and firms behave as in the separating outcome of
question (b) is not an equilibrium outcome of this game.
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Repeated Games

7.1 Perfect Monitoring

It is obvious that opportunistic behavior can be deterred using fu-
ture rewards and punishments. However, care needs to be taken to
make sure that the future rewards/punishments are self-enforcing.
The cleanest setting to explore such questions is one in which the
same game (the stage game) is played repeatedly.

7.1.1 The Stage Game

The stage game is a simultaneous move game, G := {(Ai, ui)}. The
action space for player i is Ai, with typical action ai ∈ Ai. An action
profile is denoted a = (a1, . . . , an). Player i’s stage or flow payoffs
are given by ui : A→ R.

7.1.2 The Repeated Game

The game G is played at each date t = 0,1, . . .. At the end of each
period, all players observe the action profile a chosen. Actions of
every player are perfectly monitored by all other players, i.e., the
actions chosen in a period become public information (are observed
by all players) at the end of that period.

The history up to date t is denoted by

ht := (a0, . . . , at−1) ∈ A×A× · · · ×A︸ ︷︷ ︸
t times

= At =: Ht,

193
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where H0 := {∅}.
The set of all possible histories: H := ⋃∞t=0Ht.
A strategy for player i is denoted si : H → Ai. A strategy is often

written si = (s0
i , s

1
i , s

2
i , . . .), where sti : Ht → Ai. Since H0 = {∅}, we

have s0 ∈ A, and so can write a0 for s0. The set of all strategies for
player i is Si.

Note the distinction between

• actions ai ∈ Ai (describing behavior in the stage game) and

• strategies si : H → Ai (describing behavior in the repeated
game).

Given a strategy profile s := (s1, s2, . . . , sn), the outcome path in-
duced by the strategy profile s is a(s) = (a0(s), a1(s), a2(s), . . .),
where

a0(s) =(s1(∅), s2(∅), . . . , sn(∅)),
a1(s) =(s1(a0(s)), s2(a0(s)), . . . , sn(a0(s))),

a2(s) =(s1(a0(s), a1(s)), s2(a0(s), a1(s)), . . . , sn(a0(s), a1(s))),
...

Each player discounts future payoffs using the same discount
factor δ ∈ (0,1). Player i payoffs are the average discounted sum of
the infinite sequence of stage game payoffs (ui(a0(s),ui(a1(s), . . . )
given by

Uδi (s) = (1− δ)
∞∑

t=0

δtui(at(s)).

We have now described a normal form game: Gδ(∞) = {(Si, Uδi )ni=1}.
Note that the payoffs of this normal form game are convex com-
binations of the stage game payoffs, and so the set of payoffs in
{(Si, ui)} trivially contains u(A) := {v ∈ Rn : ∃a ∈ A,v = u(a)}
and is a subset of the convex hull of u(A), convu(A), i.e.,

u(A) ⊂ Uδ(S) ⊂ convu(A).

Moreover, if A is finite, the first inclusion is strict. Finally, for δ
sufficiently close to 1, every payoff in convu(A) can be achieved as
a payoff in Gδ(∞). More specifically, if δ > 1 − 1/|A|, then for all
v ∈ convu(A) there exists s ∈ S such that v = Uδ(s) (for a proof,
see Lemma 3.7.1 in Mailath and Samuelson, 2006).
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Figure 7.1.1: A prisoner’s dilemma on the left, and the set of payoffs on
the right. Both players’ minmax payoff is 0. The set of fea-
sible payoffs is the union of the two lightly shaded regions
(with their borders) and Fp∗, the darkly shaded region plus
its northeast borders.

Definition 7.1.1. The set of feasible payoffs for the infinitely re-
peated game is given by

convu(A) = conv{v ∈ Rn : ∃a ∈ S,v = u(a)}.
While the superscript δ is often omitted from Gδ(∞) and from

Uδi , this should not cause confusion, as long as the role of the dis-
count factor in determining payoffs is not forgotten.

Definition 7.1.2. Player i’s pure strategy minmax utility is

¯
vpi := min

a−i
max
ai
ui(ai, a−i).

The profile â−i ∈ arg mina−i maxai ui(ai, a−i) minmaxes player
i. The set of (pure strategy) strictly individually rational payoffs in
{(Si, ui)} is {v ∈ Rn : vi >

¯
vpi }. Define Fp∗ := {v ∈ Rn : vi >

¯
vpi } ∩ conv{v ∈ Rn : ∃a ∈ S,v = u(a)}. The set is illustrated in
Figure 7.1.1 for the prisoner’s dilemma. Note that the relevant parts
of the u1- and u2-axes belong to the lightly shaded regions, and not
to Fp∗.

Definition 7.1.3. The strategy profile ŝ is a (pure strategy) Nash equi-
librium of Gδ(∞) if, for all i and all s̃i : H → Ai,

Uδi (ŝi, ŝ−i) ≥ Uδi (s̃i, ŝ−i).
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Theorem 7.1.1. Suppose s∗ is a pure strategy Nash equilibrium. Then,

Uδi (s
∗) ≥

¯
vpi .

Proof. Let ŝi be a strategy satisfying

ŝi(ht) ∈ arg max
ai

ui(ai, s∗−i(h
t)), ∀ht ∈ Ht

(if the arg max is unique for some history ht , ŝi(ht) is uniquely de-
termined, otherwise make a selection from the argmax). Since

Uδi (s
∗) ≥ Uδi (ŝi, s∗−i),

and since in every period
¯
vpi is a lower bound for the flow payoff

received under the profile (ŝi, s∗−i), we have

Uδi (s
∗) ≥ Uδi (ŝi, s∗−i) ≥ (1− δ)

∞∑

t=0

δt
¯
vpi = ¯

vpi .

In some settings it is necessary to allow players to randomize.
For example, in matching pennies, the set of pure strategy feasible
and individually rational payoffs is empty.

Definition 7.1.4. Player i’s mixed strategy minmax utility is

¯
vi := min

α−i∈
∏
j≠i∆(Aj)

max
αi∈∆(Ai)

ui(αi, α−i).

The profile α̂−i ∈ arg minα−i maxαi ui(αi, α−i) minmaxes player
i. The set of (mixed strategy) strictly individually rational payoffs
in {(Si, ui)} is {v ∈ Rn : vi >

¯
vi}. Define F∗ := {v ∈ Rn : vi >

¯
vi} ∩ conv{v ∈ Rn : ∃a ∈ S,v = u(a)}.

The Minmax Theorem (Problem 4.3.2) implies that
¯
vi is i’s secu-

rity level (Definition 2.4.2).
An essentially identical proof to that of Theorem 7.1.1 (applied

to the behavior strategy profile realization equivalent to σ∗) gives:

Theorem 7.1.2. Suppose σ∗ is a (possibly mixed) Nash equilibrium.
Then,

Uδi (σ
∗) ≥

¯
vi.

Since
¯
vi ≤

¯
vpi (with a strict inequality in some games, such as

matching pennies), lower payoffs often can be enforced using mixed
strategies. The possibility of enforcing lower payoffs raises the pos-
sibility of using these lower payoffs to enforce higher payoffs.
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7.1.3 Subgame Perfection

Given ht = (a0, . . . , at−1) ∈ Ht and h̄τ = (ā0, . . . , āτ−1) ∈ Hτ , the
history (a0, . . . , at−1, ā0, . . . , āτ−1) ∈ Ht+τ is the concatenation of ht
followed by h̄τ , denoted by (ht, h̄τ). Given si, define si|ht : H → Ai
as

si|ht(h̄τ) = si(ht, h̄τ) ∀h̄τ , τ.
Note that for all histories ht ,

si|ht∈ Si.

Remark 7.1.1. There is a natural isomorphism for each player be-
tween histories and that player’s information sets. Every history,
ht , reaches a continuation game that is strategically identical to
the original repeated game, and for every strategy si in the origi-
nal game, ht induces a well-defined continuation strategy si |ht . In
particular, the subgame reached by any history ht is an infinitely re-
peated game that is strategically equivalent to the original infinitely
repeated game, Gδ(∞). ♦

Definition 7.1.5. The strategy profile ŝ is a subgame perfect equi-
librium of Gδ(∞) if, for all periods t and all histories, ht ∈ Ht ,
ŝ|ht= (ŝi|ht , . . . , ŝn|ht) is a Nash equilibrium of Gδ(∞).
Example 7.1.1 (Grim trigger in the repeated prisoner’s dilemma).
Consider the prisoner’s dilemma in Figure 7.1.1.

A grim trigger strategy profile is a profile where a deviation trig-
gers Nash reversion (hence trigger) and the Nash equilibrium min-
maxes the players (hence grim). For the prisoner’s dilemma, grim
trigger can be described as follows: Player i’s strategy is given by

ŝi(∅) =E,

and for t ≥ 1,

ŝi(a0, . . . , at−1) =
{
E, if at′ = EE for all t′ = 0,1, . . . , t − 1,
S, otherwise.

The payoff to player 1 from (ŝ1, ŝ2) is (1− δ)∑2× δt = 2.
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Consider a deviation by player 1 to another strategy s̃1. In re-
sponse to the first play of S, player 2 responds with S in every
subsequent period, so player 1 can do no better than always play
S after the first play of S. The maximum payoff from deviating in
period t = 0 (the most profitable deviation) is (1 − δ)3. The profile
is Nash if

2 ≥ 3(1− δ)⇐⇒ δ ≥ 1
3
.

The strategy profile is subgame perfect: Note first that the pro-
file only induces two different strategy profiles after any history.
Denote by s† = (s†1 , s†2) the profile in which each player plays S for
all histories, s†i (h

t) = S for all ht ∈ H. Then,1

ŝi|(a0,...,at−1)=
{
ŝi, if at′ = EE for all t′ = 0,1, . . . , t − 1,

s†i , otherwise.

We have already verified that ŝ is a Nash equilibrium of G(∞), and
it is immediate that s† is Nash. «

Remark 7.1.2. The finitely-repeated prisoner’s dilemma has a unique
subgame perfect (indeed, Nash) equilibrium outcome, given by SS
in every period (see Remark 2.3.1).2 This conclusion is driven by
end-game effects: play in the final period determines play in ear-
lier periods. There is thus a discontinuity in equilibrium outcomes
with respect to the horizon: EE in every period can be supported
as a subgame-perfect equilibrium outcome in the infinitely-repeated
game (when δ is sufficiently large), yet only SS in every period can be
supported as a subgame perfect equilibrium outcome in the finitely-
repeated game (no matter how large the number of repetitions).
Which is the better description? If players believe end-game effects
are important, then it is the finitely-repeated game. If players do not
believe end-game effects are important, then it is the infinitely re-
peated game (even though the agents themselves are finitely lived).

1This is a statement about the strategies as functions, i.e., for all h̄τ ∈ H,

ŝi|(a0,...,at−1)(h̄τ) =
{
ŝi(h̄τ), if at′ = EE for all t′ = 0,1, . . . , t − 1,

s†i (h̄τ), otherwise.

2Discounting payoffs does not alter the analysis of the finitely repeated game.
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♦

Grim trigger is an example of a strongly symmetric strategy pro-
file (the deviator is not treated differently than the other player(s)):

Definition 7.1.6. Suppose Ai = Aj for all i and j. A strategy profile
is strongly symmetric if

si(ht) = sj(ht) ∀ht ∈ H,∀i, j.

7.1.4 Automata

We will represent strategy profiles by automata. An automaton is
the collection (W ,w0, f , τ), where

• W is set of states,

• w0 is initial state,

• f : W → A is output function (decision rule),3 and

• τ : W ×A→W is transition function.

Any automaton (W ,w0, f , τ) induces a pure strategy profile as
follows: First, extend the transition function from the domainW×A
to the domain W × (H\{∅}) by recursively defining

τ(w,h t) = τ
(
τ(w,h t−1), a t−1

)
t ≥ 2, (7.1.1)

where τ(w,h1) := τ(w,a0) (recall that h1 = (a0)). With this defi-
nition, the strategy s induced by the automaton is given by s(∅) =
f(w0) and

s(ht) = f(τ(w0, ht)),∀ht ∈ H\{∅}.
Conversely, it is straightforward that any strategy profile can be

represented by an automaton. Take the set of histories H as the set
of states, the null history ∅ as the initial state, f(ht) = s(ht), and
τ
(
h t, a

) = h t+1, where h t+1 := (
h t, a

)
is the concatenation of the

history h t with the action profile a.

3A profile of behavior strategies (b1, . . . , bn), bi : H → ∆(Ai), can also be repre-
sented by an automaton. The output function now maps into profiles of mixtures
over action profiles, i.e., f : W →∏

i∆(Ai).
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wEEw0 wSS
ES, SE, SS

EE EE, SE, ES, SS

Figure 7.1.2: The automaton for grim trigger in Example 7.1.2. See that
example for the notational convention.

The representation in the previous paragraph leaves us in the
position of working with the full set of histories H, a countably in-
finite set. However, strategy profiles can often be represented by
automata with finite sets W . The set W is then a partition of H,
grouping together those histories that lead to identical continuation
strategies.

The advantage of the automaton representation is most obvious
whenW can be chosen finite, but the automaton representation also
has conceptual advantages (Theorem 7.1.3 is one illustration).

An automaton is strongly symmetric if fi(w) = fj(w) for all w
and all i and j.4 While many of the examples are strongly symmetric,
there is no requirement that the automaton be strongly symmetric
(for an example of an asymmetric automaton, see Figure 7.1.5) nor
that the game be symmetric (see Example 7.2.1).

Example 7.1.2 (Grim trigger in the repeated prisoner’s dilemma,
cont.). Grim trigger profile has as its automata representation, (W ,w0, f , τ),
with W = {wEE,wSS}, w0 = wEE , f(wEE) = EE and f(wSS) = SS,
and

τ(w,a) =
{
wEE, if w = wEE and a = EE,
wSS , otherwise.

The automaton is illustrated in Figure 7.1.2. Observe the notational
convention: The subscript on the state indicates the action profile
specified by the output function (i.e., f(wa) = a; if the same action
profile a is specified at two distinct states, the distinct states could

4The induced pure strategy profile of a strongly symmetric automaton is
strongly symmetric. Moreover, a strongly symmetric pure strategy profile can be
represented by a strongly symmetric automaton.
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be denoted by ŵa and w̃a, so that f(ŵa) = a and f(w̃a) = a); it is
distinct from the transition function.

«

If s is represented by (W ,w0, f , τ), the continuation strategy
profile after a history ht , s |ht , is represented by the automaton
(W , τ(w0, ht), f , τ), where τ(w0, ht) is given by (7.1.1).

Definition 7.1.7. The state w ∈W of an automaton (W ,w0, f , τ) is
reachable from w0 if there exists a history ht ∈ H such that

w = τ(w0, ht).

Denote the set of states reachable from w0 by W(w0).

Lemma 7.1.1. The strategy profile represented by (W ,w0, f , τ) is
a subgame perfect equilibrium if, and only if, for all states w ∈
W(w0), the strategy profile represented by (W ,w, f , τ) is a Nash
equilibrium of the repeated game.

Given an automaton (W ,w0, f , τ), let Vi(w) be i’s value from
being in the state w ∈W , i.e.,

Vi(w) = (1− δ)ui(f (w))+ δVi(τ(w, f(w))).
Note that if W is finite, Vi solves a finite set of linear equations (see
Problem 7.6.3).

Theorem 7.1.1 and Lemma 7.1.1 imply that if (W ,w0, f , τ) rep-
resents a pure strategy subgame perfect equilibrium, then for all
states w ∈W , and all i,

Vi(w) ≥
¯
vpi .

Compare the following definition with Definition 5.1.3, and the
proofs of Theorem 7.1.3 with that of Theorem 5.3.2.

Definition 7.1.8. Player i has a profitable one-shot deviation from
the strategy profile (induced by the automaton) (W ,w0, f , τ), if there
is some state w ∈W(w0) and some action ai ∈ Ai such that

Vi(w) < (1− δ)ui(ai, f−i(w))+ δVi(τ(w, (ai, f−i(w))).
Another instance of the one-shot deviation principle (recall Theo-

rems 5.1.1 and 5.3.2):
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Theorem 7.1.3. A strategy profile is subgame perfect if, and only if,
there are no profitable one-shot deviations.

Proof. Clearly, if a strategy profile is subgame perfect, then there
are no profitable deviations.

We need to argue that if a profile is not subgame perfect, then
there is a profitable one-shot deviation.

Suppose first that W and Ai are finite. Let Ṽi(w) be player i’s
payoff from the best response to (W ,w, f−i, τ) (i.e., the strategy
profile for the other players specified by the automaton with ini-
tial state w). From the principle of optimality in dynamic program-
ming,5 the optimal value of a sequential problem is the solution to
the Bellman equation:

Ṽi(w) = max
ai∈Ai

{
(1− δ)ui(ai, f−i(w))+ δṼi (τ (w, (ai, f−i (w))))

}
.

(7.1.2)
Note that Ṽi(w) ≥ Vi(w) for all w. Denote by w̄i, the state that

maximizes Ṽi(w) − Vi(w) (if there is more than one, choose one
arbitrarily).

Let awi be the action solving the maximization in (7.1.2), and de-
fine

V†i (w) := (1− δ)ui(awi , f−i(w))+ δVi(τ(w, (awi , f−i(w)))).
Observe that V†i (w) is the value of the one-shot deviation from
(W ,w0, f , τ) to awi at w.

If the automaton does not represent a subgame perfect equilib-
rium, then there exists a player i for which

Ṽi(w̄i) > Vi(w̄i). (7.1.3)

Then, for that player i,

Ṽi(w̄i)− Vi(w̄i) > δ[Ṽi(w)− Vi(w)]
for all w (the strict inequality is key here, and only holds because of
(7.1.3)), and so

Ṽi(w̄i)− Vi(w̄i)
> δ[Ṽi(τ(w̄i, (a

w̄i
i , f−i(w̄i))))− Vi(τ(w̄i, (aw̄ii , f−i(w̄i))))]

= Ṽi(w̄i)− V†i (w̄i).
5See Problem 7.6.4 or Stokey and Lucas (1989, Theorems 4.2 and 4.3).
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E S

E 2,2 −(1− δ),3(1− δ)
S 3(1− δ),−(1− δ) 0,0

Figure 7.1.3: The normal form gwEE associated with the automaton state
wEE of the automaton in Figure 7.1.2.

Thus,
V†i (w̄i) > Vi(w̄i),

which is the assertion that player i has a profitable one-shot devia-
tion at w̄i.

The argument extends in a straightforward manner to infiniteW ,
compact Ai, and continuous ui once we reinterpret Ṽi as the supre-
mum of player i’s payoff when the other players play according to
(W ,w, f−i, τ).

See Problem 7.6.5 for an alternative proof that can be extended to
arbitrary infinite horizon games without a recursive structure (and
does not appeal to the principle of optimality).

Remark 7.1.3. A strategy profile can have no profitable one-shot
deviations on the path of play, and yet not be Nash, see Example
7.1.5/Problem 7.6.6 for a simple example.

Indeed, since there is no analog to Theorem 7.1.3 for Nash equi-
librium, it is more difficult to verify that an arbitray strategy profile
is Nash, even though Nash is a weaker solution concept than sub-
game perfection. ♦

Corollary 7.1.1. The strategy profile represented by (W ,w0, f , τ) is
subgame perfect if, and only if, for all w ∈ W(w0), f(w) is a Nash
equilibrium of the normal form game with payoff function gw : A →
Rn, where

gwi (a) = (1− δ)ui(a)+ δVi(τ(w,a)).
Example 7.1.3 (Continuation of grim trigger). We clearly have V1(wEE) =
2 and V1(wSS) = 0, so that gwEE , the normal form associated with
wEE , is given in Figure 7.1.3, while gwSS , the normal form for wSS , is
given in Figure 7.1.4.
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E S

E 2(1− δ),2(1− δ) −(1− δ),3(1− δ)
S 3(1− δ),−(1− δ) 0,0

Figure 7.1.4: The normal form gwSS associated with the automaton state
wEE of the automaton in Figure 7.1.2.

wEEw0 wESwSE

SE

ES,EE

EE, SS SS, SE

ES

SE,EE

SS,ES

Figure 7.1.5: The automaton for Example 7.1.4.

As required, EE is a (but not the only!) Nash equilibrium of the
wEE normal form for δ ≥ 1

3 , while SS is a Nash equilibrium of the
wSS normal form. «

Example 7.1.4 (Repeated prisoner’s dilemma, cont.). A different strat-
egy profile to support mutual effort in the repeated prisoner’s dilemma
is (W ,w0, f , τ), where W = {wEE,wES ,wSE}, w0 = wEE , fi(wa) =
ai, and

τ(w,a) =




wEE, if w = wEE and a = EE or SS, w = wES and a1 = E,

or w = wSE and a2 = E,

wES , if w = wEE and a = SE, or w = wES and a1 = S,

wSE, if w = wEE and a = ES, or w = wSE and a2 = S.

The automaton is displayed in Figure 7.1.5. For that automaton,

V1(wSE) = 3(1− δ)+ 2δ = 3− δ > 2,
V2(wSE) = −(1− δ)+ 2δ = −1+ 3δ < 2,

and V1(wEE) = V2(wEE) = 2.
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u2

1

2

3

0

−1
1 2 3−1 u1

Fp∗

V (wEE)
V (wES)

V (wSE)

Figure 7.1.6: The payoffs for the automaton in Figure 7.1.5, for δ = 1
2 .

E S

E 2,2 −1+ 4δ− δ2,3− 4δ+ 3δ2

S 3− 4δ+ 3δ2,−1+ 4δ− δ2 2δ,2δ

Figure 7.1.7: The normal form associated with the automaton statewEE for
the automaton displayed in Figure 7.1.5.

The payoffs are illustrated in Figure 7.1.6.
In particular, statewES punishes player 1. The normal form asso-

ciated with wEE is given in Figure 7.1.7, and EE is Nash equilibrium
if and only if

2 ≥ 3− 4δ+ 3δ2 ⇐⇒ 0 ≥ (1− 3δ)(1− δ) ⇐⇒ δ ≥ 1
3 .

The normal form for wES is given in Figure 7.1.8, and ES is a Nash
equilibrium if player 1 does not wish deviate, i.e.,

−1+ 3δ ≥ −δ+ 3δ2 ⇐⇒ 0 ≥ (1− 3δ)(1− δ) ⇐⇒ δ ≥ 1
3 ,

and player 2 does not wish to deviate, i.e.,

3− δ ≥ 2 ⇐⇒ 1 ≥ δ.
This last inequality is worth comment: The state transition from
state wES does not depend on player 2’s action, and so player 2
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E S

E 2,2 −1+ 3δ,3− δ
S 3− 4δ+ 3δ2,−1+ 4δ− δ2 −δ+ 3δ2,3δ− δ2

Figure 7.1.8: The normal form associated with the automaton statewES for
the automaton displayed in Figure 7.1.5.

A B C

A 4,4 3,2 1,1

B 2,3 2,2 1,1

C 1,1 1,1 −1,−1

Figure 7.1.9: The stage game for Example 7.1.5.

faces no intertemporal consequences from his action choice at wES .
Maximizing for 2 then reduces to maximizing stage game payoffs
(for any δ), and S maximizes stage game payoffs.

The normal form for wSE switches the players, and so there is
no need to separately consider that game. Thus the automaton is a
subgame perfect equilibrium for δ ≥ 1

3 .
This profile’s successful deterrence of deviations using a one pe-

riod punishment (when δ ≥ 1
3 ) is due to the specific payoffs, see

Problem 7.6.8. «

Example 7.1.5. The stage game in Figure 7.1.9 has a unique Nash
equilibrium: AA. We will argue that, for δ ≥ 2/3, there is a subgame
perfect equilibrium ofG(∞)with outcome path (BB)∞: (W ,w0, f , τ),
where W = {wBB,wCC}, w0 = wBB , fi(wa) = ai, and

τ(w,a) =
{
wBB, if w = wBB and a = BB, or w = wCC and a = CC ,

wCC , otherwise.

The automaton is illustrated in Figure 7.1.10.
Values of the states are

Vi(wBB) =(1− δ)2+ δVi(wBB),
and Vi(wCC) =(1− δ)× (−1)+ δVi(wBB).
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wBBw0 wCC

¬BB

CC

BB

¬CC

Figure 7.1.10: The automaton for Example 7.1.5.

A B C

A 4(1− δ)+ δ(3δ− 1) 3(1− δ)+ δ(3δ− 1) 1− δ+ δ(3δ− 1)

B 2(1− δ)+ δ(3δ− 1) 2 1− δ+ δ(3δ− 1)

C 1− δ+ δ(3δ− 1) 1− δ+ δ(3δ− 1) −(1− δ)+ δ(3δ− 1)

Figure 7.1.11: The payoffs for player 1 in the normal form associated with
the automaton statewBB for the automaton displayed in Fig-
ure 7.1.10.

Solving,

Vi(wBB) =2,
and Vi(wCC) =3δ− 1.

Player 1’s payoffs in the normal form associated with wBB are given
in Figure 7.1.11, and since the game is symmetric, BB is a Nash
equilibrium of this normal form only if

2 ≥ 3(1− δ)+ δ(3δ− 1),

i.e.,
0 ≥ 1− 4δ+ 3δ2 a 0 ≥ (1− δ)(1− 3δ),

or δ ≥ 1/3.
Player 1’s payoffs in the normal form associated with wCC are

given in Figure 7.1.12, and since the game is symmetric, CC is a
Nash equilibrium of this normal form only if

−(1− δ)+ δ2 ≥ 1− δ+ δ(3δ− 1),
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A B C

A 4(1− δ)+ δ(3δ− 1) 3(1− δ)+ δ(3δ− 1) 1− δ+ δ(3δ− 1)

B 2(1− δ)+ δ(3δ− 1) 2(1− δ)+ δ(3δ− 1) 1− δ+ δ(3δ− 1)

C 1− δ+ δ(3δ− 1) 1− δ+ δ(3δ− 1) −(1− δ)+ δ2

Figure 7.1.12: The payoffs for player 1 in the normal form associated with
the automaton statewCC for the automaton displayed in Fig-
ure 7.1.10.

i.e.,
0 ≥ 2− 5δ+ 3δ2 a 0 ≥ (1− δ)(2− 3δ),

or δ ≥ 2/3. This completes our verification that the profile repre-
sented by the automaton in Figure 7.1.10 is subgame perfect.

Note that even though there is no profitable deviation at wBB if
δ ≥ 1/3, the profile is only subgame perfect if δ ≥ 2/3. Moreover,
the profile is not Nash if δ ∈ [1/3, 1/2) (Problem 7.6.6). «

7.1.5 Renegotiation-Proof Equilibria

Are Pareto inefficient equilibria plausible threats?

Definition 7.1.9 (Farrell and Maskin, 1989). The subgame perfect au-
tomaton (W ,w0, f , τ) is weakly renegotiation proof if for allw,w′ ∈
W(w0) and i,

Vi(w) > Vi(w′) =⇒ Vj(w) ≤ Vj(w′) for some j.

This is a notion of internal dominance, since it does not pre-
clude the existence of a Pareto dominating equilibrium played by
an unrelated automaton. Bernheim and Ray (1989) simultaneously
introduced the same notion, calling it internal consistency.

While grim trigger is not weakly renegotiation proof, Example
7.1.4 describes a weakly renegotiation proof equilibrium supporting
mutual effort in the repeated PD.

Stronger notions of renegotiation proofness easily lead to nonex-
istence problems in infinitely repeated games. For finitely repeated
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c s

H 3,3 0,2

L 4,0 2,1

Figure 7.2.1: The product-choice game.

games, renegotiation proofness has a nice characterization (Benoit
and Krishna, 1993).

7.2 Short-Lived Players and Modeling
Competitive Agents

The analysis of the previous section easily carries over to the case
where not all the players are infinitely lived. A short-lived player
lives only one period, and in the infinite-horizon model, is replaced
with a new short-lived player at the end of the period. For example,
a firm may be interacting with a sequence of short-lived customers.

Example 7.2.1. The product-choice game is given by the normal form
in Figure 7.2.1. Player I (row player, a firm) is long-lived, choosing
high (H) or low (L) effort, player II (the column player, a customer) is
short lived, choosing the customized (c) or standardized (s) product.
The set of feasible payoffs is illustrated in Figure 7.2.2.

The two state automaton given in Figure 7.2.3 describes a sub-
game perfect equilibrium for large δ: The action profile Ls is a static
Nash equilibrium, and since wLs is an absorbing state (i.e., the au-
tomaton never leaves the state once entered), we trivially have that
Ls is a Nash equilibrium of the associated one-shot game, gwLs .

Note that V1(wHc) = 3 and V1(wLs) = 2. Since player 2 is short-
lived, he must myopically optimize in each period. The one-shot
game from Corollary 7.1.1 has only one player. The one-shot game
gwHc associated with wHc is given in Figure 7.2.4, and player I finds
H optimal if 3 ≥ 4− 2δ, i.e., if δ ≥ 1/2.

Thus, the profile is a subgame perfect equilibrium if, and only if,
δ ≥ 1/2. «

Example 7.2.2. Consider now the modification of the product-choice
game in Figure 7.2.5. The action profile Ls is no longer a static
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u2

1

2

3

0

−1
1 2 3 4−1 u1

Fp∗

Figure 7.2.2: The set of feasible and individually rational payoffs for the
product-choice game, Example 7.2.1.

wHcw0 wLs
Lc, Ls

Hc,Hs

Figure 7.2.3: The automaton for the equilibrium in Example 7.2.1.

Nash equilibrium, and so Nash reversion cannot be used to disci-
pline player I’s behavior.

The two-state automaton in Figure 7.2.6 describes a subgame
perfect equilibrium. Since player 2 is short-lived, he must myopi-
cally optimize in each period, and he is.

Note that V1(wHc) = 3 and V1(wLs) = (1− δ)0+ δ3 = 3δ. There
are two one-shot games we need to consider. The one-shot game
gwHc associated with wHc is given in Figure 7.2.7, and player I finds
H optimal if

3 ≥ 4− 4δ+ 3δ2 ⇐⇒ 0 ≥ (1− δ)(1− 3δ) ⇐⇒ δ ≥ 1/3.

The one-shot game gwLs associated with wLs is given in Figure
7.2.8, and player I finds L optimal if

3δ ≥ 2− 2δ+ 3δ2 ⇐⇒ 0 ≥ (1− δ)(2− 3δ) ⇐⇒ δ ≥ 2/3.
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c

H (1− δ)3+ δ3

L (1− δ)4+ δ2

Figure 7.2.4: The one-shot game gwHc associated with wHc in Figure 7.2.3.

c s

H 3,3 2,2

L 4,0 0,1

Figure 7.2.5: A modification of the product-choice game.

wHcw0 wLs

Lc, Ls

Lc, Ls

Hc,Hs

Hc,Hs

Figure 7.2.6: The automaton for the equilibrium in Example 7.2.2.

c

H (1− δ)3+ δ3

L (1− δ)4+ 3δ2

Figure 7.2.7: The one-shot game gwHc associated with wHc in the automa-
ton in Figure 7.2.6.

s

H (1− δ)2+ 3δ2

L (1− δ)0+ 3δ

Figure 7.2.8: The one-shot game gwLs associated with wHc in the automa-
ton in Figure 7.2.6.
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Thus, the profile is a subgame perfect equilibrium if, and only if,
δ ≥ 2/3. «

The next example concerns a seller facing a population of small
consumers (so that each consumer is a price taker). Because each
consumer is a price taker, he/she effectively behaves as a short-lived
agent.

Example 7.2.3. In the stage game, the seller chooses quality, “H”
or “L”, and announces a price. The cost of producing H quality is
cH = 2, and the cost of producing L quality is cL = 1.

Demand for the good is given by

x(p) =
{

10− p, if H, and

4− p, if L.

Monopoly pricing: If consumers know the seller is seller low
quality, the monopoly price solves maxp(4 − p)(p − cL), giving a

monopoly price p = 5
2 with monopoly quantity x = 3

2 and profits

πL = 9
4 .

If consumers know the seller is seller high quality, the monopoly
price solves maxp(10 − p)(p − cH), giving a monopoly price p = 6
with monopoly quantity x = 4 and profits πH = 16.

Suppose now the stage game is repeated and quality is only ob-
served after purchase. To model as a game, we assume the seller
publicly chooses the price first, and then chooses quality when con-
sumers make their purchase decisions. (The stage game is effec-
tively a version of the product-choice game preceded by a public
pricing stage.) The action space for the seller is {(p,Q) : p ∈ R+,Q :
R+ → {L,H}}.

There is a continuum of (long-lived) consumers of mass 10, each
consumer buying zero or one unit of the good in each period. Con-
sumer i ∈ [0,10] values one unit of good as follows

vi =
{
i, if H, and

max{0, i− 6}, if L.

The consumers are uniformly distributed on [0,10]. The action
space for consumer i is {s : R+ → {0,1}}, where 1 is buy and 0 is
not buy and the consumer’s choice is a function of the price chosen
by the seller.
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The action profile is ((p,Q), ξ), where ξ(i) is consumer i’s strat-
egy. Write ξi for ξ(i). Consumer i’s payoff function is

ui((p,Q), ξ) =




i− p, if Q(p) = H and ξi(p) = 1,

max{0, i− 6} − p, if Q(p) = L and ξi(p) = 1, and

0, if ξi(p) = 0.

Firm’s payoff function is

π((p,Q), ξ) =(p − cQ(p))x̂(p, ξ)

:=(p − cQ(p))
∫ 10

0
ξi(p)di

=(p − cQ(p))λ{i ∈ [0,10] : ξi(p) = 1},
where λ is Lebesgue measure. (Note that we need to assume that ξ
is measurable.)

Assume the seller only observes x̂(p, ξ) at the end of the period,
so that consumers are anonymous.

Note that x̂(p, ξ) is independent of Q, and that for any p, the
choice L strictly dominatesH (in the stage game) whenever x̂(p, ξ) ≠
0.

If consumer i believes the firm has chosen Q, then i’s best re-

sponse to p is ξi(p) = 1 only if ui((p,Q), ξ) ≥ 0. Let ξQ(p)i (p)
denote the maximizing choice of consumer i when the consumer ob-
serves price p and believes the firm also chose quality Q(p). Then,

ξHi (p) =
{

1, if i ≥ p, and

0, if i < p,

so x(p, ξH) = ∫ 10
p di = max{0,10− p}. Also,

ξLi (p) =
{

1, if i ≥ p + 6, and

0, if i < p + 6,

so x̂(p, ξL) = ∫ 10
p+6 di = max{0,10− (p + 6)} = max{0,4− p}.

The outcome of the unique subgame perfect equilibrium of the
stage game is ((5

2 , L), ξ
L).

Why isn’t the outcome path ((6,H), ξH(6)) consistent with sub-
game perfection in the stage game? Note that there are two dis-
tinct deviations by the firm to consider: an unobserved deviation to
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wHw0 wL
(pL,x)

(pH,x)

(pq,x)

Figure 7.2.9: Grim trigger in the quality game. Note that the transitions are
only a function of observed quality, q ∈ {L,H}.

(6, L), and an observed deviation involving a price different from 6.
In order to deter an observed deviation, we specify that consumers’
believe that, in response to any price different from 6, the firm had
chosen Q = L, leading to the best response ξ̃i given by

ξ̃i(p) =
{

1, if p = 6 and i ≥ p, or p ≠ 6 and i ≥ p + 6,

0, otherwise,

implying aggregate demand

x̂(p, ξ̃) =
{

4, if p = 6,

max{0,4− p}, p ≠ 6.

Clearly, this implies that observable deviations by the firm are not
profitable. Consider then the profile ((6,H), ξ̃): the unobserved de-
viation to (6, L) is profitable, since profits in this case are (10−6)(6−
1) = 20 > 16. Note that for the deviation to be profitable, firm must
still charge 6 (not the best response to ξH ).

In the repeated game, there is a subgame perfect equilibrium
with high quality: buyers believe H will be produced as long as H
has been produced in the past. If ever L is produced, then L is
expected to always be produced in future. See Figure 7.2.9.

It only remains to specify the decision rules:

f1(w) =
{
(6,H), if w = wH , and

(5
2 , L), if w = wL.

and

f2(w) =
{
ξ̃, if w = wH , and

ξL, if w = wL.
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Since the transitions are independent of price, the firm’s price is
myopically optimal in each state.

Since the consumers are small and myopically optimizing, in or-
der to show that the profile is subgame perfect, it remains to verify
that the firm is behaving optimally in each state. The firm value in
each state is V1(wq) = πq, q ∈ {L,H}. Trivially, L is optimal in wL.
Turning to wH , we have

(1− δ)20+ δ9
4
≤ 16 a δ ≥ 16

71
.

There are many other equilibria.
«

Remark 7.2.1 (Short-lived players). We can model the above as a
game between one long-lived player and a sequence of short-lived
players. In the stage game, the firm chooses p, and then the firm and
consumer simultaneously choose quality q ∈ {L,H}, and quantity
x ∈ [0,10], respectively. If the good is high quality, the consumer
receives a utility of 10x−x2/2 from consuming x units. If the good
is of low quality, his utility is reduced by 6 per unit, giving a utility of
4x−x2/2.6 The consumer’s utility is linear in money, so his payoffs
are

uc(Q,p) =


(4− p)x − x2

2 , if q = L, and

(10− p)x − x2

2 , if q = H.

Since the period t consumer is short-lived (a new consumer replaces
him next period), if he expects L in period t, then his best reply is
to choose x = xL(p) := max{4 − p,0}, while if he expects H, his
best reply is choose x = xH(p) := max{10 − p,0}. In other words,
his behavior is just like the aggregate behavior of the continuum of
consumers.

This is in general true: A short-lived player can typically repre-
sent a continuum of long-lived anonymous players.

♦

6For x > 4, utility is declining in consumption. This can be avoided by setting
his utility equal to 4x − x2/2 for x ≤ 4, and equal to 8 for all x > 4. This does not
affect any of the relevant calculations.
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wEw∗w0 wS0
{Ew : w < w∗} or Sw

{Ew : w ≥ w∗}

Figure 7.3.1: Grim Trigger for the employment relationship in Section
7.3.1. The transition fromwEw∗ labelled {Ew : w ≥ w∗}means
any action profile in which the worker exerted effort and the
firm paid at least w∗; the other transition fromwEw∗ occurs if
either the firm underpaid (w < w∗), or the worker shirked (S).

7.3 Applications

7.3.1 Efficiency Wages I

Consider an employment relationship between a worker and a firm.
Within the relationship, (i.e., in the stage game), the worker (player
I) decides whether to exert effort (E) or shirk (S) for the firm (player
II). Effort yields output y for sure, while shirking yields output 0
for sure. The firm chooses a wage w that period. At the end of the
period, the firm observes output, equivalently effort, and the worker
observes the wage. The payoffs in the stage game are given by

uI(aI , aII) =
{

w− e, if aI = E and aII = w,
w, if aI = S and aII = w,

and

uII(aI , aII) =
{
y −w, if aI = E and aII = w,
−w, if aI = S and aII = w.

Suppose
y > e.

Note that the stage game has (S,0) as the unique Nash equilib-
rium, with payoffs (0,0). This can also be interpreted as the payoffs
from terminating this relationship (when both players receive a zero
outside option).

Grim trigger at the wage w∗ is illustrated in Figure 7.3.1.
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Grim trigger is an equilibrium if

w∗ − e ≥ (1− δ)w∗ ⇐⇒ δw∗ ≥ e (7.3.1)

and y −w∗ ≥ (1− δ)y ⇐⇒ δy ≥ w∗. (7.3.2)

Combining the worker (7.3.1) and firm (7.3.2) incentive constraints
yields bounds on the equilibrium wage w∗:

e
δ
≤ w∗ ≤ δy, (7.3.3)

Note that both firm and worker must receive a positive surplus
from the relationship:

w∗ − e ≥ (1− δ)
δ

e > 0 (7.3.4)

and y −w∗ ≥ (1− δ)y > 0. (7.3.5)

Inequality (7.3.1) (equivalently, (7.3.4)) can be interpreted as in-
dicating that w∗ is an efficiency wage: the wage is strictly higher
than the disutility of effort (if workers are in excess supply, a naive
market clearing model would suggest a wage of e). We return to this
idea in Section 7.5.1.

Suppose now that there is a labor market where firms and work-
ers who terminate one relationship can costlessly form a employ-
ment relationship with a new partner (perhaps there is a pool of
unmatched firms and workers who costlessly match).

In particular, new matches are anonymous: it is not possible to
treat partners differently on the basis of behavior of past behavior
(since that is unobserved).

A specification of behavior is symmetric if all firms follow the
same strategy and all workers follow the same strategy in an em-
ployment relationship. To simplify things, suppose also that firms
commit to wage strategy (sequence) at the beginning of each em-
ployment relationship. Grim trigger at a constant wage w∗ satisfy-
ing (7.3.3) is not a symmetric equilibrium: After a deviation by the
worker, the worker has an incentive to terminate the relationship
and start a new one, obtaining the surplus (7.3.4) (as if no deviation
had occurred).

Consider an alternative profile illustrated in Figure 7.3.2. Note
that this profile has the flavor of being “renegotiation-proof.” The
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wE0w0

wEw∗

wN

Sw∗E0

S0

Ew∗

Figure 7.3.2: A symmetric profile for the employment relationship in Sec-
tion 7.3.1, where the firm is committed to paying w∗ in every
period except the initial period while the relationship lasts
(and so transitions are not specified for irrelevant wages). The
state wN means start a new relationship; there are no transi-
tions from this state in this relationship (wN corresponds to
wE0 in a new relationship).

firm is willing to commit at the beginning of the relationship to pay-
ing w∗ in every period (after the initial period, when no wage is paid)
as long as effort is exerted if

y − δw∗ ≥ 0.

The worker has two incentive constraints. In state wE0, the value to
the worker is

−(1− δ)e+ δ(w∗ − e) = δw∗ − e =: VI(wE0).

The worker is clearly willing to exert effort in wE0 if

VI(wE0) ≥ 0× (1− δ)+ δVI(wE0),

that is
VI(wE0) ≥ 0.

The worker is willing to exert effort in wEw∗ if

w∗ − e ≥ (1− δ)w∗ + δVI(wE0)

= (1− δ+ δ2)w∗ − δe,
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which is equivalent to

δw∗ ≥ e ⇐⇒ VI(wE0) ≥ 0.

A critical feature of this profile is that the worker must “invest” in
the relationship: Before the worker can receive the ongoing surplus
of the employment relationship, he/she must pay an upfront cost
so the worker does not have an incentive to shirk in the current
relationship and then restart with a new firm.

If firms must pay the same wage in every period including the
initial period (for example, for legal reasons or social norms), then
some other mechanism is needed to provide the necessary disincen-
tive to separate. Frictions in the matching process (involuntary un-
employment) is one mechanism. For more on this and related ideas,
see Shapiro and Stiglitz (1984); MacLeod and Malcomson (1989);
Carmichael and MacLeod (1997).

7.3.2 Collusion Under Demand Uncertainty

This example is of an oligopoly selling perfect substitutes. The de-
mand curve is given by

Q =ω−min{p1, p2, . . . , pn},

where ω is the state of demand and pi is firm i’s price. Demand
is evenly divided among the lowest pricing firms. Firms have zero
constant marginal cost of production.

The stage game has a unique Nash equilibrium, in which firms
price at 0, yielding each firm profits of 0, which is their minmax
payoff.

In each period, the state ω is an independent and identical draw
from the finite set Ω ⊂ R+, according to the distribution q ∈ ∆(Ω).

The monopoly price is given by pm(ω) := ω/2, with associated
monopoly profits of ω2/4.

We are interested in the strongly symmetric equilibrium in which
firms jointly maximize expected profits. A profile (s1, s2, . . . , sn) is
strongly symmetric if for all histories ht , si(ht) = sj(ht), i.e., after
all histories (even asymmetric ones where firms have behaved dif-
ferently), firms choose the same action.
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Along the equilibrium path, firms set a common price p(ω), and
any deviations are punished by perpetual minmax, i.e., grim trigger.7

Let v∗ be the common expected payoff from such a strategy pro-
file. The necessary and sufficient conditions for grim trigger to be
an equilibrium are, for each state ω,

1
n
(1− δ)p(ω)(ω− p(ω))+ δv∗ ≥ sup

p<p(ω)
(1− δ)p(ω− p)

= (1− δ)p(ω)(ω− p(ω)),
(7.3.6)

where

v∗ = 1
n

∑

ω′∈Ω
p(ω′)(ω′ − p(ω′))q(ω′).

Inequality (7.3.6) can be written as

p(ω)(ω− p(ω)) ≤ δnv∗

(n− 1)(1− δ)
= δ
(n− 1)(1− δ)

∑

ω′∈Ω
p(ω′)(ω′ − p(ω′))q(ω′).

If there is no uncertainty over states (i.e, there exists ω′ such
that q(ω′) = 1), this inequality is independent of states (and the
price p(ω)), becoming

1 ≤ δ
(n− 1)(1− δ) ⇐⇒

n− 1
n

≤ δ. (7.3.7)

Suppose there are two equally likely states, L < H. In order to
support collusion at the monopoly price in each state, we need:

L2

4
≤ δ
(n− 1)(1− δ)2

{
L2

4
+ H

2

4

}
(7.3.8)

and
H2

4
≤ δ
(n− 1)(1− δ)2

{
L2

4
+ H

2

4

}
. (7.3.9)

7Strictly speaking, this example is not a repeated game with perfect monitoring.
An action for firm i in the stage game is a vector (pi(ω))ω. At the end of the period,
firms only observe the pricing choices of all firms at the realized ω. Nonetheless,
the same theory applies. Subgame perfection is equivalent to one-shot optimality:
a profile is subgame perfect if, conditional on each information set (in particular,
conditional on the realizedω), it is optimal to choose the specified price, given the
specified continuation play.
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Since H2 > L2, the constraint in the high state (7.3.9) is the relevant
one, and is equivalent to

2(n− 1)H2

L2 + (2n− 1)H2
≤ δ,

a tighter bound than (7.3.7), since the incentive to deviate is un-
changed, but the threat of loss of future collusion is smaller.

Suppose
n− 1
n

< δ <
2(n− 1)H2

L2 + (2n− 1)H2
,

so that colluding on the monopoly price in each state is inconsistent
with equilibrium.

Since the high state is the state in which the firms have the
strongest incentive to deviate, the most collusive equilibrium sets
p(L) = L/2 and p(H) to solve the following incentive constraint
with equality:

p(H)(H − p(H)) ≤ δ
(n− 1)(1− δ)2

{
L2

4
+ p(H)(H − p(H))

}
.

In order to fix ideas, suppose n(1− δ) > 1. Then, this inequality
implies

p(H)(H − p(H)) ≤ 1
2

{
L2

4
+ p(H)(H − p(H))

}
,

that is,

p(H)(H − p(H)) ≤ L
2

4
= L

2

(
L− L

2

)
.

Note that setting p(H) = L
2 violates this inequality (since H >

L). Since profits are strictly concave, this inequality thus requires a
lower price, that is,

p(H) <
L
2
.

In other words, if there are enough firms colluding (n(1 − δ) >
1), collusive pricing is counter-cyclical! This counter-cyclicality of
prices also arises with more states and a less severe requirement on
the number of firms (Mailath and Samuelson, 2006, §6.1.1).
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7.4 Enforceability, Decomposability, and a
Folk Theorem

This section gives a quick introduction to the Abreu, Pearce, and
Stacchetti (1990) (often abbreviated to APS) method for characteriz-
ing equilibrium payoffs.

Definition 7.4.1. An action profile a′ ∈ A is enforced by the contin-
uation promises γ : A→ Rn if a′ is a Nash equilibrium of the normal
form game with payoff function gγ : A→ Rn, where

gγi (a) = (1− δ)ui(a)+ δγi(a).
A payoff v is decomposable on a set of payoffs V ⊂ Rn if there

exists an action profile a′ enforced by some continuation promises
γ : A→ V satisfying, for all i,

vi = (1− δ)ui(a′)+ δγi(a′).
The payoff v is factorized by the pair (a′, γ), and (a′, γ) is a factor-
ization of v .

The notions of enforceability and decomposition play a central
role in the construction of subgame perfect equilibria. When the
other players play their part of an enforceable profile a′−i, the con-
tinuation promises γi make (enforce) the choice of a′i optimal (in-
centive compatible) for i. If a payoff vector v is decomposable on
V , then it is “one-period credible” with respect to promises in V . If
these promises are themselves decomposable on V , then the payoff
vector v is “two-period credible.” If a set of payoffs is decomposable
on itself, then payoff vector in the set is “infinite-period credible.”
It turns out that subgame perfect equilibrium payoffs characterize
this property.

Fix a stage gameG = {(Ai, ui)} and discount factor δ. Let Ep(δ) ⊂
Fp∗ be the set of pure strategy subgame perfect equilibrium pay-
offs. Problem 7.6.10 asks you to prove the following result.

Theorem 7.4.1. A payoff v ∈ Rn is decomposable on Ep(δ) if, and
only if, v ∈ Ep(δ).
Example 7.4.1 (Repeated prisoner’s dilemma, cont.). From Examples
7.1.1 and 7.1.4, we know that

{(0,0), (3δ− 1,3− δ), (3− δ,3δ− 1), (2,2)} ⊂ Ep(δ)
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wEE wESwSE

ŵEE w0wSS

SE

ES, EE

EE, SS SS, SE

ES

SE, EE

SS, ES

EE

¬EE

Figure 7.4.1: An automaton consistent with the decomposition of v in Ex-
ample 7.4.1.

for δ ≥ 1
3 . Then v = (2 − 3δ + 3δ2,2 + δ − δ2) can be decomposed

on Ep(δ) by EE and γ given by

γ(a) =
{
(3δ− 1,3− δ), a = EE,
(0,0), a ≠ EE,

for δ ≥ 1/
√

3 (there are two incentive constraints to check; verify
that player 1’s is the binding one, and that this yields the indicated
lower bound). Hence, v is a subgame perfect equilibrium payoff for
δ ≥ 1/

√
3 .

There are several automata consistent with this decomposition.
Figure 7.4.1 displays one that builds on the automaton from Exam-
ple 7.1.4. There are simpler ones (it is a good exercise to identify
one). «

There is a well-known “converse” to Theorem 7.4.1:

Theorem 7.4.2. Suppose every payoff v in some bounded setV ⊂ Rn
is decomposable with respect to V . Then, V ⊂ Ep(δ).

The proof of this result can be found in Mailath and Samuelson
(2006) (Theorem 7.4.2 is Proposition 2.5.1). The essential steps ap-
pear in the proof of Lemma 7.4.2 below.

Any set of payoffs with the property described in Theorem 7.4.2
is said to be self-generating. Thus, every set of self-generating payoff
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is a set of subgame perfect equilibrium payoffs. Moreover, the set
of subgame perfect equilibrium payoffs is the largest set of self-
generating payoffs.

The notions of enforceability and decomposability, as well as
Theorem 7.4.2, apply also to games with long and short-lived play-
ers.

The following famous result has a long history in game theory
(its name comes from it being part of the folklore,8 this form of
the result was first proved in Fudenberg and Maskin, 1986). For a
proof, see Proposition 3.8.1 in Mailath and Samuelson (2006). Exam-
ple 7.4.3 illustrates the key ideas.

Theorem 7.4.3 (The Folk Theorem). Suppose Ai is finite for all i and
F∗ has nonempty interior in Rn. For all v ∈ {ṽ ∈ F∗ : ∃v′ ∈
F∗, v′i < ṽi∀i}, there exists a sufficiently large discount factor δ′,
such that for all δ ≥ δ′, there is a subgame perfect equilibrium of the
infinitely repeated game whose average discounted value is v .

Example 7.4.2 (Example 7.2.1, the product-choice game, cont.). Sup-
pose both players 1 and 2 are long lived. For any ε > 0, there is a
subgame perfect equilibrium in which player 1 has a payoff of 32

3−ε.
But, if player 2 is short lived then the maximum payoff that player
1 can receive in any equilibrium is 3 (because player 2 cannot be
induced to play c when player 1 plays L).9 «

Example 7.4.3 (Strongly symmetric folk theorem for the repeated
prisoner’s dilemma, Figure 7.1.1). We restrict attention to strongly
symmetric strategies, i.e., for all w ∈ W , f1(w) = f2(w). When is
{(v, v) : v ∈ [0,2]} a set of equilibrium payoffs? Since we have
restricted attention to strongly symmetric equilibria, we can drop
player subscripts. Note that the set of strongly symmetric equi-
librium payoffs cannot be any larger than [0,2], since [0,2] is the
largest set of feasible symmetric payoffs.

8The term “folk theorem” is now used to describe any result asserting that every
feasible and individually rational payoff is the payoff of some equilibrium. At
times, it is also used to describe a result asserting that that every payoff in some
“large” subset of feasible payoffs is the payoff of some equilibrium.

9The upper bound on pure strategy subgame perfect equilibrium payoffs follows
immediately from the observation that in any such equilibrium, only the profiles
Hc and Ls are played. If the equilibrium involves mixing, observe that in any period
in which player 1 randomizes between H and L, 1 is indifferent between H and L,
and 3 is the greatest payoff that 1 can get from H in that period.
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Two preliminary calculations (it is important to note that these
preliminary calculations make no assumptions about [0,2] being a
set of equilibrium payoffs):

1. Let WEE be the set of player 1 payoffs that could be decom-
posed on [0,2] using EE (i.e.,WEE is the set of player 1 payoffs
that could be enforceably achieved by EE followed by appropri-
ate symmetric continuations in [0,2]). Then v ∈WEE iff

v =2(1− δ)+ δγ(EE)
≥3(1− δ)+ δγ(SE),

for some γ(EE), γ(SE) ∈ [0,2]. The largest value for γ(EE)
is 2 and the smallest value for γ(SE) is 0, so the incentive
constraint implies the smallest value for γ(EE) is (1−δ)/δ, so
that WEE = [3(1− δ), 2]. See Figure 7.4.2 for an illustration.

2. Let W SS be the set of player 1 payoffs that could be decom-
posed on [0,2] using SS. Then v ∈W SS iff

v =0× (1− δ)+ δγ(SS)
≥(−1)(1− δ)+ δγ(ES),

for some γ(SS), γ(ES) ∈ [0,2]. Since the inequality is satisfied
by setting γ(SS) = γ(ES), the largest value for γ(SS) is 2,
while the smallest is 0, and so W SS = [0, 2δ].

Observe that

[0,2] ⊃W SS ∪WEE = [0,2δ]∪ [3(1− δ),2].
Lemma 7.4.1 (Necessity). Suppose [0,2] is the set of strongly sym-
metric strategy equilibrium payoffs. Then,

[0,2] ⊂W SS ∪WEE.

Proof. Suppose v is the payoff of some strongly symmetric strategy
equilibrium s. Then either s0 = EE or SS. Since the continuation
equilibrium payoffs must lie in [0,2], we immediately have that if
s0 = EE, then v ∈ WEE , while if s0 = SS, then v ∈ W SS . But this
implies v ∈W SS∪WEE . So, if [0,2] is the set of strongly symmetric
strategy equilibrium payoffs, we must have

[0,2] ⊂W SS ∪WEE.
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v

3− 3δ

2δ 2

γ

1−δ
δ

2

W SS

v = δγSS

v = 2(1− δ)+ δγEE

v0

0

1

2

3

W EE

Figure 7.4.2: An illustration of the folk theorem. The continuations that
enforce EE are labelled γEE , while those that enforce SS are
labelled γSS . The value v0 is the average discounted value
of the equilibrium whose current value/continuation value is
described by one period of EE, followed by the cycle 1 − 2 −
3−1. In this cycle, play follows EE, (EE, EE, SS)∞. The Figure
was drawn for δ = 2/3; v0 = 98/57.
Most choices of v0 will not lead to a cycle. For example, when
δ is rational, only rational payoffs can be obtained from a
cycle, and almost all payoffs are irrational.
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So, when is
[0,2] ⊂W SS ∪WEE?

This holds if, and only if, 2δ ≥ 3(1− δ) (i.e., δ ≥ 3
5 ).

Lemma 7.4.2 (Sufficiency). If

[0,2] =W SS ∪WEE,

then [0,2] is the set of strongly symmetric strategy equilibrium pay-
offs.

Proof. Fix v ∈ [0,2], and define a recursion as follows: Set γ0 = v ,
and

γ t+1 =
{
γ t/δ if γ t ∈W SS = [0, 2δ], and

(γ t − 2(1− δ))/δ if γ t ∈WEE \W SS = (2δ, 2].

Since [0,2] ⊂ W SS ∪WEE , this recursive definition is well defined
for all t. Moreover, since δ ≥ 3

5 , γt ∈ [0,2] for all t. The recursion
thus yields a bounded sequence of continuations (γ t)t . Associated
with this sequence of continuations is the outcome path {ãt}t :

ã t =
{
EE if γ t ∈WEE \W SS , and

SS if γ t ∈W SS .

Observe that, by construction,

γ t = (1− δ)ui(ãt)+ δγ t+1.

Consider the automaton (W ,w0, f , τ) where

• W = [0,2];
• w0 = v ;

• the output function is

f(w) =
{
EE if w ∈WEE \W SS , and

SS if w ∈W SS , and

• the transition function is

τ(w,a) =




(w − 2(1− δ))/δ if w ∈WEE \W SS and a = f(w),
w/δ if w ∈W SS and a = f(w), and

0, if a ≠ f(w).
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The outcome path implied by this strategy profile is {ãt}t . More-
over,

v = γ0 =(1− δ)ui(ã0)+ δγ1

=(1− δ)ui(ã0)+ δ
{
(1− δ)ui(ã1)+ δγ2

}

=(1− δ)∑T−1
t=0 δtui(ãt)+ δTγT

=(1− δ)∑∞
t=0 δtui(ãt)

(where the last equality is an implication of δ < 1 and the sequence
(γT )T being bounded). Thus, the payoff of this outcome path is
exactly v , that is, v is the payoff of the strategy profile described by
the automaton (W ,w0, f , τ) with initial state w0 = v .

Thus, there is no profitable one-shot deviation from this automa-
ton (this is guaranteed by the constructions of W SS and WEE). Con-
sequently the associated strategy profile is subgame perfect.

See Mailath and Samuelson (2006, §2.5) for much more on this. «

7.5 Imperfect Public Monitoring

7.5.1 Efficiency Wages II

A slight modification of the example from Section 7.3.1.10 As before,
in the stage game, the worker decides whether to exert effort (E)
or to shirk (S) for the firm (player II). Effort has a disutility of e
and yields output y for sure, while shirking yields output y with
probability p, and output 0 with probability 1−p. The firm chooses
a wage w∈ R+. At the end of the period, the firm does not observe
effort, but does observe output.

Suppose
y − e > py

so it is efficient for the worker to exert effort.
The payoffs are described in Figure 7.5.1.
Consider the profile described by the automaton illustrated in

Figure 7.5.2.

10This is also similar to example in Gibbons (1992, Section 2.3.D), but with the
firm also facing an intertemporal trade-off.
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I

E

w ∈ [0, y]

(w− e,y −w)

S

Nature

[p] [1− p]

II

w ∈ [0, y]

(w, y −w)

w ∈ [0, y]

(w,−w)

Figure 7.5.1: The extensive form and payoffs of the stage game for the
game in Section 7.5.1.

wEw∗w0 wS0
{(y,w) : w < w∗} or (0,w)

{(y,w) : w ≥ w∗}

Figure 7.5.2: The automaton for the strategy profile in the repeated game
in Section 7.5.1. The transition from the state wEw∗ labelled
{(y,w) : w ≥ w∗} means any signal profile in which output is
observed and the firm paid at least w∗; the other transition
from wEw∗ occurs if either the firm underpaid (w < w∗), or no
output is observed (0).
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The value functions are

V1(wS0) = 0, V1(wEw∗) = w∗ − e,
V2(wS0) = py, V2(wEw∗) = y −w∗,

In the absorbing state wS0, play is the unique equilibrium of the
stage game, and so incentives are trivially satisfied.

The worker does not wish to deviate in wEw∗ if

V1(wEw∗) ≥ (1− δ)w∗ + δ{pV1(wEw∗)+ (1− p)× 0},
i.e.,

δ(1− p)w∗ ≥ (1− δp)e
or

w∗ ≥ 1− δp
δ(1− p)e =

e
δ
+ p(1− δ)
δ(1− p)e.

To understand the role of the imperfect monitoring, compare
this with the analogous constraint when the monitoring is perfect
(7.3.1), which requires w∗ ≥ e/δ.

The firm does not wish to deviate in wEw∗ if

V2(wEw∗) ≥ (1− δ)y + δpy,
i.e.,

y −w∗ ≥ (1− δ)y + δpy a δ(1− p)y ≥ w∗.

So, the profile is an “equilibrium” if

δ(1− p)y ≥ w∗ ≥ 1− δp
δ(1− p)e.

In fact, it is an implication of the next section that the profile is
a perfect public equilibrium.

7.5.2 Public Perfect Equilibria

As before, the action space for player i is Ai, with typical action
ai ∈ Ai. An action profile is denoted a = (a1, . . . , an). At the end of
each period, rather than observing the action profile a, all players
observe a public signal y taking values in some space Y according
to the distribution Pr{y| (a1, . . . , an)} := ρ(y| a).
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Since the signal y is a possibly noisy signal of the action profile
a in that period, the actions are imperfectly monitored by the other
players. Since the signal is public (and so observed by all players),
the game is said to have public monitoring.

Assume Y is finite.
Player i’s ex post or realized payoff is given by u∗i : Ai × Y →

R. The assumption that each player’s payoff only depends upon
other players’ action through the realized value of the public signal
guarantees that the public signal contains all relevant information
about the play of other players.

Player i’s payoffs do depend upon the behavior of the other play-
ers, since the distribution of the public signal depends upon the
chosen action profile. Player i’s stage game (ex ante) payoff is given
by

ui(a) :=
∑

y∈Y
u∗i (ai, y)ρ(y| a).

Since players have private information (their own past action
choices), a player’s information sets are naturally isomorphic to the
set of their own private histories. As usual, a strategy for a player
specifies an action at every information set (i.e., after every private
history). Verifying that a strategy profile is a Nash equilibrium is a
formidable task in repeated games. As noted in Remark 7.1.3, the
one-shot deviation principle provides a dramatically simpler tech-
nique to verify that a strategy profile is subgame perfect.

Unlike for games with perfect monitoring (see Remark 7.1.1),
there is no continuation subgame induced by any player history.
Nonetheless, we would like to uncover a recursive structure that
would allow us to appeal to a result analogous to Theorem 7.1.3. To
do this, we focus on behavior that only depends on public histories.

The set of public histories is

H := ∪∞t=0Y
t,

with ht := (y0, . . . , yt−1) being a t period history of public signals
(Y 0 := {∅}).

A strategy is public if it specifies the action choice as a function
of only public histories,

si : H → Ai.
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Definition 7.5.1. A perfect public equilibrium (PPE) is a profile of
public strategies s that, after observing any public history ht , speci-
fies a Nash equilibrium for the repeated game, i.e., for all t and all
ht ∈ Y t , s|ht is a Nash equilibrium.

It is worth emphasizing that in Definition 7.5.1, we do not restrict
deviations to public strategies. Nonetheless, if a player does have a
profitable deviation from a public profile, there is a profitable devi-
ation to a public strategy. Moreover, the restriction to public strate-
gies is without loss of generality for pure strategies, which are the
only strategies we will consider (see Problems 7.6.15 and 7.6.16).11

If ρ
(
y|a) > 0 for all y and a, every public history arises with

positive probability, and so every Nash equilibrium in public strate-
gies is a perfect public equilibrium.

7.5.3 Automata

Automaton representation of public strategies: (W ,w0, f , τ), where

• W is set of states,

• w0 is initial state,

• f : W → A is output function (decision rule), and

• τ : W × Y →W is transition function.

As before, Vi(w) is i’s value of being in state w.

Lemma 7.5.1. Suppose the strategy profile s is represented by (W ,w0, f , τ).
Then s is a PPE if, and only if, for all w ∈ W (satisfying w =
τ(w0, ht) for some ht ∈ H), f(w) is a Nash equilibrium of the nor-
mal form game with payoff function gw : A→ Rn, where

gwi (a) = (1− δ)ui(a)+ δ
∑
y
Vi(τ(w,y))ρ(y| a).

See Problem 7.6.17 for the proof (another instance of the one-
shot deviation principle).

11There are examples of mixed equilibria in repeated games of public monitoring
whose behavior cannot be described by public strategies (Mailath and Samuelson,
2006, Section 10.3).
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ȳ
¯
y

E (3−p−2q)
(p−q) − (p+2q)

(p−q)
S 3(1−r)

(q−r) − 3r
(q−r)

Figure 7.5.3: The ex post payoffs for the imperfect public monitoring ver-
sion of the prisoner’s dilemma from Figure 7.1.1.

wEEw0 wSS

¯
y

ȳ

ȳ

¯
y

Figure 7.5.4: The automaton for Example 7.5.2.

Example 7.5.1 (noisy monitoring version of repeated prisoner’s dilemma).
Effort determines output y ∈ {

¯
y, ȳ} stochastically according to the

distribution

Pr{ȳ| a} := ρ(ȳ| a) =




p, if a = EE,

q, if a = SE or ES,

r , if a = SS,

where 0 < q < p < 1 and 0 < r < p.
The ex post payoffs (u∗i ) for each action-signal pair that give rise

to the ex ante payoffs (ui) given in Figure 7.1.1 are given in Figure
7.5.3. «

Example 7.5.2 (One period memory). Consider the following two
state automaton: W = {wEE,wSS},w0 = wEE , f(wEE) = EE, f(wSS) =
SS, and

τ(w,y) =
{
wEE, if y = ȳ,
wSS , if y =

¯
y.

The automaton is presented in Figure 7.5.4.
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Value functions (I can drop player subscripts by symmetry):

V(wEE) = (1− δ) · 2+ δ{pV(wEE)+ (1− p)V(wSS)}
and

V(wSS) = (1− δ) · 0+ δ{rV(wEE)+ (1− r)V(wSS)}.
The automaton describes a PPE if

V(wEE) ≥ (1− δ) · 3+ δ{qV(wEE)+ (1− q)V(wSS)}
and

V(wSS) ≥ (1− δ) · (−1)+ δ{qV(wEE)+ (1− q)V(wSS)}.
Rewriting the incentive constraint at wEE ,

(1− δ) · 2+ δ{pV(wEE)+ (1− p)V(wSS)}
≥ (1− δ) · 3+ δ{qV(wEE)+ (1− q)V(wSS)}

or
δ(p − q){V(wEE)− V(wSS)} ≥ (1− δ).

We can obtain an expression for V(wEE)− V(wSS) without solv-
ing for the value functions separately by differencing the value re-
cursion equations, yielding

V(wEE)− V(wSS) =(1− δ) · 2+ δ{pV(wEE)+ (1− p)V(wSS)}
− δ{rV(wEE)+ (1− r)V(wSS)}

=(1− δ) · 2+ δ(p − r){V(wEE)− V(wSS)},
so that

V(wEE)− V(wSS) = 2(1− δ)
1− δ(p − r),

and so

δ ≥ 1
3p − 2q − r . (7.5.1)

Turning to wSS , we have

δ{rV(wEE)+ (1− r)V(wSS)}
≥ (1− δ) · (−1)+ δ{qV(wEE)+ (1− q)V(wSS)}
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or
(1− δ) ≥ δ(q − r){V(wEE)− V(wSS)},

requiring

δ ≤ 1
p + 2q − 3r

. (7.5.2)

Note that (7.5.2) is trivially satisfied if r ≥ q (make sure you
understand why this is intuitive).

The two bounds (7.5.1) and (7.5.2) on δ are consistent if

p ≥ 2q − r .

The constraint δ ∈ (0,1) in addition requires

3r − p < 2q < 3p − r − 1. (7.5.3)

Solving for the value functions,



V(wEE)

V(wSS)


 =(1− δ)




1− δp −δ(1− p)
−δr 1− δ(1− r)



−1 


2

0




= (1− δ)(
1− δp) (1− δ(1− r))− δ2

(
1− p) r ×


1− δ(1− r) δ

(
1− p)

δr 1− δp







2

0




= (1− δ)
(1− δ) (1− δ (p − r))




2 (1− δ(1− r))
2δr




= 1
1− δ (p − r)




2 (1− δ(1− r))
2δr


 .

«

Example 7.5.3 (Bounds on PPE payoffs). For the one-period memory
automaton from Example 7.5.2, we have for fixed p and r ,

lim
δ→1
V(wEE) = lim

δ→1
V(wSS) = 2r

1− p + r , (7.5.4)
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and, for r > 0,
lim
p→1

lim
δ→1

V(wEE) = 2.

In contrast, grim trigger (where one realization of
¯
y results in

permanent SS) has a limiting (as δ → 1) payoff of 0 (see Problem
7.6.18(a)). Higher payoffs can be achieved by considering more for-
giving versions, such as in Problem 7.6.18(b). Intuitively, as δ gets
large, the degree of forgiveness should also increase.

This raises the question of what is the best payoff that can be
achieved in any strongly symmetric pure strategy public perfect
equilibria. Let v̄δ be the maximum of strongly symmetric pure strat-
egy public perfect equilibrium payoffs.12 Then, in any PPE with pay-
offs v̄δ, EE must be played in the first period and neither player
should have an incentive to play S.13 Letting

¯
vδ be the continuation

value after
¯
y in the equilibrium, we have

v̄δ =2(1− δ)+ δ{pv̄δ + (1− p)
¯
vδ} (7.5.5)

≥3(1− δ)+ δ{qv̄δ + (1− q)
¯
vδ}. (7.5.6)

The inequality (7.5.6) implies

¯
vδ ≤ v̄δ − (1− δ)

δ(p − q).

Substituting into (7.5.5) and simplifying, we obtain

v̄δ ≤ 2− (1− p)
(p − q). (7.5.7)

Thus, independent of the discount factor, the payoff in every
strongly symmetric PPE is bounded away from the payoff from EE.
The imperfection in the monitoring (and restriction to strong sym-
metry) necessarily implies an efficiency loss.

12Since we have not proved that the set of PPE payoffs is compact, we should
define v̄δ as the supremum rather than maximum. The argument that follows can
accommodate defining v̄δ as the supremum at the cost of introducing ε’s at various
points and making the logic opaque. So, I treat v̄δ as a maximum. Moreover, the
set of PPE payoffs is compact (Mailath and Samuelson, 2006, Corollary 7.3.1), so
this is without loss of generality.

13In a strongly symmetric equilibrium, payoffs are higher when the first action
profile is EE.
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Problem 7.6.21 asks you to prove that this upper bound is in
fact tight for large δ (i.e, for sufficiently large δ, there is a strongly
symmetric PPE whose payoff equals the upper bound).

Finally, the upper bound is consistent with (7.5.4) (use (7.5.3)). «

Remark 7.5.1. The notion of PPE only imposes ex ante incentive
constraints. If the stage game has a non-trivial dynamic structure,
such as in Problem 7.6.20, then it is natural to impose additional
incentive constraints.

♦

7.6 Problems

7.6.1. Suppose G := {(Ai, ui)} is an n-person normal form game
and GT is its T -fold repetition (with payoffs evaluated as the
average). Let A :=∏iAi. The strategy profile, s, is history inde-
pendent if for all i and all 1 ≤ t ≤ T − 1, si(ht) is independent
of ht ∈ At (i.e., si(ht) = si(ĥt) for all ht, ĥt ∈ At). Let N(1)
be the set of Nash equilibria of G. Suppose s is history inde-
pendent. Prove that s is a subgame perfect equilibrium if and
only if s(ht) ∈ N(1) for all t, 0 ≤ t ≤ T − 1 and all ht ∈ At
(s(h0) is of course simply s0). Provide examples to show that
the assumption of history independence is needed in both di-
rections.

7.6.2. Prove the infinitely repeated game with stage game given by
matching pennies does not have a pure strategy Nash equilib-
rium for any δ.

7.6.3. Suppose (W ,w0, f , τ) is a (pure strategy representing) finite
automaton with |W| = K. Label the states from 1 to K, so that
W = {1,2, . . . , K}, f : {1,2, . . . , K} → A, and τ : {1,2, . . . , K} ×
A → {1,2, . . . , K}. Consider the function Φ : RK → RK given by
Φ(v) = (Φ1(v),Φ2(v), . . . ,ΦK(v)), where

Φk(v) = (1− δ)ui(f (k))+ δvτ(k,f (k)), k = 1, . . . , K.

(a) Prove that Φ has a unique fixed point. [Hint: Show that Φ
is a contraction.]
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(b) Given an explicit equation for the fixed point of Φ.

(c) Interpret the fixed point.

7.6.4. This problem outlines a direct proof that Ṽi satisfies (7.1.2)
(i.e., of the principle of optimality). For any w ∈ W , denote
by sj(w) player j’s repeated game strategy described by the
automaton (W ,w, f−i, τ).

(a) Prove that player i has a best response to any strategy
profile s−i. That is, if we set

Ṽi(w) := sup
si∈Si

(1− δ)
∞∑

t=0

δtui(a(si, s−i)) = sup
si∈Si

Ui(si, s−i),

prove that the sup can be replaced by a max. [Hint: The
supremum is finite since A is finite. Fix w and let ski be

a strategy satisfying Ui(ski , s−i(w))) > Ṽi(w) − 1/k. Con-

sider the sequence (ski )
∞
k=1. Since Ai is finite, there is a

subsequence on which (ski (∅)) is constant. Extract fur-
ther similar subsubsequences by period.]

(b) For all w ∈W , denote by s̃i(w) a best response to s−i(w)
(whose existence is guaranteed by part (a)), so that

Ṽi(w) = (1− δ)
∞∑

t=0

δtui(a(s̃i(w), s−i(w))).

Prove that for any w ∈W ,

Ṽi(w) ≥ max
ai∈Ai

{
(1− δ)ui(ai, f−i(w))+ δṼi(τ(w, (ai, f−i(w))))

}
.

(c) Complete the verification that that Ṽi satisfies (7.1.2).

7.6.5. A different proof (that can be generalized to more general in-
finite horizon games without a recursive structure) of the hard
direction of Theorem 7.1.3 is the following:

Suppose (s1, . . . , sn) (with representing automaton (W ,w0, f , τ))
is not subgame perfect.
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(a) E S

E 1,1 − ℓ,1+ g
S 1+ g,−ℓ 0,0

(b) E S

E 2,2 −1,5

S 5,−1 0,0

Figure 7.6.1: Two prisoner’s dilemmas. (a) A general prisoner’s dilemma,
where ℓ > 0 and g > 0. (b) The prisoner’s dilemma for Prob-
lem 7.6.8.

(a) Prove there is a T , a history h̃t′ , and a player i with prof-
itable deviation s̄i that only disagrees with si |h̃t′ for the
first T periods.

(b) Prove that either player i has a one shot deviation from s̄i,
or player i has a different “T − 1”-period deviation. (The
proof is then completed by induction).

7.6.6. Prove that the profile described in Example 7.1.5 is not a Nash
equilibrium if δ ∈ [1/3, 1/2). [Hint: What is the payoff from
always playing A?] Prove that it is Nash if δ ∈ [1/2, 1).

7.6.7. Suppose two players play the infinitely-repeated prisoner’s
dilemma displayed in Figure 7.6.1(a).

(a) For what values of the discount factor δ is grim trigger a
subgame perfect equilibrium?

(b) Describe a simple automaton representation of the behav-
ior in which player I alternates between E and S (beginning
with E), player II always plays E, and any deviation results
in permanent SS. For what parameter restrictions is this a
subgame perfect equilibrium?

(c) For what parameter values of ℓ, g, and δ is tit-for-tat a
subgame perfect equilibrium?

7.6.8. In this question, we reconsider the profile given in Figure
7.1.5, but for the prisoner’s dilemma given in Figure 7.6.1(b).

(a) Prove that the profile given in Figure 7.1.5 is not a subgame
perfect equilibrium for any δ.
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wEEw0

wES

ŵES

wSE

ŵSE

SE

EE, SS

SS, SE

SS, SE

ES, EE

ES, EE

ESSE, EE

SE, EE

SS, ES

SS, ES

Figure 7.6.2: The automaton for Problem 7.6.8.

L R

U 2,2 x,0

D 0,5 1,1

Figure 7.6.3: The game for Problem 7.6.9.

(b) Prove that the profile given in Figure 7.6.2 is a subgame
perfect equilibrium for large δ. What is the appropriate
bound for δ?

7.6.9. Suppose the game in Figure 7.6.3 is infinitely repeated: Let
δ denote the common discount factor for both players and
consider the strategy profile that induces the outcome path
DL,UR,DL,UR, · · · , and that, after any unilateral deviation by
the row player specifies the outcome pathDL,UR,DL,UR, · · · ,
and after any unilateral deviation by the column player, spec-
ifies the outcome path UR,DL,UR,DL, · · · (simultaneous de-
viations are ignored, i.e., are treated as if neither player had
deviated).

(a) What is the simplest automaton that represents this strat-
egy profile?
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(b) Suppose x = 5. For what values of δ is this strategy profile
subgame perfect?

(c) Suppose now x = 4. How does this change your answer to
part (b)?

(d) Suppose x = 5 again. How would the analysis in part (b)
be changed if the column player were short-lived (lived for
only one period)?

7.6.10. Fix a stage game G = {(Ai, ui)} and discount factor δ. Let
Ep(δ) ⊂ Fp∗ be the set of pure strategy subgame perfect equi-
librium payoffs.

(a) Prove that every payoff v ∈ Ep(δ) is decomposable on
Ep(δ).

(b) Suppose γ : A → Ep(δ) enforces the action profile a′. De-
scribe a subgame perfect equilibrium in which a′ is played
in the first period.

(c) Prove that every payoff v ∈ Fp∗ decomposable on Ep(δ)
is in Ep(δ).

7.6.11. Consider the prisoner’s dilemma from Figure 7.1.1. Suppose
the game is infinitely repeated with perfect monitoring. Re-
call that a strongly symmetric strategy profile (s1, s2) satisfies
s1(ht) = s2(ht) for all ht . Equivalently, its automaton repre-
sentation satisfies f1(w) = f2(w) for all w. Let W = {δv,v},
v > 0 to be determined, be the set of continuation promises.
Describe a strongly symmetric strategy profile (equivalently,
automaton) whose continuation promises come fromW which
is a subgame perfect equilibrium for some values of δ. Cal-
culate the appropriate bounds on δ and the value of v (which
may or may not depend on δ).

7.6.12. Describe the five state automaton that yields v0 as a strongly
symmetric equilibrium payoff with the indicated cycle in Figure
7.4.2.

7.6.13. Consider the (asymmetric) prisoner’s dilemma in Figure 7.6.4.
Suppose the game is infinitely repeated with perfect monitor-
ing. Prove that for δ < 1

2 , the maximum (average discounted)
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E S

E 1,2 −1,3

S 2,−4 0,0

Figure 7.6.4: The game for Problem 7.6.13.

L R

T 2,3 0,2

B 3,0 1,1

Figure 7.6.5: The game for Problem 7.6.14.

payoff to player 1 in any pure strategy subgame perfect equilib-
rium is 0, while for δ = 1

2 , there are equilibria in which player

1 receives a payoff of 1. [Hint: First prove that, if δ ≤ 1
2 , in

any pure strategy subgame perfect equilibrium, in any period,
if player 2 chooses E then player 1 chooses E in that period.]

7.6.14. Consider the stage game in Figure 7.6.5, where player 1 is
the row player and 2, the column player (as usual).

(a) Suppose the game is infinitely repeated, with perfect mon-
itoring. Players 1 and 2 are both long-lived, and have
the same discount factor, δ ∈ (0,1). Construct a three
state automaton that for large δ is a subgame perfect equi-
librium, and yields a payoff to player 1 that is close to
21

2 . Prove that the automaton has the desired properties.
[Hint: One state is only used off the path-of-play.]

(b) Now suppose that player 2 is short-lived (but maintain the
assumption of perfect monitoring, so that the short-lived
player in period t knows the entire history of actions up
to t). Prove that player 1’s payoff in any pure strategy
subgame perfect equilibrium is no greater than 2 (the re-
striction to pure strategy is not needed—can you prove
the result without that restriction?). For which values of
δ is there a pure strategy subgame perfect equilibrium in
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which player 1 receives a payoff of precisely 2?

7.6.15. Suppose all players other than i are playing a public strategy
in a repeated finite game of imperfect public monitoring. Prove
that player i has a public strategy as a best reply. [Hint: Prove
that player i faces a Markov decision problem with states given
by the public histories.]

7.6.16. Prove that every pure strategy in a repeated game of imper-
fect public monitoring has a realization equivalent public pure
strategy.

7.6.17. Fix a repeated finite game of imperfect public monitoring (as
usual, assume Y is finite). Say that a player has a profitable one-
shot deviation from the public strategy (W ,w0, f , τ) if there is
some history ht ∈ Y t and some action ai ∈ Ai such that (where
w = τ(w0, ht))

Vi(w) < (1−δ)ui(ai, f−i(w))+δ
∑
y
Vi(τ(w,y))ρ(y | (ai, f−i(w))).

(a) Prove that a public strategy profile is a perfect public equi-
librium if and only if there are no profitable one-shot de-
viations. (This is yet another instance of the one-shot de-
viation principle).

(b) Prove Lemma 7.5.1.

7.6.18. Consider the prisoner’s dilemma game in Example 7.5.1.

(a) For what parameter values is the grim-trigger profile an
equilibrium?

(b) An example of a forgiving grim-trigger profile is described
by the automaton (Ŵ , ŵ0, f̂ , τ̂), where Ŵ = {ŵEE, ŵ′

EE, ŵSS},
ŵ0 = ŵEE , f̂ (wa) = a, and

τ̂(w,y) =




ŵEE, if w = ŵEE or ŵ′
EE , and y = ȳ ,

ŵ′
EE, if w = ŵEE and y =

¯
y ,

ŵSS , otherwise.

For what parameter values is this forgiving grim-trigger
profile an equilibrium? Compare the payoffs of grim trig-
ger and this forgiving grim trigger when both are equilib-
ria.
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h ℓ

H 4,3 0,2

L x,0 3,1

Figure 7.6.6: The game for Problem 7.6.19.

7.6.19. Player 1 (the row player) is a firm who can exert either high
effort (H) or low effort (L) in the production of its output.
Player 2 (the column player) is a consumer who can buy ei-
ther a high-priced product, h, or a low-priced product ℓ. The
actions are chosen simultaneously, and payoffs are given in
Figure 7.6.6. Player 1 is infinitely lived, discounts the future
with discount factor δ, and plays the above game in every pe-
riod with a different consumer (i.e., each consumer lives only
one period). The game is one of public monitoring: while the
actions of the consumers are public, the actions of the firm are
not. Both the high-priced and low-priced products are experi-
ence goods of random quality, with the distribution over qual-
ity determined by the effort choice. The consumer learns the
quality of the product after purchase (consumption). Denote
by ȳ the event that the product purchased is high quality, and
by

¯
y the event that it is low quality (in other words, y ∈ {

¯
y, ȳ}

is the quality signal). Assume the distribution over quality is
independent of the price of the product:

Pr(ȳ | a) =
{
p, if a1 = H,

q, if a1 = L,

with 0 < q < p < 1.

(a) Describe the ex post payoffs for the consumer. Why can
the ex post payoffs for the firm be taken to be the ex ante
payoffs?

(b) Suppose x = 5. Describe a perfect public equilibrium
in which the patient firm chooses H infinitely often with
probability one, and verify that it is an equilibrium. [Hint:
This can be done with one-period memory.]
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(c) Suppose now x ≥ 8. Is the one-period memory strategy
profile still an equilibrium? If not, can you think of an
equilibrium in which H is still chosen with positive proba-
bility?

7.6.20. A financial manager undertakes an infinite sequence of trades
on behalf of a client. Each trade takes one period. In each pe-
riod, the manager can invest in one of a large number of risky
assets. By exerting effort (a = E) in a period (at a cost of e > 0),
the manager can identify the most profitable risky asset for
that period, which generates a high return of R = H with prob-
ability p and a low return R = L with probability 1 − p. In
the absence of effort (a = S), the manager cannot distinguish
between the different risky assets. For simplicity, assume the
manager then chooses the wrong asset, yielding the low return
R = L with probability 1; the cost of no effort is 0. In each
period, the client chooses the level of the fee x ∈ [0, x̄] to be
paid to the financial manager for that period. Note that there
is an exogenous upper bound x̄ on the fee that can be paid in
a period. The client and financial manager are risk neutral, and
so the client’s payoff in a period is

uc(x,R) = R − x,
while the manager’s payoff in a period is

um(x,a) =
{
x − e, if a = E,
x, if a = S.

The client and manager have a common discount factor δ. The
client observes the return on the asset prior to paying the fee,
but does not observe the manager’s effort choice.

(a) Suppose the client cannot sign a binding contract commit-
ting him to pay a fee (contingent or not on the return). De-
scribe the unique sequentially rational equilibrium when
the client uses the manager for a single transaction. Are
there any other Nash equilibria?

(b) Continue to suppose there are no binding contracts, but
now consider the case of an infinite sequence of trades.
For a range of values for the parameters (δ, x̄, e, p, H, and
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L), there is a perfect public equilibrium in which the man-
ager exerts effort on behalf of the client in every period.
Describe it and the restrictions on parameters necessary
and sufficient for it to be an equilibrium.

(c) Compare the fee paid in your answer to part (b) to the fee
that would be paid by a client for a single transaction,

i. when the client can sign a legally binding commitment
to a fee schedule as a function of the return of that
period, and

ii. when the client can sign a legally binding commitment
to a fee schedule as a function of effort.

(d) Redo part (b) assuming that the client’s choice of fee level
and the manager’s choice of effort are simultaneous, so
that the fee paid in period t cannot depend on the return
in period t. Compare your answer with your answer to
part (b).

7.6.21. In this question, we revisit the partnership game of Example
7.5.1. Suppose 3p − 2q > 1. This question asks you to prove
that for sufficiently large δ, any payoff in the interval [0, v̄], is
the payoff of some strongly symmetric PPE equilibrium, where

v̄ = 2− (1− p)
(p − q),

and that no payoff larger than v̄ is the payoff of some strongly
symmetric pure strategy PPE equilibrium. Strong symmetry im-
plies it is enough to focus on player 1, and the player subscript
will often be omitted.

(a) The action profile SS is trivially enforced by any constant
continuation γ ∈ [0, γ̄] independent of y . Let W SS be the
set of values that can be obtained by SS and a constant
continuation γ ∈ [0, γ̄], i.e.,

W SS = {(1− δ)u1(SS)+ δγ : γ ∈ [0, γ̄]} .

Prove that W SS = [0, δγ̄]. [This is almost immediate.]
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(b) Recalling Definition 7.4.1, say that v is decomposed by EE
on [0, γ̄] if there exists γȳ , γ¯

y ∈ [0, γ̄] such that

v =(1− δ)u1(EE)+ δ{pγȳ + (1− p)γ¯
y} (7.6.1)

≥(1− δ)u1(SE)+ δ{qγȳ + (1− q)γ¯
y}. (7.6.2)

(That is, EE is enforced by the continuation promises γȳ , γ¯
y

and implies the value v .) Let WEE be the set of values
that can be decomposed by EE on [0, γ̄]. It is clear that
WEE = [γ′, γ′′], for some γ′ and γ′′. Calculate γ′ by using
the smallest possible choices of γȳ and γ¯

y in the interval
[0, γ̄] to enforce EE. (This will involve having the inequal-
ity (7.6.2) holding with equality.)

(c) Similarly, give an expression for γ′′ (that will involve γ̄)
by using the largest possible choices of γȳ and γ¯

y in the
interval [0, γ̄] to enforce EE. Argue that δγ̄ < γ′′.

(d) As in Example 7.4.3, we would like all continuations in
[0, γ̄] to be themselves decomposable using continuations
in [0, γ̄], i.e., we would like

[0, γ̄] ⊂W SS ∪WEE.

Since δγ̄ < γ′′, we then would like γ̄ ≤ γ′′. Moreover,
since we would like [0, γ̄] to be the largest such interval,
we have γ̄ = γ′′. What is the relationship between γ′′ and
v̄?

(e) For what values of δ do we have [0, γ̄] =W SS ∪WEE?

(f) Let (W ,w0, f , τ) be the automaton given by W = [0, v̄],
w0 ∈ [0, v̄],

f(w) =
{
EE, if w ∈WEE,
SS, otherwise,

and

τ(w,y) =
{
γy(w), if w ∈WEE ,

w/δ, otherwise,

where γy(w) solves (7.6.1)–(7.6.2) for w = v and y =
ȳ,

¯
y . For our purposes here, assume that V(w) = w,

that is, the value to a player of being in the automaton
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wEEw0 wSS
y (1− β)

(β)

y

Figure 7.7.1: The automaton for Problem 7.7.1. After the realization of y ,
the automaton remains in wEE with probability β ∈ [0,1],
and transts to wSS with complementary probability 1− β.

with initial state w is precisely w. (From the argument of
Lemma 7.4.2, this should be intuitive.) Given this assump-
tion, prove that the automaton describes a PPE with value
w0.

7.7 Additional Problems

7.7.1. We return to prisoner’s dilemma game of Example 7.5.1, but
give players access to a public correlating device. In the begin-
ning of each period, both players observe the public realiza-
tion z of a payoff-irrelevant random variable, independently
and uniformly drawn from [0,1]. Players can use this public
correlating device to correlate their continuation play, as illus-
trated in Figure 7.7.1. The behavior in this automaton can be
implemented by, for example, specifying that after the realiza-
tion of (y, z), the automaton remains in wEE if with z < β, and
transits to wSS if z ≥ β.

Prove that the bound in (7.5.7) also applies to strongly symmet-
ric PPE payoffs when players have access to a public correlating
device, and that the bound is achieved for patient players.



Chapter 8

Topics in Dynamic Games

8.1 Dynamic Games and Markov Perfect
Equilibria

As usual, we have n players. The action space for player i is Ai.
The new ingredient is that there is a set of game (or Markov) states
S, with typical state s ∈ S, which affects payoffs. In general, the
action space may be state dependent (as in Example 8.1.1), but it
simplifies notation to leave this dependence implicit.

Player i’s flow payoff is given by

ui : S ×A→ R,

with flow payoffs discounted at rate δ ∈ (0,1).
States vary over time, with the state transition given by

q : S ×A→ S,

and an initial state s0 ∈ S. (More generally, we can have random
transitions, so that q maps from S ×A into ∆(S), but deterministic
transitions will suffice for an introduction.)

Example 8.1.1. Suppose players 1 and 2 fish from a common area.
In each period t, there is a stock of fish of size st ∈ R+. This is the
state.

In period t, player i attempts to extract ati ∈ [0, st] units of fish.
In particular, if player i attempts to extract ati , then player i actually

249
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extracts

âti =


ati , if at1 + at2 ≤ st,
ati

at1+at2
st, if at1 + at2 > st.

Player i receives flow payoff

ui(s, a) = log âi, ∀(s, a).
The transition rule is

q(s, a) = 2 max{0, s − a1 − a2},
that is, it is deterministic and doubles any leftover stock after ex-
traction. The initial stock is fixed at some value s0. «

The state is public and there is perfect monitoring of actions, so
the history to period t is

ht = (s0, a0, s1, a1, . . . , st−1, at−1, st) ∈ (S ×A)t × S.
Let Ht denote the set of all feasible t-period histories (so that sτ is
consistent with (sτ−1, aτ−1) for all 1 ≤ τ ≤ t).1 A pure strategy for i
is a mapping

σi : ∪tHt → Ai.
As for repeated games, every strategy profile σ can be repre-

sented as automaton (W ,w0, f , τ), where the only change is that
the transition function has an enlarged domain, so that

τ : W ×A× S →W ,
where the triple (w,a, s) ∈ W × A × S represents, in period t, the
automaton state in period t, the action profile in period t, and the
incoming game state s in period t+1. Note that even for our case of
deterministic transitions, the space S is needed, since the automa-
ton state in period t may not identify the period t game state.2

For any history ht , write the function that identifies the last state
st by s(ht). Let G(s) denote the dynamic game with initial state s.
As usual, we have:

1For the case of deterministic transitions q, this simply means sτ = q(sτ−1, at−1),
and so in this case, the states other than s0 are redundant. If transitions are
stochastic, then sτ should lie in the support of q(sτ−1, at−1), and the states are
not redundant.

2Since under deterministic transitions, sτ = q(sτ−1, at−1), we can drop the de-
pendence on states by taking W as the set of all histories of action profiles. This
trick does not work for simpler automata.
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Definition 8.1.1. The profile σ is a subgame perfect equilibrium if
for all ht , σ |ht := (σ1|ht , . . . , σn|ht) is a Nash equilibrium of the dy-
namic game G(s(ht)).

Different histories that lead to the same state are effectively “pay-
off equivalent.” Loosely, a strategy is said to be Markov if at different
histories that are effectively payoff equivalent, the strategy specifies
identical behavior. See Maskin and Tirole (2001) for a discussion
of why this may be a reasonable restriction. There are no general
strong foundations for the restriction, though it is possible to pro-
vide one in some settings (Bhaskar, Mailath, and Morris, 2013).

Definition 8.1.2. A strategy σi : ∪tHt → Ai is Markov if for all histo-
ries ht and ĥt , if s(ht) = s(ĥt), then

σi(ht) = σi(ĥt).
If the above holds for histories ht and ĥτ of possibly different length
(so that t ≠ τ is allowed), the strategy is stationary.

A profile is stationary Markov if it has an automaton representa-
tion (W ,w0, f , τ) in which W = S and τ(w,a, s) = s.

Restricting equilibrium behavior to Markov strategies:

Definition 8.1.3. A Markov perfect equilibrium (MPE) is a profile of
Markov strategies that is a subgame perfect equilibrium.

A repeated game has a trivial set of Markov states (since dif-
ferent histories lead to strategically equivalent subgames, see Re-
mark 7.1.1), and the only Markov perfect equilibria involve specify-
ing static Nash equilibria in each period.

Note that while there is a superficial similarity between
Markov states s and automata states w used in the theory
of repeated games, they are very different. A Markov state is
part of the description of the environment, while an automa-
ton state is part of the description of a representation of a
particular strategy profile (behavior). Markov states are fixed
as we consider different behaviors (this is why the restric-
tion to Markov strategies has bite), while automaton states
are not.
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Example 8.1.2 (Example 8.1.1 continued). Fix a symmetric station-
ary MPE. Let V(s) denote the common equilibrium value from the
state s (in an MPE, this must be independent of other aspects of the
history).

The common equilibrium strategy is a1(s) = a2(s).
It will turn out that in equilibrium, a1(s) + a2(s) < s, so we will

ignore the rationing rule (see Problem 8.4.1(a)), and assume âi = ai.
One-shot deviation principle holds here, and so for each player i,
ai(s) solves, for any s ∈ S, the Bellman equation:

ai(s) ∈ arg max
ãi∈Ai, ãi≤s

(1− δ) log(ãi)+ δV(max{0,2(s − ãi − aj(s))}).

Assuming V is differentiable, that the optimal choices satisfy

s > ãi + aj(s) > 0,

and imposing ãi = aj(s) = a(s) after differentiating, the implied
first order condition is

(1− δ)
ai(s)

= 2δV ′(2(s − 2ai(s))).

To find an equilibrium, suppose

ai(s) = ks,
for some k. Then we have

st+1 = 2(st − 2kst) = 2(1− 2k)st.

Given an initial stock s, in period t, ati = k[2(1− 2k)]ts, and so

V(s) =(1− δ)
∞∑

t=0

δt log{k[2(1− 2k)]ts}

=(1− δ)
∞∑

t=0

δt log{k[2(1− 2k)]t} + log s.

This implies V is indeed differentiable, with V ′(s) = 1/s.
Solving the first order condition, k = 1−δ

2−δ , and so

ai(s) = 1− δ
2− δs.
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E2 S2

E1 2,2 −x,3
S1 3,−x 0,0

Figure 8.1.1: The stage game for Example 8.1.3, where x > 0.

The MPE is not Pareto efficient (see Problem 8.4.3). If the play-
ers are sufficiently patient, the Pareto efficient outcome can be sup-
ported as a subgame perfect equilibrium (again, see Problem 8.4.3).

Finally, there is also a symmetric MPE in which ai(s) = s for all
s. «

Example 8.1.3 (Asynchronous move games). Consider the repeated
prisoner’s dilemma, but where player 1 moves in odd periods only
and player 2 moves in even periods only. The game starts with E1

exogenously and publicly specified for player 1. The stage game is
given in Figure 8.1.1.

This fits into the above formulation of a dynamic game, with
S = {E1, S1, E2, S2}, s0 = E1,

q(s, a) =
{
a1, if s ∈ {E2, S2},
a2, if s ∈ {E1, S1},

u1(s, a) =
{
g1(a1, s), if s ∈ {E2, S2},
g1(s, a2), if s ∈ {E1, S1},

where gi describes the stage game payoffs from the PD, and

u2(s, a) =
{
g2(s, a2), if s ∈ {E1, S1},
g2(a1, s), if s ∈ {E2, S2}.

In particular, when the current state is player 1’s action (i.e., we
are in an even period), 1’s choice is irrelevant and can be ignored.3

Grim trigger is

σGTi (ht) =
{
Ei, if ht = E1 or always E,
Si, otherwise.

3In this formulation, strategies in the infinite-horizon game should not depend
on the irrelevant choice.
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Need to check two classes of information sets: when players are
supposed to play Ei, and when they are supposed to play Si (apply-
ing one-shot optimality):

1. Optimality of Ei after all E’s:

2 ≥3(1− δ)+ δ× 0

⇐⇒ δ ≥ 1
3
.

2. The optimality of Si after any S1 or S2 is true for all δ: If the
current state is Sj , then

0 ≥ (−x)(1− δ)+ δ× (−x)(1− δ)+ δ2 × 0.

If the current state is Ej , then

3(1− δ)+ δ× 0 ≥ (2)(1− δ)+ δ× (−x)(1− δ)+ δ2 × 0.

This equilibrium is not an equilibrium in Markov strategies (and
so is not an MPE).

Supporting effort using Markov pure strategies requires a “tit-
for-tat” like behavior:

σ̂i(ht) =
{
Ei, if st = Ej,
Si, if st = Sj. (8.1.1)

For t ≥ 1, everything is symmetric. The value when the current
state is Ej is

Vi(Ej) = 2,

while the payoff from a one-shot deviation is

3(1− δ)+ δ× 0 = 3(1− δ),
and so the deviation is not profitable if (as before) δ ≥ 1

3 .
The value when the current state is Sj is

Vi(Sj) = 0,

while the payoff from a one-shot deviation is (since under the Markov
strategy, a deviation to Ei triggers perpetual E1E2; the earlier devia-
tion is “forgiven”)

−x(1− δ)+ δ× 2 = (2+ x)δ− x.
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The deviation is not profitable if

(2+ x)δ− x ≤0

⇐⇒ δ ≤ x
2+ x .

Note that
x

2+ x ≥
1
3
⇐⇒ x ≥ 1.

Thus, σ̂ is an MPE (inducing the outcome path (E1E2)∞) if x ≥ 1
and

1
3
≤ δ ≤ x

2+ x . (8.1.2)

«

The restriction to Markov strategies simplifies the characteriza-
tion of equilibrium behavior and the additional imposition of perfec-
tion further simplifies matters, since it delivers (as usual) a recursive
structure. However, the large state spaces common in empirical ap-
plications often lead to infeasibly large numbers of computations
(which also raise questions as to the plausibility of such equilib-
ria). One response is to weaken the solution concept in a similar
manner that self-confirming equiibrium weakens Nash equilibrium.
For a discussion of this, see Fershtman and Pakes (2012) and Pakes
(2016).

8.2 Disappearance of Monopoly Power and the
Coase Conjecture

A seller and buyer are bargaining over a potential sale. In each
period, the seller makes an offer that the buyer accepts or rejects. If
the buyer accepts, the game is over, and if the the buyer rejects, play
moves to the next period, and the seller makes a new offer. Game is
described as a bargaining game of one-sided offers.

The seller’s cost (value) is publicly known and equals zero.
The buyer’s value for the good v is known only to the buyer, and

is uniformly distributed on [0,1].
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8.2.1 One and Two Period Example

In the one-period game, the seller is making a take-it-or-leave-it offer
of p. The buyer accepts the offer of p if v > p and rejects if v < p.

The seller chooses p to maximize

p Pr{sale} = p(1− p),
i.e., chooses p = 1/2, for a payoff of 1/4. It turns out that the seller
can do no better, no matter what game the seller designs (i.e., this
is the optimal seller mechanism; this is easily shown using standard
mechanism design techniques, see Section 10.3). A critical feature
of the optimal seller mechanism is that the seller commits to not
making any further sales (something that is guaranteed in the one-
period game).

Suppose now there are two periods, with common discount fac-
tor δ ∈ (0,1), and no seller commitment. If the seller chose p0 =
1/2 in the first period, and buyers with v > 1/2 buy in period 0,
then buyers with value v ∈ [0,1/2] are left. The lack of seller com-
mitment means that, when there is no sale in the first period, the
seller finds it optimal to try again and sell to the buyer at a price
p1 = 1/4 (since this is the last period, there is no further issue of
commitment). But then buyer v = 1/2 strictly prefers to wait till
period 1, and so by continuity so do some buyers with v > 1/2.

Thus, the statically optimal price is not an equilibrium price in
the first period, because the seller cannot commit to not trying to
make a sale in the second period if no sale occurred in the inital
period.

The analysis of the two-period game is straightforward, but we
first must be more careful (explicit) about the equilibrium concept.
We model the two-period game as a Bayesian game. A strategy for
the seller is the pair (p0, σs), where p0 ∈ R+ is the price in period
0 and σs : R+ → R+ specifies the period 1 price after any rejected
period 0 price (the game ends after acceptance). A strategy for the
buyer of type v ∈ [0,1] is the pair (σ 0

v , σ 1
v), where σ 0

v : R+ → {A,R}
specifies accept (A) or reject (R), in period 0 as a function of the
period 0 price and σ 1

v : R2+ → {A,R} specifies accept or reject in
period 1 as a function of the rejected period 0 price and the period
1 price.

The notion of Bayes-Nash equilibrium is clear: the seller and ev-
ery buyer type are each playing a best reply to the behavior of the
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players. For the seller, this means choosing an optimal sequence of
prices, given the accept-reject behavior of the buyers. For the buyer
of type v , this means optimally accepting or rejecting the initial ex-
pected price, given the second period price the buyer expects, and if
optimally rejecting the initial price, optimally accepting or rejecting
the expected period 1 price.

What about sequential rationality (perfect Bayesian equilibrium)?
We first require the buyer of type v accept any period 1 price strictly
less than v and reject any period 1 price strictly larger than v . In
period 1, the only possible out of equilibrium information set for the
seller if he had not deviated in period 0, is that in the equilibrium,
all buyers were supposed to accept p0, and yet the price is rejected.
In that event, we require the seller maximize his expected payoff
given some belief over buyer valuations (this turns out not to be an
issue, since there is always some type who will reject in the initial
period).

Finally, we need to consider the possibility that the seller devi-
ated in the initial period. Buyers should respond optimally, given
their beliefs of the continuation play of the seller. The optimal con-
tinuation play of the seller depends on how the seller believes the
buyers will respond (and on the seller beliefs over the buyer types)!

Suppose the seller offers p0 in the initial period. While this set-
ting is best thought of as a Bayesian game, this two period game
is strategically equivalent to the game where Nature determines the
buyer’s type after the initial price has been chosen.4 In that ex-
tensive form, the Nash equilibrium constraints in the subgame with
root p0 capture exactly the restrictions we want for perfect Bayesian
equilibria. Note first that all buyers reject p0 > 1, so we can restrict
attention to p0 ∈ [0,1]. Fix an equilibrium of this subgame and
suppose buyers v < κ don’t buy in period 0. Then, p1 = κ/2 in
that equilibrium. If 0 < κ < 1, then κ should be indifferent between

4The issue this specification (trick) deals with is the appropriate specification
of seller beliefs after the seller deviates. In particular, it is natural to require that
the seller still update beliefs using Bayes’ rule after a deviation, but almost PBE
does not require this (Problem 5.4.9 illustrates). This trick will not work for longer
horizons and periods other than the initial period. In that case, as we will do in
Section 8.2.2, the perfect Bayesian restrictions need to be imposed directly.
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purchasing in period 0 and period 1, so that

κ − p0 = δ(κ − p1)
= δκ/2

=⇒ κ = 2p0

2− δ =: κ(p0).

Thus if p0 ∈ (0,1), the unique continuation play is that buyers
with value strictly greater than κ(p0) accept the offer, buyers with
value strictly less than κ(p0) reject the offer, and receive an offer
of κ(p0)/2 in the last period. It doesn’t matter what we specify for
buyer with value v = κ(p0) since he is indifferent and the seller
assigns that type zero probability. It is also easy to see that in equi-
librium, an initial offer of p0 = 0 must be accepted by almost all
buyers. (So, for a continuum of types, the equilibrium behavior in
the subgame turns out to be simple. It is more subtle with discrete
types, see Problem 8.4.6.)

Since we have a unique specification of continuation play for
each p0, we can now solve for the optimal p0. Since κ(·) is a one-
to-one function of p0 in the relevant range of [0,1], we solve for the
seller’s optimal κ. The seller’s payoff (as a function of κ) is

κ(1− δ/2)(1− κ)+ δκ2/4.

The first-order condition is

(1− δ/2)− 2(1− δ/2)κ + δκ/2 = 0

=⇒ κ = 2− δ
4− 3δ

(< 1)

=⇒ p0 = (2− δ)
2

8− 6δ
<

1
2
.

The resulting payoff is

(2− δ)2
4(4− 3δ)

<
1
4
.

Finally, if δ = 1, then delay is not costly for either buyer or seller,
and the seller can achieve his statically optimal profits. Note that
there is still a lack of commitment in the initial period, so this re-
quires no sales in the initial period. Any price satisfying p0 ≥ 1

2 is
consistent with equilibrium.
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8.2.2 Infinite Horizon

Seller makes an offer pt in each period t = 0,1,2, . . ..
After each offer, buyer Accepts or Rejects.
If there is agreement in period t at price pt , the payoff to the

seller is
us = δtpt,

and the payoff to the buyer is

ub = δt
(
v − pt

)
.

We are interested in an equilibrium of the following form, sug-
gested by the equilibrium in Section 8.2.1:

If pt offered in period t, types v ≥ λpt accept and types v < λpt
reject, where λ > 1.

If at time t, seller’s posterior beliefs are uniform on [0, κ], seller
offers pt(κ) = γκ, where γ < 1.

Under this description, there is skimming: higher valuation buy-
ers buy before lower valuation buyers, and prices monotonically de-
cline.

Since the above holds on and off the path of play, the resulting
equilibrium is a perfect Bayesian equilibrium.

It is natural to treat κ as a state variable, and so the equilibrium
is Markov.

Under this profile, p0 = γ and seller’s posterior entering pe-
riod 1 is [0, γλ], so in order for profile to be well defined, γλ < 1.
Thus, p1 = γ (γλ) = γ2λ and seller’s posterior entering period 2 is
[0, γ2λ2]. Prices are thus falling exponentially, with pt = γt+1λt .

Let Us(κ) be the discounted expected value to the seller, when
his posterior beliefs are uniform on [0, κ]. Then

Us(κ) = max
p

{(
κ − λp)
κ

× p + δλp
κ
Us
(
λp
)}
,

or
Ws(κ) = max

p

(
κ − λp)p + δWs

(
λp
)
, (8.2.1)

where Ws(κ) = κUs(κ). If Ws is differentiable, then p(κ) solves the
first order condition,

κ − 2λp(κ)+ δλW ′
s(λp(κ)) = 0.
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The envelope theorem applied to (8.2.1) gives

W ′
s(κ) = p(κ) = γκ,

so that
W ′
s(λp(κ)) = p(λp(κ)) = γλp(κ) = λγ2κ.

Substituting,
κ − 2λγκ + δλ2γ2κ = 0,

or
1− 2λγ + δλ2γ2 = 0. (8.2.2)

Turning to the buyer’s optimality condition, a buyer with valuation
v = λp must be indifferent between accepting and rejecting, so

λp − p = δ (λp − γλp) ,

or
λ− 1 = δλ(1− γ) . (8.2.3)

Solving (8.2.2) for λγ yields

γλ = 2±√4− 4δ
2δ

= 1±√1− δ
δ

.

Since we know γλ < 1, take the negative root,

γλ = 1−√1− δ
δ

.

Substituting into (8.2.3),

λ = δλ+
√

1− δ,

or

λ = 1√
1− δ,

so that

γ =
√

1− δ×
(
1−√1− δ

)

δ
=
√

1− δ− (1− δ)
δ

=: γ(δ).
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The equilibrium is not unique. It is the only stationary equilib-
rium.5

The Coase conjecture (Coase, 1972) is:
As the commitment problem becomes more severe (because the

monopoly seller can (not commit to not) make a new offer more
quickly after a rejection), the seller is effectively facing more competi-
tion from his future self, and so the price charged in the initial period
converges to the competitive price, and trade becomes efficient.

We make the Coase conjecture precise as follows:
Let τ denote real time, ∆ the length of a period, and r the rate

of time discount, so that δ = e−r∆. Thus, as ∆ → 0, we have δ → 1.
In this setting, since the seller has zero cost, the competitive price
is 0.

Theorem 8.2.1. For all τ > 0, ε > 0, and for all v ∈ (0,1], there exists
∆̄ > 0, such that in the stationary equilibrium, for all ∆ ∈ (0, ∆̄),

p0 < ε

and buyer of type v buys before τ .

Proof. Since limδ→1 γ(δ) = 0 and p0 = γ(δ), for ∆ close to 0, we
have p0 close to 0.

If buyer with valuation v buys at or after τ , her utility is no more
than e−rτv , which is bounded away from v (as ∆ → 0). Buying in
period 0, she earns v −γ(δ), which converges to v as ∆→ 0, and so
for sufficiently small ∆, she prefers to buy immediately rather than
wait till after r .

Note that this is not a uniform statement (since for all τ and all
δ there exists v close to 0 such that v purchases after τ).

The classic reference on the Coase conjecture is Gul, Sonnen-
schein, and Wilson (1986).

5This is called the no-gap case, because there are buyer types arbitrarily close
to the seller’s cost (of 0), allowing a simple recursive formulation. In the gap case,
where buyer types are bounded away from the seller’s cost, the game has a unique
equilibrium, because at some point (when the seller’s uncertainty is sufficiently
small) the seller prefers to sell to all remaining buyer types at a price equal to the
minimum buyer type (this arises, for example, in Problem 8.4.6 for some parameter
values).
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Entrant

Out

4,0

In

Incumbent

Fight

1,−1

Accommodate

2,1

Figure 8.3.1: The stage game for the chain store. The first payoff is that of
the incumbent, and the second is that of the entrant.

8.3 Reputations

8.3.1 Two Periods

The stage game of the the chain store paradox from Example 2.2.1 is
reproduced in Figure 8.3.1 (note that payoffs are written in a differ-
ent order and so differently to facilitate the comparison with Figure
8.3.2). The game has two Nash equilibria: (In, Accommodate) and
(Out, Fight). The latter violates backward induction.

In the chain store game, the game is played twice, against two
different entrants (E1 and E2), with the second entrant E2 observing
the outcome of first interaction. The incumbent’s payoff is the sum
of payoffs in the two interactions.

The chain store paradox: The only backward induction (subgame
perfect) outcome is that both entrants enter (play In), and the in-
cumbent always accommodates. This is true for any finite chain
store.

Now we introduce incomplete information of a very particular
kind. In particular, we suppose the incumbent could be tough, ωt .
The tough incumbent receives a payoff of 2 from fighting and only 1
from accommodating. The other possible incumbent is normal,ωn,
with payoffs as described in Figure 8.3.1. Both entrants assign prior
probability ρ ∈ (0, 1

2) to the incumbent being ωt .
Suppose first E1 chooses O1 (we use subscripts to indicate the
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ωt

[ρ]
A1

I2 3,−1

O2 5,0

F1

I24,−1

O26,0

ωn

[1− ρ]
A1

I2 4,1

O2 6,0

F1

I23,1

O25,0

E2E2

Figure 8.3.2: A signaling game representation of the subgame reached by
E1 entering. The first payoff is the payoff to the incumbent,
and the second payoff is the payoff to E2 assuming the incum-
bent plays F after a choice of I by E2.

period in which the choice is made). Then, in any sequential equi-
librium, the analysis of the second period is just that of the static
game of incomplete information with E2’s beliefs on the incumbent
given by the prior,6 and so E2 optimally plays I2, the normal type
accommodates and the tough type fights.

We next analyze the behavior that follows E1’s choice of I1, i.e.,
entry in the first market. Because in any sequential equilibrium,
in the second period the normal incumbent accommodates and the
tough incumbent fights, this behavior must be an equilibrium of the
signaling game illustrated in Figure 8.3.2 (given the optimal play of
the incumbents in the second market).

It is easy to verify that there are no pure strategy equilibria.
There is a unique mixed strategy equilibrium: Type ωn plays

α ◦F1+ (1−α) ◦A1, typeωt plays F1 for sure. Entrant E2 enters for
sure after A1, and plays β ◦ I2 + (1− β) ◦O2 after F1.

Entrant E2 is willing to randomize only if his posterior after F1

6This is immediate if the extensive form of the two-period chain store is speci-
fied as first E1 chooses I1 or O1, with each choice leading to a move of nature which
determines the type of the incumbent. If nature first determines the type of the
incumbent, and then E1 moves, there is no subgame following a choice of O1 or
I1. Nonetheless, sequentiality implies that the choices of the incumbent of each
type and of E2 are as if they are playing an equilibrium of the subgame, for reasons
analogous to those in Example 5.3.1. Problem 8.4.9 asks you to verify this claim.
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that the incumbent is ωt equals 1
2 . Since that posterior is given by

Pr{ωt | F1} =Pr{F1 |ωt}Pr{ωt}
Pr{F1}

= ρ
ρ + (1− ρ)α,

solving
ρ

ρ + (1− ρ)α =
1
2

gives

α = ρ
1− ρ ,

where α < 1 since ρ < 1
2 .

Type ωn is willing to randomize if

4︸︷︷︸
Payoff from A

= β3+ 5(1− β)︸ ︷︷ ︸
Payoff from F

,

i.e.,

β = 1
2
.

It remains to determine the behavior of entrant E1. This entrant
faces a probability of F1 given by

ρ + (1− ρ)α = 2ρ.

Hence, if ρ < 1
4 , E1 faces F1 with sufficiently small probability

that he enters. However, if ρ ∈ (1
4 ,

1
2), E1 faces F1 with sufficiently

high probability that he stays out. For ρ = 1
4 , E1 is indifferent be-

tween O1 and I1, and so any specification of behavior is consistent
with equilibrium.

8.3.2 Infinite Horizon

Suppose now there is an infinite horizon with the incumbent dis-
counting at rate δ ∈ (0,1) and a new potential entrant in each pe-
riod.

Note first that in the complete information game, the outcome
in which all entrants enter (play In) and the incumbent accommo-
dates in every period is an equilibrium. Moreover, the profile in
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wOFw0 wIA
IA

O, IF

Figure 8.3.3: Automaton representation of Nash reversion in the complete
information infinite horizon chain store.

which all entrants stay out, any entry is met with F is a subgame
perfect equilibrium, supported by the “threat” that play switches
to the always-enter/always-accommodate equilibrium if the incum-
bent ever responds with A. The automaton representation is given
in Figure 8.3.3.

Note that the relevant incentive constraint for the incumbent is
conditional on I in state wOF (since the incumbent does not make a
decision when the entrant chooses O),7 i.e.,

(1− δ)+ δ4 ≥ 2,

i.e.,

δ ≥ 1
3
.

There are also other more complicated (and less plausible) equi-
libria. For example, the profile with automaton representation given
in Figure 8.3.4 is subgame perfect if δ2 ≥ 1

3 .
Are such complicated equilibrium outcomes plausible? Indeed,

while the infinite play of IA in every period is also a subgame per-
fect equilibrium (for any value discount factor), it too may not be
completely plausible: In particular, is it plausible that after a large

7This is similar to the collusion example discussed in Section 7.3.2. The stage
game is not a simultaneous move game, and so the repeated game does not have
perfect monitoring. In particular, the incumbent’s choice between F and A is irrel-
evant (not observed) if the entrant plays O (as the putative equilibrium requires).
Subgame perfection, however, requires that the incumbent’s choice of F be op-
timal, given that the entrant had played I. The principle of one-shot optimality
applies here: The profile is subgame perfect if, conditional on I, it is optimal for
the incumbent to choose F , given the specified continuation play (this is the same
idea as that in Footnote 7 on page 220).
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wOFw0ŵIA wIA

O, IF

IA

Figure 8.3.4: Automaton representation of a profile with alternating IA
and OF in the complete information infinite horizon chain
store.

number of periods of IF , that the next entrant continues to believe
that the next entry will be met by A?.

Reputations offer a possible resolution. We now consider the
reputation game, where the incumbent may be normal or tough, and
consider pure strategy “Markov perfect equilibria.”8 We first need a
notion of Markov state. In the spirit of Section 8.2.2, we treat the
posterior belief ρ that the incumbent isωn as the state variable, and
require all players to play Markov strategies with respect to the state
variable. The alternating OF–IA behavior of Figure 8.3.4 by entrants
and incumbents is inconsistent with Markov strategies, since the
players are differently in odd and even periods, even though the
posteriors are unchanged. Markov perfection does not eliminate
all intertemporal incentives, however: The profile in which, for all
strictly positive beliefs ρ, all entrants stay out and any entry is met
with F is a “Markov perfect” equilibrium outcome, supported by the
“threat” that the entrants believe that the incumbent is normal (so
ρ = 0) and play switches to the always-enter/always-accommodate
equilibrium of the complete information game if the incumbent ever
responds with A.

For δ > 1
3 , not only is Nash reversion an equilibrium of the incom-

plete information game, but the infinite play of IA in every period is
not even a pure strategy Nash equilibrium outcome:

Theorem 8.3.1. Suppose the incumbent is either of type ωn or type
ωt , and that type ωt has strictly positive prior probability less than
1/2. Type ωn must receive a payoff of at least (1− δ)× 1+ δ× 4 =
1 + 3δ in any pure strategy Nash equilibrium in which ωt always
plays F .

8With incomplete information, a Markov perfect equilibrium is, loosely, a Markov
strategy profile that satisfies an appropriate notion of sequential rationality.
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If type ωt has prior probability greater than 1/2, trivially there
is never any entry and the normal type has payoff 4.

Proof. In a pure strategy Nash equilibrium, either the incumbent al-
ways plays F , (in which case, the entrants always stay out and the
incumbent’s payoff is 4), or there is a first period (say τ) in which
the normal type accommodates, revealing to future entrants that he
is the normal type (since the tough type plays F in every period). In
such an equilibrium, entrants stay out before τ (since both types of
incumbent are choosing F ), and there is entry in period τ . After ob-
serving F in period τ , entrants conclude the firm is theωt type, and
there is no further entry. An easy lower bound on the normal in-
cumbent’s equilibrium payoff is then obtained by observing that the
normal incumbent’s payoff must be at least the payoff from mim-
icking the ωt type in period τ . The payoff from such behavior is at
least as large as

(1− δ)
τ−1∑

τ′=0

δτ
′
4

︸ ︷︷ ︸
payoff in τ′ < τ from pooling

with ωt type

+ (1− δ)δτ × 1︸ ︷︷ ︸
payoff in τ from playing F when

A is myopically optimal

+ (1− δ)
∞∑

τ′=τ+1

δτ
′
4

︸ ︷︷ ︸
payoff in τ′ > τ from being treated as the ωt type

=(1− δτ)4+ (1− δ)δτ + δτ+14

=4− 3δτ(1− δ)
≥4− 3(1− δ) = 1+ 3δ.

For δ > 1/3, the outcome in which all entrants enter and the
incumbent accommodates in every period is thus eliminated.
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8.3.3 Infinite Horizon with Behavioral Types

In the reputation literature (see Mailath and Samuelson, 2006, Chap-
ter 15, or Mailath and Samuelson, 2014, for an extensive introduc-
tion), it is standard to model the tough type as a behavioral type.
In that case, the tough type is constrained to necessarily choose F .
Then, the result is that in any equilibrium, 1+3δ is the lower bound
on the normal type’s payoff. (The typeωt from earlier in this section
is an example of a payoff type.)

In fact, irrespective of the presence of other types, if the entrants
assign positive probability to the incumbent being a tough behav-
ioral type, for δ close to 1, the incumbent’s payoff in any Nash equi-
librium is close to 4 (this is an example of a reputation effect):

Suppose there is a set of types Ω for the incumbent. Some of
these types are behavioral. One behavioral type, denoted ω0 ∈ Ω,
is the Stackelberg, or tough, type, who always plays F . The normal
type is ωn. Other types may include behavioral ωk, who plays F in
every period before k and A afterwards. Suppose the prior beliefs
over Ω are given by µ.

Lemma 8.3.1. Consider the incomplete information game with types
Ω for the incumbent. Suppose the Stackelberg type ω0 ∈ Ω receives
positive prior probability µ0 > 0. Fix a Nash equilibrium. Let ht be a
positive probability period-t history in which every entry results in F .
The number of periods in ht in which an entrant entered is no larger
than

k∗ := − logµ0

log 2
.

Proof. Denote by qτ the probability that the incumbent plays F in
period τ conditional on hτ if entrant τ plays I. In equilibrium, if
entrant τ does play I, then

qτ ≤ 1
2
.

(If qτ > 1
2 , it is not a best reply for the entrant to play I.) An upper

bound on the number of periods in ht in which an entrant entered
is thus

k(t) := #{τ : qτ ≤ 1
2},

the number of periods in ht where qτ ≤ 1
2 . (This is an upper bound,

and not the actual number, since the entrant is indifferent if qτ = 1
2 .)
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Let µτ := Pr{ω0|hτ} be the posterior probability assigned to ω0

after hτ , where τ < t (so that hτ is an initial segment of ht). If
entrant τ does not enter, µτ+1 = µτ . If entrant τ does enter in ht ,
then the incumbent fights and9

µτ+1 = Pr{ω0|hτ , F} = Pr{ω0, F|hτ}
Pr{F|hτ}

= Pr{F|ω0, hτ}Pr{ω0|hτ}
Pr{F|hτ}

= µτ
qτ
.

Defining

q̃τ =
{
qτ , if there is entry in period τ,
1, if there is no entry in period τ,

we have, for all τ ≤ t,
µτ = q̃τµτ+1,

Note that q̃τ < 1 =⇒ q̃τ = qτ ≤ 1
2 .

Then,

µ0 = q̃0µ1 = q̃0q̃1µ2

= µt
t−1∏

τ=0

q̃τ

= µt
∏

{τ :q̃τ≤ 1
2}
q̃τ

≤
(

1
2

)k(t)
.

Taking logs, logµ0 ≤ k(t) log 1
2 , and so

k(t) ≤ − logµ0

log 2
.

9Since the entrant’s action is a function of hτ only, it is uninformative about the
incumbent and so can be ignored in the conditioning.
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The key intuition here is that since the entrants assign prior pos-
itive probability (albeit small) to the Stackelberg type, they cannot
be surprised too many times (in the sense of assigning low prior
probability to F and then seeing F ). Note that the upper bound is
independent of t and δ, though it is unbounded in µ0.

Theorem 8.3.2. Consider the incomplete information game with types
Ω for the incumbent. Suppose the Stackelberg type ω0 ∈ Ω receives
positive prior probability µ0 > 0. In any Nash equilibrium, the nor-
mal type’s expected payoff is at least 1 + 3δk∗ . Thus, for all ε > 0,
there exists δ̄ such that for all δ ∈ (δ̄,1), the normal type’s payoff in
any Nash equilibrium is at least 4− ε.
Proof. The normal type can guarantee histories in which every entry
results in F by always playing F when an entrant enters. Such be-
havior yields payoffs that are no larger than the incumbent’s Nash
equilibrium payoffs in any equilibrium (if not, the incumbent has an
incentive to deviate). Since there is positive probability that the in-
cumbent is the Stackelberg type, the history resulting from always
playing F after entry has positive probability. Applying Lemma 8.3.1
yields a lower bound on the normal types payoff of

k∗−1∑

τ=0

(1− δ)δτ1+
∞∑

τ=k∗
(1− δ)δτ4 = 1− δk∗ + 4δk

∗ = 1+ 3δk
∗
.

This can be made arbitrarily close to 4 by choosing δ close to 1.

8.4 Problems

8.4.1. (a) Suppose (σ1, σ2) is an MPE of the fisheries game from Ex-
ample 8.1.1 satisfying σ1(s)+σ(s) < s for all s. Prove that
the profile remains an MPE of the dynamic game where
payoffs are given by

ui(s, a) =



logai, if a1 + a2 ≤ s,
log

{
ai

a1+a2
s
}
, if a1 + a2 > s.

(b) Prove that

ai(s) = 1− δ
2− δs, i = 1,2,
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does indeed describe an MPE of the fisheries game de-
scribed in Example 8.1.1.

8.4.2. What is the symmetric MPE for the fisheries game of Example
8.1.2 when there are n players, and the transition function is
given by

q(s, a) = αmax
{
0, s −∑i ai

}
,

where α > 1?

8.4.3. (a) In the MPE calculated in Example 8.1.2, for what values
of the discount factor does the stock of fish grow with-
out bound, and for which values does the stock decline to
extinction?

(b) This MPE is inefficient, involving excess extraction. To see
this, calculate the largest symmetric payoff profile that
can by achieved when the firms choose identical Markov
strategies, and prove that the efficient solution extracts
less than does the MPE.

(c) Describe an efficient subgame perfect equilibrium for this
game (it is necessarily non-Markov).

8.4.4. Consider the asynchronous move prisoner’s dilemma from
Section 8.1.

(a) Suppose x ≥ 1. For some values of δ, there is a Markov
perfect equilibrium in which players randomize at E be-
tween E and S, and play S for sure at S. Identify the
bounds on δ and the probability of randomization for which
the described behavior is an MPE.

(b) Suppose that the initial action of player 1 is not exoge-
nously fixed. The game now has three states, the initial
null state and E and S. At the initial state, both players
choose an action, and then thereafter player 1 chooses an
action in odd periods and player 2 in even periods. Sup-
pose x > 1 and δ satisfies (8.1.2). Prove that there is no
pure strategy MPE in which the players choose E.

8.4.5. (A simplification of Livshits, 2002.) There are three players. In
the initial period, a player i is selected randomly and uniformly
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Coalition 1’s payoff 2’s payoff 3’s payoff

{1,2} 9 3 0

{2,3} 0 9 3

{1,3} 3 0 9

Figure 8.4.1: Payoffs to players in each pairwise coalition for Problem 8.4.5.
The excluded player receives a payoff of 0.

to propose a coalition with one other player j, who can accept
or reject. If j accepts, the game is over with payoffs given
in Figure 8.4.1. If j rejects, play proceeds to the next period,
with a new proposer randomly and uniformly selected. The
game continues with a new proposer randomly and uniformly
selected in each period until a proposal is accepted. Thus, the
game is potentially of infinite horizon, and if no coalition is
formed (i.e., there is perpetual rejection), all players receive a
payoff of 0.

(a) Suppose δ < 3/4. Describe a stationary pure strategy
Markov perfect equilibrium. [Hint: In this equilibrium, ev-
ery proposal is immediately accepted.]

(b) Suppose δ > 3/4. Prove there is no Markov perfect equi-
librium in stationary pure strategies. There is a stationary
Markov perfect equilibrium in behavior strategies. What is
it? [Hint: The randomization is on the part of the respon-
der.]

(c) Suppose 3/4 < δ <
√

3/4. There are two nonstationary
pure strategy Markov equilibria in which only the most
valuable partnerships form. What are they? [Hint: If δ <√

3/4, then δ2 < 3/4.]

(d) Suppose δ ≥ 3
7 . Construct a nonstationary Markov perfect

equilibrium in which in the first period, if 1 is selected,
then 1 chooses 3 (who of course accepts).

8.4.6. Consider the model of Section 8.2, but assume the buyer’s
valuation v can only take on two values, 2 and 3. Moreover, the
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seller’s beliefs assign probability α to the value 2. The seller’s
cost (value) is zero, and the buyer and seller have a common
discount factor δ ∈ (0,1].
(a) What are the unique perfect Bayesian equilibria (PBE) of

the one period model (in this model, the seller makes a
take-it-or-leave-it offer to the buyer)?

Consider now the two period model, that is, if the buyer rejects
the offer in the initial period, then the seller make a final offer
in period 1, after which the game ends. As in Section 8.2, deter-
mine the restrictions implied by perfect Bayesian equilibrium
by assuming the buyer type is determined by nature after the
seller has chosen the initial period price.

(b) What restrictions on period 1 pricing are implied by per-
fect Bayesian equilibrium concept?

(c) Prove that, in any PBE, both types of buyer must accept
any first period price strictly smaller than 2.

(d) Prove that, in any PBE, if a (possibly non-equilibrium) first
period price p0 > 2 is rejected, then the seller’s posterior
in the beginning of the second period must assign proba-
bility at least α to the low value buyer.

(e) Suppose α = 1
2 . Describe the unique pure strategy PBE.

(f) Suppose α = 1
4 . Prove that there is no pure strategy PBE.

[Hint: Suppose p̂0 is the first period price in a candidate
pure strategy PBE. How should the seller respond to a re-
jection of a deviation to a price p0 ≠ p̂0?]

(g) Suppose α = 1
4 . Suppose δ ≠ 6/7. Describe the unique

PBE (from part (f), it is necessarily in mixed strategies).

(h) This game can be used to illustrate a shortcoming of al-
most perfect Bayesian equilibrium.10 In the Bayesian game,
nature first determines the type of the buyer, and then the
seller chooses the initial price. The perfect Bayesian equi-
librium concept is (should be) unaffected by the timing of
nature’s move. But the almost perfect Bayesian equilib-
ria are not unaffected. In particular, the game with nature

10Problem 5.4.9 is a stripped down version of this game.
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moving first has multiple almost perfect Bayesian equilib-
ria. Prove this by verifying that p0 = 3 − δ is part of an

almost perfect Bayesian equilibrium for δ ∈
(

6
7 ,

9
10

)
. (We

already know from the above that for δ > 6
7 , the game

with nature moving second has a unique almost perfect
Bayesian equilibrium with p0 ≠ 3− δ.)

8.4.7. As in the model of Section 8.2, there is an uninformed seller
with cost zero facing a buyer with value uniformly distributed
on [0,1]. Suppose the seller has a rate of continuous time dis-
counting of rS (so the seller’s discount factor is δS = e−rS∆,
where ∆ > 0 is the time between offers), while the buyer has a
rate of continuous time discounting of rB (so the buyer’s dis-
count factor is δB = e−rB∆). Solve for an equilibrium of the
infinite horizon game in which the uninformed sellers makes
all the offers. What happens to the initial offer as ∆→ 0?

8.4.8. Reconsider the two period reputation example (illustrated in
Figure 8.3.2) with ρ > 1

2 . Describe all of the equilibria. Which
equilibria survive the intuitive criterion?

8.4.9. Verify the claim in Footnote 6 on page 263. More specifi-
cally, suppose the two period reputation game in Section 8.3.1
is modeled as an extensive form in which nature first deter-
mines the type of the incumbent, and then E1 chooses between
O1 and I1.

(a) Prove that in any sequential equilibrium, after O1, E2 as-
signs probability ρ to the tough type.

(b) Prove that in any sequential equilibrium, after I1, the choices
of the incumbent of each type and E2 are an equilibrium
of the game displayed in Figure 8.3.2.

8.4.10. Describe the equilibria of the three period version of the rep-
utation example.

8.4.11. Consider a stage game where player 1 is the row player and
2, the column player (as usual). Player 1 is one of two types
ωn and ω0. Payoffs are given in Figure 8.4.2. The stage game
is played twice, and player 2 is short-lived: a different player 2
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L R

T 2,3 0,2

B 3,0 1,1

ωn

L R

T 3,3 1,2

B 2,0 0,1

ω0

Figure 8.4.2: The payoffs for Problem 8.4.11.

plays in different periods, with the second period player 2 ob-
serving the action profile chosen in the first period. Describe
all the equilibria of the game. Does the intuitive criterion elim-
inate any of them?

8.4.12. This is a continuation of Problem 7.6.14. Suppose now that
the game with the long-lived player 1 and short-lived player 2’s
is a game of incomplete information. With prior probability
ρ ∈ (0,1), player 1 is a behavioral type who chooses T in every
period, and with probability 1 − ρ, he is a strategic or normal
type as described above. Suppose ρ > 1

2 . Describe an equilib-
rium in which the normal type of player 1 has a payoff strictly
greater than 2 for large δ.

8.4.13. (Based on Hu, 2014.) Reconsider the infinite horizon repu-
tation game of Section 8.3.3. In addition to the endogenous
signal of F and A, there is an exogenous signal z ∈ {z0, z1},
with

1 > Pr{z = z0 |ω0} := α > β =: Pr{z = z0 | ¬ω0} > 0.

In period τ , entrant τ observes the history of entry decisions,
the behavior of the incumbent in any period in which there was
entry, and τ realizations of the exogenous signal.

Fix a Nash equilibrium.

(a) Prove that in any period in which there is entry, the prob-
ability of F , conditional on the incumbent not beingω0, is
no larger than 1

2 . Denote this probability by φτ .

(b) Prove that if the incumbent is not ω0, and the entrants
never enter, then with probability one, the entrants’ pos-
terior probability on ω0 converges almost surely to zero.
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[Hint: Express the odds ratio in period τ+1 after no entry
in terms of the odds ratio in period τ .]

(c) Let ht be a positive probability period-t history in which
every entry results in F , and there is entry in the last pe-
riod. Conditioning on the incumbent not being ω0, pro-
vide an almost sure asymptotic upper bound on the frac-
tion of periods in ht in which an entrant enters. [Hint:
Express the odds ratio in period τ + 1 after entry results
in F in terms of the odds ratio in period τ , and use part
(a).]

8.5 Additional Problems

8.5.1. For what values of x and δ is the tit-for-tat strategy profile
(8.1.1) in Example 8.1.3 a Nash equilibrium, but not a Markov
perfect equilibrium?



Chapter 9

Bargaining

9.1 Axiomatic Nash Bargaining

A bargaining problem is a pair (S, d), where S ⊂ R2 is compact
and convex, d ∈ S, and there exists s ∈ S such that si > di for
i = 1,2. Let B denote the collection of bargaining problems. While
d is often interpreted as a disagreement point, this is not the role it
plays in the axiomatic treatment. It only plays a role in INV (where
its role has the flavor of a normalization constraint) and in SYM.
The appropriate interpretation is closely linked to noncooperative
bargaining. It is not the value of an outside option!

Definition 9.1.1. A bargaining solution is a function f : B → R2 such
that f(S,d) ∈ S.

9.1.1 The Axioms

1. PAR (Pareto Efficiency): If s ∈ S, t ∈ S, ti > si, i = 1,2, then

f(S,d) ≠ s.

2. IIA (Independence of Irrelevant Alternatives): If S ⊂ T and
f(T ,d) ∈ S, then

f(S,d) = f(T ,d).

3. INV (Invariance to Equivalent Utility Representations):
Given (S, d), and a pair of constants (αi, βi) with αi > 0 for

277
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each individual i = 1,2, let (S′, d′) be the bargaining problem
given by

S′ = {(α1s1 + β1, α2s2 + β2) : (s1, s2) ∈ S}
and

d′i = αidi + βi, i = 1,2.

Then
fi(S′, d′) = αifi(S, d)+ βi, i = 1,2.

4. SYM (Symmetry): If d1 = d2 and (s1, s2) ∈ S =⇒ (s2, s1) ∈ S,
then

f1(S, d) = f2(S, d).

Remark 9.1.1. PAR and IIA are quite natural. SYM is also, but per-
haps a little less so. The assumption that S is convex can be moti-
vated by the assumption that the bargainers have access to lotteries,
in which case INV is also natural. ♦

9.1.2 Nash’s Theorem

Theorem 9.1.1 (Nash, 1950a). If f : B → R2 satisfies INV, SYM, IIA,
and PAR, then

f(S,d) = arg max
(d1,d2)≤(s1,s2)∈S

(s1 − d1)(s2 − d2) =: fN(S, d).

The function fN is called the Nash bargaining solution.
If S = {s : s1 + s2 ≤ 1}, then player I’s Nash share is

s∗1 =
1+ d1 − d2

2
. (9.1.1)

Proof. Leave as an exercise that fN satisfies the four axioms.
Suppose that f satisfies the four axioms. Fix (S, d).
Step 1: Let z = fN(S, d). Then zi > di, i = 1,2. Apply the

following affine transformations to move d to the origin 0 := (0,0)
and z to (1/2,1/2):

αi = 1
2(zi − di) ; βi =

−di
2(zi − di).
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x ·y = 1
4

x +y = 1

(1
2 ,

1
2)

(s′1, s′2)

t

Figure 9.1.1: Illustration of step 2.

Denote the transformed problem (S′,0).
INV implies

fi(S′,0) = αifi(S, d)+ βi
and

fNi (S
′,0) = αifNi (S, d)+ βi =

1
2
.

Note that fi(S, d) = fNi (S, d) if and only if fi(S′,0) = 1/2.
Step 2: Claim - there does not exist (s′1, s

′
2) ∈ S′ such that s′1+s′2 >

1.
If not, there exists s′ ∈ S′ satisfying s′1+s′2 > 1. Then convexity of

S′ implies t = (1−ε)(1/2,1/2)+εs′ ∈ S′, for all ε ∈ (0,1). Moreover,
for ε small, t1t2 > 1/4, contradicting fN(S′,0) = (1/2,1/2) (see
Figure 9.1.1).

Step 3: Define

T :=
{
(s1, s2) ∈ R2 : s1 + s2 ≤ 1, |si| ≤ max

{∣∣s′1
∣∣ ,
∣∣s′2

∣∣ : s′ ∈ S′}
}

(see Figure 9.1.2). Then, by SYM and PAR, f(T ,0) = (1/2,1/2).
Step 4: Since S′ ⊂ T , IIA implies f(S′,0) = (1/2,1/2).
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S′

T

(
1
2 ,

1
2

)

−max{|s′1|, |s′2| : s′ ∈ S′}

Figure 9.1.2: The bargaining set T .

For the implications of weakening SYM to a form of individual
rationality (and so obtaining the asymmetric Nash bargaining solu-
tion), see Problem 9.5.2.

9.2 Rubinstein (1982) Bargaining

Two agents bargain over a pie [0,1] using an alternating-offer pro-
tocol. Time is indexed by t, t = 1,2, . . .. A proposal is a division of
the pie (x,1− x), x ≥ 0. The agents take turns to make proposals.
Player I makes proposals on odd t and II on even t. If the proposal
(x,1 − x) is agreed to at time t, I’s payoff is δt−1

1 x and II’s pay-
off is δt−1

2 (1 − x). Perpetual disagreement yields a payoff of (0,0).
Impatience implies δi < 1.

Histories are ht ∈ [0,1]t−1.
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Strategies for player I, τ1
I : ∪t odd[0,1]t−1 → [0,1], τ2

I : ∪t even[0,1]t
→ {A,R}, and for player II, τ1

II : ∪t even[0,1]t−1 → [0,1] and τ2
II :

∪t odd[0,1]t → {A,R}.
Note that histories have two interpretations, depending upon the

context: For the proposal strategy as a function of history, the his-
tory is one in which all proposals have been rejected, while for the
response strategy, the history is one in which all but the last pro-
posal have been rejected and the current one is being considered.

9.2.1 The Stationary Equilibrium

All the subgames after different even length histories of rejected
proposals are strategically identical. A similar comment applies
to different odd length histories of rejected proposals. Finally, all
the subgames that follow different even length histories of rejected
proposals followed by the same proposal on the table are strategi-
cally identical. Similarly, all the subgames that follow different odd
length histories of rejected proposals followed by the same proposal
on the table are strategically identical.

Consider first equilibria in history independent (or stationary)
strategies. Recall that a strategy for player I is a pair of mappings,
(τ1
I , τ

2
I ). The strategy τ1

I is stationary if, for all ht ∈ [0,1]t−1 and

ĥt̂ ∈ [0,1]t̂−1, τ1
I (ht) = τ1

I (ĥt̂) (and similarly for the other strate-
gies). Thus, if a strategy profile is a stationary equilibrium with
agreement, there is a pair (x∗, z∗), such that I expects x∗ in any
subgame in which I moves first and expects z∗ in any subgame
in which II moves first. In order for this to be an equilibrium,
I’s claim should make II indifferent between accepting and reject-
ing: 1 − x∗ = δ2(1 − z∗), and similarly I should be indifferent,
so z∗ = δ1x∗. [Proof: Consider the first indifference. Player I
won’t make a claim that II strictly prefers to 1 − z∗ next period,1

so 1−x∗ ≤ δ2(1−z∗). If II strictly prefers (1−z∗) next period, she
rejects and gets 1−z∗ next period, leaving I with z∗. But I can offer
II a share 1− z∗ this period, avoiding the one period delay.] Solving
yields

x∗ = (1− δ2)/(1− δ1δ2),
1If II does strictly I’s claim of x∗ to 1 − z∗ next period, II would also prefer

a marginally more aggressive claim by I, implying I’s claim could not have been
optimal.
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and
z∗ = δ1(1− δ2)/(1− δ1δ2).

The stationary subgame perfect equilibrium (note that backward
induction is not well defined for the infinite horizon game) is for I
to always claim x∗ and accept any offer greater than or equal to z∗,
and for II to always offer z∗ and always accept any claim less than
or equal to x∗. Note the implicit appeal to the one-shot deviation
principle, which also holds here (the proof is along similar lines, but
simpler than, the proof of Theorem 7.1.3).

9.2.2 All Equilibria

While in principle, there could be nonstationary equilibria, it turns
out that there is only one subgame perfect equilibrium. The analysis
will also accommodate the possibility of delay in agreement (in other
words, we will not assume that equilibrium offers necessarily result
in agreement).

Denote by i/j the game in which i makes the initial proposal to
j. Define

Mi = sup
{
i’s discounted expected payoff

in any subgame perfect equilibrium of i/j
}

and

mi = inf
{
i’s discounted expected payoff

in any subgame perfect equilibrium of i/j
}
.

We begin with two important observations:

1. In any subgame perfect equilibrium, i must accept any offer
strictly larger than δiMi.

2. In any subgame perfect equilibrium, i must reject any offer
strictly less than δimi.

Claim 9.2.1. mj ≥ 1− δiMi.
Proof. The claim is proved by proving that in every equilibrium,
player j’s payoff in j/i is at least 1 − δiMi. Suppose not, that is,
suppose there exists an equilibrium yielding a payoff uj < 1− δiMi
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to j. But this is impossible, since j has a profitable deviation in such
an equilibrium: offer δiMi + ε, ε small. Player i must accept, giving
j a payoff of 1− δiMi − ε > uj , for ε sufficiently small.

Claim 9.2.2. Mj ≤ 1− δimi.

Proof. If j makes an equilibrium offer that i accepts, then i must be
getting at least δimi. This implies that j gets no more than 1−δimi.

The other possibility is that j makes an equilibrium offer that
i rejects (in equilibrium). Then, in equilibrium, in the game i/j, i
cannot offer j more than δjMj . In this case, j’s payoff is no more
than δ2

jMj .
So,

Mj ≤ max{1− δimi︸ ︷︷ ︸
if i accepts

, δ2
jMj︸ ︷︷ ︸

if i rejects

}

=⇒ Mj ≤ 1− δimi.

Combining the above two claims,

Mj ≤ 1− δimi ≤ 1− δi(1− δjMj)
=⇒ Mj ≤ (1− δi)

(1− δiδj), Mi ≤
(1− δj)
(1− δiδj).

This implies

mi ≥ 1− δj (1− δi)(1− δiδj) =
(1− δj)
(1− δiδj)

and so

mi = Mi =
(1− δj)
(1− δiδj),

the stationary equilibrium payoffs derived in Section 9.2.1.

9.2.3 Impatience

In order to investigate the impact of reducing the bargaining friction
intrinsic in impatience, we do the following:
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Time is continuous, with each round of bargaining taking ∆ units
of time. If player i has discount rate ri,

δi = e−ri∆.
Player 1’s share is then

x∗(∆) = 1− δ2

1− δ1δ2
= 1− e−r2∆

1− e−(r1+r2)∆

and so

lim
∆→0

x∗(∆) = lim
∆→0

1− e−r2∆

1− e−(r1+r2)∆

= lim
∆→0

r2e−r2∆

(r1 + r2)e−(r1+r2)∆

= r2

r1 + r2
,

where l’Hôpital’s rule was used to get to the second line.
Note that the first mover advantage has disappeared (as it should).

The bargaining outcome is determined by relative impatience, and
so can be viewed as providing a basis for the asymmetric Nash bar-
gaining solution (Problem 9.5.2).

An alternative basis for the asymmetric Nash bargaining solution
is provided in Problem 9.5.7.

9.3 Outside Options

Player II has an outside option of value (0, b).

9.3.1 Version I

Suppose player II can only select her outside option O when reject-
ing I’s proposal, and receives b in that period. See Figure 9.3.1 for
the extensive form.

Claim 9.3.1. m2 ≥ 1− δ1M1.

Proof. Same argument as for Claim 9.2.1.

Claim 9.3.2. M1 ≤ 1− b, M1 ≤ 1− δ2m2.
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II

I

x1 ∈ [0,1]

O

(0, b)

R

II

A

(x1,1− x1)

I

x2 ∈ [0,1]

R

I

A

(δ1x2, δ2(1− x2))
x3 ∈ [0,1]

Figure 9.3.1: The first two periods when II can opt out only after rejecting
I’s proposal.
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Proof. Since II can always opt out,M1 ≤ 1−b. The second inequality,
M1 ≤ 1−δ2m2, follows by the same argument as for Claim 9.2.2.

Claim 9.3.3. m1 ≥ 1−max {b,δ2M2}, M2 ≤ 1− δ1m1.

Proof. If b ≤ δ2M2, then the argument from Claim 9.2.1 shows that
m1 ≥ 1− δ2M2. If b > δ2M2, then II takes the outside option rather
than rejecting and making a counterproposal. Thus, II’s acceptance
rule is accept any proposal of a share > b, and take the outside
option for any proposal < b. Thus, I’s payoffs is 1− b.

The remaining inequality, M2 ≤ 1 − δ1m1, is proved using the
same argument as for Claim 9.2.2.

Claim 9.3.4. b ≤ δ2(1−δ1)/ (1− δ1δ2) =⇒mi ≤ (1−δj)/ (1− δ1δ2) ≤
Mi.

Proof. Follows from the Rubinstein shares being equilibrium shares.

Claim 9.3.5. b ≤ δ2(1−δ1)/ (1− δ1δ2) =⇒mi = (1−δj)/ (1− δ1δ2) =
Mi

Proof. From Claim 9.3.2, 1 −M1 ≥ δ2m2, and so from claim 9.3.1,
1−M1 ≥ δ2 (1− δ1M1), and so M1 ≤ (1− δ2) / (1− δ1δ2) and so we
have equality.

From Claim 9.3.1,m2 ≥ 1−δ1 (1− δ2) / (1− δ1δ2) = (1− δ1) / (1− δ1δ2),
and so equality again.

From Claim 9.3.4, δ2M2 ≥ δ2(1 − δ1)/ (1− δ1δ2) ≥ b, and so
by Claim 9.3.3, m1 ≥ 1 − δ2M2 ≥ 1 − δ2 (1− δ1m1). Thus, m1 ≥
(1− δ2) / (1− δ1δ2), and so equality.

Finally, from Claim 9.3.3,

M2 ≤ 1−δ1m1 = 1−δ1 (1− δ2) / (1− δ1δ2) = (1− δ1) / (1− δ1δ2).

Thus, if b ≤ δ2(1−δ1)/ (1− δ1δ2), equilibrium payoffs are uniquely
determined. If b < δ2(1−δ1)/ (1− δ1δ2), then the subgame perfect
equilibrium profile is also uniquely determined (player II never takes
the outside option). If b = δ2(1−δ1)/ (1− δ1δ2), then there are mul-
tiple subgame perfect equilibrium profiles, which differ in whether
player II takes the outside option or not after an unacceptable offer.
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Claim 9.3.6. b > δ2(1− δ1)/ (1− δ1δ2) =⇒m1 ≤ 1− b ≤ M1, m2 ≤
1− δ1 (1− b) ≤ M2.

Proof. Follows from the following being an equilibrium: I always
proposes 1−b, and accepts any offer of at least δ1 (1− b); II always
proposes δ1 (1− b) and accepts any claim of no more than 1 − b,
opting out if the claim is more than 1− b.

Claim 9.3.7. b > δ2(1− δ1)/ (1− δ1δ2) =⇒m1 = 1− b = M1, m2 =
1− δ1 (1− b) = M2.

Proof. From Claim 9.3.2, 1−M1 ≥ b, i.e., M1 ≤ 1−b, and so we have
equality.

From Claim 9.3.1, m2 ≥ 1− δ1 (1− b), and so we have equality.
From Claim 9.3.6, 1− b ≥m1 and so (1− δ2)/ (1− δ1δ2) > m1.
We now argue that δ2M2 ≤ b. If δ2M2 > b, thenm1 ≥ 1−δ2M2 ≥

1−δ2 (1− δ1m1) and som1 ≥ (1− δ2) / (1− δ1δ2), a contradiction.
Thus, δ2M2 ≤ b.

From Claim 9.3.6 and 9.3.3, 1−b ≥m1 ≥ 1−max{b,δ2M2} = 1−b
and so m1 = 1− b.

Finally, this implies M2 ≤ 1 − δ1m1 = 1 − δ1 (1− b), and so
equality.

Thus, if b > δ2(1−δ1)/ (1− δ1δ2), equilibrium payoffs are uniquely
determined. Moreover, the subgame perfect equilibrium profile is
also uniquely determined (player II always takes the outside option
after rejection):

b > δ2 (1− δ1) / (1− δ1δ2)⇐⇒ b > δ2 [1− δ1 (1− b)] .

9.3.2 Version II

If II can only select her outside option after I rejects (receiving b in
that period, see Figure 9.3.2), then there are multiple equilibria. The
equilibrium construction is a little delicate in this case. In fact, for
many parameter constellations, there is no pure strategy stationary
Markov perfect equilibrium.

There is, however, a stationary Markov perfect equilibrium in be-
havior strategies. To illustrate the role of the Markov assumption it
is useful to discuss the construction. Note first that, in contrast to
the game in Figure 9.3.1, there is only one state at which II can take
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II

I

x1 ∈ [0,1]

R

II

A

(x1,1− x1)

O

(0, δ2b)

I

x2 ∈ [0,1]

R

II

¬O
A

(δ1x2, δ2(1− x2))
I

x3 ∈ [0,1]

Figure 9.3.2: The first two periods when II can opt out only after I rejects
his proposal.
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the outside option. In a Markov strategy profile, I claims x1 in every
odd period, and II offers x2 in every even period.

If in a putative pure strategy MPE, the outside option is not taken,
then we must have, as in Rubinstein,

1− x1 = δ2(1− x2)

and x2 = δ1x1,

implying the Rubinstein shares for the two players. This can only be
an equilibrium if it is indeed optimal for II not to take the outside
option:

b ≤ δ2(1− x1) = δ
2
2(1− δ1)
(1− δ1δ2)

.

Suppose now II always takes the outside option. Then, x2 = 0
and x1 = 1 − δ2. This is an equilibrium only if it is indeed optimal
for II to take the outside option:

b ≥ δ2(1− x1) = δ2
2.

Suppose
δ2

2(1− δ2)
(1− δ1δ2)

< b < δ2
2. (9.3.1)

Then, there is no pure strategy MPE.
It is straightforward to calculate the stationary MPE in behavior

strategies under (9.3.1). Let β ∈ (0,1) be the probability that the
outside option is not taken. Then, if (x1, x2, β) describes an MPE, we
must have (make sure you understand why we need each equality):

1− x1 = δ2(1− x2),

x2 = βδ1x1,

and b = δ2(1− x1).

We then have

x1 = 1− b
δ2
,

x2 = 1− b
δ2

2

,

and β = δ2
2 − b

δ1δ2(δ2 − b).
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It is easy to check that β ∈ (0,1) under (9.3.1).
Note the critical role played by the timing of the decision on the

outside option. In particular, even though I strictly prefers that II
never take the outside option, I is not able to prevent it, since I’s
offer is only made after II decides not to take the outside option
(and if II is “pessimistic” about continuation play, II may well take
the outside option). In Figure 9.3.1, on the other hand, II can only
take the outside option with a proposal from I “in hand” and an
offer of 1−x > b guarantees the outside option will not be taken at
that point.

9.4 Exogenous Risk of Breakdown

We now consider a different modification of the alternating offer
bargaining model of Rubinstein (1982). Suppose after any rejection
there is a probability 1 − θ of breakdown and in the even of break-
down, the outcome (d1, d2) is implemented. With probability θ, bar-
gaining continues to the next round. To simplify notation, assume
there is no discounting. Note that since always rejecting is a feasible
strategy, di ≤mi ≤ Mi.
Claim 9.4.1. mj ≥ 1− θMi − (1− θ)di.
Proof. Note first that imust, in equilibrium, accept any offer strictly
great than θMi+(1− θ)di. Supposemj < 1−θMi−(1− θ)di. Then
there would exists an equilibrium yielding a payoff uj < 1 − θMi −
(1− θ)di to j. But j can deviate in such a putative equilibrium, and
offer θMi + (1− θ)di + ε, ε small, which i accepts. This gives j a
payoff of 1− θMi − (1− θ)di − ε > uj , for ε sufficiently small, and
so the deviation is profitable.

Claim 9.4.2. Mj ≤ 1− θmi − (1− θ)di.
Proof. In equilibrium, i rejects any offer strictly less than θmi +
(1− θ)di and then i offers no more than θMj + (1− θ)dj . So,

Mj ≤ max
{
1− θmi − (1− θ)di, θ

[
θMj + (1− θ)dj

]
+ (1− θ)dj

}

=⇒ Mj ≤ 1− θmi − (1− θ)di,

since Mj < θ2Mj +
(
1− θ2

)
dj ⇐⇒ Mj < dj .
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The first claim implies

Mj ≤ 1− θ
(
1− θMj − (1− θ)dj

)
− (1− θ)di

=⇒ Mj ≤
(
1+ θdj − di

)

(1+ θ) , Mi ≤
(
1+ θdi − dj

)

(1+ θ) .

This implies

mi ≥ 1− θ
(
1+ θdj − di

)

(1+ θ) − (1− θ)dj =
1+ θdi − dj
(1+ θ) = Mi

and so

mi = Mi =
1+ θdi − dj
(1+ θ) .

Now, we are interested in the payoffs as θ → 1, and

mi →
1+ di − dj

2
,

so that I’s share is

x∗ = 1+ d1 − d2

2
,

which is (9.1.1).
For much more on bargaining, see Osborne and Rubinstein (1990).

9.5 Problems

9.5.1. A three person bargaining problem is a pair (S, d), where
S ⊂ R3 is compact and convex, d ∈ S, and there exists s ∈ S
such that si > di for i = 1,2,3. Let B denote the collection
of bargaining problems, and as for the two person case, a bar-
gaining solution is a function f : B → R3 such that f(S,d) ∈ S.
The Nash axioms extend in the obvious manner. Prove that if
a bargaining solution satisfies INV, SYM, IIA, and PAR, then

f(S,d) = arg max
(s1,s2,s3)∈S,
di≤si,i=1,2,3

(s1 − d1)(s2 − d2)(s3 − d3).
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9.5.2. Suppose f is a bargaining solution satisfying PAR, IIA, INV,
and the following replacement of SYM by SIR (strict individual
rationality): fi(S, d) > di for i = 1,2. Using the following steps,
prove there exists α ∈ (0,1) such that

f(S,d) = arg max
s∈S,si≥di

(s1 − d1)α(s2 − d2)1−α. (9.5.1)

(This is the asymmetric Nash bargaining solution).

(a) Let S∗ := {s : s1 + s2 ≤ 1, si ≥ 0}, and define

α = f1(S∗,0).

Verify PAR implies 1 − α = f2(S∗,0) and SIR implies α ∈
(0,1).

(b) Verify that
α = arg max

0≤s1≤1
sα1 (1− s1)1−α.

(c) Prove (9.5.1).

9.5.3. Two agents bargain over [0,1]. Time is indexed by t, t =
1,2, . . . , T , T finite. A proposal is a division of the pie (x,1−x),
x ≥ 0. The agents take turns to make proposals. Player I
makes proposals on odd t and II on even t. If the proposal
(x,1 − x) is agreed to at time t, I’s payoff is δt−1

1 x and II’s
payoff is δt−1

2 (1 − x). Perpetual disagreement yields a payoff
of (0,0). Impatience implies δi < 1.

The game ends in period T if all previous proposals have been
rejected, with each receiving a payoff of zero.

(a) Suppose T is odd, so that I is the last player to make a
proposal. If T = 1, the player I makes a take-it-or-leave-it
offer, and so in equilibrium demands the entire pie and
II accepts. Prove that in the unique backward induction
equilibrium, if there are k periods remaining, where k is
odd and k ≥ 3, I’s proposal is given by

xk = (1− δ2)
τ−1∑

r=0

(δ1δ2)r + (δ1δ2)τ , τ = (k− 1)/2.
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[Hint: First calculate x1 (the offer in the last period), x2,
and x3. Then write out the recursion, and finally verify
that the provided expression satisfies the appropriate con-
ditions.]

(b) What is the limit of xT as T →∞?

(c) Suppose now that T is even, so that II is the last player
to make a proposal. Prove that in the unique backward
induction equilibrium, if there are k periods remaining,
where k is even and k ≥ 2, I’s proposal is given by

yk = (1− δ2)
τ−1∑

r=0

(δ1δ2)r , τ = k/2.

(d) What is the limit of yT as T →∞?

9.5.4. (a) Give the details of the proof of Claim 9.3.4.

(b) Give the details of the proof of Claim 9.3.6.

9.5.5. We will use the finite horizon bargaining result from Problem
9.5.3 to give an alternative proof of uniqueness in the Rubin-
stein model.

(a) Prove that in any subgame perfect equilibrium of the game
in which I offers first, I’s payoff is no more than xk, for all
k odd. [Hint: Prove by induction (the result is clearly true
for k = 1).]

(b) Prove that in any subgame perfect equilibrium of the game
in which I offers first, I’s payoff is no less than yk, for all
k even.

(c) Complete the argument.

9.5.6. LetG(n) denote Rubinstein’s alternating offer bargaining game
with discounting with the following change: The share going to
player 1 must be an element of the finite setA(n) = {0, 1

n , . . . ,
(n−1)
n ,1},

where n ∈ {1,2,3, . . .}. Suppose the two players have identical
discount factors δ.

(a) Show that for any n, there exists δ′ ∈ (0,1) such that for
any δ ∈ (δ′,1), the continuum case proof that there is a
unique partition of the pie achievable in a subgame perfect



294 Chapter 9. Bargaining

equilibrium fails for G(n). Show that any share to player 1
in A(n) can be achieved in a subgame perfect equilibrium
of G(n).

(b) Prove or provide a counterexample to the following claim:
For any δ ∈ (0,1) and any ε > 0, there exists n′ such that
for any n > n′ the share going to player 1 in any subgame
perfect equilibrium is within ε of the Rubinstein solution.

(c) Suppose
1

1+ δ ≠
k
n

∀k.
Describe a symmetric stationary equilibrium that, for large
n, approximates the Rubinstein solution.

9.5.7. Players 1 and 2 are bargaining over the pie [0,1] using the fol-
lowing modification of the alternating offer protocol. In each
period, a biased coin determines who makes the offer, with
player i selected with probability pi ∈ (0,1), p1 + p2 = 1. If
the offer is accepted, the offer is implemented and the game is
over. If the offer is rejected, play proceeds to the next period,
until agreement is reached. Players have the same discount
factor δ ∈ (0,1). Suppose each player is risk neutral (so that
player i’s utility from receiving x is given by ui(x) = x). De-
scribe a stationary subgame perfect equilibrium. Are there any
other stationary subgame perfect equilibria? Argue that this
protocol provides a noncooperative foundation for the asym-
metric Nash Bargaining solution as δ→ 1. Describe its compar-
ative statics (with respect to pi, particularly near the bound-
aries) and provide some intuition.

9.5.8. There is a single seller who has a single object to sell (the
seller’s reservation utility is zero). There are two potential buy-
ers, and they each value the object at 1. If the seller and buyer
i agree to a trade at price p in period t, then the seller re-
ceives a payoff of δt−1p, buyer i a payoff of δt−1

(
1− p), and

buyer j ≠ i a payoff of zero. Consider alternating offer bar-
gaining, with the seller choosing a buyer to make an offer to
(name a price to). If the buyer accepts, the game is over. If the
buyer rejects, then play proceeds to the next period, when the
buyer who received the offer in the preceding period makes a
counter-offer. If the offer is accepted, it is implemented. If the
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offer is rejected, then the seller makes a new proposal to either
the same buyer or to the other buyer. Thus, the seller is free
to switch the identity of the buyer he is negotiating with after
every rejected offer from the buyer.

(a) Suppose that the seller can only make proposals in odd-
numbered periods. Prove that the seller’s subgame perfect
equilibrium payoff is unique, and describe it. Describe the
subgame perfect equilibria. The payoffs to the buyers are
not uniquely determined. Why not?

(b) Now consider the following alternative. Suppose that if the
seller rejects an offer from the buyer, he can either wait
one period to make a counteroffer to this buyer, or he can
immediately make an offer to the other buyer. Prove that
the seller’s subgame perfect equilibrium payoff is unique,
and describe it. Describe the subgame perfect equilibria.
[Cf. Shaked and Sutton (1984).]

9.5.9. Extend alternating offer bargaining to three players as fol-
lows. Three players are bargaining over a pie of size 1. The
game has perfect information and players take turns (in the
order of their index). A proposed division (or offer) is a triple
(x1, x2, x3), with xi being player i’s share. All players must
agree on the division. Play begins in period 1 with player 1
making a proposal, which player 2 either accepts or rejects.
If 2 accepts, then 3 either accepts or rejects. If both accept,
the offer is implemented. If either reject, the game proceeds
to period 2, where player 2 makes a proposal, which player 3
either accepts or rejects. If 3 accepts, then 1 either accepts or
rejects. If both accept, the offer is implemented in period 2. If
either reject, then play proceeds to period 3, where 3 makes a
proposal and 1 and 2 in turn accept or reject. Players rotate
proposals and responses like this until agreement is reached.
Player i has discount factor δi ∈ (0,1).

(a) What is the stationary Markov equilibrium? Is it unique?

(b) [Hard] This game has many non-Markovian equilibria. De-
scribe one.
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9.5.10. (Based on Fernandez and Glazer, 1991.2) A firm and its em-
ployee union are negotiating a new wage contract. For simplic-
ity assume the new contract will never be renegotiated. Nor-
malize the value of output produced in each period to 1. The
current wage is w ∈ [0,1]. The union and the firm alternate
in making wage offers over discrete time: t = 1,2, . . . . In each
odd period t, the union proposes a wage offer x. The firm then
responds by either accepting (A) or rejecting (R). If the firm
accepts the offer, negotiations are over and the newly agreed
upon wage is implemented: wτ = x and πτ = 1 − x for all
τ ≥ t (where wτ is the wage and πτ is the profit in period τ).
If the firm rejects the wage offer, the union decides whether to
strike (s) or not to strike (n). If the union decides not to strike,
workers work and receive the old wage wt = w, and the firm
receives πt = 1−w. If the union decides to strike, workers get
wt = 0 and the firm gets πt = 0. After the union’s strike de-
cision, negotiations continue in the next period. In every even
period, the firm offers the union a wage offer z. The union
then responds by either accepting (A) or rejecting (R). Once
again acceptance implies the newly agreed upon wage holds
thereafter. If the union rejects, the union again must decide
whether to strike (s) or not (n). After the union strike decision,
negotiations continue in the next period.

Both the firm and workers discount future flow payoffs with
the same discount factor δ ∈ (0,1). The union’s objective is to
maximize workers’ utility:

(1− δ)
∞∑

t=1

δt−1wt.

The firm’s objective is to maximize its discounted sum of prof-
its:

(1− δ)
∞∑

t=1

δt−1πt.

(a) If the union is precommitted to striking in every period in
which there is a disagreement (i.e., the union does not have
the option of not striking), then there is a unique subgame

2See Busch and Wen (1995) for a more general treatment.
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perfect equilibrium of the game. Describe it (you are not
asked to prove uniqueness).

(b) Explain why the option of not striking is not an outside
option (in the sense of Section 9.3).

(c) Describe a stationary Markov equilibrium.

(d) Suppose 0 < w ≤ δ2

1+δ . There is a subgame perfect equilib-
rium which gives the same equilibrium outcome as that in
part (a). Describe it and verify it is an equilibrium. (Hint:
Use the equilibrium you found in part (c).)

(e) Describe an equilibrium with inefficient delay.

9.6 Additional Problems

9.6.1. Consider the following modification of the Rubinstein alter-
nating offer bargaining game. Two players bargain over the
division of a surplus that changes over time. The size of the
surplus is independently and identically distributed over time,
being of size L with probability 1

2 and size H > L with prob-

ability 1
2 . If bargaining is continuing in period t, then at the

beginning of the period, the size of the surplus S ∈ {L,H} is
realized (so both players know the size of the current surplus,
but do not know the size of future surpluses). Then the offer-
ing player (which is I in odd periods and II in even periods)
makes an offer, which is either accepted or rejected. If an offer
that gives an amount y to I is accepted, I’s payoff in period t
is y , while II’s payoff is S − y . Both players discount future
payoffs using the discount factor δ ∈ (0,1).

(a) What restriction(s) do L, H, and δ have to jointly satisfy
so that at both levels of surplus, immediate agreement oc-
curs in the unique stationary (Markov perfect) equilibrium
outcome?

(b) Under the restriction you derived in part (a), is the station-
ary (Markov perfect) equilibrium the only subgame perfect
equilibrium of this game? If it is, prove it. If not, provide
a counterexample.
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(c) The alternative to immediate agreement is agreement when
S = H, and no agreement when S = L. Prove that the re-
striction you found in part (a) characterizes the parame-
ters under which the expected discounted surplus under
immediate agreement is weakly larger than under agree-
ment only when S = H. Suppose the restriction you found
in part (a) does not hold. Solve for a stationary equilib-
rium.

(d) Suppose the restriction you derived in part (a) does not
hold. Is the stationary (Markov perfect) equilibrium you
found in part (c) the only subgame perfect equilibrium of
this game? If it is, prove it. If not, provide a counterexam-
ple.



Chapter 10

Introduction to Mechanism
Design1

10.1 A Simple Screening Example

How should a seller sell to a buyer with an unknown marginal will-
ingness to pay? Specifically, suppose the buyer has preferences

θq − p,

where θ > 0 is the buyer’s marginal value, q ≥ 0 is the quantity
purchased, and p is the total price paid. The seller has costs given
by the increasing convex C2 function

c(q),

satisfying c′(0) = 0, c′′ ≥ 0, and limq→∞ c′(q) = ∞.
If the seller knew the value of θ, then he would set p = θq and

choose q to maximize

p − c(q) = θq − c(q),

that is, choose q so that marginal cost c′(q) equals θ (this is also
the efficient quantity).

But what if the seller does not know the value of θ? Suppose the
seller assigns probability αH ∈ (0,1) to θ = θH and complementary

1I have shamelessly stolen the idea of introducing mechanism design in this way
from Börgers (2015).
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probability αL = 1 − αH to θL < θH . Such a situation is said to ex-
hibit adverse selection: a relationship is subject to adverse selection
if one of the participants has private information, and uninformed
participants are disadvantaged by this hidden information (another
common term).

If the seller could price discriminate, how would he do so? If the
seller price discriminates, he charges different prices for different
quantities. Since there are two types, it is natural to think of the
seller as offering two quantities, q1 and q2 and associated prices, p1

and p2, so that price is a function of quantity. But, in choosing these
two quantities (and the associated prices), the seller is targeting the
buyer type, so in what follows we think of the seller as offering a
pair of screening contracts {(qL, pL), (qH , pH)}, with the intent that
the buyer of type θt chooses the contract (qt, pt).

The seller chooses the pair of contracts to maximize

αL(pL − c(qL))+αH(pH − c(qH))
subject to

θLqL − pL ≥ θLqH − pH , (ICL)

θHqH − pH ≥ θHqL − pL, (ICH )

θLqL − pL ≥ 0, (IRL)

and θHqH − pH ≥ 0. (IRH )

Inequalities (ICL) and (ICH ) are the incentive compatibility condi-
tions that ensure the seller’s targeting of buyer types is successful.
Conditions (IRL) and (IRH ) are the individual rationality or partici-
pation constraints that ensure that both buyer types at least weakly
prefer to purchase. These last two constraints are illustrated in Fig-
ure 10.1.1.

It is immediate (both from the figure and algebraic manipulation
of the IC and IR constraints) that (IRL) and (ICH ) jointly imply (IRH ).
Moreover, (ICL) and (ICH ) imply qH ≥ qL. Finally, if qL ≠ qH , only
one of (ICL) and (ICH ) can bind.

The Langrangean for this maximization is

L = αL(pL − c(qL))+αH(pH − c(qH))
+ λL[θLqL − pL − (θLqH − pH)]+ λH[θHqH − pH − (θHqL − pL)]

+ µL[θLqL − pL]+ µH[θHqH − pH].
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q

p

θL indiff curve

θH indiff curve

p′

q′

buyer inc pref

Figure 10.1.1: The buyer’s indifference curves for different values of θ.
Inequality (IRL) binds for the contract (q′, p′), since that
buyer’s indifference curve passes through the origin (and so
the buyer is indifferent between the contract and not pur-
chasing). Buyer θH strictly prefers the contract (q′, p′) to
not purchasing, and so (IRH ) holds as a strict inequality.

The first order conditions for an interior solution are

−αLc′(qL)+ λLθL − λHθH + µLθL = 0, (10.1.1)

αL − λL + λH − µL = 0, (10.1.2)

−αHc′(qH)− λLθL + λHθH + µHθH = 0, and (10.1.3)

αH + λL − λH − µH = 0, (10.1.4)

together with the complementary slackness conditions on the mul-
tipliers.

From above, since (IRH ) does not bind, µH = 0. Moreover, since
only one of the two incentive constraints can bind, either λL or λH
equal zero. But (10.1.4), µH = 0, and λL ≥ 0 imply λH > 0, so λL = 0.
Then, (10.1.4) implies λH = αH , and so (10.1.3) implies qH satisfies

c′(qH) = θH ,
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q

p

θL

θH

p′L

q′L

p′H

q′H = q′′H

p′′L

q′′L

θH

p′′H

p = π0 + 1
2cq

2

Figure 10.1.2: Optimal screening contracts for two different values of α,
with α′′H > α′H , with quadratic costs. The two dashed curved
lines are isoprofit loci for the seller.

and so is the full information profit maximizing quantity. From
λH = αH and (10.1.2) we conclude µL = 1. Finally, from (10.1.1), we
have

−αLc′(qL)−αHθH + θL = 0,

so that

c′(qL) = θL −αHθH(1−αH) .

This only implies an interior solution if θL > αHθH . If θL ≤ αHθH ,
qL = pL = 0, the seller is better off selling only to θH , and does not
sell to θL (see Problem 10.5.1).

The prices pL and pH are then determined from (IRL) and (ICH )
respectively (see Figure 10.1.2 for the case of quadratic costs, c(q) =
1
2cq

2).
When the seller optimally sells to both types of buyer, buyer θH

strictly prefers to purchase rather than not purchase, and this addi-
tional payoff (over zero) is called buyer θH ’s information rent.
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Note that qL ↘ 0 as αH increases. As αH increases, it is more
valuable to the seller to sell to θH at a higher price. But in order to
do so, it must make the low value contract less attractive to θH . In-
creasing the price on qL does this but at the cost of losing sales to θL,
since θL is already just indifferent between buying and not buying.
But since θL values the good less than does θH , by simultaneously
lowering qL and pL at just the right rate, the seller simultaneously
maintains some sales to θL while making the contract less attractive
to θH .

Rather than offering a pair of contracts, we can equivalently think
of the seller as committing to the following direct mechanism: first
the seller specifies which contract the buyer will receive as a func-
tion of the buyer’s announcement of her value of θ, and then the
buyer chooses which value of θ to report. If the seller’s specifi-
cation satisfies (ICL), (ICH ), (IRL), and (IRH ), then the buyer finds it
optimal to both participate in the mechanism and truthfully report
her valuation. This is a trivial example of the revelation principle,
which we will return to several times (Theorems 11.2.1 and 12.1.1).

10.2 A Less Simple Screening Example

In this section, we suppose the seller has beliefs F over the buyer’s
valuation θ, with F having support [θ, θ] and strictly positive den-
sity f . The possibilities for price discrimination are now signifi-
cantly larger, since there are many more types. Rather than speci-
fying price as a function of quantity, it is more convenient to apply
the revelation principle (outlined at the end of the previous section)
and model the seller as choosing direct mechanism, i.e., a menu of
contracts {(q(θ),p(θ)) : θ ∈ [θ, θ]}, with contract (q(θ),p(θ)) in-
tended for buyer θ (but see Remark 10.2.1).

The seller chooses the pair of functions (q,p) : [θ, θ] → R2+ to
maximize ∫

[p(θ)− c(q(θ))]f (θ) dθ (Π)

subject to

θq(θ)− p(θ) ≥ θq(θ̂)− p(θ̂) ∀θ, θ̂ ∈ [θ, θ] (ICθ)

and θq(θ)− p(θ) ≥ 0 ∀θ ∈ [θ, θ]. (IRθ)
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Lemma 10.2.1. Suppose a pair of functions (q,p) satisfies (ICθ), and
define

U(θ) := θq(θ)− p(θ).
The function U is nondecreasing and convex, q is nondecreasing, and

U(θ) = U(θ)+
∫ θ
θ
q(θ̃) d(θ̃). (10.2.1)

Proof. For each θ̂, the function defined by

gθ̂(θ) := θq(θ̂)− p(θ̂)
is a nondecreasing affine function of θ.

The conditions (ICθ) imply (since U(θ) = gθ(θ))
U(θ) = max

θ̂∈[θ,θ]
gθ̂(θ) ∀θ.

That is, U is the pointwise maximum (upper envelope) of the col-
lection of nondecreasing affine functions {gθ̂ : θ̂ ∈ [θ, θ]}. It is,
therefore, nondecreasing and convex (see Figure 10.2.1).2

Every convex function on an open interval is absolutely continu-
ous (Royden and Fitzpatrick, 2010, page 132, Corollary 17) and so
differentiable almost everywhere. From the envelope characteriza-
tion, the derivative of U at θ (when it exists) is given by q(θ) (Prob-
lem 10.5.5), and since it is the derivative of a convex function, q is
nondecreasing when it is the derivative.3 To prove that q is nonde-
creasing everywhere, add (ICθ) to the same constraint reversing the
roles of θ and θ′ and rearrange to conclude

(θ − θ′)(q(θ)− q(θ′)) ≥ 0.

Finally, since U is absolutely continuous on (θ, θ), it is equal to
the integral of its derivative.4 That is, for all θ′ < θ′′ ∈ (θ, θ), we

2If each fα is convex and f(x) := supα fα(x), then f(tx + (1 − t)x′) =
supα fα(tx + (1 − t)x′) ≤ supα{tfα(x) + (1 − t)fα(x′)} ≤ t supα fα(x) +
(1− t) supα fα(x′) = tf (x)+ (1− t)f (x′).

3A more direct and intuitive (but less elegant) argument that implicitly assumes
continuity of q(·) (as well as ignoring the issue of footnote 4 on page 304) is in
Mas-Colell et al. (1995, page 888). See also the proof of Lemma 12.2.1.

4See Royden and Fitzpatrick (2010, Theorem 10, page 124). Absolute continu-
ity is needed here, as there are functions for which the fundamental theorem of
calculus fails. For an example of a strictly increasing function with zero derivative
almost everywhere, see Billingsley (1995, Example 31.1).
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θ

gθ̂

gθ̂′

gθ̂′′

gθ̂′′

Figure 10.2.1: The upper envelope of affine functions is convex.

have

U(θ′′) = U(θ′)+
∫ θ′′

θ′
q(θ̃) d(θ̃). (10.2.2)

Since U satisfies (ICθ) and is nondecreasing, we have that for all
θ† < θ‡ ∈ [θ, θ],

U(θ‡)− (θ‡ − θ†)q(θ‡) ≤ U(θ†) ≤ U(θ‡), (10.2.3)

and so U is continuous on the closed interval [θ, θ].5 Consequently,
(10.2.2) holds with θ′ = θ and θ′′ = θ.

It is immediate from (10.2.1) that U is continuous in θ, but as
(10.2.3) reveals, continuity is a direct implication of (ICθ).

Lemma 10.2.1 implies that for any pair of functions (p, q) satis-
fying (ICθ), the price function is pinned down (up to a constant U(θ))

5Continuity on the open interval follows from convexity, with continuity at θ
then being an implication of U being nondecreasing. There are nondecreasing
convex functions that are discontinuous at θ, such as the function obtained from
a continuous nondecreasing convex function by adding 1 to the function at θ.
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by the quantity function, since U(θ) = θq(θ)−p(θ) and (10.2.1) im-
plies

p(θ) = θq(θ)−U(θ) = θq(θ)−
∫ θ
θ
q(θ̃) dθ̃ −U(θ).

Lemma 10.2.1 implies that U(θ) ≥ 0 is sufficient to imply partic-
ipation for all θ. Since the seller’s profits are decreasing in U(θ),
the seller sets U(θ) = 0 (being a constant, the value of U(θ) has no
implications for (ICθ)).

It turns out that no further restrictions beyond Lemma 10.2.1 are
implied by (ICθ) and (IRθ):

Lemma 10.2.2. Suppose q : [θ, θ] → R+ is a nondecreasing function.
Then, (q,p) satisfies (ICθ) and (IRθ), where

p(θ) = θq(θ)−
∫ θ
θ
q(θ̃) dθ̃ (10.2.4)

= θq(θ)+
∫ θ
θ
[q(θ)− q(θ̃)] dθ̃.

Proof. Define

U∗(θ) :=
∫ θ
θ
q(θ̃) dθ̃ = θq(θ)− p(θ).

Then, U∗ is a convex function with U∗(θ) = 0, and (IRθ) is satisfied.
Moreover, since it is convex, for all θ̂,

U∗(θ) ≥ U∗(θ̂)+ (θ − θ̂)dU
∗(θ̂)
dθ

= U∗(θ̂)+ (θ − θ̂)q(θ̂)
= θq(θ̂)− p(θ̂),

proving (ICθ).

Thus, to solve the seller’s problem we need only maximize

∫ θ
θ

{
θq(θ)−

∫ θ
θ
q(θ̃) dθ̃ − c(q(θ))

}
f(θ) dθ
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over all nondecreasing functions q.
We first apply integration by parts (i.e.,

∫
uv′ = uv − ∫ u′v) to

the double integral:6

∫ θ
θ

∫ θ
θ
q(θ̃) dθ̃ f (θ) dθ =

(
F(θ)

∫ θ
θ
q(θ̃) dθ̃

)∣∣∣∣∣
θ

θ=θ
−
∫ θ
θ
F(θ)q(θ) dθ

=
∫ θ
θ
q(θ̃) dθ̃ −

∫ θ
θ
F(θ)q(θ) dθ

=
∫ θ
θ
(1− F(θ))q(θ) dθ.

Substituting into the seller’s objective function, we have

∫ θ
θ

{(
θ − (1− F(θ))

f (θ)

)
q(θ)− c(q(θ))

}
f(θ) dθ.

Consider maximizing the integrand pointwise. Since the cost
function c is convex, the first order condition is sufficient for an
interior maximum. If q = q(θ) maximizes the integrand, it satisfies
the first order condition

θ − 1− F(θ)
f(θ)

= c′(q). (10.2.5)

There remains the possibility that there may not be a strictly posi-
tive q solving (10.2.5), as would occur if the left side were negative.

6An alternative derivation is via Fubini’s theorem (where χ(θ̃, θ) = 1 if θ̃ ≤ θ
and 0 otherwise):

∫ θ
θ

∫ θ
θ
q(θ̃) dθ̃ f (θ) dθ =

∫ θ
θ

∫ θ
θ
χ(θ̃, θ)q(θ̃)f (θ) dθ̃dθ

=
∫ θ
θ

∫ θ
θ
χ(θ̃, θ)q(θ̃)f (θ) dθdθ̃

=
∫ θ
θ

∫ θ
θ̃
q(θ̃)f (θ) dθdθ̃

=
∫ θ
θ
q(θ̃)

∫ θ
θ̃
f(θ) dθdθ̃ =

∫ θ
θ
(1− F(θ̃))q(θ̃) dθ̃.
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Theorem 10.2.1. Suppose the function

ψ(θ) := θ − 1− F(θ)
f(θ)

(10.2.6)

is nondecreasing in θ. For all θ, denote by q∗(θ) the quantity given
by

q∗(θ) :=
{

0, ψ(θ) ≤ 0,
q(θ), ψ(θ) > 0,

where q(θ) is the unique quantity q satisfying (10.2.5), and denote
by p∗(θ) the right side of (10.2.4), i.e.,

p∗(θ) := θq∗(θ)−
∫ θ
θ
q∗(θ̃) dθ̃.

The pair of functions (q∗, p∗) maximizes the seller’s profits (Π) sub-
ject to (ICθ) and (IRθ). Moreover, any pair of functions (q̂∗, p̂∗) that
maximizes the seller’s profits (Π) subject to (ICθ) and (IRθ) equals
(q∗, p∗) almost surely.

Proof. Ifψ(θ) > 0, since the marginal cost is unbounded above, con-
tinuous with value 0 at 0, there exists a unique q solving (10.2.5).7

Sinceψ is nondecreasing in θ, the function q∗ is also nondecreasing
and so by Lemma 10.2.2, (q∗, p∗) is an admissible solution. Since
q∗(θ) uniquely pointwise maximizes the integrand, it is the opti-
mal quantity schedule. Since the optimal choices for the seller must
leave the bottom buyer indifferent between accepting and rejecting
the contract, U(θ) = 0 and the optimal price schedule is given by
(10.2.4).

The function ψ defined in (10.2.6) is called the virtual type or
virtual value, and that assumption that ψ is increasing in θ is called
the regular case. Note that there is no distortion at the top (since
F(θ) = 1). Moreover, every type θ earns an information rent of

∫ θ
θ
q∗(θ̃) dθ̃

(which is zero for θ = θ ).
7If c′ is bounded above, (10.2.5) may not have a solution. In particular, if ψ(θ)

exceeds c′(q) for all q, the integrand is unbounded at that θ, precluding the exis-
tence of a maximum over all q ≥ 0. This is the only place the assumption that c′ is
unbounded above is used.
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Remark 10.2.1 (The Taxation Principle). In practice, it is more nat-
ural to think of the buyer as choosing a quantity q while facing a
nonlinear pricing schedule, P (as in Section 10.1). Such a nonlin-
ear schedule is said to screen buyers. The observation that one can
always implement an optimal direct mechanism by an equivalent
nonlinear pricing schedule is called the taxation principle. Problem
10.5.2 goes through the steps for the current setting. The taxation
principle is an “inverse” of the revelation principle. ♦

10.3 The Take-It-or-Leave-It Mechanism

We continue with the previous section’s example, but now consider
the case of a seller selling one unit of a good to a buyer with un-
known valuation. The preceding analysis applies once we interpret
q as the probability of trade, which of course requires q ∈ [0,1].
Conditional on a report θ̂, there is a probability of trade q(θ̂) and
a payment p(θ̂). The seller has an opportunity cost of provision of
c < θ, so the expected cost is

c(q) = cq.
Suppose we are in the regular case, so that

ψ(θ) = θ − 1− F(θ)
f(θ)

is increasing in θ. Note that Eψ(θ) = θ.
The seller chooses a nondecreasing probability of trade to maxi-

mize ∫ θ
θ

{
θ − 1− F(θ)

f(θ)
− c

}
q(θ) f(θ) dθ.

If ψ(θ) ≤ 0, denote by θ∗ ∈ [θ, θ] a value of θ that solves

θ − 1− F(θ)
f(θ)

= c;

note that θ∗ > c. If ψ(θ) > 0, set θ∗ = θ. The maximum is clearly
achieved by choosing

q∗(θ) =
{

1, if θ ≥ θ∗,
0, if θ < θ∗.
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From (10.2.4), it is immediate that

p∗(θ) =
{
θ∗, if θ ≥ θ∗,
0, if θ < θ∗.

In other words, the seller optimally chooses a price p = θ∗, every
buyer with a valuation above θ∗ buys, and every buyer with a valu-
ation below θ∗ does not.

The conclusion that the take-it-or-leave-it mechanism is optimal
does not require being in the regular case (though the proof does
require more advanced techniques, see Section 2.2 of Börgers, 2015).

10.4 Implementation

We begin with a simple example of implementation.

Example 10.4.1. Two children (Bruce and Sheila) have to share a pie,
which has a cherry on top. Both Bruce and Sheila would like more
of the pie, as well as the cherry, with both valuing the cherry at
θ ∈ (0,1). A division of the pie is denoted by x ∈ [0,1], where x is
the size of the slice with the cherry, with the other slice having size
1− x (it is not possible to divide the cherry). An allocation is (x, i)
where i ∈ {1,2} is the recipient of the slice with the cherry. Payoffs
are

vj(x, i) =
{
θ + x, if j = i,
1− x, if j ≠ i,

for i, j ∈ {B, S}. If the parent knew that θ = 0, then the parent can
trivially achieve a fair (envy-free) division by cutting the pie in half.
But suppose the parent does not know θ (but that the children do).
How can the parent achieve an equitable (envy-free) division? The
parent has the children play the following game: Bruce divides the
pie into two slices, and Sheila then chooses which slice to take (with
Bruce taking the remaining slice). It is straightforward to verify that
in any subgame perfect equilibrium, the resulting division of the pie
is envy-free: both Bruce and Sheila are indifferent over which slice
they receive. «

Let E denote a set of environments and Z the outcome space.
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Definition 10.4.1. A social choice function (scf) is a function

ξ : E → Z.
Example 10.4.2 (Social choice). Let Z be a finite set of social alterna-
tives, {x,y, z, . . .}. Let R denote the collection of preference order-
ings on Z ; R ∈ Z satisfies completeness and transitivity. We write
xPy if xRy but not yRx (that is, x is strictly preferred to y). There
are n members of society, so E = Rn.

A social choice function ξ satisfies unanimity if for all e ∈ E
satisfying xPiy for all y ∈ Z and all i, we have ξ(e) = x. «

Example 10.4.3. A single indivisible good to be allocated to one of
n people. Then Z = {0,1, . . . , n} × Rn, where (j, t1, . . . , tn) ∈ Z is
the outcome where j receives the good (if j = 0, no one receives
the good), and agent i pays the seller ti (an amount that may be
negative).

If player i values the good at vi, then i’s payoffs are

ui(j, t1, . . . , tn) =
{
vi − ti, if i = j,
−ti, if i ≠ j.

The set of environments is E = ∏
i Vi, where Vi is the set of

possible valuations for player i, so that e = (v1, . . . , vn).
Efficient scf: ξ(e) = (j, t1, . . . , tn) only if vj ≥ maxi vi.
Maximally revenue extracting and individually rational scf: ξ(e) =

(j, t1, . . . , tn) only if vj ≥ maxi vi, tj = vj , and ti = 0 for i ≠ j. «

While the players know the details of the environment (though
some of the information may be private), the “social planner” may
not (Example 10.4.1 is a simple illustration). Nonetheless, the social
planner wishes to “implement” a social choice function. Can the
social planner arrange matters so that the players will reveal the
details of the environment? This is the implementation problem.

More formally, a game form or mechanism Γ is described by
((Ai)ni=1, f ), where Ai is player i’s action set, and f : A → Z is the
outcome function describing the induced outcome in Z for each ac-
tion profile a ∈ A := A1×· · ·×An. If the mechanism has a nontrivial
dynamic structure, then ai is an extensive form strategy.

For each mechanism Γ and environment e, there will be a set of
solutions or equilibria ΣΓ (e) ⊂ A. In general, there are many choices
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E Z

A

ΣΓ f

ξ

Figure 10.4.1: The mechanism Γ Σ-implements ξ if this diagram is a com-
mutative diagram, in the sense of Definition 10.4.2.

possible for ΣΓ , such as dominant strategy, Nash equilibrium, Bayes-
Nash, subgame perfect, etc. The specification of ΣΓ depends upon
the nature of informational assumptions made about the players
and the static/dynamic nature of Γ .

Example 10.4.4. Suppose there are two players and three possibili-
ties in Example 10.4.2. Voting by veto (Example 1.1.5) is an example
of a game form, and using iterated deletion of dominated strategies
gives, for each profile of preferences, an outcome. «

We thus have the scf ξ which maps E to Z , the solution corre-
spondence ΣΓ , which maps E to A, and outcome function f , which
maps A to Z (see Figure 10.4.1).

Definition 10.4.2. The mechanism Γ weakly Σ-implements ξ if for all
e ∈ E, there exists a solution σΓ (e) ∈ ΣΓ (e) such that

f(σΓ (e)) = ξ(e).

The mechanism Γ strongly (or fully) Σ-implements ξ if for all e ∈ E,
and for all solutions σΓ (e) ∈ ΣΓ (e),

f(σΓ (e)) = ξ(e).

If implement is used without an adjective, the writer typically
means weakly implement.

Example 10.4.5. The second price auction strongly implements an
efficient scf in the setting of Example 10.4.3 in weakly undominated
strategies (Example 1.1.6), but it only implements (but not strongly
so) in Nash equilibrium (Example 2.1.4). «
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Example 10.4.6 (Example 10.4.1 cont.). Fair division is strongly im-
plemented by both subgame perfect equilibrium and (in the normal
form) by the iterated deletion of weakly dominated strategies. «

Remark 10.4.1. Implementation theory is part of mechanism design
and fixes the social choice function and asks whether there is mech-
anism for which either (for weak implementation) there is an equilib-
rium or (for strong implementation) all equilibria result in outcomes
consistent with the a priori fixed social choice function. Mechanism
design does not necessarily fix the social choice function. A desired
outcome or objective is first identified (examples include efficient
trade, firm profits, social welfare, and gains from trade) and then
solves for (designs) a mechanism with an equilibrium that either
achieves or maximizes the objective (as appropriate) subject to the
relevant resource and information constraints. ♦

10.5 Problems

10.5.1. In this problem, we explicitly take into account the nonneg-
ativity constraints in the simple screening example of Section
10.1. The Langrangean becomes (since the nonnegativity of
prices is implied by the nonnegativity of quantities and IR,
those constraints can be ignored)

L = αL(pL − c(qL))+αH(pH − c(qH))
+λL[θLqL−pL− (θLqH −pH)]+λH[θHqH −pH − (θHqL−pL)]

+ µL(θLqL − pL)+ µH(θHqH − pH)+ ξLqL + ξHqH ,
where ξL and ξH are the multipliers on the nonnegativity con-
straints qL ≥ 0 and qH ≥ 0, respectively.

(a) Describe the first order conditions and the complementary
slackness conditions.

(b) Suppose θL < αHθH . Solve for the optimal pair of con-
tracts (including the values of the multipliers).

(c) Suppose now that the marginal cost at zero is strictly pos-
itive, while maintaining all the other assumptions in Sec-
tion 10.1. How does the analysis of the seller’s optimal
pair of contracts change?
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10.5.2. Suppose (p, q) is an optimal direct mechanism for the less
simple screening example of Section 10.2 and we are in the
regular case.

(a) Prove that p is strictly increasing whenever q is (i.e., θ1 <
θ2 and q(θ1) < q(θ2) implies p(θ1) < p(θ2)).

(b) Prove that p is constant whenever q is (i.e., θ1 < θ2 and
q(θ1) = q(θ2) implies p(θ1) = p(θ2)).

(c) (The taxation principle.) Let Q := q([θ, θ]). Prove there
exists a nonlinear pricing function P : Q → R+ such that
buyer θ optimally chooses q = q(θ) from Q.

10.5.3. Solve for the optional direct mechanism (p, q) for the less
simple screening example of Section 10.2 when costs are quadratic,
in particular, c(q) = 1

2q
2, and θ has the following distributions.

(a) A uniform distribution on the interval [0,1].
(b) The type θ is distributed on [1,11] according to the fol-

lowing density:

f(θ) =




0.1, θ ∈ [1,2],
0.9(θ − 1)−2, θ ∈ (2,10),
0.1, θ ∈ [10,11].

10.5.4. Prove that the take-it-or-leave-it mechanism is optimal for
the sale of a single item when the seller’s beliefs are as de-
scribed in Section 10.1.

10.5.5. Give the (few) details of the argument that U ′(θ) = q(θ) in
the proof of Lemma 10.2.1.

10.5.6. Suppose a seller wishes to sell one unit of a good to a buyer
of unknown valuation who is budget constrained. That is, as-
sume the buyer in Section 10.3 cannot pay more than his bud-
get of b > 0. Suppose we are in the regular case. If b > θ∗, then
this additional constraint is not binding. What is the firm’s op-
timal mechanism if b < θ∗?

10.5.7. Verify the claim in Example 10.4.1 that the division of the
pie in any subgame perfect equilibrium is envy free (neither
child strictly prefers one of the slices).



Chapter 11

Dominant Strategy
Mechanism Design

11.1 Social Choice and Arrow’s Impossibility The-
orem

Let Z be a (finite) set of social alternatives, and n members of soci-
ety.

A preference ordering R is a complete and transitive binary re-
lation on Z , and let R be the set of all preference orderings on Z .
Strict preference is defined by zPy ⇐⇒ (zRy ∧¬yRz).

A profile of preferences is R := (R1, . . . , Rn) ∈ Rn.

Definition 11.1.1. A social welfare function is a function1 f that
assigns a preference ordering R to each profile R = (R1, . . . , Rn), i.e.,
it is a function f : Rn → R. The preference ordering f(R) is called
the social ordering associated with R.

This definition requires that a social welfare function assign a
transitive and complete social preference ordering to every profile.
This is called unrestricted domain. (The fact that indifference is al-
lowed is not important; it is important that all strict preferences are
in the domain.)

Definition 11.1.2. The social welfare function f satisfies non-dictatorship

1Some authors use the word functional when the range is not a subset of a
Euclidean space.

315
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if there is no i such that for all x,y ∈ Z and all R ∈ Rn,

xPiy ⇒ xPy,

where P is the strict social preference implied by f(R).

Definition 11.1.3. The social welfare function f satisfies unanimity
if for all x,y ∈ Z and R = (R1, . . . , Rn) ∈ Rn, if xPiy for all i, then
xPy .

Definition 11.1.4. The social welfare function f satisfies indepen-
dence of irrelevant alternatives ( IIA) if R = (R1, . . . , Rn) and R′ =
(R′1, . . . , R′n) agree on the choice between a pair x,y (i.e., xRiy a
xR′iy for all i),2 then f(R) and f(R′) also agree on the choice be-
tween x and y (i.e., xf(R)y a xf(R′)y).

Example 11.1.1 (The Condorcet Paradox). Easy to verify that ma-
jority rule over two outcomes satisfies non-dictatorship, unanimity,
and IIA.

Let Z = {x,y, z} and n = 3 and consider the following (strict)
preference orderings

P1 P2 P3

x y z

y z x

z x y

Majority rule is not transitive (hence Condorcet, or voting, cy-
cles). «

Theorem 11.1.1 (Arrow’s Impossibility Theorem). If |Z| ≥ 3, there
exists no social welfare function with unrestricted domain satisfying
non-dictatorship, unanimity, and IIA.

The requirement that |Z| ≥ 3 is clearly necessary, since major-
ity rule is a nondictatorial social welfare function with unrestricted
domain satisfying unanimity and IIA. In this case, IIA is of course
trivial.

2But different agents may rank x and y differently.
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Proof. I give the elegant first proof from Geanakoplos (2005).
Suppose f is a social welfare function with unrestricted domain

satisfying unanimity and IIA. We will show that it is dictatorial.
In the arguments that follow, note also the role of unrestricted

domain, which guarantees that f is well defined for each defined
preference profile.

Notation: For any preference profile R, denote by R and P the
weak and strict social preference implied by f(R). Decorations are
inherited, so for example, P (j) denotes the strict social preference
implied by f(R(j)).

Claim 11.1.1 (No compromise). For any alternative c ∈ Z , suppose
R is a profile in which, for all i, either xPic for all x ≠ c or cPix for
all x ≠ c (i.e., each agent either ranks c at the bottom or at the top).
Then, either xPc for all x ≠ c or cPx for all x ≠ c.

Proof. Suppose not. Then there exist distinct α,β ∈ Z , α,β ≠ c,
such that

αRcRβ.

Let R̂ denote the preference profile obtained from R by, if nec-
essary, moving β just above α (but keeping c at the top if c had
been at the top). Note that this does not change the ranking of
c with respect to either α or β for any individual.

Unanimity implies βP̂α. But IIA implies αR̂c and cR̂β, and so
αR̂β, a contradiction. □

Fix an alternative c ∈ Z , and suppose R is a profile in which xPic
for all i and all x ≠ c. Then unanimity implies xPc for all x ≠ c.

I first argue that there must be an agent who is pivotal in a re-

stricted sense. For each profile Ri, define a profile R(j)i as follows:

xRiy =⇒ xR(j)i y for all x,y ≠ c,

xP (j)i c if i > j,

and
cP (j)i x if i ≤ j.

Finally, set R(j) := (R(j)1 , . . . , R
(j)
n ); in words, agent by agent, the

worst alternative c is moved to the top of the agent’s preference
ordering, without changing any other preference ordering.
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Note that in R(n), every agent ranks c strictly at the top, and so,
again by unanimity, cP (n)x for all x ≠ c.

Let j∗ be the first index (lowest j) for which c is not ranked at
the bottom by f(R(j)). By the above claim, c is then ranked at the
top, and j∗ is pivotal, at least at R, in that

∀x : xP (j
∗−1)c and cP (j

∗)x. (11.1.1)

I now argue that j∗ is then even more pivotal:

Claim 11.1.2. Suppose a,b are two distinct alternatives distinct from
c. Then, for all R̃,

aP̃j∗b =⇒ aP̃b.

Proof. Suppose aP̃j∗b. Let R̃j
∗
j∗ denote the preference ordering

obtained from R̃j∗ be moving c so that c is ranked between
a and b (but the rankings of alternatives excluding c are un-

changed). For i ≠ j∗, let R̃j
∗
i denote the preference ordering

obtained from R̃i by moving c, for i < j∗, to the top of the
agent’s ordering, and, for i > j∗, to the bottom.

Applying IIA twice, we have

1. aR̃j∗c ⇐⇒ aR(j∗−1)c (since for all i, aR̃j
∗
i c ⇐⇒ aR(j

∗−1)
i c)

and

2. cR̃j∗b ⇐⇒ cR(j∗)b (since, for all i, cR̃j
∗
i b ⇐⇒ cR(j

∗)
i b).

From (11.1.1), aP (j∗−1)c and cP (j∗)b, so aP̃ j∗cP̃ j∗b. Transitiv-
ity then yields aP̃ j∗b.

Finally, applying IIA again yields aR̃j∗b ⇐⇒ aR̃b (since for all

i, aR̃j
∗
i b ⇐⇒ aR̃ib), so aP̃b. □

We thus have that j∗ is dictatorial over comparisons that exclude
c, and one decision on c, at R. It remains to show that j∗ is dictato-
rial over all comparisons.

Fix an alternative a ≠ c. Applying the reasoning for Claim 11.1.2
to a gives an agent i† who is dictatorial over comparisons that
exclude a. In particular, at Rj

∗−1 and Rj
∗
, agent i†’s ranking of

b ̸∈ {a, c} and c determines the social ranking of b and c. But we
have already seen that this ranking is determined by i∗’s ranking,
and so i† = i∗.
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Remark 11.1.1. The proof of Arrow’s Theorem applies without change
if the domain of the scf is instead the set of all strict preference or-
ders on Z . Unrestricted domain is needed so that we can apply the
scf to different strict preference orderings. ♦

11.2 Dominant Strategy Implementation and the
Gibbard-Satterthwaite Theorem

We are now in a position to prove the Gibbard-Satterthwaite Theo-
rem, introduced in Remark 1.1.3.

The setting is that of Example 10.4.2, except that we restrict at-
tention to strict preference orderings. Let P denote the collection
of all strict orders on Z , the finite set of outcomes. As usual, P ∈
P satisfies completeness, transitivity, and asymmetry (i.e., xPy ⇒
¬yPx).

Setting E = Pn, a social choice function (scf) is now a function

ξ : Pn → Z.

Denote a preference profile by P := (P1, . . . , Pn) ∈ Pn.
There are many mechanisms a social planner could imagine us-

ing to attempt to implement a scf. A canonical mechanism is the
direct mechanism, in which each player i reports their own prefer-
ence ordering Pi, so that Ai = P. It is then natural to focus on
truthful reporting in the direct mechanism with outcome function
f = ξ.

Theorem 11.2.1 (The revelation principle). The scf ξ is dominant
strategy implementable in some mechanism Γ∗ = ((A∗i )

n
i=1, f

∗) if
and only if truthful reporting is a dominant strategy equilibrium of
the direct mechanism ΓD = ((Pi)ni=1, ξ).

Proof. Clearly, if truthful reporting is a dominant strategy equilib-
rium of the direct mechanism, then ξ is clearly dominant strategy
implementable in some mechanism.

We now argue the nontrivial direction.
Suppose ξ is dominant strategy implementable in the mecha-

nism Γ∗ = ((A∗i )ni=1, f
∗). Then there exists a strategy profile s∗ :=
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(s∗1 , . . . , s∗n), with s∗i : P → A∗i such that for all P, (s∗1 (P1), . . . , s∗n(Pn))
is a dominant strategy equilibrium. That is,

∀a−i ̸ ∃a′i : f∗(a′i, a−i) Pi f
∗(s∗i (Pi), a−i). (11.2.1)

Moreover, for all P,
f∗(s∗(P)) = ξ(P). (11.2.2)

But (11.2.1) immediately implies

∀P−i ̸ ∃P ′i : f∗(s∗i (P
′
i ), s

∗
−i(P−i)) Pi f

∗(s∗i (Pi), s
∗
−i(P−i)),

which, using (11.2.2), is equivalent to

∀P−i ̸ ∃P ′i : ξ(P ′i ,P−i) Pi ξ(Pi,P−i),

that is, truthful reporting is a dominant strategy equilibrium of the
direct mechanism.

Thus, when investigating whether an scf is dominant strategy
implementable, it is enough to study whether truthful reporting is a
dominant strategy equilibrium of the direct mechanism.

Note that the result does not say that every dominant strategy
equilibrium of the direct mechanism implements ξ; that is false (see
Problem 11.4.3). There may be other dominant strategy equilibria.
Put differently, the revelation principle is not about strong imple-
mentation.

We next recall the notion of strategy proof from Remark 1.1.3.

Definition 11.2.1. A scf ξ is strategy proof if announcing truthfully
in the direct mechanism is a dominant strategy equilibrium. A scf
is manipulable if it is not strategy proof, i.e., there exists an agent i,
P ∈ Pn and P ′i ∈ P such that

ξ(P ′i ,P−i) Pi ξ(P).

The revelation principle can be restated as: ξ is dominant strat-
egy implementable in some mechanism if, and only if, it is strategy
proof.

Definition 11.2.2. A scf ξ is dictatorial if there is an i such that for
all P ∈ Pn,

[aPib ∀b ≠ a] =⇒ ξ(P) = a.
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Theorem 11.2.2 (Gibbard-Satterthwaite). Every strategy-proof scf ξ
satisfying | ξ(Pn) |≥ 3 is dictatorial.

Remark 11.2.1. Because of the dominant strategy revelation prin-
ciple (Theorem 11.2.1), the Gibbard-Satterthwaite Theorem implies
that the only nontrivial scf’s that can be implemented in dominant
strategies are dictatorial. ♦

The remainder of this section proves Theorem 11.2.2 as an im-
plication of Arrow’s Impossibility Theorem (Theorem 11.1.1). There
are direct proofs (see, for example, Benoıt, 2000, and Reny, 2001).
Suppose there exists a strategy-proof scf ξ satisfying | ξ(Pn) |≥ 3.

Without loss of generality, assume ξ(Pn) = Z . The first result is
just a rewriting of definitions.

Lemma 11.2.1. Suppose there exists a preference profile P and a pref-
erence P ′i such that ξ(P) = x, ξ(P ′i , P−i) = y ,and either xPiy and
xP ′iy , or yPix and yP ′ix. Then, ξ is manipulable.

Lemma 11.2.2. Suppose for profile P, there exists a subset B Î Z such
that for all i, all x ∈ B, and all y ∈ Z \ B, xPiy . Then, ξ(P) ∈ B.

Proof. Suppose not, that is, suppose there exist P and B satisfying
the hypothesis, with ξ(P) ∉ B.

Choose x ∈ B. By assumption, B ⊂ ξ(Pn), and so there exists P′
with ξ(P′) = x. Consider the following sequence of profiles,

P(0) := (P1, P2, ..., Pn) = P,

P(1) := (P ′1, P2, ..., Pn),
...

P(n) := (P ′1, P ′2, ..., P ′n) = P′.

By assumption, ξ(P) ∉ B and ξ(P′) ∈ B. Hence, there must be a first
profile P(k) for which ξ(P(k)) ∈ B. But then ξ is manipulable at P(k−1)

by individual k.

The idea is to construct a social welfare function F∗ on Z , and
then appeal to Theorem 11.1.1.

We need to specify either xF∗(P)y or yF∗(P)x for any x,y ∈ Z
and P ∈ Pn. We do this by “moving x and y to the top” of each
person’s preference order without changing their relative order, and
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using the social choice for this altered profile to rank x relative to
y :

To “move x and y to the top” for a profile P = (P1, ..., PN), we
proceed as follows. For each preference ordering Pi, define P ′i as
follows:

1. xP ′iy ⇐⇒ xPiy ,

2. for any a,b ∉ {x,y}, aP ′ib ⇐⇒ aPib, and

3. for any a ∈ {x,y} and b ∉ {x,y}, aP ′ib.

Call the resulting profile Pxy .
By Lemma 11.2.2, the social choice for the altered profile Pxy

must be either x or y . This construction generates a complete or-
dering F∗(P) on Z for every P ∈ Pn by defining

xF∗(P)y ⇐⇒ x = ξ(Pxy).
The mapping F∗ is a social welfare function if F∗(P) is transitive

for all P. Before proving transitivity, unanimity and IIA are verified.

Lemma 11.2.3. F∗ satisfies IIA and unanimity.

Proof. IIA: Need to show that for all P and P′ ∈ Pn such that for a
pair of alternatives x,y ∈ Z

[xPiy ⇐⇒ xP ′iy ∀i] =⇒ [xF∗(P)y ⇐⇒ xF∗(P′)y].

We prove this by contradiction. Suppose the social choice when x
and y are moved to the top in P is x and the social choice is y when
x and y are moved to the top in P′. We proceed by a chain argument
similar to that in the proof of Lemma 11.2.2:

Let P̂ and P̂′ be the profiles obtained by moving x and y to the
top in the profiles P and P′, respectively. Consider the following
sequence of profiles in which we change one P̂i to P̂ ′i at a time.

P̂
(0)

:= (P̂1, P̂2, ..., P̂n) = P̂,

P̂
(1)

:= (P̂ ′1, P̂2, ..., P̂n),
...

P̂
(n)

:= (P̂ ′1, P̂ ′2, ..., P̂ ′n) = P̂
′.
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By assumption, the social choice for P̂
(0)

is x and the social

choice for P̂
(n)

is y . By Lemma 11.2.2, the social choice for each

profile must be either x or y . Consider the first profile P̂
(k)

for
which the social choice changes from x to y . Then, ξ must be ma-

nipulable at either P̂
(k−1)

or P̂
(k)

(since the ranking of x and y has
not changed for any player).

We now verify unanimity: Suppose not, that is, suppose at some
P for all i, aPib and yet ξ(Pab) = b. Since a is in the range of ξ,
there exists P̃ such that a = ξ(P̃). As above, consider the chain of
profiles P̃ = P(0),P(1), . . . ,P(n) = Pab. Let k be the first index for
which ξ(P(k)) = c ≠ a. Then, k manipulates at P(k) (since a must be
at the top of k’s preference order after moving {a,b} to the top).

Lemma 11.2.4. F∗(P) is transitive.

Proof. Suppose not, i.e., suppose there exists x,y, z ∈ Z with xF∗(P)y ,
yF∗(P)z and zF∗(P)x. Consider the profile P′ derived from P by
“moving x, y , and z to the top.” By Lemma 11.2.2, the social choice
for this profile must be in {x,y, z}. Without loss of generality,
assume it is x. Now consider another profile P′′ derived from P′
by moving y to third place. Now, by IIA and the assumption that
zF∗(P)x, we have ξ(P′′) = z.

Consider the sequence of profiles:

P′′(0) := (P ′1, P ′2, ..., P ′n) = P′,

P′′(1) := (P ′′1 , P ′2, ..., P ′n),
...

P′′(n) := (P ′′1 , P ′′2 , ..., P ′′n ) = P′′.

For every profile, the social choice is in {x,y, z} by Lemma 11.2.2.
There is a first profile P′′(k) for which the social choice is not x, i.e.,
the social choice is y or z. If the first change is to y , the scf is ma-
nipulable at P′′(k). If the first change is to z, then f is manipulable at
either P′′(k−1) or P′′(k); in either case, this is a contradiction. Hence
F(P) is transitive.

Hence by Arrow’s Impossibility Theorem (Theorem 11.1.1, recall
Remark 11.1.1), F∗ is dictatorial. The argument is completed by
showing that if i is a dictator for F∗, then i is also a dictator for
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the scf ξ, which is straightforward: Suppose not, that is, suppose
ξ(P) = b ≠ a = ξ(Pab). As above, consider the chain of profiles P =
P(0),P(1), . . . ,P(n) = Pab. Let k be the first index for which ξ(P(k)) =
c ≠ b. If c = a, then k manipulates at P(k) if bPka, and at P(k−1) if
aPkb. If c ≠ a, k manipulates at P(k).

11.3 Efficiency in Quasilinear Environments

Suppose there is a finite set of social alternatives X. An outcome
is (x, t1, . . . , tn) ∈ X × Rn =: Z , where x is the social alternative
and ti is the transfer to player i. We do not require budget balance
(
∑
ti = 0).
An environment is said to be quasilinear if all the players’ Bernoulli

utility functions are quasilinear, i.e., player i’s payoff from the out-
come (x, t1, . . . , tn) is3

vi(x)+ ti,
for some vi : X → R.

An environment is v = (v1, . . . , vn), where vi : X → R is player
i payoffs from each of the outcomes.4 Since X is finite, we have
vi ∈ R|X|, and so the set of environments E is a subset of Rn|X|.
Assume E = ∏

iEi; we allow Ei = R|X|, but this is not necessary
(except where explicitly noted).

Quasilinear environments allow for a transparent formulation of
efficiency, which I now describe. In the absence of constraints on
the size of transfers, it is meaningless to talk about the Pareto effi-
ciency of outcomes. One sensible way to account for transfers with
Pareto efficiency is to require total transfers be unchanged. That is,
an outcome z = (x, t1, . . . , tn) ∈ Z is Pareto efficient if there is no
outcome z′ = (x′, t′1, . . . , t′n) ∈ Z satisfying

∑
i ti =

∑
i t′i and

vi(x′)+ t′i ≥ vi(x)+ ti

for all i, with strict inequality holding for at least one i.

3Since this payoff is the Bernoulli utility function, the agent is risk neutral with
respect to transfers.

4For mnemonic purposes, it is convenient to denote an environment by v rather
than e in this section.
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It is straightforward to verify that the social choice function ξ is
efficient if and only if

ξX(v1, . . . , vn) ∈ arg max
x∈X

∑

i
vi(x), (11.3.1)

where ξ(v) = (ξX(v), t1(v), . . . , tn(v)). Let x∗(v) denote an efficient
alternative for v (so that for an efficient ξ, ξX = x∗ for some x∗).

We are again interested in direct mechanisms where each player
reports his or her valuation vi ∈ Ei. More specifically, we are inter-
ested in mechanisms ΓD = (E, ξ), where the choice of social alterna-
tive is efficient.

In order to complete the specification of an efficient ξ, we need
to specify the transfers.

Definition 11.3.1. A Groves mechanism is given by ΓG = (E, ξG),
where ξG is efficient and

ti(v) =
∑

j≠i
vj(x∗(v))+ ki(v−i),

for some collection of functions (ki)i, where ki : E−i → R.

Theorem 11.3.1. For all v ∈ E, truthtelling is a dominant strategy
equilibrium of any Groves mechanism ΓG.

Proof. Player i’s payoff from reporting v̂i when his true valuation is
vi under ΓG = (E, ξG) is

vi(x∗(v̂i,v−i))+
∑

j≠i
vj(x∗(v̂i,v−i))+ ki(v−i).

Since x∗ is efficient, for all v−i, x∗(vi,v−i)) maximizes the above
expression over possible x∗(v̂i,v−i). Hence, v̂i = vi is a best reply
for all v−i, and so is a dominant strategy.

Theorem 11.3.1 does not contradict the Gibbard-Satterthwaite
Theorem, because the restriction to quasilinear preferences violates
unrestricted domain.

The Groves mechanism pays each agent his or her externality:
The transfer ti(v) only depends on i’s announcement through the
announcement’s impact on the selection of the social alternative,
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and internalizes the resulting externality (i.e., impact on the payoffs
of the other players).

An important special case of a Groves mechanism is obtained by
setting

ki(v−i) = −
∑

j≠i
vj(x∗(v−i)),

where x∗(v−i) is an efficient alternative for the n − 1 agents with
payoff functions v−i. This is the Clarke or pivot mechanism. In this
mechanism, the transfer is zero if the efficient alternative does not
change, i.e., player i’s transfer is only nonzero if player i is pivotal).
Both the second price or Vickrey auction (Example 1.1.6) and the
public good mechanism of Example 1.1.7 are instances of a pivot
mechanism.

At first reading the setting and proof of Theorem 11.3.1 can seem
a little abstract. An excellent exercise is to map the environment and
discussion of Examples 1.1.6 and 1.1.7 to the discussion here.

The term Vickrey-Clarke-Groves or VCG mechanism is also used
for either a Groves or pivot mechanism.

Remark 11.3.1 (Converse to Theorem 11.3.1). If E = Rn|X|, so that
the environment is rich, every direct mechanism in which truthtelling
is a dominant strategy equilibrium is a Groves mechanism (Mas-
Colell et al., 1995, Proposition 23.C.5). ♦

A mechanism satisfies ex post budget balance if

∑

i
ti(v) = 0 ∀v ∈ E.

In general, Groves mechanisms do not satisfy budget balance (this
is Green and Laffont (1979, Theorem 5.3)):

Theorem 11.3.2. Suppose E = Rn|X|. Then every Groves mechanism
violates ex post budget balance.

11.4 Problems

11.4.1. Describe a social choice rule that is unanimous, nondictato-
rial, and strategy proof when there are two alternatives.
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11.4.2. Consider the following social choice rule over the set X =
{x,y, z}. There is an exogenously specified order x ≻ y ≻ z,
and define S(X′) := {a ∈ X′ : a ≻ a′ ∀a′ ∈ X′ \ {a}}. Then,

f(θ) = S({a ∈ X : a = t(θi) for some i}).

Prove that f is unanimous and nondictatorial, but not strategy
proof.

11.4.3. (a) Give an example of a scf ξ for which the direct mech-
anism with outcome function ξ has a dominant strategy
equilibrium that does not implement ξ.

(b) Give an example of a nonconstant scf ξ for which the di-
rect mechanism with outcome function ξ has both truthtelling
as dominant strategy equilibrium implementing ξ and an-
other dominant strategy equilibrium that does not imple-
ment ξ. [Hint: Suppose n = 2 and Z = Z1 × Z2, with
E being the collection of preferences for agents 1 and 2,
where agent i’s preferences over Z are determined by Zi.]

11.4.4. The second-price sealed-bid auction is a pivot mechanism
satisfying ex post budget balance. Reconcile this with Theorem
11.3.2.

11.4.5. There are n ≥ 3 agents among whom two identical goods
must be allocated. Agent i gets utility vi from one unit of the
good and is indifferent between the two goods; each agent is
either allocated zero or one unit. Describe the Groves mecha-
nism.
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Chapter 12

Bayesian Mechanism Design

12.1 The Bayesian Revelation Principle

There are n players, i = 1, . . . , n. Each player i has private infor-
mation, denoted by θi ∈ Θi; player i’s beliefs over the private infor-
mation (types) of the other players is denoted by pi(·|θi) ∈ ∆(Θ−i),
where Θ−i :=∏j≠iΘj . As usual, Θ :=∏iΘi.

The set of outcomes is denoted by Z , and ui(z, θ) is player i’s
payoff from outcome z given type profile θ. Extend ui to lotteries
over outcomes in the standard manner: If λ ∈ ∆(Z),

ui(λ, θ) := Eui(z, θ),

where the expectation is over z with respect to the distribution λ.
To state the following result in its most useful form, we allow for

the possibility that the social choice function chooses a lottery over
outcomes, i.e.,

ξ : Θ → ∆(Z).

Recall that a special case of a mechanism is a direct (revelation)
mechanism: Ai = Θi for each i. A direct mechanism is just a social
choice function, and (at a slight abuse of notation) is also denoted
ξ. In the following statement, the notation is from Section 10.4.

Theorem 12.1.1 (The Bayesian revelation principle). Suppose s∗ is
a (possibly mixed) Bayes-Nash equilibrium of a game ({Ai}ni=1, f ).
Truth telling is a pure strategy Bayes-Nash equilibrium of the direct
mechanism ξ with ξ(θ) = f(s∗(θ)) for all θ.

329
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Proof. To simplify the notation, suppose the game and type spaces
are finite. The (interim) payoff of type θi of player i from action ai
is

vi(ai, s∗−i;θi) =
∑

θ−i

ui(f (ai, s∗−i(θ−i)), θ)pi(θ−i|θi).

Since s∗ is an equilibrium of the game given by ({Ai}ni=1, f ), for
all i, θi ∈ Θi and ai ∈ Ai,

vi(s∗i (θi), s
∗
−i;θi) ≥ vi(ai, s∗−i;θi). (12.1.1)

The payoff to type θi of player i from reporting type θ̂i in the
direct mechanism is

vDi (θ̂i;θi) :=
∑

θ−i

ui(ξ(θ̂i, θ−i), θ)pi(θ−i|θi)

=vi(s∗i (θ̂i), s∗−i;θi).

Hence, (12.1.1) implies that for all i and all θi, θ̂i ∈ Θi,

vDi (θi;θi) ≥ vDi (θ̂i;θi),

i.e., truth-telling is an equilibrium of the direct mechanism.

Note that the revelation principle does not require a common
prior. Most applications that I am aware of, however, do impose a
common prior (as we will).

Theorem 12.1.1 has the following (the statement of which par-
allels Theorem 11.2.1) as an immediate corollary. The pedagogical
advantage of Theorem 12.1.1 is that it emphasizes the role of the
revelation principle in capturing all possible equilibrium behavior
in all possible games.

Corollary 12.1.1. The scf ξ is Bayes-Nash implementable in some
game ((Ai)ni=1, f ) if and only if truthful reporting is a Bayes-Nash
equilibrium of the direct mechanism ξ.

We have already seen an application of the Bayesian revelation
principle in Section 10.2, where the revelation principle allowed us
to identify the optimal selling mechanism. An important aspect of
that application is that the optimal selling mechanism had a trans-
parent implementation. The revelation principle only guarantees
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that the optimal mechanism has truthtelling as a Bayes-Nash equi-
librium. There is no claim about uniqueness nor plausibility of that
equilibrium. As we will see in Section 12.4 (on auctions), not all op-
timal mechanisms appear plausible, and so it is important to ask
about the game form that implements the mechanism.

This issue of implementation is not relevant when the revelation
principle is used to prove a negative result, such as Theorem 12.3.1:
Proving that the truthtelling equilibrium of every incentive compat-
ible direct mechanism fails to have a particular property obviously
implies that any “plausible” equilibrium of any “nice” game also fails
to have that property.

Remark 12.1.1 (Nash implementation). If all the information about
the environment is common knowledge among the players (such as
in Example 10.4.1), then Bayes-Nash equilibrium in Theorem 12.1.1
simplifies to Nash equilibrium. Problem 12.5.1 describes a social
choice function that cannot be weakly implemented in dominant
strategies, but can be easily weakly implemented in Nash equilib-
rium. ♦

12.2 Efficiency in Quasilinear Environments

We return to the setting of Section 11.3, where we impose addi-
tional structure. Player i’s payoff from social alternative x ∈ X is
vi(x;θ), where θ := (θ1, . . . , θn), θi is player i’s type, independently
distributed according to Fi with density fi and support [

¯
θi, θ̄i] =: Θi

(so there is a common prior). Define Θ := ∏iΘi. Note that quasilin-
earity implies risk neutrality, and allows a clean separation between
the role of social alternatives and the transfers.

An allocation (outcome) is (x, t) ∈ X × Rn, where x is social
alternative and t is the vector of transfers to the players. Note that
we still do not impose ex post budget balance. The payoff to player
i at θ is

vi(x;θi)+ ti.
As usual, extend vi to lotteries over alternatives be defining vi(λ, θ) :=
Evi(x, θ) for λ ∈ ∆(X).

A direct mechanism is a pair ξ : Θ → ∆(X × Rn). Denote the
marginal distribution induced by ξ(θ) on X by ξX(θ).
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Player i’s interim payoff from reporting θ̂i is

Ui(θ̂i;θi) : = E−i[vi(ξX(θ̂i, θ−i);θi) + ti(θ̂i, θ−i)]
=: Vi(θ̂i;θi)+ Ti(θ̂i).

Truthtelling is a Nash equilibrium of the direct mechanism if it
is incentive compatible:

U∗i (θi) := Ui(θi;θi) ≥ Ui(θ̂i;θi) ∀θi ∈ Θi.
From quasilinearity, we have

U∗i (θ̂i)−Ui(θ̂i;θi) = Vi(θ̂i; θ̂)− Vi(θ̂i;θi). (12.2.1)

Lemma 12.2.1. Suppose ξ is an incentive compatible mechanism and
the implied interim valuation Vi(θ̂i;θi) for each player is continu-
ously differentiable in (θ̂i, θi) at all points θ̂i = θi.1 Then for all
θ′i ≠ θ

′′
i ,

U∗i (θ
′′
i ) = U∗i (θ′i)+

∫ θ′′i
θ′i

∂Vi(θ̃i; θ̃i)
∂θi

dθ̃i. (12.2.2)

The partial derivative in the integrand is with respect to player
i’s true type, and evaluated where player i reports truthfully.

Proof. Since ξ is incentive compatible,

U∗i (θi + δ) ≥ Ui(θi;θi + δ) and U∗i (θi) ≥ Ui(θi + δ;θi),

and so

U∗i (θi+δ)−Ui(θi+δ;θi) ≥ U∗i (θi+δ)−U∗i (θi) ≥ Ui(θi;θi+δ)−U∗i (θi).
Applying (12.2.1), and dividing by δ gives

Vi(θi + δ;θi + δ)− Vi(θi + δ;θi)
δ

≥ U
∗
i (θi + δ)−U∗i (θi)

δ

≥ Vi(θi;θi + δ)− Vi(θi;θi)
δ

.

1In general, assumptions on endogenous objects should be avoided. However,
this assumption can be dropped in specific contexts, such as Section 10.2 and the
next.
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Since Vi is continuously differentiable, the left and right sides both
converge as δ→ 0, and have the same limit, ∂Vi(θi;θi)/∂θi.2 Hence,
the middle term converges to the same limit.

Hence, U∗i is differentiable everywhere with derivative ∂Vi(θi;θi)/∂θi.
Moreover, since ∂Vi(θi;θi)/∂θi is continuous, U∗i is continuously
differentiable, and so Lipshitz, and so (12.2.2) holds.

Lemma 12.2.1 implies that the interim payoffs to a player i in
any incentive compatible mechanism are completely determined by
the determination of the social alternative ξX , up to a constant. The
transfers can only affect the level of U∗i , independent of θi. This
does not imply that the transfers are independent of type. Recall
that incentive compatibility is jointly determined by both the social
alternative chosen and the transfers.

Typically, efficient direct mechanisms in the current setting will
be almost-surely deterministic, so we now restrict attention to de-
terministic efficient direct mechanisms, i.e., mechanisms satisfying
(11.3.1).

Theorem 12.2.1 (Krishna and Perry, 1998; Williams, 1999). Suppose
ξ is a deterministic efficient incentive compatible mechanism, and
that the implied interim valuation Vi(θ̂i;θi) for each player is contin-
uously differentiable in (θ̂i, θi) at all points θ̂i = θi. There exist con-
stants ki (independent of θ−i) such that each player’s interim payoff
in the associated Groves mechanism (as defined in Definition 11.3.1)
equals that player’s interim payoff in ξ.

Proof. Since V(θ̂i;θi) = E−i[vi(ξX(θ̂i, θ−i);θi)], by Lemma 12.2.1,
U∗i (θ

′′
i ) − U∗i (θ′i) is completely determined by ξX , which is deter-

mined by (11.3.1).
By Theorem 11.3.1, every Groves mechanism is incentive com-

patible. Moreover, every Groves mechanism with ξX has the same

2The argument for the left side may need more detail:

Vi(θi + δ;θi + δ)− Vi(θi + δ;θi)
δ

= Vi(θi + δ;θi + δ)− Vi(θi;θi)
δ

+ Vi(θi, θi)− Vi(θi + δ;θi)
δ

,

and the first term converges to the total derivative dVi(θi;θi)/dθi =
∂Vi(θi;θi)/∂θ̂i + ∂Vi(θi;θi)/∂θi, while the second term converges to
−∂Vi(θi;θi)/∂θ̂i.
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implied interim valuation Vi as ξ, and so Lemma 12.2.1 also applies
to the interim payoffs in any Groves mechanism, and the resulting
payoff is the same, being determined by ξX .

It remains to choose the constants: Fix θ′i for each i and choose
ki so that i’s interim payoff in the resulting Groves mechanism
equals U∗i (θ

′
i).

The only role of the assumption that Vi is continuously differ-
entiable is to ensure that (12.2.2) holds, so that U∗i (θ

′′
i ) − U∗i (θ′i)

is completely determined by ξX . The following version of Theorem
12.2.1 makes this explicit.

Theorem 12.2.2. Suppose every efficient incentive compatible mech-
anism satisfies (12.2.2). For any efficient incentive compatible mech-
anism ξ, there exist constants ki (independent of θ−i) such that each
player’s interim payoff in the associated Groves mechanism (as de-
fined in Definition 11.3.1) equals that player’s interim payoff in ξ.

Remark 12.2.1. It turns out that in many quasilinear settings, all
mechanisms (not just the efficient ones) that are Bayesian imple-
mentable also have a dominant strategy implementation (at the level
of interim utilities). See Gershkov, Goeree, Kushnir, Moldovanu, and
Shi (2013). ♦

12.3 Incomplete Information Bargaining

The economic setting is a generalization of Example 3.3.6. Buyer
valuations vb ∈ [

¯
vb, v̄b], distributed according to cdf F with density

f ; seller valuations vs ∈ [
¯
vs , v̄s] distributed according to cdf G with

density g. Buyer and seller valuations are independent.
The quasilinearity (risk neutrality) of the buyer and seller imply

that we can restrict attention to to allocations (p, τ), where p is the
probability of trade and τ is the expected transfer from the buyer
to the seller. (If there is only an ex post transfer when there is trade,
the transfer conditional on a sale is τ/p).

The payoff to the buyer is pvb − τ , while the payoff to the seller
is τ − pvs .

A direct mechanism is a pair

(p, τ) : [
¯
vb, v̄b]× [

¯
vs , v̄s]→ [0,1]×R.
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vs

vb

v̄b

¯
vb

v̄s¯
vs

ex post efficient trade

Figure 12.3.1: The region of ex post efficient trade.

The expected gain from trade under a mechanism (p, τ) is given
by ∫∫

(vb − vs)p(vb, vs) F(dvb)G(dvs). (12.3.1)

12.3.1 The Impossibility of Ex Post Efficient Trade

Trading is ex post efficient if

p(vb, vs) =
{

1, if vb > vs ,
0, if vb < vs .

See Figure 12.3.1.
This is an example of the model from the previous section, with

the set of social alternatives being X = {xb, xs}, with xi meaning
player i gets the object. Ex post budget balance is imposed by as-
sumption.

In the following theorem, all the bargaining games under con-
sideration have as outcomes (p, τ), with the outcomes evaluated as
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described above, so delay is not costly (see Problem 12.5.7 for the
extension to bargaining with costly delay).

Theorem 12.3.1 (Myerson and Satterthwaite, 1983). Suppose some
trade is ex post efficient (i.e.,

¯
vs < v̄b), but that not all trade is ex post

efficient (i.e.,
¯
vb < v̄s). In every equilibrium of any bargaining game

with voluntary participation, trade is necessarily ex post inefficient.

By the revelation principle, any equilibrium of a bargaining game
induces the same outcome as an incentive compatible direct mecha-
nism. Voluntary participation implies the mechanism satisfies indi-
vidual rationality.

Define

Ub(v̂b, vb) : =
∫ v̄s

¯
vs
{p(v̂b, vs)vb − τ(v̂b, vs)} G(dvs)

=
∫ v̄s

¯
vs
p(v̂b, vs) G(dvs)× vb −

∫ v̄s

¯
vs
τ(v̂b, vs) G(dvs)

=: pb(v̂b)vb − τb(v̂b) (12.3.2)

and

Us(v̂s , vs) : =
∫ v̄b

¯
vb

{τ(vb, v̂s)− p(vb, v̂s)vs} F(dvb)

=: τs(v̂s)− ps(v̂s)vs . (12.3.3)

Truth-telling is a Nash equilibrium of the direct mechanism (p, τ)
if the mechanism is incentive compatible:

Ub(v̂b, vb) ≤ U∗b (vb) := Ub(vb, vb)
and

Us(v̂s , vs) ≤ U∗s (vs) := Us(vs , vs).
The mechanism satisfies individual rationality if

U∗b (vb) ≥ 0 ∀vb and U∗s (vs) ≥ 0 ∀vs .
The following lemma is essentially Lemma 10.2.1 (apply its proof

separately to the buyer and seller).
If the densities are continuous, the integral representation of U∗b

and U∗s for the ex post efficient p can also be obtained from Lemma
12.2.1, as Vb(v̂b, vb) = G(v̂b)vb and Vs(v̂s , vs) = (1− F(v̂s))vs . The
monotonicity properties of pb and ps are immediate implications of
incentive compatibility.
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Lemma 12.3.1. Suppose (p, τ) is incentive compatible. Then,

1. pb is nondecreasing,

2. ps is nonincreasing,

3. U∗b (vb) = U∗b (¯vb)+
∫ vb
¯
vb pb(ṽb)dṽb, and

4. U∗s (vs) = U∗s (v̄s)+
∫ v̄s
vs ps(ṽs)dṽs .

Note also that this implies that if (p, τ) is incentive compatible,
the individual rationality of (p, τ) is an implication of U∗b (¯

vb) ≥
0 and U∗s (v̄s) ≥ 0 (that is, we only need to impose the individual
rationality for one type for buyer and seller).

Following Williams (1999),3 we prove the result essentially ap-
plying Theorem 12.2.1. Myerson and Satterthwaite’s (1983) original
proof is explained after the proof of Lemma 12.3.2.

So suppose the result is false. Then there is an efficient direct
mechanism satisfying ex post budget balance and interim individual
rationality. Ex post budget balance implies

∫
τb(vb)F(dvb) =

∫
τs(vs)G(dvs)

(note that this is simply ex ante budget balance). Since

τb(vb) = pb(vb)vb −U∗b (vb)
and

τs(vs) = ps(vs)vs +U∗s (vs),
we have
∫
pb(vb)vb −U∗b (vb)F(dvb) =

∫
ps(vs)vs +U∗s (vs)G(dvs) ⇐⇒

∫∫
(vb−vs)p(vb, vs)F(dvb)G(dvs) =

∫∫
U∗b (vb)+U∗s (vs)F(dvb)G(dvs).

But p is efficient, and so budget balance requires

S :=
∫∫

{vb>vs}
(vb − vs)F(dvb)G(dvs)

=
∫∫
U∗b (vb)+U∗s (vs)F(dvb)G(dvs), (12.3.4)

3See also Krishna (2002, §5.3).
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where S is the ex ante efficient gains from trade, and of course S > 0.
By Theorem 12.2.2 (which applies because of Lemma 12.3.1),4

there is a Groves mechanism with constants kb and ks with the same
interim payoffs. In the Groves mechanism the transfers t are

tb(vb, vs) =
{−vs + kb, if vb ≥ vs ,
kb, if vb < vs ,

and

ts(vb, vs) =
{
vb + ks , if vb ≥ vs ,
ks , if vb < vs ,

Hence,

U∗b (vb) =
∫

{vb>vs}
[vb − vs] G(dvs)+ kb

and so
∫
U∗b (vb) F(dvb) =

∫∫

{vb>vs}
[vb − vs] G(dvs)F(dvb)+ kb = S + kb.

We similarly have
∫
U∗s (vs)G(dvs) = S + ks ,

and so from (12.3.4),

S = 2S + kb + ks ⇐⇒ kb + ks = −S < 0.

Individual rationality requires U∗b (¯
vb) ≥ 0 and U∗s (v̄s) ≥ 0. We

have

U∗b (¯
vb) =

∫

{vs<
¯
vb}
[
¯
vb − vs] G(dvs)+ kb

and

U∗s (v̄s) =
∫

{vb>v̄s}
[vb − v̄s] F(dvb)+ ks .

If
¯
vb =

¯
vs and v̄b = v̄s , then U∗b (¯

vb) = kb ≥ 0 and U∗s (v̄s) =
ks ≥ 0, and we have a contradiction (since kb+ks < 0). For the more
general case where

¯
vb =

¯
vs and v̄b = v̄s may not hold, see Appendix

14.3. The idea is the same, but the calculation is a little tedious.

4If the densities g and f are continuous, then Theorem 12.2.1 can be applied
directly.
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12.3.2 Maximizing Ex Ante Gains From Trade

Since ex post efficient trade is impossible, it is natural to ask about
mechanisms which maximize the ex ante gains from trade. We first
obtain a necessary condition that any incentive compatible mecha-
nism must satisfy (under a mild technical assumption).

Lemma 12.3.2. Suppose f(vb) > 0 for all vb ∈ [
¯
vb, v̄b] and g(vs) >

0 for all vs ∈ [
¯
vs , v̄s]. If (p, τ) is incentive compatible, then

∫∫ {[
vb − 1− F(vb)

f (vb)

]
−
[
vs + G(vs)g(vs)

]}
p(vb, vs) F(dvb)G(dvs)

= U∗b (¯vb)+U
∗
s (v̄s). (12.3.5)

The integrand of the left side of (12.3.5) is called the virtual sur-
plus, while

vb − 1− F(vb)
f (vb)

is the buyer’s virtual value and

vs + G(vs)g(vs)

is the seller’s virtual value.

Proof. Since

τb(vb) = pb(vb)vb −U∗b (vb),

Lemma 12.3.1 implies

∫ v̄b

¯
vb
τb(vb) F(dvb) =

∫ v̄b

¯
vb
pb(vb)vbf(vb)dvb

−U∗b (¯vb)−
∫ v̄b

¯
vb

∫ vb

¯
vb
pb(ṽb)dṽbf(vb)dvb.
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Integrating the last term by parts gives5

∫ v̄b

¯
vb

∫ vb

¯
vb
pb(ṽb)dṽbf(vb)dvb

=
∫ vb

¯
vb
pb(ṽb)dṽb F(vb)

∣∣∣∣∣
v̄b

vb=
¯
vb

−
∫ v̄b

¯
vb
pb(vb)F(vb)dvb

=
∫ v̄b

¯
vb
pb(vb)(1− F(vb))dvb.

Thus,
∫ v̄b

¯
vb
τb(vb) F(dvb) =

∫ v̄b

¯
vb
pb(vb)vbf(vb)dvb

−U∗b (¯vb)−
∫ v̄b

¯
vb
pb(vb)(1− F(vb))dvb

=
∫ v̄b

¯
vb

[
vb − (1− F(vb))f (vb)

]
pb(vb) F(dvb)−U∗b (¯vb).

(12.3.6)

A similar calculation on the seller side yields
∫ v̄s

¯
vs
τs(vs) G(dvs) =

∫ v̄s

¯
vs

[
vs + G(vs)g(vs)

]
ps(vs) G(dvs)+U∗s (v̄s).

(12.3.7)
Since

∫ v̄b

¯
vb

∫ v̄s

¯
vs
τ(vb, vs) F(dvb)G(dvs) =

∫ v̄b

¯
vb
τb(vb) F(dvb)

=
∫ v̄s

¯
vs
τs(vs) G(dvs),

the right sides of (12.3.6) and (12.3.7) are equal, and rearranging
gives (12.3.5).

Myerson and Satterthwaite’s (1983) original proof of Theorem
12.3.1 involved showing that the left side of (12.3.5) is strictly neg-
ative for the ex post efficient trading rule (violating individual ratio-
nality).

We now prove a converse to Lemmas 12.3.1 and 12.3.2.
5Equivalently, we could apply Fubini, as in footnote 6 on page 307.
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Lemma 12.3.3. Suppose f(vb) > 0 for all vb ∈ [
¯
vb, v̄b] and g(vs) >

0 for all vs ∈ [
¯
vs , v̄s]. Suppose p : [

¯
vb, v̄b] × [

¯
vs , v̄s] → [0,1] is a

probability of trade function satisfying

1. pb is nondecreasing,

2. ps is nonincreasing, and

3. the expected virtual surplus (given by the left side of (12.3.5)) is
nonnegative.

There exists a transfer function τ : [
¯
vb, v̄b] × [

¯
vs , v̄s] → [0,1] such

that (p, τ) is incentive compatible and individually rational.

Proof. Inspired by Lemma 10.2.2 (in particular, by(10.2.4)), it is nat-
ural to look for a transfer function τ that satisfies

τb(vb) = pb(vb)vb −
∫ vb

¯
vb
pb(v)dv

and τs(vs) = ps(vs)vs +
∫ v̄s
vs
ps(v)dv.

But in general this might be asking too much, since it implies that
both buyer

¯
vb and seller v̄s have zero payoff (and with ex post bud-

get balance, that seems like too big a coincidence).
This suggests introducing a free constant k and considering a

transfer function of the form6

τ(vb, vs) := k+pb(vb)vb −
∫ vb

¯
vb
pb(v)dv +ps(vs)vs +

∫ v̄s
vs
ps(v)dv.

The level of k has no impact upon incentives, and simply serves
to reallocate value between the buyer and the seller. The proof
of Lemma 10.2.2 then implies that, for any k, the resulting direct
mechanism (p, t) satisfies incentive compatibility for both buyer
and seller, and so Lemma 12.3.2 holds.

It remains to verify individual rationality. It suffices to show that
k can be chosen so that, under the mechanism, U∗b (¯

vb) ≥ 0 and
U∗s (v̄s) ≥ 0.

6This functional form is convenient, since it does not require detailed knowledge
of p. But it may require transfers even when trade does not occur. The only
requirement is that the transfer function have the correct interim transfers, so
other transfer functions are possible. For an illustration, see Example 12.3.1.
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By hypothesis, the expected virtual surplus is nonnegative, and
so by Lemma 12.3.2,

U∗b (¯
vb)+U∗s (v̄s) ≥ 0.

Since k simply reallocates value between the buyer and seller,
there clearly exist values of k which imply the resulting mecha-
nism satisfies individual rationality (for example, choose k so that
U∗s (v̄s) = 0, or to evenly split the expected virtual surplus between
the bottom buyer and top seller).

The problem of maximizing the ex ante surplus reduces to choos-
ing a mechanism to maximize (12.3.1) subject to the conditions
in Lemma 12.3.3. We proceed by considering the relaxed problem
where we ignore the monotonicity condition (much as we did in Sec-
tion 10.2).

The Lagrangean for the relaxed problem is

L :=
∫∫
(vb − vs)p(vb, vs) F(dvb)G(dvs)

+ λ
∫∫ {[

vb − 1− F(vb)
f (vb)

]
−
[
vs + G(vs)g(vs)

]}

× p(vb, vs) F(dvb)G(dvs)

= (1+ λ)
∫∫ {[

vb −α1− F(vb)
f (vb)

]
−
[
vs +αG(vs)g(vs)

]}

× p(vb, vs) F(dvb)G(dvs),

where α := λ/(1+ λ). Define the α-virtual values as

Vb(vb, α) := vb −α1− F(vb)
f (vb)

and Vs(vs , α) := vs +αG(vs)g(vs)
.

As the relaxed program is is a linear program (the objective and
constraint functions are both linear in p), if (p∗, λ∗) is a solution,
then

p∗(vb, vs) =
{

0, if Vb(vb, α∗) < Vs(vs , α∗),
1, if Vb(vb, α∗) > Vs(vs , α∗),

where α∗ = λ∗/(1+ λ∗).
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As in Section 10.2, a sufficient condition for p∗ to satisfy the
monotonicity conditions in Lemma 12.3.3 is that the distribution
functions are regular :

vb − 1− F(vb)
f (vb)

and vs + G(vs)g(vs)

are increasing. In the regular case, any solution to the relaxed prob-
lem is a solution to the original problem. As in Sections 10.2 and
10.3, more advanced techniques handle the nonregular case.

From Theorem 12.3.1, we know ex post efficiency is not imple-
mentable, and so λ∗ > 0. The precise value of λ∗ is determined by
the requirement that the expected virtual surplus under p∗ is zero.

Example 12.3.1. Suppose vb, vs are both uniform draws from [0,1].
The α-virtual values are

Vb(vb, α) = (1+α)vb −α and Vs(vs , α) := (1+α)vs ,

and

Vb(vb, α) > Vs(vs , α) ⇐⇒ vb − vs > α
1+α.

Evaluating the expected virtual surplus of a trading rule p which
trades if and only if Vb(vb, α) > Vs(vs , α) yields

∫ 1

0

∫ 1

0
{[2vb − 1]− 2vs}p(vb, vs) dvbdvs

=
∫ 1/(1+α)

0

∫ 1

vs+α/(1+α)
{[2vb − 1]− 2vs} dvbdvs

= 3α− 1
6(1+α)3 .

Thus, the expected virtual surplus is strictly positive for α > 1
3 ,

strictly negative for α < 1
3 , and equal to 0 if α = 1

3 , and so α∗ = 1
3 .

Trade under the ex ante surplus maximizing mechanism occurs if
vb > vs + 1

4 and does not occur if vb < vs + 1
4 . See Figure 12.3.2.

It is worth noting that the linear equilibrium of the double auc-
tion (Example 3.3.6) maximizes ex ante welfare, so the double auc-
tion implements the ex ante welfare maximizing trading rule. But
because there are other equilibria which do not (Problem 3.7.12),
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0 vs
0

vb

1

1

.25

.75

ex post efficient trade

equilibrium trade

Figure 12.3.2: The trading regions for Example 12.3.1. The darker region
is the trading region in the linear equilibrium of the double
auction, which maximizes the ex ante gains from trade.

the double auction does not strongly implement the ex ante welfare
maximizing trading rule.

It is instructive to compare the transfer function implied by the
proof of Lemma 12.3.3 and the transfer function implied by the lin-
ear equilibrium of the double auction. Since

pb(vb) = max
{
0, vb − 1

4

}
and ps(vs) = max

{
0, 3

4 − vs
}
,

and U∗b (¯
vb) = 0 and U∗s (v̄s) = 0, Lemma 12.3.1 implies

τb(vb) = max
{
0, 1

2v
2
b − 1

32

}
and τs(vs) = max

{
0, 9

32 − 1
2v

2
s

}
.

(12.3.8)
The transfer function implied by the proof of Lemma 12.3.3 is

τ(vb, vs) = − 9
64 + τb(vb)+ τs(vs)

=




7
64 + 1

2(v
2
b − v2

s ), vb ≥ 1
4 , vs ≤ 3

4 ,
−11

64 + 1
2v

2
b , vb ≥ 1

4 , vs >
3
4 ,

9
64 − 1

2v
2
s , vb < 1

4 , vs ≤ 3
4 ,

− 9
64 , vb < 1

4 , vs >
3
4 .
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Observe that under this transfer function, transfers occur even when
there is no trade. In contrast, the transfer function implied by the
linear equilibrium of the double auction is

τ(vb, vs) =
{1

6 + 1
3(vs + vb), vb ≥ vs + 1

4 ,
0, otherwise,

and transfers only occur when there is trade. Of course, both trans-
fer function imply the same interim transfers (12.3.8). «

12.4 Independent Private Values Auctions

We return to the setting of Example 10.4.3. Agent i’s valuation,
vi(θ) = θi, with θi distributed according to Fi with support [

¯
θi, θ̄i]

and strictly positive density fi. Agents’ types are independent.
Outcomes as a function of type profiles are

(ρ, t) :
∏
i[¯
θi, θ̄i]→ ∆({0,1, . . . , n})×Rn,

where ρ(θ) is the probability distribution over who obtains the ob-
ject (with 0 meaning the seller retains the good), and ti(θ) is the
transfer from bidder i to the seller. As in Section 12.3, quasilinear-
ity of payoffs implies restricting attention to deterministic transfers
as a function of the type profile is without loss of generality.

Suppose ρi(θ) is the probability that i receives the object, so
that

∑
i=1,...,n ρi(θ) ≤ 1. Player i’s expected ex post utility under the

direct mechanism (ρ, t), from reporting θ̂i is

ρi(θ̂i, θ−i)θi − ti(θ̂i, θ−i),
and i’s interim utility from reporting θ̂i is7

∫

θ−i
ρi(θ̂i, θ−i)θi − ti(θ̂i, θ−i)

∏

j≠i
dFj(θj) =: pi(θ̂i)θi − Ti(θ̂i).

(12.4.1)
7Note that in (12.4.1), we are defining the notation

pi(θi) :=
∫

θ−i
ρi(θi, θ−i)

∏

j≠i

dFj(θj) and Ti(θi) :=
∫

θ−i
ti(θi, θ−i)

∏

j≠i

dFj(θj).
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Theorem 12.4.1 (Revenue Equivalence). Any two equilibria of any
two auctions yielding identical probabilities of winning (i.e., ρ), and
identical interim utilities for type

¯
θi of each bidder i gives equal ex-

pected revenue to the seller.
In particular, all efficient auctions are revenue equivalent.

Proof. Note that (12.4.1) has the same form as (12.3.2) and (12.3.3).
By the revelation principle, it suffices to consider incentive com-

patible and individually rational direct mechanisms. Fix such a di-
rect mechanism (ρ, t). By applying the same logic as for Lemma
10.2.1, pi is nondecreasing and

U∗i (θi) := pi(θi)θi − Ti(θi) = U∗i (¯θi)+
∫ θi

¯
θi
pi(θ̃i)dθ̃i. (12.4.2)

The expected revenue of the seller is

∫
· · ·

∫ ∑
i ti(θ)

∏

j
dFj(θj) =

∑
i

∫

θi
Ti(θi) dFi(θi). (12.4.3)

But, from (12.4.2),

Ti(θi) = pi(θi)θi −U∗i (¯θi)−
∫ θi

¯
θi
pi(θ̃i) dθ̃i, (12.4.4)

and so expected revenue of the seller is completely determined by
pi and U∗i (¯

θi) for each i.

Remark 12.4.1. Revenue equivalence requires risk neutrality (quasi-
linear utilities) of the bidders. The first price auction yields more
revenue than the second price auction when bidders are risk averse.
For the general proof, see Krishna (2002, Section 4.1); it is straight-
forward to compare the expected revenues for the uniform case in
Problem 12.5.4. ♦

We now consider optimal auctions, i.e., auctions that maximize
revenue.8 Since the seller’s expected revenue has the form given

8Of course, a seller may have other objectives, such as efficiency or encouraging
diversity of ownership.
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in (12.4.3), applying integration by parts (or Fubini) to (12.4.4) in a
familiar way yields the following expression for expected revenue:

∑

i

∫ θ̄i

¯
θi

{
θi − 1− Fi(θi)

fi(θi)

}
pi(θi)fi(θi)dθi. (12.4.5)

It is worth noting that this expression can be rewritten directly in
terms of ρ as

∑

i

∫ θ̄1

¯
θ1

· · ·
∫ θ̄n

¯
θn

{
θi − 1− Fi(θi)

fi(θi)

}
ρi(θ)

∏

j
fj(θj)dθj. (12.4.6)

Moreover, the logic in the proof of Lemma 10.2.2 and the im-
mediately following discussion shows that if pi is non-decreasing
for all i, then the associated ρ is part of an incentive compatible
mechanism. Hence, the revenue maximizing mechanism satisfying
incentive compatibility and individual rationality is the solution to
the following problem:

Choose ρ :
∏
i[

¯
θi, θ̄i] → ∆({0,1, . . . , n}) to maximize

(12.4.6), subject to pi being non-decreasing for all i. To
obtain individual rationality, set Ti(

¯
θi) := pi(

¯
θi)

¯
θi, which

implies U∗i (¯
θi) = 0.

Suppose we are in the regular case, so that i’s virtual valuation

ψi(θi) := θi − 1− Fi(θi)
fi(θi)

is increasing in θi for all i.9

Theorem 12.4.2. Suppose n ≥ 2 and all bidders’ virtual valuations
ψi are increasing. Any allocation rule ρ∗ satisfying

ρ∗i (θ) > 0 =⇒ ψi(θi) = max
j
ψj(θj) > 0,

ρ∗0 (θ) > 0 =⇒ max
j
ψj(θj) ≤ 0,

and the implied transfers with Ti(
¯
θi) := p∗i (¯

θi)
¯
θi is an incentive-

compatible individually-rational mechanism maximizing revenue.
9As before, more advanced techniques (some introduced by Myerson (1981) in

the context of optimal auctions) handle the nonregular case.
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Proof. As usual, we proceed by first ignoring the monotonicity con-
straints on pi, and pointwise maximizing the integrand in (12.4.6).
It is here that expressing expected revenue in the form (12.4.6) is
important, since the allocation probabilities are of the form ρi(θ)
and not pi(θi), as in (12.4.5). The constraint that ρ(θ) is a probabil-
ity distribution on {0,1, . . . , n} with pointwise maximization forces
ρi(θ) = 0 for any i for which ψi(θi) < maxjψj(θj). There is no
comparable restriction on {pi(θi) : i = 1, . . . , n}.

It is straightforward to verify that the implied p∗i are non-decreasing
when virtual values are increasing, and so ρ∗ maximizes revenue.

Observe that under ρ∗, if ψi(θi) < 0, then ρ∗i (θi, θ−i) = 0 for all
θ−i.

In general, optimal auctions need not always sell the good (this
occurs when ψi(θi) < 0 for all i). This should not be a surprise,
given the analysis of the take-it-or-leave-it mechanism in Section
10.3.

Perhaps more interestingly, even when the good is sold, the bid-
der who values the good most highly need not receive the good.
Rather, it is the bidder with the highest virtual valuation (see Ex-
ample 12.4.1). So, in general, revenue maximization induces two
different types of inefficiency: trade does not occur when it should,
and the wrong bidder receives the good.

For the general asymmetric case, the optimal auction cannot be
implemented by any standard auction.10

For simplicity, we assume n = 2, and consider the symmetric
case, F1 = F2 =: F and f1 = f2 =: f . Moreover, we suppose the
common ψi =: ψ are strictly increasing and continuous, and let θ =
r∗ solve ψ(θ) = 0. Symmetry also implies that ψ(θ1) > ψ(θ2) ⇐⇒
θ1 > θ2, so that a bidder with the higher virtual valuation also has
the higher value. The highest value bidder always receives the good
when it is sold, and revenue maximization only induces inefficiency
through trade not occurring when it should.

10The issue is not symmetry per se. An auction is symmetric if all bidders have
the same action spaces and a permutation of an action profile results in a similar
permutation of the outcome profile. Deb and Pai (2017) show it is typically possible
to implement asymmetric allocations (such as the optimal auction allocation) using
equilibria of symmetric auctions. However, the symmetric auction used is not a
standard auction and the complicated details of the transfer rule depend on the
specific value distributions.
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The implied probability of acquiring the good is

pi(θi) =
{

0, if θi ≤ r∗,
F(θi), if θi > r∗,

which is non-decreasing as required.
The associated interim transfers are given by

Ti(θi) = pi(θi)θi −
∫ θi

¯
θ
pi(θ̃i) dθ̃i

=



0, if θi ≤ r∗,
F(θi)θi −

∫ θi
r∗ F(θ̃i) dθ̃i, if θi > r∗.

For θi > r∗, applying integration by parts,

Ti(θi) = F(θi)θi − F(θ̃i)θ̃i
∣∣∣θi
r∗
+
∫ θi
r∗
θ̃if(θ̃i) dθ̃i

= F(r∗)r∗ +
∫ θi
r∗
θ̃if(θ̃i) dθ̃i

=
∫ θi

¯
θ

max{r∗, θ̃i} f(θ̃i) dθ̃i.

The transfers have the nice representation as the expected value of

ti(θi, θj) =
{

max{r∗, θj}, if θi >max{r∗, θj},
0, if θi ≤ max{r∗, θj}.

These transfers are the payments in a second price auction with a
reserve price of r∗.

The allocation rule and expected payment of the lowest type are
the same as in a symmetric equilibrium of the first-price sealed-
bid auction with a reservation price of r∗. Applying revenue equiv-
alence, a symmetric equilibrium is given by, for θi ≤ r∗, setting
σi(θi) = 0 and for θi > r∗, setting

σi(θi) = Ti(θi)pi(θi)

= 1
F(θi)

∫ θi

¯
θ

max{r∗, θ̃i} f(θ̃i) dθ̃i

= E
[
max{r∗, θ̃j} | θ̃j ≤ θi

]
. (12.4.7)

Our final example illustrates the impact of asymmetries.
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Example 12.4.1. Suppose n = 2, v1 is uniformly distributed on
[1,2] and v2 is independently and uniformly distributed on [1,3]. It
is a straightforward application of the material we have seen to ver-
ify that the following sealed-bid auction is optimal: bidder 1 wins if
b1 ≥ b2 and pays max{1, b2− 1

2} in the event of winning, and bidder
2 wins if b2 > b1 and pays b1 in the event of winning (see Problem
12.5.11). «

12.5 Problems

12.5.1. Suppose Z = {a,b}, n = 3, and Θi = {θai , θbi }. Player i’s
utility is

ui(z, θ) =
{

1, θ = θzi ,
0, θ ≠ θzi .

Describe all the pure strategy Nash equilibrium outcomes of
the complete information revelation game ξ, where the out-
come is determined by the majority, i.e., ξ(θ1, θ2, θ3) = z where
|{i : θi = θzi }| ≥ 2.

12.5.2. What is the direct mechanism corresponding to the symmet-
ric equilibrium derived in Example 3.3.1 for the sealed bid first
price auction? Verify that truthtelling is a Nash equilibrium of
the direct mechanism. Compare the direct mechanism with the
VCG mechanism (i.e., the second price auction) and relate this
to Theorem 12.2.1.

12.5.3. There is a single good to be allocated to one of two agents.
Agents have quasilinear preferences, agent i values the good
at vi, with vi being uniformly and independently distributed
on [0,1]. Consider the direct mechanism which awards the
good to the agent with the highest report, and specifies that the
agent receiving the good pays double the other agent’s report.

(a) Prove that truthful reporting is not a Nash equilibrium.

(b) Describe an efficient Nash equilibrium, and the associated
direct mechanism from the revelation principle.
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12.5.4. (Based on Jehle and Reny, 2011, Problem 9.4) There are N
buyers participating in an auction. Each buyer’s value is an i.i.d.
draw from an interval according to the distribution F , with a
density. Buyers are risk-averse: If a buyer with value v wins the

object at a price of of b < v , then her utility is (v − b) 1
α where

α > 1 is fixed and common to all bidders. In this problem,
we will use mechanism design tools to solve for the symmetric
Bayes-Nash equilibrium of the first price auction. Denote the
equilibrium bid of a buyer of value v by bα(v). Assume that
bα(v) is strictly increasing in v .

(a) Argue that a first price auction with risk-averse bidders
whose values are independently distributed according to F
is equivalent to a first-price auction with risk-neutral bid-
ders whose values are independently distributed accord-
ing to the distribution Fα.

(b) Use (12.4.2) and the appropriate second-price auction to
provide a formula for bα(v).

(c) It remains to verify that the formula just obtained is in-
deed an equilibrium of first price auction with risk averse
buyers (which follows from part (a)).

12.5.5. (Dissolving a partnership, Cramton, Gibbons, and Klemperer,
1987) A symmetric version of bargaining: Two players equally
own an asset and are bargaining to dissolve the joint owner-
ship. Suppose vi is the private value that player i assigns to the
good, and suppose v1 and v2 are independently and uniformly
drawn from a common interval [

¯
v, v̄]. Efficiency requires that

player i receive the asset if vi > vj . The opportunity cost to

player j if player i is assigned the asset is 1
2vj .

(a) Prove that efficient dissolution is possible by a mechanism
that satisfies ex ante budget balance and individual ratio-
nality, and describe the Groves mechanism that achieves
it. Prove that the Groves mechanism cannot satisfy ex post
budget balance.

(b) It is possible to efficiently dissolve the partnership while
still satisfying ex post budget balance. We consider two
different games in which the two players simultaneously
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submit bids, with the higher bidder winning the object (a
tie is resolved by a coin flip). The games differ in the pay-
ment rules:

i. The winner pays the loser the winning bid.

ii. Each player (winning or losing) pays the other player
their bid.

Both games clearly satisfy ex post budget balance. Sup-
pose the values are uniformly drawn from the interval
[
¯
v,

¯
v + 1]. For each game: Solve for the symmetric equi-

librium in increasing differentiable strategies and prove it
satisfies voluntary participation (note that a bid of bi = 0
in the second game will typically violate individual ratio-
nality). [Efficiency is obvious, since the equilibria are in
symmetric increasing strategies. The second payment rule
can be extended to partnerships with more than 2 mem-
bers, see Cramton et al. (1987).]

(c) Provide a sufficient condition for part (a) to extend to asym-
metric general distributions.

12.5.6. (Public good provision, Mailath and Postlewaite, 1990) A com-
munity of size n must decide on whether to provide a public
good. The per capita cost of the public good is c > 0. Every
agent’s valuation for the good is independently and uniformly
drawn from the interval [

¯
v, v̄], where 0 ≤

¯
v < c < v̄ .

(a) Prove that ex post efficient provision is impossible if ex
ante budget balance and voluntary participation is required.

(b) Solve for the mechanism which maximizes the probability
of public provision while respecting ex ante budget bal-
ance and voluntary participation.

(c) (Hard) Prove that the probability of provision goes to zero
as the community becomes arbitrarily large when both ex
ante budget balance and voluntary participation are re-
quired.

12.5.7. Consider again the alternating-offer identical-discount-factors
bargaining model of Section 9.2, with the interpretation that
player 1 is a seller with valuation vs and player 2 is a buyer
with valuation vb. If the valuations are common knowledge,
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and vs > vb, then no trade is possible, while if vs < vb, we
get the Rubinstein (1982) split of the surplus vb −vs . Suppose
now there is two-sided incomplete information as described in
Section 12.3.

(a) Prove that in every Nash equilibrium, there is delay to
agreement, and that the ex ante expected cost of delay
is bounded away from zero as δ → 1. [Hint: This is an
implication of Theorem 12.3.1.]

(b) Does your answer to part (a) change if the game is altered
so that only the seller can make an offer to the buyer?

(c) Suppose now it is commonly known that the seller’s val-
uation is 0, and the buyer’s valuation is uniformly drawn
from the interval [0,1]. Does your answer to part (b) change?

12.5.8. For the setting of Section 12.3, denote by px the probability
of trade function given by

px(vb, vs) =
{

1, vb ≥ 1− x,vs ≤ x,
0, otherwise.

Suppose vb and vs are uniformly and independently distributed
on [0,1].

(a) For what values of x is there a transfer function τx for
which (px, τx) is incentive compatible and individually ra-
tional?

(b) Which value of x maximizes the ex ante gains from trade?
Compare the ex ante gains from trade under that trading
rule px with the ex ante gains from trade from the mecha-
nism calculated in Example 12.3.1.

(c) The interim utility of the buyer with value 0 is necessarily
0 in the ex ante welfare maximizing mechanism. Describe
a direct mechanism that gives the 0-value buyer an interim
utility of 1/27.

(d) The interim utility of the buyer with value 0 is necessarily
0 in every equilibrium of the form analyzed in Problem
3.7.12. Reconcile this with your answer to part (c).
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12.5.9. (Regulating a monopolist, Baron and Myerson, 1982) A pub-
lic utility commission (the regulator) is charged with regulating
a natural monopoly. The cost function of the natural monopoly
is given by

C(q, θ) =
{

0, if q = 0,

K + θq, if q > 0,

where q is the quantity produced, K > 0 is the publicly known
fixed cost, and θ ∈ (0,1) is marginal cost. The inverse demand
curve for the good is

p(q) := max{1− 2q, 0}.
Suppose there are no income effects for this good, so that con-
sumer surplus is given by

V(q) =
∫ q

0
p(q̃) dq̃ − p(q)q.

The regulator determines the firm’s regulated price and sub-
sidy, as well as whether the firm is allowed to operate at all.
The firm cannot be forced to operate. As in the standard monopoly
problem, without loss of generality, the regulator chooses q
(with the regulated price given by p(q)).
The firm wishes to maximize expected profits,

Π(q) = p(q)q − C(q, θ)+ s,
where s is the subsidy. The regulator maximizes the weighted
sum of consumer surplus and firm profits net of the subsidy,

V(q)+αΠ(q)− s, α ∈ [0,1].
(a) Suppose the marginal cost θ > 0 is publicly known. Solve

the regulator’s problem. Interpret the resulting q, p and s.
(b) Suppose now the marginal cost θ is known only to the

monopoly, with the regulator’s beliefs over θ being de-
scribed by the distribution function F , with support [

¯
θ, θ̄]

and strictly positive density f . Suppose F satisfies:

θ + F(θ)
f(θ)

is increasing in θ
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and that

K ≤ (1− θ̄)
2

4
.

What is the regulator’s optimal regulated price and sub-
sidy (which includes the decision on whether to let the
firm operate)? Interpret the resulting mechanism.

12.5.10. Verify that the strategy given in (12.4.7) is a symmetric
equilibrium strategy of the symmetric first-price sealed-bid auc-
tion with reserve price r∗ (recall the hint from Problem 3.7.3).

12.5.11. Verify the claim in Example 12.4.1 via the following steps:

(a) Calculate the allocation rule in the optimal auction.

(b) Prove that it is a dominant strategy for bidder 1 to bid
v1 + 1

2 and for bidder 2 to bid v2 in the auction described
in Example 12.4.1.

(c) Complete the verification.

12.6 Additional Problems

12.6.1. Consider a bargaining situation with one buyer and two sell-
ers. Each seller owns one boomerang. Each agent’s value of
owning a boomerang is independently drawn from a common
interval [v,v]. The distribution of buyer valuations vb is G,
with strictly positive and continuous density g. The distribu-
tion of seller i valuations vi is Fi, with strictly positive and con-
tinuous density fi. The buyer receives zero value from a sec-
ond boomerang. An allocation is (ρ, τ) = ((ρ1, ρ2), (τ1, τ2)),
where ρi is the probability that the buyer trades with seller
i, i = 1,2 (so that with probability 1 − ρ1 − ρ2, the buyer
does not acquire a boomerang) and τi is the transfer from
the buyer to seller i. The payoff to the buyer at the allocation
((ρ1, ρ2), (τ1, τ2)), is

(ρ1 + ρ2)vb − (τ1 + τ2),

and the payoff to seller i, i = 1,2, is

ti − ρivi.
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Call (ρ1, ρ2) a trading rule. An ex post efficient trading rule
satisfies

ρi(vb, v1, v2) =
{

0, if vi >min{vj, vb},
1, if vi <min{vj, vb},

where j ≠ i. Prove that there is no ex post efficient incentive
compatible individually rational direct mechanism.



Chapter 13

The Principal-Agent Model

13.1 Introduction

A principal hires an agent for some task.
If hired, the agent chooses an effort that results in some output

(net revenue) π for the principal.
Suppose the agent can choose effort level e ∈ E ⊂ R+.
The resulting revenue is π ∈ [

¯
π, π̄] = Π ⊂ R.

π ∼ F(· | e), F has density f(· | e) with f(π | e) > 0, for all π
and e.

Assume F(· | e) is ordered by first order stochastic dominance.
That is,

e′ < e′′ =⇒ F(π | e′) ≥ F(π | e′′) ∀π ∈ Π

(see Figure 13.1.1).
The principal pays a wage w to agent.
Agent has utility

v(w)− c(e),

where v is smooth strictly concave increasing function of w (so
v′ > 0 and v′′ < 0) and c is a nonnegative smooth strictly con-
vex increasing function of e (so c ≥ 0 and c′, c′′ > 0). Agent is risk
averse.

Principal is risk neutral, with payoffs π −w.

357
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π

1

π̄

F(π | e′)

F(π | e′′)

Figure 13.1.1: The distribution function F(· | e′′) first order stochastically
dominates F(· | e′) if e′′ > e′.

13.2 Observable Effort

Principal chooses w̃ : E × Π → R. Write W for the set of such wage
schemes.

Agent chooses ẽ : W → E ∪ {Reject}.
Nature chooses π ∈ Π, according to F(· | e).
Principal’s utility is π − w̃(ẽ(w̃),π).
Agent’s utility is v(w̃(ẽ(w̃),π))− c(ẽ(w̃)).
Principal can induce any e by choosing w̃(e′, π) = 0 for e′ ≠ e

and all π , and choosing w̃(e,π) appropriately. (This is a forcing
contract.) Accordingly, if e is the effort level the principal wishes to
induce, denote the associated wage profile by w̃e.

The principal’s problem is to choose (e, w̃e) to maximize

∫ π̄

¯
π
(π − w̃e(π))f(π | e)dπ

subject to ∫ π̄

¯
π
v(w̃e(π))f(π | e)dπ − c(e) ≥ ū.
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The inequality constraint is the individual rationality (IR) or partici-
pation constraint.

We can treat this as a two-step optimization: We first ask, for
any e, what is least cost wage profile that induces that effort level e.
Then, we optimize over the effort levels.

Suppose then the principal wished to induce an effort level e.
The principal’s objective, given e, is to choose the wage schedule ŵ
yielding an expected utility of at least ū at least cost. That is, the
principal chooses ŵ : Π → R+ to minimize

∫ π̄

¯
π
ŵ(π)f(π | e)dπ

subject to ∫ π̄

¯
π
v(ŵ(π))f(π | e)dπ − c(e) ≥ ū.

The minimand is linear in ŵ, the constraint is strictly concave in
ŵ, so the solution is characterized by the first order condition,

−f(π | e)+ γv′(ŵ(π))f(π | e) = 0 ∀π ∈ Π,
where γ ≥ 0 is the Lagrange multiplier on the IR constraint. Thus,

v′(ŵ(π)) = 1
γ
, ∀π ∈ Π,

i.e., ŵ(π) = w∗ for all π ∈ Π. The risk averse agent is fully insured.
Since the agent’s constraint must hold with equality at an optima,
we have

w∗ = v−1(ū+ c(e)).
Thus,

S(e) =
∫ π̄

¯
π
πf(π | e)dπ − v−1(ū+ c(e))

is the profit from inducing the effort level e.
The optimal effort e∗ maximizes S(e).

13.3 Unobservable Effort (Moral Hazard)

Suppose effort is not observable.
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The principal chooses w̃ : Π → R. Write W for the set of such
wage schemes. The principal cannot condition the wage on the ef-
fort choice of the agent. The principal-agent relationship is said to
be subject to moral hazard. The term originated in the insurance
literature, and refers to situations where a participant may have an
incentive to act against the interests of others (such as insurance
lowering the incentives for the insured to exercise care). Another
common term used to describe such a situation is hidden action.

The agent chooses ẽ : W → E ∪ {Reject}.
Nature chooses π ∈ Π (according to F(· | e)).
The principal’s ex post utility is π − w̃(π).
The agent’s ex post utility is v(w̃(π))− c(ẽ(w̃)).
The principal’s problem is

max
ŵ,e∗

∫ {
π − w̃(π) F(dπ | e∗)}

subject to the agent’s incentive compatibility constraint,

e∗ ∈ arg max
e′∈E

∫ π̄

¯
π
v(ŵ(π)) F(dπ | e′)− c(e′), (IC*)

and individual rationality constraint,

∫ π̄

¯
π
v(ŵ(π)) F(dπ | e∗)− c(e∗) ≥ ū. (IR*)

Observe that the principal’s problem can be written as

max
e∗

{∫
π F(dπ | e∗)− min

{ŵ:(IC*),(IR*)}

∫
w̃(π) F(dπ | e∗)

}
.

Consider first the problem of finding the cost-minimizing wage
schedule to induce an arbitrary e∗. That is, choose ŵ : Π → R+ to
minimize ∫ π̄

¯
π
ŵ(π)F(dπ | e∗) (13.3.1)

subject to (IC*) and (IR*).
Suppose E = {eL, eH}, with eL < eH , c(eL) = 0, and c(eH) = cH >

0.



13.3. Unobservable Effort (Moral Hazard) 361

Suppose e∗ = eL. This is straightforward, since ŵ(π) = v−1(ū) =:
w† minimizes the minimand subject to (IR*), and (IC*) is trivially
satisfied.

Suppose e∗ = eH . We must find ŵ minimizing
∫ π̄

¯
π
ŵ(π) F(dπ | eH)

subject to incentive compatibility,

∫ π̄

¯
π
v(ŵ(π)) F(dπ | eH)− cH ≥

∫ π̄

¯
π
v(ŵ(π)) F(dπ | eL), (ICH )

and individual rationality,
∫ π̄

¯
π
v(ŵ(π)) F(dπ | eH)− cH ≥ ū. (IRH )

Since both the left and right sides of (ICH ) are concave in ŵ(π),
the first-order conditions are not obviously sufficient. But a change
of variables from ŵ(π) to v̂(π) := v(ŵ(π)) (v̂ is the promised
agent utility from the wage function ŵ) shows that the indeed the
first order approach is justified in the current setting (see Problem
13.6.1).

Suppose F(· | e) has a density f (̇|e). Writing µ for the multiplier
on the (ICH ) constraint (γ is, as before, the multiplier on individual
rationality), the solution is characterized by the first order condi-
tion:

− f(π | eH)+ γv′(ŵ(π))f(π | eH)+
µv′(ŵ(π))[f (π | eH)− f(π | eL)] = 0.

That is,
1

v′(ŵ(π))
= γ + µ

[
1− f(π | eL)

f (π | eH)

]
.

If µ = 0, (ICH ) fails (because the implied wage scheme is constant,
i.e., independent of π ). If γ = 0, the right side must be nonpositive
for some π , which is impossible. Let w̄ solve v′(w̄) = 1/γ. Now

ŵ(π)




<

=
>



w̄ ⇐⇒ f (π |eL )

f (π |eH )




>

=
<




1 (13.3.2)
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The observation from (13.3.2) that if an output level is uninfor-
mative about effort (the likelihood ratio equals one), then the wage
associated with that output equals w̄ is the informativeness prin-
ciple: Optimal wages only depend on a signal of effort when that
signal is informative about effort.

Since [v′(w)]−1 is increasing in w, it is only under monotone
likelihood ratio property (MLRP),

f(π | eL)
f (π | eH) decreasing in π,

that we are guaranteed that ŵ(π) as an increasing function of π .
This is strictly stronger than first order stochastic dominance.

Example 13.3.1. Π = [0,1], f(π | eL) = 2(1 − π), f(π | eH) = 1,
v(x) = ln(x). Note that MLRP is satisfied.

The first-order condition yields

ŵ(π) =γ + µ
[

1− f(π | eL)
f (π | eH)

]

=γ + µ[1− 2(1−π)]
=γ − µ + 2µπ,

and so wage is linear in output. «

The cost of inducing high effort under observable effort is the
wage w∗ = v−1(ū+ c(eH)). Jensen’s inequality implies

∫ π̄

¯
π
v(ŵ(π))f(π | eH)dπ < v

(∫ π̄

¯
π
ŵ(π)f(π | eH)dπ

)
,

and so (IRH ) implies that the cost of inducing high effort satisfies

∫ π̄

¯
π
ŵ(π)f(π | eH) > v−1(ū+ cH) = w∗.

That is, the expected cost of inducing high effort when effort is un-
observable is higher than when it is observable. The need to impose
risk on the risk averse agent (in order to induce high effort) requires
a higher average wage to maintain the agent’s expected utility.
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Finally, inducing high effort is worthwhile if

∫ π̄

¯
π
(π − ŵ(π))f(π | eH)dπ ≥0

and (recalling the determination of the constant wage w† to induce
eL)

∫ π̄

¯
π
(π − ŵ(π))f(π | eH)dπ ≥

∫ π̄

¯
π
πf(π | eL)dπ − v−1(ū).

Remark 13.3.1 (Continuum of effort levels). When e can take on any
value in a continuum (such as [

¯
e, ē] or R+), (IC*) describes an an un-

countable infinity of IC constraints. If the density is differentiable, it
is attractive to consider the relaxed problem of minimizing (13.3.1)
subject to (IR*) and the first order (or local) condition

∫ π̄

¯
π
v(ŵ(π))

∂f(π | e)
∂e

dπ = c′(e).

This is called the first order approach, and in general, solutions to
the relaxed problem do not solve the original problem. See Laffont
and Martimort (2002, Section 5.1.3) for a discussion. ♦

Example 13.3.2. Suppose E = {0, el, eH}, and

c(e) =




0, e = 0,
cL, e = eL,
cH , e = eH ,

with cH > 2cL. Output is binary, 0 and y > 0, with the probability
distribution

Pr(y|e) =




1/4, e = 0,
1/2, e = eL,
3/4, e = eH .

Finally, ū = 0.
As in Problem 13.6.1, I first solve for the optimal utility promises

to induce the various efforts. Denote the contract by (
¯
v, v̄), with

¯
v the promised utility after no output and v̄ the promised utility
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after y . Moreover, because there are only two outputs (and so two
unknowns), two constraints suffice to determine the values of the
unknowns. There is no need to analyze the first order conditions
(the objective of the principal is not irrelevant, since otherwise the
constraints need not bind).

Inducing e = eH : The cost minimizing contract inducing e = eH
satisfies the two IC constraints

3
4 v̄ + 1

4¯
v − cH ≥ 1

2 v̄ + 1
2¯
v − cL,

3
4 v̄ + 1

4¯
v − cH ≥ 1

4 v̄ + 3
4¯
v,

and IR,
3
4 v̄ + 1

4¯
v − cH ≥ 0.

Suppose the first IC constraint and IR are binding. Then

1
4(v̄ − ¯

v) = cH − cL
3
4 v̄ + 1

4¯
v = cH .

Solving gives

¯
v = 3cL − 2cH and v̄ = 2cH − cL.

Since cH > 2cL,
¯
v < 0.

Under this contract, the expected utility from e = 0 is

3
4(3cL − 2cH)+ 1

4(2cH − cL) = 2cL − cH < 0,

and so the agent does not wish to choose e = 0.
Inducing e = eL: The cost minimizing contract inducing e = eL

satisfies the two IC constraints

1
2 v̄ + 1

2¯
v − cL ≥ 3

4 v̄ + 1
4¯
v − cH ,

1
2 v̄ + 1

2¯
v − cL ≥ 1

4 v̄ + 3
4¯
v,

and IR,
1
2 v̄ + 1

2¯
v − cL ≥ 0.

Suppose the second IC constraint and IR are binding. Then

1
4(v̄ − ¯

v) = cL
1
2 v̄ + 1

2¯
v = cL.
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Solving gives

¯
v = −cL and v̄ = 3cL.

Under this contract, the expected utility from e = eH is

3
4(3cL)+ 1

4(−cL)− cH = 2cL − cH < 0,

and again the agent does not wish to choose e = 0.
The optimal contract: In order to determine which effort the

principal wishes to induce, we need to specify the agent’s utility
function.

The agent’s utility function is given by

v(w) =
{
w, w ≥ 0,
2w, w < 0.

The utility function is illustrated in Figure 13.3.1 (the piecewise lin-
ear formulation allows us to explicitly solve for the wage payments,
while maintaining concavity of the agent’s utility function).

The expected wage payment under the eH-inducing contract is

3
4(2cH − cL)+ 1

4
1
2(3cL − 2cH) = 1

8(10cH − 3cL).

The expected wage payment under the eL-inducing contract is

1
2(3cL)+ 1

2
1
2(−cL) = 5

4cL.

Zero effort is trivially induced by the constant contract
¯
v = v̄ =

0.
The principal wishes to induce high effort if

3
4y − 1

8(10cH − 3cL) ≥ max{1
4y,

1
2y − 5

4cL},

which is satisfied if

y >
1
4

max
{

10cH − 3cL, 20cH − 26cL
}
. (13.3.3)

«



366 Chapter 13. The Principal-Agent Model

w

v
v(·)

1

1

2

1

Figure 13.3.1: The agent’s utility function for Example 13.3.2.

13.4 Unobserved Cost of Effort
(Adverse Selection)

Suppose effort is observable, but there is asymmetric information
about the cost of effort: In particular, c(e, θ), where θ ∈ Θ is known
by the agent, but not the principal. Otherwise, the model is as in
Section 13.2. Then, as in Section 10.1, we look for the optimal direct
mechanism.

Denote by W̃ the set of forcing wage schemes {w̃e : e ∈ E}. A
direct mechanism is a pair

(e†,w†) : Θ → E × W̃ .

The principal chooses an incentive compatible direct mechanism to
maximize profits. That is, the principal chooses (e†,w†) to maxi-
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mize

Eθ
∫ π̄

¯
π
(π − w̃e†(θ)(π))f(π | e†(θ))dπ

subject to

∫ π̄

¯
π
v(w̃e†(θ)(π))f(π | e†(θ))dπ − c(e†(θ), θ)

≥
∫ π̄

¯
π
v(w̃e†(θ̂)(π))f(π | e†(θ̂))dπ − c(e†(θ̂), θ) ∀θ̂, θ

and ∫ π̄

¯
π
v(w̃e†(θ)(π))f(π | e†(θ))dπ − c(e†, θ) ≥ ū.

Since effort is observable, there is no value to imposing risk on
the agent:

Lemma 13.4.1. In the optimal mechanism, w̃e†(θ) is a constant (i.e.,
it is independent of π .

In light of this lemma, it is enough to look for direct mechanisms
of the form

(e†,w∗) : Θ → E ×R
maximizing

Eθ
∫ π̄

¯
π
πf(π | e†(θ))dπ −w∗(θ)

subject to

v(w∗θ))− c(e†(θ), θ) ≥ v(w∗(θ̂))− c(e†(θ̂), θ) ∀θ̂, θ

and

v(w∗(θ))− c(e†(θ), θ) ≥ ū.

Thus, this is conceptually identical to the model in Section 10.1,
and the analysis of the two type case follows familiar lines (Problem
13.6.3).
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13.5 A Hybrid Model

Suppose both effort and effort cost are unobservable. A direct mech-
anism is now the pair

(e†,w†) : Θ → E ×RΠ,

that is, for each report, the direct mechanism specifies an effort
and a wage schedule (wage as a function of output). The principal
chooses (e†,w†) to maximize

Eθ
∫ π̄

¯
π
(π −w†(π ;θ))f(π | e†(θ))dπ

subject to incentive compatibility

∫ π̄

¯
π
v(w†(π ;θ))f(π | e†(θ))dπ − c(e†(θ), θ)

≥
∫ π̄

¯
π
v(w†(π ; θ̂))f (π | e)dπ − c(e, θ) ∀θ̂, θ, e.

and individual rationality

∫ π̄

¯
π
v(w†(π ;θ))f(π | e†(θ))dπ − c(e†(θ), θ) ≥ ū.

Incentive compatibility implies truthful reporting,

∫ π̄

¯
π
v(w†(π ;θ))f(π | e†(θ))dπ − c(e†(θ), θ)

≥
∫ π̄

¯
π
v(w†(π ; θ̂))f (π | e†(θ̂))dπ − c(e†(θ), θ) ∀θ̂, θ,

and obedience (i.e., it is optimal for type θ to actually choose e†(θ))

∫ π̄

¯
π
v(w†(π ;θ))f(π | e†(θ))dπ − c(e†(θ), θ)

≥
∫ π̄

¯
π
v(w†(π ;θ))f(π | e)dπ − c(e, θ) ∀e.
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Incentive compatibility also ensures that it is not profitable to both
misreport and then not be obedient given the incorrect report.

Similar to the taxation principle, the principal’s optimal mech-
anism can be implemented via a menu of wage contracts M :=
{w†(·; θ̂) : θ̂ ∈ Θ}. The principal offers the agent a menuM, and the
agent selects one of the wage contracts from M. The menu is cho-
sen so that the agent of type θ finds it optimal to choose w†(·;θ),
and then optimally chooses effort e†(θ).

Example 13.5.1 (Continuation of Example 13.3.2). We now suppose
costs are unknown, so Θ = {θ′, θ′′}, and costs are given by

c(e, θ) =




0, e = 0,
c′L, e = eL, θ = θ′,
c′H , e = eH , θ = θ′,
c′′L , e = eL, θ = θ′′,
c′′H , e = eH , θ = θ′′,

with c′L < c
′′
L and c′H < c

′′
H . Assume c′H > 2c′L and c′′H > 2c′′L . Let α be

the prior probability that the agent is low cost.
For α close to 1, the optimal mechanism is to offer the low-cost

eH inducing contract, and have the high cost agent reject the con-
tract.

For α close to 0, the optimal mechanism is to offer the high-cost
eH inducing contract (a pooling contract), so that the low cost agent
receives a benefit of c′′H − c′H > 0.

For intermediate α, the optimal contract is a screening menu of
contracts: the effort choice of the lost cost type θ′ is undistorted
(i.e., it equals the effort the principal would induce if θ′ is common
knowledge) but earns information rents, while the high cost type θ′′
is distorted (to eL), but has IR binding.

Parameter values:

α = 1
2 , c

′
L = 1, c′H = 4, c′′L = 2, and c′′H = 6.

For these parameter values, if

y > 17

each type would be induced to choose high effort if that type were
common knowledge (i.e., (13.3.3) holds for both θ′ and θ′′).
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The optimal screening contract: The high-cost contract (
¯
v′′, v̄′′)

is (−c′′L ,3c′′L ) = (−2, 6). Under this contract, the low-cost agent has
expected utility from eL of

c′′L − c′L = 1 > 0.

(His utility from exerting high effort under this contract is 2c′′L −c′H =
0.1)

Thus, the low-cost contract (
¯
v′, v̄′) is

(3c′L − 2c′H + (c′′L − c′L), 2c′H − c′L + (c′′L − c′L)) = (−4, 8).

The high-cost agent’s payoff under the low-cost agent’s contract:
If agent chooses eH , the expected payoff is2

1
4(−4)+ 3

4(8)− c′′H = 5− 6 < 0.

If agent chooses eL, the expected payoff is

1
2(−4)+ 1

2(8)− c′′L = 2− 2 = 0.

(This equality should not be a surprise.)
The expected wage payment of the low-cost contract (conditional

on the agent having low cost) is

1
4

1
2(−4)+ 3

4(8) = 11
2 ,

so the total cost of the screening menu is

1
2

5
4c
′′
L + 1

2
11
2 = 4.

In order to verify optimality of the screening contract, we need
to show that the screening contract is not dominated by either the
high-cost pooling contract, or the low-cost only contract.

1More generally, high effort is suboptimal if 2c′′L −c′H < c′′L −c′L ⇐⇒ c′′L +c′L < c′H .
2This inequality uses single-crossing: If the high-cost agent chooses eH , the ex-

pected payoff is

3
4(2(c

′
H − c′L)+ c′′L )+ 1

4(−2(c′H − c′L)+ c′′L )− c′′H
= c′H − c′L + c′′L − c′′H = (c′′L − c′L)− (c′′H − c′H) < 0.
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In the high-cost pooling contract, the principal offers the single
contract (−6, 10), at an expected cost of 27

4 , and so receives an
expected profit of

3
4
y − 27

4
.

In the low-cost only pooling contract, the principal offers the sin-
gle contract (−5, 7), which the the high-cost agent rejects. The
expected cost of hiring the low-cost agent is 37

8 , and so the expected
profit is

1
2

{
3
4
y − 37

8

}
.

Since y > 17, the high-cost pooling is more profitable than the low-
cost only contract.

The screening contract loses revenue of 1
8y , but saves costs of

27
4
− 4 = 11

4
,

and so the screening contract is optimal if

y < 22. «

13.6 Problems

13.6.1. Define v̂(π) := v(ŵ(π)), so that v̂ is the promised agent
utility from the wage function ŵ. Rewrite the problem of choos-
ing ŵ to minimize (13.3.1) subject to (IC*) and (IR*) to one of
choosing v̂ to minimize the expected cost of providing utility
v̂ subject to the appropriate modifications of (IC*) and (IR*).
Verify that the result is a convex minimization problem and so
the approach in the text is valid.

13.6.2. Prove Lemma 13.4.1.

13.6.3. Consider the model of Section 13.4.

(a) Prove that V(e) := ∫ π̄
¯
π πf(π | e)dπ is strictly increasing in

e.
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(b) Suppose E = R+ and V is convex and continuously dif-
ferentiable, and c(·, θ) is strictly increasing, concave, and
continuously differentiable, and satisfies the single-crossing
condition:

∂2c
∂e∂θ

> 0.

Suppose the principal assigns probability αH ∈ (0,1) to
θ = θH and complementary probability αL := 1 − αH to
θL < θH . Characterize the principal’s optimal mechanism.

(c) Suppose E = {eL, eH}, with eL < eH . Suppose Θ = [
¯
θ, θ̄] ⊂

R+, and the principal’s beliefs are described by the proba-
bility distribution F with density f and F/f increasing in
θ. Suppose c(eL, θ) = 0 for all θ and c(eH , θ) = θ. Charac-
terize the principal’s optimal mechanism.
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Appendices

14.1 Proof of Theorem 2.4.1

It will simplify notation to assume (as we do in Chapter 5) that each
action can only be taken at one information set (i.e., A(h)∩A(h′) =
∅ for all h ≠ h′). With this assumption, behavior strategies can be
defined as follows:

Definition 14.1.1. A behavior strategy for player i is a function bi :
Ai → [0,1] such that, for all h ∈ Hi,

∑

a∈A(h)
bi(a) = 1.

We then have that the behavior strategy corresponding to a pure
strategy si is given by

bi(si(h)) = 1, ∀h ∈ Hi,

and
bi(a) = 0, ∀a ∉ ∪h∈Hi{si(h)}.

Nature’s move ρ is now denoted by b0. Given b = (b0, b1, . . . , bn),
play begins with player ι(t0) randomly selecting an action in A(h)
according to the distribution

(
bι(h) (a)

)
a∈A(h). Define recursively

pn(t) = p(pn−1(t)) for t ≠ t0, and let ℓ(t) solve pℓ(t)(t) = t0.
The unique path to z ∈ Z starts at t0 = pℓ(z)(z) and is given by(
pℓ(z)(z), pℓ(z)−1(z), . . . , p(z), z

)
. The action leading to pj−1(z) is

373
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α
(
pj−1(z)

)
, which is taken by ι(pj(z)) with probability

bι(pj(z))
(
α
(
pj−1(z)

))
.

Thus, the probability that z occurs is

Pb(z) =
ℓ(z)∏

j=1

bι(pj(z))
(
α
(
pj−1(z)

))
.

If γhi is the number of actions available to i at h, a mixed strat-
egy for i is a point in the ξi (= ∏

h∈Hi γ
h
i − 1)-dimensional simplex.

A behavior strategy, on the other hand involves specifying ηi =∑
h∈Hi(γ

h
i − 1) real numbers, one point on a

(
γhi − 1

)
-dimensional

simplex for each h ∈ Hi. In general, ξi is significantly larger than ηi.

Definition 14.1.2. The mixed strategy σi corresponding to a behavior
strategy bi is given by

σi(si) =
∏

h∈Hi
bi(si(h)).

Definition 14.1.3. Two strategies for a player are realization equiv-
alent if, for all specifications of strategies for the opponents, the two
strategies induce the same distribution over terminal nodes.

It is easy to check that a mixed strategy and the behavior strategy
corresponding to it are realization equivalent.

Definition 14.1.4. A node t ∈ T is reachable under a mixed strat-
egy σi ∈ ∆(Si) for i if there exists σ ′−i such that the probability of
reaching t under (σi, σ ′−i) is positive. An information set h ∈ Hi is
reachable under σi if some node t ∈ h is reachable under σi.

Remark 14.1.1. Perfect recall implies that if h ∈ Hi is reachable for
i under σi, then all t ∈ h are reachable under σi. ♦

Define R(σi) = {h ∈ Hi : h is reachable for i under σi}.
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Definition 14.1.5. The behavior strategy, bi, generated by σi is

bi(a) =




∑
si∈Si s.t.

h∈R(si) and si(h)=a

σi(si)
/ ∑
si∈Si s.t.
h∈R(si)

σi(si) , if h ∈ R(σi),

∑
si∈Si s.t.
si(h)=a

σi(si), if h ∉ R(σi),

for all h ∈ Hi and for all a ∈ A(h).
Note that h ∈ R(σi) implies

∑
si∈Si s.t. h∈R(si)σi(si) ≠ 0. If h ∈

R(σi), bi(a) is the probability that a will be chosen, conditional
on h being reached. The specification of bi(a) for h ∉ R(σi) is
arbitrary.

Theorem 14.1.1 (Kuhn, 1953). Fix a finite extensive game with per-
fect recall. For all mixed strategies, σi ∈ ∆(Si), the behavior strategy
bi generated by σi is realization equivalent to σi.

Proof. Fix z ∈ Z . Let t1, . . . , tℓ be i’s decision nodes (in order) in the
path to z, and ak is the action at tk required to stay on the path.
Independence across players means that it is enough to show

βσi : = Pr{ak is chosen at tk∀k|σi}
= Pr{ak is chosen at tk∀k|bi} =: βbi .

Let hk be the information set containing tk.
Suppose there exists k such that hk ∉ R(σi). Then there exists

k′ < k such that Pr (ak′|σi) = 0 and so βσi = 0. Letting k′ be the
smallest first k such that Pr (ak′|σi) = 0, we have bi(ak′) = 0, and
so βbi = 0.

Suppose hk ∈ R(σi) for all k. Then

βσi =
∑

si∈Si s.t.

si(hk)=ak, k≤ℓ

σi(si).

Perfect recall implies that every information set owned by i is made
reachable by a unique sequence of i’s actions. Since si(hk

′) = ak′
∀k′ < k implies hk ∈ R(si),

hk+1 ∈ R(si)⇐⇒ hk ∈ R(si), si(hk) = ak.
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Thus,
{
si ∈ Si : hk ∈ R(si), si(hk) = ak

}
=
{
si ∈ Si : hk+1 ∈ R(si)

}

and

βbi =
ℓ∏

k=1

bi(ak)

=
ℓ∏

k=1

∑
si∈Si s.t.

hk∈R(si) and si(hk)=ak

σi(si)
/ ∑

si∈Si s.t.

hk∈R(si)

σi(si)

=
∑
si∈Si :

hℓ∈R(si),si(hℓ)=aℓ

σi(si)
/ ∑

si∈Si :
h1∈R(si)

σi(si) .

But the denominator equals 1, so

βbi =
∑
si∈Si :

hℓ∈R(si),si(hℓ)=aℓ

σi(si)

=
∑
si∈Si :

si(hk)=ak,1≤k≤ℓ

σi(si) = βσi .

14.2 Trembling Hand Perfection

14.2.1 Existence and Characterization

This subsection proves the equivalence between Definition 2.5.1 and
Selten’s (1975) original definition.

Let η : ∪Si → (0,1) be a function satisfying
∑
si∈Si η(si) < 1 for

all i. The associated perturbed game, denoted (G,η), is the normal
form game {(Rη1 , v1), . . . , (R

η
n, vn)} where

Rηi = {σi ∈ ∆ (Si) : σi(si) ≥ η(si), ∀si ∈ Si}
and vi is expected payoffs. Note that σ is a Nash equilibrium of
(G,η) if and only if for all i, si, s′i ∈ Si,

vi (si, σ−i) < vi
(
s′i , σ−i

)
=⇒ σi(si) = η(si) .



14.2. Trembling Hand Perfection 377

Definition 14.2.1 (Selten (1975)). An equilibrium σ of a normal form
game G is (normal form) trembling hand perfect if there exists a se-
quence (ηk)k such that ηk(si) → 0 ∀si as k → ∞ and an associated

sequence of mixed strategy profiles
(
σk
)
k

with σk a Nash equilib-

rium of (G,ηk) such that σk → σ as k→∞ .

Theorem 14.2.1. Every finite normal form game has a trembling
hand perfect equilibrium.

Proof. Clearly (G,η) has a Nash equilibrium for all η. Suppose (ηm)
is a sequence such that ηm(si) → 0 ∀si as m → ∞. Let σm be an
equilibrium of (G,ηm). Since {σm} is a sequence in the compact set∏
i∆ (Si), it has a convergent subsequence. Its limit is a trembling

hand perfect equilibrium of G.

Remark 14.2.1. If σ is not trembling hand perfect, then there exists
ε > 0 such that for all sequences {ηk}k satisfying ηk → 0, there is
a subsequence on which all Nash equilibria of the associated per-
turbed games are bounded away from σ by at least ε (i.e., for all K
there exists k ≥ K such that for all σk equilibria of (G,ηk), we have∣∣∣σk − σ

∣∣∣ ≥ ε). ♦

Definition 14.2.2 (Myerson, 1978). The mixed strategy profile σ is an
ε-perfect equilibrium of G if it is completely mixed (σi(si) > 0 ∀si ∈
Si) and satisfies

si ∉ BRi(σ−i) =⇒ σi(si) ≤ ε.

Theorem 14.2.2. Suppose σ is a strategy profile of the normal form
game G. The following are equivalent:

1. σ is a trembling hand perfect equilibrium of G;

2. there exists a sequence (εk), εk → 0, and an associated sequence
of εk-perfect equilibria converging to σ ; and

3. there exists a sequence
(
σk
)

of completely mixed strategy pro-

files converging to σ such that σi is a best reply to σk−i, for all
k.
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Proof. (1)⇒ (2). Take εk = maxsi∈Si, i ηk(si).
(2) ⇒ (3). Let

{
σk
}

be the sequence of εk-perfect equilibria.
Suppose si receives positive probability under σi. We need to show
that si is a best reply to σk−i. Since εk → 0 and σki (si) → σi(si) > 0,

there exists k∗(si) such that k > k∗(si) implies σki (si) > σi(si)/2 >
εk. But σk is εk-perfect, so si ∈ BRi

(
σk−i

)
. The desired sequence is(

σk
)
k>k̄

, where k̄ := max {k∗(si) : σi(si) > 0, i}.
(3)⇒ (1). Define ηk as

ηk(si) =


σki (si), if σi(si) = 0,

1/k, if σi(si) > 0.

Since σk → σ , there exists k′ such that k > k′ implies
∑
si∈Si ηk(si) <

1 for all i.
Let m = mini,si {σi(si) : σi(si) > 0}. There exists k′′ such that,

for all k > k′′,
∣∣∣σki (si)− σi(si)

∣∣∣ <m/2. Suppose k >max {k′, k′′,2/m}.
Then σki (si) ≥ ηk(si). [If σi(si) = 0, then it follows immediately. If

σi(si) > 0, then σki (si) > σi(si)−m/2 >m/2 > 1/k.]

Since σi is a best reply to σk−i, if si is not a best reply to σk−i,
then σi(si) = 0. But this implies that σk is an equilibrium of (G,ηk)
(since si is played with minimum probability).

14.2.2 Extensive Form Trembling Hand Perfection

Definition 14.2.3. An equilibrium b := (b1, . . . , bn) of a finite exten-
sive from game Γ is extensive form trembling hand perfect if there

exists a sequence
(
bk
)
k

of completely mixed behavior strategy pro-

files converging to b such that for all players i and information sets
h ∈ Hi, conditional on reaching h, for all k, bi(h) maximizes player
i’s expected payoff, given bk−i and bki (h

′) for h′ ≠ h.

Theorem 14.2.3. If b is an extensive form trembling hand perfect
equilibrium of the finite extensive from game Γ , then it is subgame
perfect.

Proof. This is a corollary of Theorem 14.2.4.
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Remark 14.2.2. When each player only has one information set (such
as in Selten’s horse, Example 5.1.1), trembling hand perfect in the
normal and extensive form coincide. In general, they differ. More-
over, trembling hand perfect in the normal form need not imply
subgame perfection (see problems 2.6.25 and 14.4.1).

♦

Remark 14.2.3. Note that trembling hand perfect in the extensive
form requires players to be sensitive not only to the possibility of
trembles by the other players, but also their own trembles (at other
information sets). The notion of quasi-perfect drops the latter re-
quirement:

Definition 14.2.4 (van Damme, 1984). A behavior strategy profile b
is quasi-perfect if it is the limit of a sequence of completely mixed
behavior profiles bn, and if for each player i and information set h
owned by that player, conditional on reaching h, bi is a best response
to bn−i for all n.

♦

Theorem 14.2.4. Suppose b is a extensive form trembling hand per-
fect equilibrium of a finite extensive from game Γ . Then, b is sequen-
tially rational given some consistent system of beliefs µ, and so is
sequential.

Proof. Suppose b is trembling hand perfect in the extensive form.
Let {bk}k be the trembles, i.e., the sequence of completely mixed be-
havior strategy profiles converging to b. Let µk be the system of be-
liefs implied by Bayes’ rule by bk (since bk is completely mixed, µk is
well-defined). Since the collection of systems of beliefs,

∏
h∈∪iHi ∆(h),

is compact, the sequence (µk) has a convergent subsequence with
limit µ, and so µ is consistent. Moreover, a few minutes of reflec-
tion reveals that for each i, (bi, bk−i) is sequentially rational at every
information set owned by i, i.e., for all h ∈ Hi, given µk. Since best
replies are hemicontinuous, for each i, b is sequentially rational at
every information set owned by i, i.e., for all h ∈ Hi, given µ. That
is, b is sequentially rational given µ.
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14.3 Completion of Proof of Theorem 12.3.1

In this section, we derive the contradiction to

kb + ks = −S
when the equalities

¯
vb =

¯
vs and v̄b = v̄s need not hold.

Since individual rationality requires U∗b (¯
vb) ≥ 0 and U∗s (v̄s) ≥ 0,

U∗b (¯
vb) =

∫

{vs<
¯
vb}
[
¯
vb − vs] G(dvs)+ kb,

and

U∗s (v̄s) =
∫

{vb>v̄s}
[vb − v̄s] F(dvb)+ ks ,

we have

− kb − ks
≤
∫

¯
vb

¯
vs
[
¯
vb − vs] G(dvs)+

∫ v̄b
v̄s
[vb − v̄s] F(dvb)

=
∫ v̄b

¯
vb

∫
¯
vb

¯
vs
[vb − vs] G(dvs)F(dvb)−

∫ v̄b

¯
vb

∫
¯
vb

¯
vs
[vb −

¯
vb] G(dvs)F(dvb)

+
∫ v̄s

¯
vs

∫ v̄b
v̄s
[vb − vs] F(dvb)G(dvs)−

∫ v̄s

¯
vs

∫ v̄b
v̄s
[v̄s − vs] F(dvb)G(dvs)

< S +
∫

¯
vb

¯
vs

∫ v̄b
v̄s
[vb − vs] F(dvb)G(dvs)

−
∫ v̄b

¯
vb

∫
¯
vb

¯
vs
[vb −

¯
vb] G(dvs)F(dvb)−

∫ v̄s

¯
vs

∫ v̄b
v̄s
[v̄s − vs] F(dvb)G(dvs)

= S +
∫

¯
vb

¯
vs

∫ v̄b
v̄s
[vb − vs − (vb −

¯
vb)− (v̄s − vs)] F(dvb)G(dvs)

−
∫ v̄s

¯
vb

∫
¯
vb

¯
vs
[vb −

¯
vb] G(dvs)F(dvb)−

∫ v̄s

¯
vb

∫ v̄b
v̄s
[v̄s − vs] F(dvb)G(dvs)

= S +
∫

¯
vb

¯
vs

∫ v̄b
v̄s
[
¯
vb − v̄s] F(dvb)G(dvs)

−
∫ v̄s

¯
vb

∫
¯
vb

¯
vs
[vb −

¯
vb] G(dvs)F(dvb)−

∫ v̄s

¯
vb

∫ v̄b
v̄s
[v̄s − vs] F(dvb)G(dvs)

< S,
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since
¯
vb < v̄s . That is,

kb + ks > −S,
our desired contradiction.

14.4 Problems

14.4.1. By explicitly presenting the completely mixed trembles, show
that the profile Lℓ is normal form trembling hand perfect in the
following game (this is the normal form from Example 2.3.4):

ℓ r

L 2,0 2,0

T −1,1 4,0

B 0,0 5,1

Show that there is no extensive form trembling hand perfect
equilibrium with that outcome in the first extensive form pre-
sented in Example 2.3.4.
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strongly symmetric

automaton, 200
strategy profile, 199, 219

subgame, 31
subgame perfect equilibrium, 32
support restriction, 159
switching away from probabil-

ity one beliefs, 159
system of beliefs, 143

consistent, 155

taxation principle, 309, 314
theorem

Arrow’s Impossibility The-
orem, 316

Brouwer, 114
Fan-Glicksberg, 116
folk, 224
folk (repeated games), 224
Gibbard-Satterthwaite, 6, 321
Harsanyi purification, 74
Kakutani, 114
minmax, 132
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Nash equilibrium existence,
30, 115

Tarski, 118
trembling hand perfect equilib-

rium
extensive form, 159, 378
normal form, 53

trigger, 197
truthful reporting, 303, 319, 329,

368
type, 91

behavioral, 268
belief, 101
payoff, 101, 268

universal type space, 93
upper hemicontinuous correspon-

dence, 114

VCG mechanism, 326
Vickrey auction, 7
Vickrey-Clarke-Groves mechanism,

see VCG mechanism
virtual value, 308, 339
von-Neumann-Morgenstern util-

ity function, 14

weakly implements, 312
winner’s curse, 84

zero sum, 132
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Corrections to and Updates from the World Scien-
tific Version1

Corrections of obvious typos are not listed, nor are minor changes
in wording or explanations. I have also not listed updates to the
references. Problems added after publication are in the Additional
Problems subsections, and are not separately discussed here.

Page numbers refer to the 2019 World Scientific published ver-
sion.

1. Figure 1.3.1 has been replaced with cleaner examples illustrat-
ing violations of perfect recall (December 27, 2020).

2. Caption for Figure 2.4.4 rewritten to clarify definition of axes
(February 18, 2019).

3. Definition 2.4.8 reworded: “fixing the strategies of the other
players” replaced by “for any specification of strategies for the
other players” (January 28, 2020).

4. Lemma 2.4.1 explicitly restricted to finite games. Comment
added that the proof for infinite Si is similar, after appropriate
assumptions are made. Counterexample of infinite noncom-
pact Si added in footnote 6 (June 29, 2020).

5. Lemma 2.4.2 explicitly restricted to finite games (February 24,
2020).

6. Problem 2.6.15 (proof of Lemma 2.4.2): Hint changed to one
using linear programming (February 24, 2020).

7. In Example 3.3.2, clarifying rewording around the two displayed
equations at the top of page 71 (February 12, 2020).

8. Example 3.4.2 added (February 10, 2022).

9. Comment that Example 3.4.2 does not satisfy CPA after Defini-
tion 3.4.3 added (February 10, 2022).

10. Remark 3.5.4 on state of nature and state of the world added
(January 3, 2021).

1Thanks to Yeon-Koo Che for the February 18, 2019, suggestions and correc-
tions.
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11. Section 3.6, on correlated equilibrium, added (August 28, 2021).

12. Section 4.1: Expanded introduction added (December 31, 2020).

13. Discussion at the end of Example 4.1.1 improved and Problem
4.4.2 added (May 9, 2023).

14. In first sentence after Theorem 4.2.1, made clear that the fail-
ure to eliminate iteratively strictly dominated strategies arises
when the domination is by mixtures (February 18, 2019).

15. Section 4.2.3 on self-confirming equilibrium added (December
19, 2022).

16. Discussion added just before Example 5.2.3 to clarify the nec-
essary reinterpretation of the system of beliefs (March 15, 2023).

17. Example 5.2.3 and Figure 5.2.3 added to clarify definition of
almost perfect Bayesian equilibrium (February 23, 2023).

18. Footnote 4 added just before Definition 5.2.4 (the definition of
almost perfect Bayesian equilibrium) illustrating the need to
allow for µ(hh′) = 0 (February 27, 2020).

19. Paragraph connecting the discussion in Remark 3.4.2 with the
notion of perfect Bayesian equilibrium added to the end of sec-
tion 5.2 (added March 29, 2023).

20. Footnote 4 on page 174 added to clarify role of disreteness
(January 3, 2021).

21. Remark 7.1.3 replaces and expands the text box on page 176.
Complementary sentences added in Section 7.5.2 just before
the introduction of public strategies (March 31, 2020).

22. In Example 7.2.3, the consumers i are uniformly distributed on
[0,10] (February 18, 2019).

23. Definitions of factorized and factorization added to Definition
7.4.1 (September 15, 2021).

24. In the statement of Theorem 7.4.2, the critical requirement
“bounded” added to the set V . The result is false without
it. Mailath and Samuelson (2006, Proposition 2.5.1) assumes
V ⊂ Fp∗, where Fp∗ is compact. (March 17, 2021)
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25. In Section 7.5.1, “does not wish to deviate in H” on page 200
(just before the penultimate displayed equation) should read
“does not wish to deviate in wEw∗” (February 18, 2019).

26. The number of periods T also needs to be determined in Prob-
lem part 7.6.5(a) (March 15, 2023).

27. Discussion just before Theorem 8.3.1 revised to include Fig-
ure 8.3.4 and discussion of Markov perfection (with revision to
footnote 8 on page 266). (April 2, 2021)

28. The profile described just before the statement of Theorem
8.3.1 is more accurately described as perfect Bayesian (it is not
subgame perfect). Footnote 8 on page 266 added to draft (April
2, 2020).

29. Made explicit that the convergence in part (b) of Problem 8.4.13
is almost sure and a hint added. Part (c) reworded to make
clear that the upper bound sought is an asymptotic almost-
sure upper bound, conditional on the incumbent not being ω0

(April 16, 2023).

30. Problem 9.5.2: Replaced Individual Rationality with Strict Indi-
vidual Rationality, so that α ∈ (0,1). (November 13, 2018.)

31. The paragraph before Lemma 10.2.2 includes an improved dis-
cussion explaining that Lemma 10.2.1 and U(θ) = 0 completely
determines the price function (April 11, 2020).

32. Made explicit in Section 10.3 that θ∗ equals θ if ψ(θ) > 0 (May
9, 2022).

33. The proof of Claim 11.1.1 has been corrected. (April 13, 2021)

34. Theorem 11.2.2: Details on the proof that F∗ is unanimous and
that the dictator for F∗ is the dictator for ξ added. (April 16,
2021)

35. The first sentence of the paragraph before Lemma 12.3.1 now
includes the italicized phrase: “If the densities are continuous,
the integral representation of U∗b and U∗s for the ex post effi-
cient p can also be obtained. . . ” (May 12, 2020).
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36. Theorem 12.4.2 was missing the requirement that the object is
only retained by the seller if all buyers have nonpositive virtual
valuation (April 28, 2020).

37. Section 13.3 has been revised, and now includes a brief discus-
sion of the informativeness principle. (April 24, 2021)

38. In the Proof of Theorem 14.1.1, on page 331, in the denomina-
tor of the displayed fraction near the bottom of the page, hk+1

should be hk in the summation (February 18, 2019).
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