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This paper studies the constrained efficient mechanism for multiple excludable 
public goods. By “excludable public goods,” we mean goods that allow the pro-

vider to exclude consumers from access, but, nevertheless, are fully nonrival in con-
sumption. There are many real world examples of excludable public goods: cable 
TV, electronic journals, computer software, and digital music files are all almost 
perfect examples. Importantly, most of these goods are provided in bundles. For 
example, cable TV customers purchase most programming as components of a few 
big bundles; access to electronic libraries are usually provided through site licences 
that allow access to every issue of every journal in the library; and digital music files, 
computer software, and other digital files are commonly sold in a bundled format.

Most of the economics literature focuses on the implications of bundling on 
the revenue of producers.1 To the best of our knowledge, a normative benchmark 
addressing the pros and cons of bundling for consumers and social welfare, while 
still explicitly incorporating the nonrival nature of these goods, does not yet exist. 

1 See, e.g., William James Adams and Janet L. Yellen (1976); R. Preston McAfee, John McMillan, and Michael 
D. Whinston (1989); Mark Armstrong (1996, 1999); Yannis Bakos and Erik Brynjolfsson (1999); Carl T. Bergstrom 
and Theodore C. Bergstrom (2004); Fang and Norman (2006b); and Alejandro Manelli and Daniel R. Vincent 
(2006).
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Bundling of Public Goods,” and Fang and Norman (2006a). Both considered only the case of two goods. We thank 
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Optimal Provision of Multiple Excludable Public Goods†

By Hanming Fang and Peter Norman*

This paper studies the optimal provision mechanism for multiple 
excludable public goods. For a class of problems with symmetric 
goods and binary valuations, we show that the optimal mechanism 
involves bundling if a regularity condition, akin to a hazard rate 
condition, on the distribution of valuations is satisfied. Relative to 
separate provision mechanisms, the optimal bundling mechanism 
may increase the asymptotic provision probability of socially effi-
cient public goods from zero to one, and decreases the extent of use 
exclusions. If the regularity condition is violated, the optimal solu-
tion replicates the separate provision outcome for the two-good case. 
(JEL D82, H41)

Contents
Optimal Provision of Multiple Excludable Public Goods†	 1

I.  The Model	 3
II.  Characterizing the Optimal Mechanism	 5
A. The Relaxed Optimization Problem	 6
B. Relating the Multipliers	 7
C. Optimal Inclusion Rules	 9
D. Optimal Provision Rules	 11
E. Linking the Relaxed Problem (9) and the Full Problem (6)	 12
F. The Main Result	 14
III.  Some Special Cases	 16
A. A Single Public Good	 16
B. Two Excludable Public Goods	17
IV.  Conclusion and Discussion	 21
Appendix	 22
REFERENCES	 36



2	 American Economic Journal: Microeconomics�n ovember 2010

Our paper aims to fill this gap and is a step toward a better understanding of the 
welfare consequences of bundling of nonrival goods.2

We consider a simple model with M excludable public goods, satisfying standard 
(but strong) separability assumptions on both the supply and demand side. On the 
demand side, a consumer is described by a vector of single-good valuations, and her 
willingness to pay for a bundle is the sum of the valuations of the goods included 
in the bundle; on the supply side, the cost of providing any good is independent 
of which other goods are also provided. Under these separability assumptions, the 
first-best benchmark is to provide good j whenever the average valuation of the 
good exceeds the per capita cost of provision, and to exclude no consumer from 
usage. There is thus no role for either bundling or use exclusion if there is perfect 
information.

If, instead, preferences are private information, as we assume in this paper, then 
consumers must be given appropriate incentives to truthfully reveal their willingness 
to pay. Together with balanced budget and participation constraints, it is impossible 
to implement the nonbundling full information first-best solution. Then, as we show 
in this paper, bundling is often useful because it facilitates revenue extraction from 
the consumers and thus relaxes a binding budget constraint.

We consider an environment with n agents and M excludable public goods where 
valuations for each good takes only two values, and the costs and valuation dis-
tributions are symmetric for the M goods. We obtain a full characterization of the 
constrained efficient mechanism. The solution is rather striking. When there are a 
large number of agents, i.e., as n → + ∞, the optimal mechanism either provides all 
goods with probability close to one, or provides all goods with probability close to 
zero. Which of these two scenarios applies depends on whether a monopolist profit 
maximizer that provides the goods for sure could break even. If a regularity condi-
tion on the valuation distribution—which can be interpreted much like a hazard rate 
condition—is satisfied, then the optimal mechanism also prescribes a simple rule 
for user access to the public goods that are provided. The rule can be described as 
follows. All agents will fall into one of three groups depending on their numbers of 
high-valuation goods. A first group consists of all agents whose numbers of high-
valuation goods strictly exceed a threshold. These agents are given access to the 
grand bundle consisting of all goods. A second group consists of all agents whose 
numbers of high-valuation goods are strictly lower than the threshold. For these 
agents access is granted only to the goods for which they have high valuations. 
Finally, there is a third group, consisting of those with exactly the threshold-level 
number of high-valuation goods. These agents receive random access to their low-
valuation goods and full access to their high-valuation goods.3

If the regularity condition discussed above is violated, it is, in general, difficult to 
identify the binding constraints. However, the two-good case is both tractable and 
instructive. For the two-good case, violations of the regularity condition can then be 

2 For the cable TV industry, see Gregory S. Crawford (2008), Crawford and Joseph Cullen (2007), Crawford 
and Ali Yurukoglu (2009) and Yurukoglu (2009) for some recent studies on the welfare effects of à la carte pricing 
on the consumers. These studies assume that the provision of the programs will not be affected by the à la carte 
pricing regulation. See Section IV for more discussions on the implications of our results on this issue.

3 Note, however, the third group of agents will be rather small when there are many goods.
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interpreted as when the valuations of the two goods are “too positively correlated.” 
This invalidates the approach we use for solving the regular case. When the valu-
ations of the two goods are “too positively correlated,” there are too few “mixed 
types” (those with one high and one low valuation) to justify giving them preferen-
tial treatment in terms of accessing their low-valuation good, leading to a violation 
of the monotonicity that is required for the standard approach. Surprisingly, we 
show that the optimal solution for this case is in fact identical to the solution when 
both goods must be separately provided.

The tractability of the multidimensional mechanism design problem studied in 
this paper comes from the fact that types are naturally ordered in terms of the num-
ber of high-valuation goods. This allows us to exploit some important similarities 
with unidimensional problems that help us determine which constraints are likely to 
bind. In addition, for unidimensional problems, it is known that maximizing social 
surplus subject to budget and participation constraints leads to a Lagrangian char-
acterization that can be interpreted as a compromise between profit and welfare 
maximization (see Martin F. Hellwig 2003, and Norman 2004). In Hellwig (2003, 
2005) and Norman (2004), incentive compatibility, balanced budget, and partici-
pation constraints can be combined into a single constraint that the monopolistic 
provider’s profit must be nonnegative. This cannot be done in the multidimensional 
model considered in this paper. However, Lagrange multipliers of “adjacent con-
straints” are linked in a way that allows for an analogous characterization.

The remainder of the paper is structured as follows. Section I describes the model 
and the class of simple, anonymous, symmetric mechanisms we will consider with-
out loss of generality. Section II characterizes the optimal mechanism for the regular 
case. In Section III, we use some special cases to better interpret the characterization 
in Section II. In particular, we characterize the optimal mechanism when the regu-
larity condition is violated in the two-good case. Section IV contains a brief discus-
sion of the relevance of our analysis with respect to antitrust issues. The Appendix 
contains the proofs of some of the key results in Section II.4

I.  The Model

The Environment.—There are M excludable and indivisible public goods, labeled 
by j ∈  = ​{1, … , M }​ and n agents, indexed by i ∈  = ​{1, … , n}​. The cost of 
providing good j, denoted ​C​ j​​(n)​, is independent of which of the other goods are 
provided. We assume that ​C​ j​​(n)​ = cn for all j ∈  where c > 0. Notice that ​C​ j​​(n)​ 
depends on n, the number of agents in the economy, and not on the number of users. 
This assumption captures the fully nonrival nature of the public goods.5

Agent i is described by a valuation for each good j ∈ . Her type is given by a 
vector ​θ​i​ = ​(​θ​ i​ 1​, … , ​θ​ i​ M​ )​ ∈ Θ. We assume that the valuation for each good j is now 

4 An online Appendix available at http://www.econ.upenn.edu/~hfang/research contains all the omitted proofs.
5 The fact that the per capita cost of the public good is a constant independent of n enables us to analyze large 

economies without making the public goods a “free lunch” in the limit.
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either high or low, so that ​θ​ i​ j​ ∈ ​{l, h}​ for each i ∈  and j ∈ . Thus, Θ ≡ ​​{l, h}​​M​. 
Agents’ preferences are represented by the utility function

(1)	 ​∑ 
j∈

​ 
 

  ​ ​I  ​ i​ j​​​ θ​ i​ j​  − ​ t​i ​,

where ​I​ i​ j​ is a dummy variable taking value 1 when i consumes good j and 0 other-
wise, and ​t​i​ is the quantity of the numeraire good transferred from i to the mecha-
nism designer. Preferences over lotteries are of the expected utility form.

An agent’s type ​θ​i​ is her private information. The probability of any type ​
θ​i​ ∈ Θ ≡ ​​{l, h}​​M​ is denoted β ​(​θ​i​)​. Unlike much of the bundling literature, we allow 
the valuations for different goods for a given agent to be correlated across goods. 
However, types are independent across agents, which allows us to denote the prob-
abilities of type profile θ ≡ ​(​θ​1​, … , ​θ​n​)​ ∈ ​Θ​n​ and ​θ​− i​ ≡ ​(​θ​1​, … , ​θ​i − 1​, ​θ​i + 1​, … , ​θ​n​)​ ∈​
Θ​− i​ ≡ ​Θ​n−1​ by β​(θ)​ = ​∏ i=1​ 

n
  ​ β​(​θ​i​)​​ and ​β​− i​ ​(​θ​− i​)​ = ​Π​i′≠i​ β​(​θ​i′​)​, respectively. For sim-

plicity, we assume that the valuations of the M goods are symmetrically distributed 
in the sense that ​θ​i​ = ​(​θ​ i​ 1​, … , ​θ​ i​ M​ )​ is an exchangeable random vector, that is, we 
assume that β ​(​θ​i​)​ = β ​(​θ​ i​ ′​ )​ if ​θ​ i​ ′​ is a permutation of ​θ​i​.

Mechanisms.—An outcome in our environment has three components: (1) which 
goods, if any, should be provided; (2) who are to be given access to the goods that 
are provided; and (3) how to share the costs. The set of feasible pure outcomes is 
thus

(2)	 A  =      {0, 1} M      ×      {0, 1} M×n      ×      R n     .
	 3	 3	 3
	 provision/no provision	 inclusion/no inclusion	 “taxes” for each
	 for each good j	 for each agent i and good j	 agent i

By the revelation principle, we only consider direct mechanisms for which truth-
telling is a Bayesian Nash equilibrium. A pure direct mechanism maps ​Θ​n​ onto A. 
In general, we should consider direct randomized mechanisms, which can be rep-
resented analogously to the representation of mixed strategies in Robert J. Aumann 
(1964).6 However, it is shown in Fang and Norman (2006a, propositions 1 and 2) 
that, in our environment, it is without loss of generality to consider a class of simple, 
anonymous and symmetric mechanisms.7 Specifically, we say that a mechanism is 
simple if it can be expressed as a ​(2M + 1)​-tuple g = ​(ρ, η, t)​ ≡ ​(​​{​ρ ​ j​ }​​ j∈ ​, ​​{​η​  j​ }​​ j∈ ​, t)​

6 Specifically, let Ξ ≡ ​[0, 1]​ and think of ϑ ∈ Ξ as the outcome of a fictitious lottery where, without loss of 
generality, ϑ is uniformly distributed and independent of θ. A random direct mechanism is then a measurable map-
ping  : ​Θ​ n​ × Ξ → A, which can be decomposed as (​​{​ζ​ j​​(θ, ϑ)​}​​ j∈​ , ​​{​ω​ j​​(θ, ϑ)​}​​j∈ ​,τ) where ​ζ​  j​ : ​Θ​ n​ × Ξ → ​{0, 1}​ is 
the provision probability for good j when the type profile announcement is θ and the lottery outcome realization is 
ϑ ; analogously, ​ω​ j​ ≡ (​ω​ 1​ j

 ​, … , ​ω​ n​ j
 ​): ​Θ​n​ × Ξ → ​​{0, 1}​​n​ is the inclusion rule for good j; and τ ≡ ​(​τ​1​, … , ​τ​n​)​ : ​Θ​ n​ → ​

R​ n​ is the cost-sharing rule, where ​τ​i​​(θ)​ is the transfer from agent i to the mechanism designer given announced 
valuation profile θ. Note that in principle, transfers could also be random, but the pure cost-sharing rule is without 
loss of generality due to risk neutrality. 

7 The simplification results from the symmetries we assumed in our environment, namely, cost functions are 
identical and the valuations are exchangeable across goods.
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such that for each good j ∈ , ​ρ​ j​ : ​Θ​n​ → ​[0, 1]​ is the provision rule for good j; ​
η​ j​ : Θ → ​[0, 1]​ is the inclusion rule for good j; and t : Θ → R is the transfer rule, 
same for all agents. A simple mechanism is also anonymous if for every j ∈ ,
​ρ​ j​​(θ)​ = ​ρ​ j​ ​(θ′ )​for every ​(θ, θ′ )​ ∈ ​Θ​n​ × ​Θ​n​ such that θ′ can be obtained from θ by per-
muting the indices of the agents. Finally, we say that a simple anonymous mechanism 
is also symmetric if for every θ and every permutation P :  →  with inverse ​P​− 1​,
we have ​ρ​ ​P​− 1​​( j )​​​(​θ​ P​ )​ = ​ρ​  j​​(θ)​ and ​η​ ​ P​− 1​​( j )​​​(​θ​ i​ P ​)​ = ​η​ j​​(​θ​i​)​ for every j ∈ , and t​(​θ​ i​ P​ )​ 
= t​(​θ​i​)​, where ​θ​ i​ P​ = ​(​θ​ i​ ​P ​− 1​​(1)​​, ​θ​ i​ ​P ​− 1​​(2)​​, … , ​θ​ i​ ​P ​− 1​​(M )​​)​ denotes the permutation of agent i′s 
type by changing the role of the goods in accordance to P, and ​θ​ P​ ≡ ​(​θ​ 1​ P​, … , ​θ​ n​ P​ )​ 
denotes the valuation profile obtained when the role of the goods is changed in 
accordance to P for every i ∈ .

The class of simple, anonymous, and symmetric mechanisms have three proper-
ties. First, the inclusion and transfer rules are the same for all agents, and the inclu-
sion and transfer rules for any agent i are independent of ​θ​− i​. Second, all agents 
are treated symmetrically in the transfer, inclusion, and provision rules. Third, con-
ditional on θ, the provision probability ​ρ​ j​​(θ)​ is independent of all other provision 
probabilities as well as all inclusion probabilities.

II.  Characterizing the Optimal Mechanism

We now describe the mechanism design problem. As we mentioned in the pre-
vious section, it is without loss of generality to only consider simple, anonymous 
and symmetric mechanisms. Of course, an incentive feasible mechanism has to be 
incentive compatible, individually rational and budget balanced. A mechanism g
= ​(ρ, η, t)​ ≡ ​(​​{​ρ ​j​ }​​ j∈​ , ​​{​η ​ j​ }​​ j∈​ , t )​ is incentive compatible if truth-telling is a Bayesian 
Nash equilibrium in the revelation game induced by g, i.e., for all i ∈ , ​(​θ​i​ , ​θ​ i​ ′​ )​ ∈ ​
Θ​2​,

(3)	 ​∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​​(​θ​− i​)​​∑ 
j=1

​ 
M

 ​  ​​ρ​ j​​(θ)​​η​ i​ j​ ​(​θ​i​)​​θ​ i​ j​  − ​ t​i​​ (θ​i​)

	 −  s     ​∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​ (​θ​− i​) ​∑ 
j=1

​ 
M

 ​  ​​ρ​ j​(​θ​− i ​, ​θ​ i​ ′​ )​ η​ i​ j​ (​θ​ i​ ′​ )​θ​ i​ j​  − ​ t​i​ (​θ​ i​ ′​ ) t  ≥  0.

A mechanism g satisfies individual rationality at the interim stage if the expected sur-
plus from truth-telling for the “lowest” type, i.e., type-l ≡ ​(l, … , l )​, is nonnegative:8

(4)  	 ​∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​ ​(​θ​− i​)​​∑ 
j=1

​ 
M

 ​  ​​ρ​ j​​(​θ​− i​ , l)​​η​ i​ j​ ​( l )​l  − ​ t​i​ ​( l )​  ≥ 0,  ∀i ∈ ,

8 It is routine to show that individual rationality for type-l and the incentive compatibility constraints (3) ensure 
that the individual rationality constraints for all other types are satisfied.
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A mechanism g is ex ante budget-balanced if:9

(5)	 ​∑ 
i=1

​ 
n

 ​   ​∑ 
​θ​ i​∈Θ

​ 
 

  ​ β​(​θ​i​)​​t​i​​​ ​(​θ​i​)​  − ​ ∑ 
​θ​ ​∈​Θ​ n​

​ 
 

  ​ β​(θ)​​​∑ 
j=1

​ 
M

 ​ ​ρ​ j​​(θ)​​cn  ≥  0.

Because of the assumed transferrable utility in (1), the constrained ex ante Pareto 
efficient allocations are characterized by a fictitious social planner’s problem to 
maximize social surplus:

(6)	 ​ max   
​{ρ, η, t}​

​  ​ ∑ 
θ∈​Θ​ n​

​ 
 

  ​ β​(θ)​​​∑ 
j=1

​ 
M

 ​ ​ρ​ j​​(θ)​​​[​∑ 
i=1

​ 
n

 ​ ​η​ i​ j​​​(​θ​i​)​​θ​ i​ j​  −  cn]​

	 s.t. (3), (4), (5), 

(7)	 and ​ρ​ j​​(θ)​  ∈ ​ [ 0, 1]​, ∀θ  ∈ ​ Θ​ n​ and j ∈ 

(8)	 ​η​ i​ j​​(​θ​i​)​  ∈ ​ [ 0, 1]​, ∀​θ​ i​  ∈  Θ and i ∈ , j ∈  ,

where constraints (7) and (8) ensure that inclusion and provision rules always gen-
erate valid probabilities.

To simplify our discussions below, we will refer to an incentive constraint in (3) 
as a downward incentive constraint if ​θ​ i​ j​ ≥ ​θ ​ i​ ′​ j for all j ∈ , as an upward incentive 
constraint if ​θ​ i​ j​ ≤ ​θ​ i​ ′​ j for all j ∈ , as a diagonal incentive constraint if there exists 
j, k ∈  so that ​θ​ i​ j​ > ​θ​ i​ ′​ j and ​θ​ i​ k​ < ​θ​ i​ ′​ k, and as an adjacent incentive constraint if ​θ​i​ 
and ​θ​ i​ ′​ differ only in a single coordinate.

A. The Relaxed Optimization Problem

Based on intuition from unidimensional mechanism design problems (e.g., 
Steven Matthews and John Moore 1987) and similar to Armstrong and Jean-Charles 
Rochet (1999), we now formulate a relaxed problem where all incentive constraints 
in (3), except the downward adjacent incentive constraints, are removed.10 Denote 
by ​θ​i​|​l​k​ the type that is obtained from ​θ​i​ if the k-th coordinate is changed from h to l, 
the relaxed problem can be written as

(9)	 ​ max   
​{ρ, η, t}​

​  ​ ∑ 
​θ​ ​∈​Θ​ n​

​ 
 

  ​ β​(θ)​​​∑ 
j=1

​ 
M

 ​ ​ρ​ j​​(θ)​​​[ ​∑ 
i=1

​ 
n

 ​ ​η​ i​ j​ ​(​θ​i​)​​​θ​ i​ j​  −  cn]​

	 s.t.  ​  ∑ 
​θ​− i​∈​Θ​− i​

​ 
 

  ​ ​β​− i​ ​(​θ​− i​)​​ ​∑ 
j=1

​ 
M

 ​ ​ρ​ j​​(θ)​​​η​ i​ j​ ​(​θ​i​)​​θ​ i​ j​  − ​ t​i​ ​(​θ​i​)​

9 As shown in Tilman Borgers and Norman (2009) it is without loss of generality to consider a balanced budget 
constraint in ex ante form.

10 Also see Chapter 6 of Patrick Bolton and Mathias Dewatripont (2005) for a detailed analysis of multidimen-
sional mechanism problems for a revenue-maximizing monopolist selling private goods.
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(10)	 − ​[   ​∑ 
​θ​− i​∈​Θ​− i​

​ 
 

  ​ ​β​− i​​ ​(​θ​− i​)​​∑ 
j=1

​ 
M

 ​ ​ρ​ j​​(​θ​− i​, ​θ​i​ | ​l​k​ )​​​η​ i​ j​​(​θ​i​ | ​l​k​)​ ​θ​ i​ j​   − ​ t​i​ ​(​θ​i​ | ​l​k​)​]​  ≥  0

	 ∀​θ​i​ ∈ Θ, and ∀k such that ​θ​ i​ k​ = h, and ∀i ∈ 

and (4), (5), (7) and (8).

The existence of solutions to problem (9) can be established by first compactify-
ing the constraint set and then applying Weierstrass maximum theorem.

In what follows, we will first present a sequence of intermediate results that will 
be used to characterize the solution to the relaxed problem (9); then, in Section IIE, 
we will present conditions on the primitives to ensure that the solution to the relaxed 
problem also solves the full problem (6).

B. Relating the Multipliers

Since the environment we consider is symmetric across goods in both cost func-
tion and valuation distributions, it can be shown that the optimal provision and 
inclusion rules can be restricted to be symmetric across goods without loss of gen-
erality (see proposition 2 of Fang and Norman 2006a). In addition, strong duality 
in linear programming ensures that the value of the multiplier associated with any 
of the downward adjacent incentive constraint (10) depends only on the number of 
goods for which the consumer has a high valuation. To state the result formally, we 
introduce some notation. For any ​θ​i​ ∈ Θ, write m​(​θ​i​)​ ∈ ​{0, … , M }​ as the number of 
goods for which ​θ​ i​ j​ = h, i.e.,

(11)	 m​(​θ​i​)​  =  #​{  j ∈   : ​ θ​ i​ j​  =  h}​.

Thus, for every i ∈  and every ​θ​i​ ∈ Θ there are m​(​θ​i​)​ downward adjacent incen-
tives in (10). Given any m ∈ ​{0, … , M }​, there are M!/m!​(M − m)​! types ​θ​i​ ∈ Θ such 
that ​θ​ i​ j​ = h for exactly m goods. Since ​θ​i​ is an exchangeable random vector all these 
types are equally likely, the probability that an agent has high valuations for exactly 
m goods, denoted by ​β​m​, is given by

(12)	 ​β​m​  = ​   M! __  
m!​(M  −  m)​! 

 ​ β​(​θ​i​)​,

where ​θ​i​ is any type with m high valuations.11 The following lemma follows from 
strong duality in linear programming:

Lemma 1: For every m ∈ ​{1, … , M }​, it is without loss of generality to assume that 
there exists some λ​(m)​ ≥ 0, such that λ​(m)​ is the multiplier associated with every 
constraint (10), such that m​(​θ​i​)​ = m.

11 For example, in the simplest case where valuations for different goods are independently and identically dis-
tributed with α being the probability that ​θ​ i​ j​ = h, we have that for any ​θ​i​ such that m ​(​θ​i​)​ = m, β ​(​θ​i​)​ = ​α​m​​​(1 − α)​​M−m​ 
and ​β​m​ = (M!/m!​(M − m)​!)​ α​m​​​(1 − α)​​M−m​. 
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From now on, we denote by λ​(m)​ the multiplier for all downward adjacent incen-
tive constraints for types with m ≥ 1 high valuations. Also, we let λ​(0)​ denote the 
multiplier associated with the participation constraint (4) for type l = ​(l, … , l )​, and 
Λ denote the multiplier to the resource constraint (5). Our next result shows that the 
multipliers λ​(m)​, m ∈ ​{0, … , M }​ and Λ are systematically linked:

Lemma 2: For every m ∈ ​{0, … , M }​, the value of λ​(m)​ is related to Λ in accor-
dance with (13)

(13)  λ​(m)​  =

	  Λ if m  =  0,

      {	  ​ 
​(m  −  1)​!​(M  −  m)​!

  __  
M!

 ​  Λ ​∑ 
j=m

 ​ 
M

 ​ ​β​j​​  = ​ 
​(m  −  1)​!​(M  −  m)​!

  __  
M!

 ​  ΛPr​[m​(​θ​i​)​ ≥ m]​ if m = 1, … , M,

where ​β​ j​ is defined in (12).

Lemma 2 is a key step in solving (9). Its role is similar to the characterization 
of incentive feasibility in terms of a single integral constraint in unidimensional 
mechanism design problems (i.e., the approach in Roger B. Myerson 1981 and oth-
ers). In multidimensional problems, it is impossible to collapse all the constraints 
into a single constraint. Instead, Lemma 2 allows us to indirectly relate all optimality 
conditions to a single constraint.

The easiest way to understand Lemma 2 is to consider the first-order condition of 
problem (9) with respect to ​t​i​​(​θ​i​)​, where ​θ​i​ is a type with m​(​θ​i​)​ = m ∈ ​{1, … , M − 1}​ 
high-valuation goods. The constraints in problem (9), where ​t​i​​(​θ​i​)​ appears, can be 
delineated as follows. First, ​t​i​ ​(​θ​i​)​ appears in the incentive constraints (10). There 
are m ways to change a single h-coordinate into an l, so there are m different adja-
cent downward deviations from ​θ​i​. In addition, there are M − m types ​θ​ i​ ′​ with
m​(​θ​ i​ ′​ )​ = m + 1 such that an adjacent downward deviation from ​θ​ i​ ′​ can “turn into” 
type ​θ​i​ . Second, ​t​i ​​(​θ​i​)​ appears in the balanced budget constraint (5). With these 
observations, the optimality conditions to the program (9) with respect to ​t​i​ ​(​θ​i​)​ 
yields

(14)  	 − λ​(m)​m  +  λ​(m  +  1)​​(M  −  m)​  +  Λ​β​i​ ​(​θ​i​)​  =  0.

When m​(​θ​i​)​ = 0, which is the case if and only if ​θ​i​ = l = ​(l, … , l )​, there is no pos-
sible downward adjacent deviation from type-l; instead, ​t​i​ ​( l )​ appears in the partici-
pation constraint (4). Thus, the optimality condition with respect to ​t​i​ ​( l )​ is

(15)  	 − λ​(0)​  +  λ​(1)​M  +  Λ​β​i​​(l)​  =  0.
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Similarly, when m​(​θ​i​)​ = M, which is the case if and only ​θ​i​ = h = ​(h, … , h)​, there 
is no possible downward adjacent deviation to type-h, thus the optimality condition 
with respect to ​t​i​ ​(h)​ is

(16)  	 − Mλ​(M)​  +  Λ​β​i​ ​(h)​  =  0.

Because ​β​M​ = ​β​i​​(h)​, it is immediate from (16) that the characterization in (13) holds 
for m = M. The rest of the proof is an induction argument using (14) and (15) recur-
sively. The identity (12) is finally used to translate terms involving β​(​θ​i​)​ into ​β​m​.

A rough intuition for Lemma 2 is as follows. If an extra unit of revenue can 
be extracted from types with m high valuations without upsetting any constraint, 
then an extra unit can be extracted from all higher types as well. This roughly fol-
lows from the fact that transfers enter the utility function (1) linearly, hence the 
payoff difference for an agent with m high valuations between truth-telling and 
announcing m − 1 high valuations depends only on the difference in the transfers. 
Multipliers are therefore proportional to the probability that the number of valua-
tions exceeds m.

C. Optimal Inclusion Rules

Our next two lemmas establish some properties of the optimal inclusion rules 
when a public good is provided. Lemma 3 shows that individuals will always be able 
to access the goods for which they have high valuations. In contrast, Lemma 4 shows 
that access to goods for which the consumer has a low valuation is determined by 
the implications of allowing access on a nontrivial trade-off between social welfare 
and revenue extraction, where the weights on revenue extraction is a scaling of Λ, 
the multiplier Λ associated with the resource constraint (5).

Lemma 3: (Optimal Inclusion Rule for High-Valuation Goods) Suppose that ​
θ​i​ ∈ Θ such that ​θ​ i​ j​ = h and that ​∑ ​θ​− i​∈​Θ​− i​

​  
  ​ ​β​− i​ ​(​θ​− i​)​​​ρ​ j​​(​θ​i​, ​θ​− i​)​ > 0. Then, ​η​ i​ j​​(​θ​i​)​ = 1 

in any optimal solution to (9).12

Lemma 3 may appear to be the well-known “no distortion at the top” result 
from the unidimensional mechanism design problem. However, this is not an accu-
rate interpretation as we are in a multidimensional setting where a priori it might 
be optimal to restrict access to high-valuation goods for types with too few high 
valuations. Instead, Lemma 3 states that an agent should be given access to her 
high-valuation goods irrespective of her total number of high-valuation goods. The 
result is indeed best understood in terms of the relationship between the multipliers

12 The condition ​∑ ​θ​− i​∈​Θ​− i​​ 
 
  ​ ​β​− i​​ ​(​θ​− i​)​​ρ ​ j​​(​θ​i​,​ θ​− i​)​ > 0 is needed in Lemmas 3 and 4 because the inclusion rules have 

no effect on either the objective function or the constraints when the conditional probability of provision is zero.
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in (14). Providing an extra high-valuation good to a type with m high valuations 
relaxes the downward adjacent incentive constraints (10) for every type with exactly 
m high valuations. There are m such incentive constraints, so the effect associated 
with higher utility from truth-telling for these types is λ​(m)​mh. However, giving 
access to a high-valuation good j makes it more tempting for a type with m + 1 
high valuations to announce only m high valuations. There are M − m types that 
could change a single coordinate from high to low and pretend to have m high-
valuation goods. The negative effect on the utility of these types from misreporting 
as a type with m high valuations is − λ​(m + 1)​​(M − m)​h. It then follows from 
(14) that the first positive effect from making truth-telling more appealing always 
dominates the second negative effect; hence all consumers always get access to 
their high-valuation goods.

The characterization of the optimal inclusion rule for low-valuation goods is more 
complicated. Some exclusions from access to low-valuation goods are essential in 
order to extract sufficient revenue to cover the costs of provision; but at the same 
time, exclusions diminish social welfare. Optimal inclusions to low-valuation goods 
are therefore determined from a nontrivial trade-off between revenue extraction and 
social welfare maximization. It turns out that this trade-off is neatly captured by the 
functions ​G​m​​(Φ)​, m = 0, … , M − 1, defined by

(17)	​G ​m​​(Φ)​  = ​ (1  −  Φ)​​(M  −  m)​l​β​m​  +  Φ​[​β​m​​(M  −  m)​l  − ​ (h  −  l )​ ​ ∑ 
j=m+1

​ 
M

  ​ ​β​j​​]​,

where ​G​m​​(Φ)​ is relevant for each type ​θ​i​ with m​(​θ​i​)​ = m ∈ ​{0, … , M − 1}​. We will 
first state the formal result, and then discuss why ​G​m​​(Φ)​ summarizes the compro-
mise between welfare and profit maximization.

Lemma 4: (Optimal Inclusion Rule for Low-Valuation Goods) Suppose that ​
θ​i​ ∈ Θ with m ​(​θ​i​)​ = m ∈ ​{0, … , M − 1}​, where ​θ​ i​ j​ = l for some j ∈ , and that ​
∑ ​θ​− i​∈​Θ​− i​

​  
  ​ ​β​− i​ ​(​θ​− i​)​​ρ​ j​​​(​θ​i ​, ​θ​− i​)​ > 0. Then,

(18)	 ​η​ i​ j​​(​θ​i​)​  =  η​(m)​  ≡  u ​ 
0
 

  
  z  ∈ ​ [0, 1]​    

1
 ​ ​ 

if ​G​m​​(Φ)​  <  0
  

  
  if ​G​m​​(Φ)​  =  0      

if ​G​m​​(Φ)​  >  0,
​

in any optimal solution to (9) where Φ = Λ/(1 + Λ).

To interpret (17) and gain intuition for Lemma 4, imagine that all goods are 
provided with certainty and consider the following two potential inclusion rules: 
(a) All agents with at least m high valuations receive access to all the goods, while 
those with m − 1 or fewer high valuations only receive access to their high valuation 
goods; (b) All agents with at least m + 1 high valuations receive access to all the 
goods, while those with m or fewer high valuations only receive access to their high 
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valuation goods. It is easy to see that ​(M − m)​l​β​m​ , the first term in (17), is the gain 
in social welfare if the planner changes the inclusion rule from (b) to (a). Less obvi-
ous is that the term in square bracket in (17) is the difference in revenue between the 
two inclusion rules for the provider of the public goods. To see this, note that under 
inclusion rule (a), the provider can charge mh + ​(M − m)​l to agents who consume 
all goods, and charge h per good to the remaining agents who only obtain access to 
their high valuation goods. The expected revenue under inclusion rule (a) and the 
above pricing policy, denoted by R​(m)​, is then13

(19)	 R​(m)​  = ​ [mh  + ​ (M  −  m)​l ]​ ​∑ 
j=m

​ 
M

 ​ ​β​j​ ​ +  h ​∑ 
j=1

​ 
m−1

​ ​β​j​​ j.

The expected revenue from inclusion rule (b) and analogous pricing policy is
R​(m + 1)​. It follows from some algebra that

(20)	 R​(m)​  −  R​(m  +  1)​  = ​ β​m​​(M  −  m)​l  − ​ (h  −  l )​ ​ ∑ 
j=m+1

​ 
M

  ​ ​β​ j​​.

Thus, the term in square bracket in (17) represents the effect on the provider’s rev-
enue, which may be positive or negative, if the planner changes the inclusion rule 
from (b) to (a). Consequently, ​G​m​​(Φ)​ is simply a weighted average of the effect on 
social welfare and revenue from giving, instead of excluding, the agents with m high 
valuations access to all their low-valuation goods where Φ, the weight on revenue, is 
a normalization of the multiplier on the resource constraint (5).14

The optimal inclusion rule for low valuation goods as characterized in Lemma 4 
thus states that if the trade-off is in favor of social welfare, i.e., when ​G​m​​(Φ)​ > 0, 
then the agents with m high valuations should be provided with full access to all 
their low-valuation goods; if ​G​m​​(Φ)​ < 0, then they should be excluded from their 
low-valuation goods.

D. Optimal Provision Rules

We will now characterize the optimal provision rule. To simplify exposition, it is 
useful to introduce the following notation. For a given type profile θ = ​(​θ​1​, … , ​θ​n​)​,
we denote by ​H​ j​​(θ, m)​ the number of agents who have a high valuation for good 
j and a total of m high valuations; similarly, we denote by ​L​ j​​(θ, m)​ the number of 
agents with a low valuation for good j and a total of m high valuations.15 The optimal

13 A profit maximizing monopolist would simply pick m to maximize R​(m)​ provided that the public good is 
provided.

14 This property has been shown in unidimensional settings (see Hellwig 2003 and Norman 2004); but to the 
best of our knowledge, no analogous result in a multidimensional setting has been shown in the literature.

15 Note that ​H​ j​​(θ, m)​ and ​L​ j​​(θ, m)​ are simple accounting summaries.
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provision rule can then be expressed in terms of ​H​ j​​(θ, m)​, ​L​ j​​(θ, m)​, and ​G​m​​(Φ)​ as 
follows:

Lemma 5: (Optimal Provision Rules) The provision rule for good j in the optimal 
solution to (9) satisfies

(21)	 0	 if ​ ∑ m=1​ 
M

  ​  ​​H​ j​​(θ, m)​h

	 + ​ ∑ m=1​ 
M

  ​  ​​L​j​​(θ, m)​ ​  1 _  ​β​m​​(M  −  m)​
 ​ max ​{0, ​G​m​ ​(Φ)​}​ −  cn  <  0

​ρ​ j​​(θ)​  = {	 z ∈ ​[0, 1]​	 if ​∑ m=1​ 
M

  ​  ​​H​ j​​(θ, m)​h

	 + ​ ∑ m=0​ 
M

  ​  ​​L​ j​​(θ, m)​ ​  1 _  ​β​m​​(M  −  m)​
 ​ max ​{0, ​G​m​​(Φ)​}​ −  cn  =  0

	 0	​ ∑ m=1​ 
M

  ​  ​​H​ j​​(θ, m)​h

	 + ​ ∑ m=0​ 
M

  ​  ​​L​j​​(θ, m)​ ​  1 _  ​β​m​​(M  −  m)​
 ​ max ​{0,​G​m​​(Φ)​}​ − cn > 0.

Similar to the optimal inclusion rule (18), the optimal provision rule (21) can 
also be interpreted as a compromise between welfare and revenue maximization. 
To see this, recall that Lemma 3 established that all agents always get access to 
all high-valuation goods that are provided. Thus, the term ​∑ m=1​ 

M
  ​  ​​H​ j​​(θ, m)​h is the 

social surplus from all consumers with a high valuation for good j. To understand 
the second term in (21), recall that ​G​m​​(Φ)​ is the effect from giving an agent with 
m high valuations access to all their low-valuation goods. There are ​L​ j​​(θ, m)​ agents 
with a low valuation for j and a total of m high valuations, but ​L​ j​​(θ, m)​​G​m​​(Φ)​ 
must be scaled by 1/​β​m​​(M − m)​ in order to express the effect in the same units as
​∑ m=1​ 

M
  ​  ​​H​ j​​(θ, m)​h. The factor 1/​(M − m)​ is straightforward as ​G​m​​(Φ)​ measures the 

effect of providing access to all M − m low-valuation goods to agents with m high 
valuations, so scaling by 1/​(M − m)​ yields the relevant per good effect. The need 
to scale up by 1/​β​m​ is a consequence of ​G​m​​(Φ)​ being expressed as an unconditional 
value, while (21) is expressed as a value conditional on a fixed type profile θ. Hence, 
the first two terms in (21) may be thought of as the effect from providing good j on 
a combination of social welfare and revenue, whereas the third term obviously is the 
associated cost of provision.

E. Linking the Relaxed Problem (9) and the Full Problem (6)

We are now in a position to link the solution to the relaxed problem (9) with that 
of the full problem (6). Many steps of this analysis are similar to Matthews and 
Moore (1987), but the multidimensional nature of our environment leads to some 
important differences (see also Armstrong and Rochet 1999 for a similar analysis).

Analogous to the standard approach in solving unidimensional problems, a key 
condition for the solution to the relaxed problem (9) to also solve the full problem 
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(6) is that the mechanism that solves the relaxed problem is monotonic in the fol-
lowing sense:

Definition 1: A mechanism ​(ρ, η, t)​ is monotonic if ​η​ i​ j​​(​θ​i​)​ ≤ ​η​ i​ j​​(​θ​ i​ ′​ )​ and
​ρ​ j​​(​θ​− i​,​ θ​i​)​ ≤ ​ρ​ j​​(​θ​− i​, ​θ​ i​ ′​ )​ whenever m​(​θ​i​)​ ≤ m​(​θ​ i​ ′​ )​ and ​θ​ i​ j​ ≤ ​θ​ i​ ′​ j.

One can show that if the solution to the relaxed problem (9), ​(ρ, η, t)​, is mono-
tonic and all the downward adjacent constraints bind, then ​(ρ, η, t)​ also satisfies all 
the other incentive constraints in the full problem (6). Moreover, one can show that 
the downward adjacent incentive constraints in (9) will indeed bind if ​(ρ, η, t)​ is 
monotonic and is not ex post efficient.16 Thus, we have:

Proposition 1: Let ​(ρ, η, t)​ be an optimal solution to (9). If ​(ρ, η, t)​ is monotonic 
and is not ex post efficient, then ​(ρ, η, t)​ is also an optimal solution to the full prob-
lem (6).

Now we provide a useful sufficient condition under which the solution to the 
relaxed problem (9) is indeed monotonic in the sense of Definition 1:

Proposition 2: Let ​(ρ, η, t)​ be a solution to the relaxed problem (9), then ​(ρ, η, t)​ 
is monotonic if (1/(M − m)) ​∑ j=m+1​ 

M
  ​ ​β​j​​/​β​m​ is strictly decreasing in m on ​{0, … , M − 1}​.

The sufficient condition identified in Proposition 2 is almost, but not quite, a 
hazard rate condition, as the term 1/(M − m) makes the condition different from 
a simple hazard rate condition. To understand the “almost hazard rate condition,” 
recall that the optimal inclusion rules for the relaxed problem (9), as character-
ized in Lemma 4, have the property that, for any agent with m high valuations, she 
either gets access to all goods or only her high-valuation goods. Allowing access 
to all goods is preferred in terms of social surplus, but may reduce the revenue. 
Specifically, with probability ​β​m​ , an agent has exactly m high valuations, and 
such an agent is willing to pay an extra ​(M − m)​l for access to her low-valuation 
goods. On the other hand, with probability ​∑ j=m+1​ 

M
  ​ ​β​j​​ , an agent’s number of high-

valuation goods exceeds m, and from such an agent the revenue is reduced by
(h − l  ). The “almost hazard rate condition” identified in Proposition 2 insures that 
(​∑ j=m+1​ 

M
  ​ ​β​j​​/​β​m​(M − m))​(h − l)​/l decreases in m. This implies that if it is optimal 

to give agents with m high valuations access to their low-valuation goods, then it 
must also be optimal to give agents with more than m high valuations access to their 
low-valuation goods. That is, the condition makes sure that the optimal mechanism 
is monotonic.

In general, (1/(M − m))(​∑ j=m+1​ 
M

  ​ ​β​j​​/​β​m​) may be non-monotonic, because
​β​m​​(M − m)​ may locally decrease faster than ​∑ j=m+1​ M

  ​ ​β​j​​. However, the important 
special case where valuations are independent satisfies the “almost hazard rate 

16 The detailed proofs of these results are available in the online Appendix.



14	 American Economic Journal: Microeconomics�n ovember 2010

condition,” because under independence, the tail of the distribution over m is thin so 
that ​∑ j=m+1​ 

M
  ​ ​β​j​​ decreases rapidly as m increases:

Remark: A sufficient condition for (1/(M − m))​(  ​∑ j=m+1​ 
M

  ​ ​β​j​​/​β​m​)​ to be strictly 
decreasing in m on ​{0, … , M − 1}​ is that the valuations for any goods j and j′ ≠ j 
are independent.

An immediately corollary of Proposition 2 is that the inclusion rule for low valua-
tion goods as characterized in Lemma 4 takes a sharp threshold rule if (1/(M − m))
(​∑ j=m+1​ 

M
  ​ ​β​j​​/​β​m​) is strictly decreasing in m :

Corollary 1: Let ​(ρ, η, t )​ be a solution to (9). Suppose that (1/(M − m))
​(​∑ j=m+1​ 

M
  ​ ​β​j​​/​β​m​)​ is strictly decreasing in m on ​{0, … , M − 1}​. Then, there exists 

some ​̃  m​ such that:

	 1)	 ​η​ i​ j​ ​(​θ​i​ )​  =  η ​(m)​  =  0 for every ​θ​i​ with ​θ​ i​ j​  =  l if m ​(​θ​i​)​  < ​  ˜   m​;

	 2)	 ​η​ i​ j​​(​θ​i​)​  =  η​(m)​  =  1 for every ​θ​i​ with ​θ​ i​ j​  =  l if m​(​θ​i​)​  > ​  ˜   m​.

F. The Main Result

Now, we provide our main asymptotic result regarding the limit of the sequences 
of exact optimal solutions to (9) as the number of agents n goes to infinity.

Because our asymptotic characterization is a limit of exact solutions to the finite 
problem, it is a valid approximation of the solution for a large, yet finite, economy. 
This is one of the key advantages of our approach over the approach of directly con-
sidering a mechanism design problem with a continuum of agents. Another prob-
lematic issue related to mechanism design with a continuum of agents is that one is 
forced to assume that aggregate variables are independent of individual announce-
ments; as a result, incentive constraints are much harder, if possible at all, to formu-
late under the continuum approach.17

Considering the asymptotic result as the number of the agents goes to infinity 
allows us to obtain a more easily interpretable characterization of the solutions when 
n is large. Note that our earlier characterizations of the optimal inclusion and pro-
vision rules for the finite case are still contingent on the multiplier on the resource 
constraint; the limiting characterization is easier to understand because it can be 
described without any reference to any endogenous multiplier. Conditions for the 
limiting case simplify for two reasons. First, terms such as ​H​  j ​​(θ, m)​/n and ​L​ j​​(θ, m)​/n
used in Lemma 5 to describe the optimal provision rule converge to their expecta-
tions by the Law of Large Number. The consequence is that provision probabilities 
for unusual realizations of θ can be largely ignored. Secondly, in a large economy, 
a version of the “Paradox of Voting” applies to the provision rules: an individual 
agent must have a negligible impact on provision decisions when n is large. This 

17 For example, a Groves-Clarke mechanism cannot even be formulated, despite the fact that such a mechanism 
is applicable and generates an efficient outcome for any finite economy.
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simplifies the analysis tremendously as the provision rule becomes almost constant 
in the relevant range when n is large enough.

Henceforth mechanisms are indexed by the number of agents n when needed. 
Using the central limit theorem one can establish that:

Lemma 6: For each n, let ​(​ρ​n​, ​η​n​, ​t​n​)​ be a solution to problem (9). Then, E [ ​ρ​ n​ j
 ​​(θ)​|​θ​ i​ ′​ ]

− E [ ​ρ​ n​ j
 ​​(θ)​|​θ​ i​ ′′​ ] → 0 as n → ∞ for any j and any pair ​θ​ i​ ′​ , ​θ​ i​ ′′​ ∈ Θ.

Lemma 6 immediately implies that E ​[ ​ρ​ n​ j
 ​ ​(θ)​|​θ​ i​ ′​ ]​ − E ​[ ​ρ​ n​ j

 ​ ​(θ)​]​ → 0. Hence, all 
conditional probabilities appearing in the incentive constraints may be approxi-
mated by the ex ante probability of provision, a fact used extensively in the proof of 
Proposition 3.

Our main result below is about the provision probabilities and inclusion rules in 
the limit as n goes to infinity:

Proposition 3: Suppose that (1/(M − m))​(​∑ j=m+1​ 
M

  ​ ​β​j​​/​β​m​)​ is strictly decreasing 
on ​{0, … , M − 1}​, and let R ​(m)​ be the revenue from the inclusion and pricing rules 
as defined in (19). Let ​(​ρ​n​, ​η​n​, ​t​n​)​ be a solution to the full problem (6) when there are 
n agents in the economy. Then,

	 1)	 (Asymptotic Provision Probabilities)

		  a)  If ma​x​ m​   ​  R ​(m)​ − cM < 0, then ​lim​ n→∞​ E​ρ​ n​ j
 ​​(θ)​ = 0 for all j ∈ ; 18

		  b)  If ma​x​ m​   ​  R ​(m)​ − cM > 0, then ​lim​ n→∞​ E​ρ​ n​ j
 ​​(θ)​ = 1 for all j ∈ .

	 2)	 (Asymptotic Inclusion Rules Conditional on Provision)

		  If ma​x​ m​   ​ R​(m)​ − cM > 0, and ​m​*​ be the smallest m such that R​(m)​ − cM > 0, 
then there exists N < ∞ such that if n ≥ N,

		  a)  for all type ​θ​i​ with m​(​θ​i​)​ ≥ ​m​*​,​ η​ n​ j
 ​​(​θ​i​)​ = 1 for all j ∈ ;

		  b) � for all type ​θ​i​ with m​(​θ​i​)​ = ​m​*​ − 1, ​η​ n​ j
 ​​(​θ​i​)​ = 1 for all j such that ​θ​ i​ j​ = h, 

and

	 ​η​ n​ j
 ​​(​θ​i​)​  → ​ 

R​(​m​*​)​  −  cM
  __  

R​(​m​*​)​  −  R​(​m​*​  −  1)​
 ​

		  for all j such that ​θ​ i​ j​ = l;

		  c)  for all type ​θ​i​ with m​(​θ​i​)​ ≤ ​m​*​ − 2, ​η​ n​ j
 ​​(​θ​i​)​ = 1 for all j such that ​θ​ i​ j​ = h 

and ​η​ n​ j
 ​ ​(​θ​i​)​ = 0 for all j such that ​θ​ i​ j​ = l.

18 More precisely, for this case ​lim​ n→∞​ E​ρ​ n​ j
 ​​(θ)​ = 0 for all j ∈  holds for any sequence of feasible solutions to 

the full problem (6).
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The proof of Proposition 3 requires quite a bit of technical work. Yet, the key 
idea is rather simple. Provided that the “almost hazard rate condition” is satisfied, 
Corollary 1 ensures that the optimal inclusion rules have a threshold characteriza-
tion. The condition on whether ma​x​ m​   ​  R​(m)​ − cM is positive or negative is therefore 
a condition on whether it is at all possible to generate sufficient revenues to cover 
the costs if all the public goods are provided with certainty. Most work in the proof 
for Part 1 goes into establishing that a large economy is approximately an economy 
where the provision decisions are made ex ante, not conditioning on θ. The intuition 
is that when agents have a small influence on provisions, the welfare loss from mak-
ing the provision decision ex ante is negligible.

Part 2 in Proposition 3 provides a simple limiting characterization of the opti-
mal inclusion rule. As we already know from the finite case, all agents get access 
to their high-valuation goods. Whether an agent gets access to her low-valuation 
goods, however, depends on whether she has at least ​m​*​ high-valuation goods in 
her reported profile, where ​m​*​ is determined as the smallest threshold for which the 
provider can make a positive profit if providing the good for sure. The reason for the 
mixing for types with ​m​*​ − 1 valuations is that if access is granted only to those with ​
m​*​ high valuations and above, there will be a strict budget surplus when n is large. 
There is therefore room to give partial access to low-valuation goods to types with ​
m​*​ − 1 high valuations, which increases social surplus.

III.  Some Special Cases

In this section, we describe some special cases. We first consider the case with 
a single good. We then study the case with two goods, where we are able to pro-
vide a complete characterization also when the “almost hazard rate” condition in 
Proposition 3 is violated. We finally summarize our results in relation to the existing 
literature in Table 1.

A. A Single Public Good

Let α be the probability that an agent has a high valuation for the public good.19 
With only a single good, the “almost hazard condition” in Proposition 3 is trivially 
satisfied, thus Proposition 3 is always applicable. Note from the definition of R​(m)​ 
in (19), we have:

	 R​(m)​  = ​ {     l     if m  =  0   
αh    if m  =  1

 
​
​.

Hence, Proposition 3 says that ​lim​ n→∞​ E​ρ​n​​(θ)​ = 0 if max ​{αh, l }​ − c < 0; and ​
lim​ n→∞​ E​ρ​n​​(θ)​ = 1 if max ​{αh, l }​ − c > 0.

19 Note that when M = 1, α = ​β​1​ in our earlier notation. We introduce the new notation α so that our discussion 
for the one good case can be exactly mapped to the case of separation provision of multiple public goods we will 
discuss below.
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The case with l ≥ c is trivial: if the low valuation exceeds the cost of provision, 
it is first best efficient to always provide and never exclude any consumers from 
access, which can be implemented by a uniform user fee of c.

When l < c < αh, we know from Proposition 3 that, as n → ∞, the probability 
for access for type l goods converges to

(22)	​ 
R​(1)​  −  c

 _  
R​(1)​  −  R​(0)​

 ​  = ​  αh  −  c _ αh  −  l
 ​  ∈ ​ (0, 1)​.

Moreover, ​G​1​​(Φ)​ as defined in (17) is equal to zero, thus the provision rule charac-
terized in (21) simplifies to

0 if ​H​  j ​​(θ, 1)​h  −  cn  <  0

(23) ​ρ​ j​​(θ)​  =  { z ∈ ​[0, 1]​
 

if ​H​  j​​(θ, 1)​h  −  cn  =  0 ,

1 if ​H ​j​​(θ, 1)​h  −  cn  >  0

which, interestingly, is exactly the same provision rule that would be chosen by a 
profit-maximizing monopolist. Of course, a profit-maximizing monopolist will not 
sell access to low valuation agents. Thus for the one good case, the welfare loss 
from a for-profit monopolist relative to the constrained social optimum is only due 
to over-exclusion, not due to under-provision, even for finite n. With more than one 
good, there is typically also under-provision by a for-profit monopolistic provider 
when n is finite.

Separate Provisions of Many Excludable Public Goods.—If there are M > 1 
excludable public goods, but if the social planner is restricted to consider the provi-
sion of each of the public goods separately, then the optimal separate provision and 
exclusion rules for each public good is identical to the single good case described 
above, with α = ​∑ m=1​ 

M
  ​ (​m/M)​β​m​ being the (marginal) probability that an agent has 

a high valuation for any particular good.20

It is also clear that the results for the one-good case applies to the case with mul-
tiple goods when valuations for different goods are perfectly correlated.

B. Two Excludable Public Goods

Here we describe the results for the two-good case.21 For the two-good case, we 
can also characterize the optimal mechanism when the “almost hazard rate” regular-
ity condition is violated. Most of the existing literature on multiple product mecha-
nism design focused on the two-goods case, e.g., Armstrong (1996) and Armstrong 

20 Of course, this statement is true only under our maintained assumption that there are no complementarities 
in preferences and production costs.

21 In an earlier working paper, Fang and Norman (2006a), we exclusively focused on the two-good case.
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and Rochet (1999). It turns out that when there are only two goods, the “almost 
hazard rate” regularity condition is reduced to a “not too positively correlated” con-
dition (e.g., Armstrong and Rochet 1999).

When the “Almost Hazard Rate” Condition is Satisfied.—It is easily verified that, 
with two goods, (1/(M − m))​(​∑ j=m+1​ 

M
  ​ ​β​j​​/​β​m​)​ is strictly decreasing in m on ​{0, 1}​ if 

and only if

(24)	 ​ ​β​1​ _ 
2
 ​  > ​ 

​β​0​ ​β​2​ _ 
1  − ​ β​0​

 ​,

which can be interpreted as saying that the valuation of the two public goods are 
“not too positively correlated.” Furthermore, it can be verified that

2l for m  =  0
R​(m)​  =  { ​(​β​1​  + ​ β​2​)​​(h  +  l )​  for m  =  1

2αh for m  =  2,

where α = ​(β​1​/2) + ​β​2​ is the marginal probability that an agent has a high valua-
tion for any good. Ruling out the trivial case of l ≥ c, we see from Proposition 3 that 
there are three possibilities:

  •  If max ​{​(​β​1​ + ​β​2​)​​(h + l )​, 2αh}​ < 2c, then ​lim​ n→∞​ E​ρ​ n​ j
 ​​(θ)​ = 0 for j ∈ ​{1, 2}​;

  • � If ​(​β​1​ + ​β​2​)​​(h + l )​ > 2c, then ​lim​ n→∞​ E​ρ​ n​ j
 ​​(θ)​ = 1 for j ∈ ​{1, 2}​; all agents with 

at least one high valuation good get access to both goods, and those with two 
low valuations get access to each good with probability

	​ 
R​(1)​  −  2c

 _  
R​(1)​  −  R​(0)​

 ​  = ​ 
​(​β​1​  + ​ β​2​)​​(h  +  l )​  −  2c

   __   ​(​β​1​  + ​ β​2​)​​(h  +  l )​  −  2l
 ​  ∈ ​ (0, 1)​;

  • � If 2αh > 2c > ​(​β​1​ + ​β​2​)​​(h + l)​, then ​lim​ n→∞​ E​ρ​ n​ j
 ​​(θ)​ = 1 for j ∈ ​{1, 2}​; all 

agents get access to their high valuation goods, and those with two low valua-
tions do not get any access at all, but those with one high valuation get access 
to their low valuation good with probability

(25)	​ 
R​(2)​  −  2c

 _  
R​(2)​  −  R​(1)​

 ​  = ​   2αh  −  2c  __   
2αh  − ​ (​β​1​  + ​ β​2​)​​(h  +  l )​

 ​  ∈ ​ (0, 1)​.

It is worth emphasizing that in the optimal joint provision mechanism, 
both goods are provided with probability one asymptotically given that max ​
{​(​β​1​ + ​β​2​)​​(h + l )​, 2αh}​ > 2c. In contrast, in the best separate provision mechanism 
characterized in Section IIIA, the good is provided asymptotically only if αh > c. 
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There is a nonempty parameter region such that ​(​β​1​ + ​β​2​)​​(h + l )​ > 2c > 2αh where 
we get asymptotic non-provision if goods are provided separately, but the optimal 
bundling mechanism provides both goods for sure.

The increased provision probability for efficient public goods under a bun-
dling mechanism relative to the separate provision mechanism is only one channel 
through which bundling may increase efficiency. Additionally, the optimal bundling 
mechanism creates welfare gains by increasing the probability of inclusion for low-
valuation agents, an effect that is present also if the goods can be provided without 
bundling. To see this, suppose that αh > c so that both public goods are asymp-
totically provided with probability one with or without bundling. From (22), we 
know that under the best separate provision mechanism, the probability for access 
to a low-valuation agent is ​(αh − c)​/​(αh − l )​. In contrast, (25) implies that the 
ex ante probability for access conditional on a low valuation for the case where  
2c > ​(​β​1​ + ​β​2​)​​(h + l )​ is

(26)	​ 
​β​1​/2
 _  

​β​0​  + ​ β​1​/2
 ​  × ​   2αh  −  2c  __   

 2αh  − ​ (​β​1​ + ​β​2​)​​(h + l )​
 ​.

	 3	 8
	 prob of mixed type	 access prob to the low-valuation
	 given a low valuation	 good for mixed type from (25)

Some algebra shows that (26) is larger than (αh − c)/​(αh − l )​ whenever ​β​1​/2 > ​
(​β​0​​ β​2​)​/​(1 − ​β​0​)​, which is precisely the condition under which Proposition 3 is 
applicable. Fewer consumers are thus excluded in the optimal bundling mechanism. 
A similar calculation applies to the case with ​(​β​1​ + ​β​2​)​​(h + l)​ > 2c.

When the “Almost Hazard Rate” Condition is Violated.—The two-good case also 
provides a useful setup for investigating the optimal mechanism when the regular-
ity condition on (1/(M − m))​(​∑ j=m+1​ 

M
  ​ ​β​j​​/​β​ m​)​ fails. As shown in (24) this reduces to

the condition that ​β​ 1​/2 ≤ ​β​ 0​​ β​ 2​/1 − ​β​ 0​, which may be interpreted as saying that 
the valuations are (sufficiently strongly) positively correlated. In the Appendix, we 
prove that the asymptotic characterization for this case is:

Proposition 4: Assume that ​β​1​/2 ≤ ​β​ 0 ​​β​ 2​/(1 − ​β​ 0​) and l < c. Then:

	 1)	 ​lim​ n→∞​ E​ρ​ n​ j
 ​​(θ)​ = 0 for every j if αh < c for any sequence ​{​ρ​n​, ​η​n​, ​t​n​}​ of fea-

sible mechanisms.

	 2)	 ​lim​ n→∞​ E​ρ​ n​ j
 ​​(θ)​ = 1 for every j if αh > c for any sequence ​{​ρ​n​, ​η​n​, ​t​n​}​ of opti-

mal mechanisms. Moreover, all consumers get access to the high valuation 
goods and

	 ​η​ n​ j
 ​​(​θ​i​)​  → ​  αh  −  c _ αh  −  l

 ​  ∈ ​ (0, 1)​

		  as n → ∞ for every ​θ​i​ with ​θ​ i​ j​ = l.
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Surprisingly, Proposition 4 shows that the solution is identical to the case when 
bundling is not allowed.22 To understand why, recall that asymptotic provision or 
non-provision is related to whether the maximal revenue for a monopolistic provider 
of the goods—if provided—exceeds the costs. The revenue maximizing selling 
strategy for a monopolist, if both public goods are provided, is either to sell goods 
separately at price h, or sell the goods as a bundle at price h + l, or to charge l for 
each good. These selling strategies generate a revenue of 2αh, ​(​β​1​ + ​β​2​)​​(h + l )​, and 
2l respectively. Since we are already assuming l < c, the question is thus whether 
max ​{​(​β​1​ + ​β​2​)​​(h + l )​, 2αh}​ exceeds 2c. For the first part of Proposition 4, if αh < c 
and l < c are both satisfied, we have that

  ​  (​β​ 1​  + ​ β​2​)​​(h  +  l)​  < ​ (​β​1​  + ​ β​2​)​​(h  +  c)​  < ​ (​β​1​  + ​ β​2​)​​(​ 1 _ α ​  +  1)​c

	 = ​ [2  + ​ 
​(1  − ​ β​0​)​​(​ 1 _ 

2
 ​​ β​1​  + ​ β​2​)​  − ​ β​2​

   ___  
​ 1 _ 
2
 ​​β​1​  + ​ β​2​

 ​ ]​c  <  2c

when (1/2)​β​1​ ≤ (​β​0​​β​2​)/(1 − ​β​0​). This calculation shows that it is impossible to pro-
vide the goods with probability 1 if αh < c, and the reason for how this translates 
into E​ρ​ n​ j

 ​​(θ)​ → 0 is the same as that in the previous analysis.
For the second part of Proposition 4, consider the case when either separate pro-

vision or bundling provides sufficient revenue to cover the cost of provision. In the 
solution characterized by Proposition 4, the asymptotic ex ante probability of get-
ting access to low valuation good j is

	 ​(​β​0​  + ​  1 _ 
2
 ​​β​1​)​​ αh  −  c _ αh  −  l

 ​.

If, instead, the mechanism which is optimal for the case with ​β​1​/2 > ​β​0​​ β​2​/(1 − ​β​ 0​) 
is used, the ex ante probability of getting access to low valuation good is

	 ​β​0​  ​ 
​(​β​1​  + ​ β​2​)​​(h  +  l )​  −  2c

   __   ​(​β​1​  + ​ β​2​)​​(h  +  l )​  −  2l
 ​.

Some algebra along the lines discussed in connection with (26) shows that the 
ex ante probability of getting access and therefore also the social surplus is actually 
smaller using the bundling mechanism in this case. Ultimately, this is driven by the 
relative scarcity of mixed type agents.

22 This is not inconsistent with the results in McAfee, McMillan and Whinston (1989) and Philippe Jehiel, 
Moritz Meyer-ter-Vehn and Benny Moldovanu (2007). They showed that for “generic” continuous valuation dis-
tributions, a monopolist seller’s revenue will be higher under mixed bundling in posted price and auction settings 
respectively. Our distributions are discrete.
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Relationship to the Existing Literature.—Table 1 summarizes our results on the 
asymptotic provision probabilities under different bundling and exclusion scenarios 
for the two-good case, and contrasts our results with those in the literature.23

IV.  Conclusion and Discussion

This paper studies the welfare maximizing provision mechanism for multiple 
excludable public goods when agents’ valuations are private information. For a 
parametric class of problems with M goods whose valuations take binary values, 
we fully characterize the optimal mechanism and demonstrate that it involves 
bundling if a regularity condition, akin to a hazard rate condition, on the distri-
bution of valuations is satisfied. Bundling improves the allocation in two ways. 
First, it may increase the asymptotic provision probability of socially efficient 
public goods from zero to one. Second, the extent of use exclusion is decreased 
under bundling. For the case of two goods, we also show that if the regularity 
condition is violated, then the optimal solution replicates the separate provision 
outcome.

By studying the optimal, instead of revenue-maximizing, mechanism for the 
provision of excludable public goods, our paper highlights the potential impor-
tance of bundling on social welfare for a variety of markets where the goods are 
nonrival but potentially excludable in use. Thus our analysis can be viewed as 
a positive theory of bundling in these markets. It can also be viewed as a step 
toward the development of a useful normative benchmark for bundling for mar-
kets of excludable public goods, or, more generally, goods with large fixed cots. 
Our model is highly stylized, but it still has enough flexibility to generate a non-
trivial trade-off with potentially important antitrust implications. Our analysis 
shows that it is sometimes possible that bundling is required for the monopolist 

23 George Mailath and Andrew Postlewaite (1990) considered a single-dimensional problem without use exclu-
sion. However, the probabilities of provision in a multidimensional setting allowing for bundling can be bounded 
from above by a single-dimensional problem, where the valuation is the maximum of the individual good valuations.

Table 1—Asymptotic Provision Probabilities under Different Bundling and Exclusion Scenarios

Bundling\exclusion No exclusion Exclusion

No bundling E​ρ ​ n​    j*
 ​ → 0

(Mailath and 
Postlewaite 1990)

E​ρ ​ n​    j*​ → 0,  if αh < c
E​ρ ​ n​    j*​ → 1,  if αh > c

(Norman 2004)

Bundling allowed E​ρ ​ n​    j*​ → 0
(Mailath and

Postlewaite 1990)

Case 1: ​ 
​β​1​ _ 
2
 ​  > ​  ​β​0​ ​β​2​ _ 

1 − ​β​0​
 ​  

E​ρ ​ n​    j*​ → 0,  if ma​x​ m​  
 ​R​(m)​ < 2c

E​ρ ​ n​    j*​ → 1,  if ma​x​ m​  
 ​R​(m)​ > 2c

(This paper)

Case 2: ​ 
​β​1​ _ 
2
 ​  > ​  ​β​0​ ​β​2​ _ 

1 − ​β​0​
 ​ 

E​ρ ​ n​    j*​ → 0,  if αh < c
E​ρ ​ n​    j*​ → 1,  if αh > c
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provider of the public goods to break even. In such cases the profit-maximizing 
outcome with bundling is better for the consumer than the welfare maximizing out-
come without bundling; thus a requirement to “unbundle” is strictly worse for the 
consumers because the public goods would simply not be provided when bundling 
is not allowed.24

Our analysis may be relevant for the recent regulations considered by US 
Congress and the Federal Communications Commission (FCC) requiring à 
la carte pricing of cable channels. The few existing economics studies, e.g., 
Crawford (2008), Crawford and Cullen (2007), Crawford and Yurukoglu (2009) 
and Yurukoglu (2009), on the welfare effect of bundling versus à la carte pric-
ing of cable channels all assumed that the content quality of the channels is not 
affected by the price regulations. To the extent that television programming is well 
approximated as excludable public goods (due to its large fixed cost, but almost 
negligible cost of serving additional consumers), our paper cautions that forcing à 
la carte pricing might lead to the deterioration of the quality, or even elimination, 
of some channels.

Appendix

PROOF OF LEMMA 3:
Let j be some good for which ​θ​ i​ j​ = h. The optimality conditions for problem (9) 

with respect to ​η​ i​ j​​(​θ​i​)​ are

(A1)  ​  ∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ β​(θ)​​ρ​ j​​(θ)​​h  +  λ​(m)​m ​ ∑ 
​θ​−i​∈​Θ−i​  ​

​ 
 

  ​ ​β​− i​ ​(​θ​− i​ )​​ρ​ j​​(θ)​h​

	 − λ​(m  +  1)​​(M  −  m)​ ​ ∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​ ​(​θ​− i​)​​​ρ​ j​​(θ)​h  + ​ γ​ i​ j​ ​(​θ​i​)​  − ​ ϕ​ i​ j​​(​θ​i​)​  =  0;

(A2)	 ​γ​ i​ j​ ​(​θ​i​)​​η​ i​ j​ ​(​θ​i​)​  =  0 and ​ϕ​ i​ j​​(​θ​i​)​​[1  − ​ η​ i​ j​​(​θ​i​)​]​  =  0,

where ​γ​ i​ j​​(​θ​i​)​ ≥ 0 and ​ϕ​ i​ j​​(​θ​i​)​ ≥ 0 are respectively the multipliers for the constraints ​
η​ i​ j​​(​θ​i​)​ ≥ 0 and 1 − ​η​ i​ j​​(​θ​i​)​ ≥ 0. Since by assumption ​∑ ​θ​−i​∈​Θ​−i​

​ 
 
  ​ ​β​− i​ ​(​θ​− i​)​​ρ​ j​​(​θ​i ​, ​θ​− i​)​​ > 0 

and since

(A3)	 ​∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ β​(θ)​​ρ​ j​​​(θ)​h  =  β​(​θ​i​)​ ​ ∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​ ​(​θ​− i​)​​ρ​ j​​​(θ)​h,

24 This line of reasoning was an important part of the motivation in the decision by the Office of Fair Trading 
(2003) in the UK on alleged anticompetitive mixed bundling by the British Sky Broadcasting Limited.
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we can simplify (A1) to

(A4)	β​(​θ​i​)​h  +  λ​(m)​mh  −  λ​(m  +  1)​​(M  −  m)​h  + ​ 
​γ​ i​ j​​(​θ​i​)​  − ​ ϕ​ i​ j​​(​θ​i​)​  __  

​∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​ ​(​θ​− i​)​​​ρ​ j​​(θ)​
 ​  =  0.

Together with the complementary slackness conditions (A2), (A4) implies that

1 if β​(​θ​i​)​  +  λ​(m)​m  −  λ​(m  +  1)​​(M  −  m)​  >  0

​η​ i​ j​​(​θ​i​)​  =  { x  ∈ ​ [0, 1]​  if β​(​θ​i​)​  +  λ​(m)​m  −  λ​(m  +  1)​​(M  −  m)​  =  0

0 if β​(​θ​i​)​  +  λ​(m)​m  −  λ​(m  +  1)​​(M  −  m)​  <  0.

However, (14) implies that

	 β​(​θ​i​)​  +  λ​(m)​m  −  λ​(m  +  1)​​(M  −  m)​  = ​ (1  +  Λ)​β​(​θ​i​)​  >  0.

Hence, ​η​ i​ j​​(​θ​i​)​ = 1 for all ​θ​i​ ∈ Θ such that ​θ​ i​ j​ = h.

PROOF OF LEMMA 4: 
Consider ​θ​i​ ∈ Θ with m​(​θ​i​)​ = m and let j be some good for which ​θ​ i​ j​ = l. The 

optimality conditions for problem (9) with respect to ​η​ i​ j​​(​θ​i​)​ are

(A5)	 ​∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ β​(θ)​​ρ​ j​​(θ)​​l  +  λ​(m)​m ​ ∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​(​θ​− i​)​​ρ​ j​​​(θ)​l

− λ​(m  +  1)​ ​ ∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​ ​(​θ​− i​)​​ρ​ j​​(θ)​​[​(M  −  m  −  1)​l  +  h]​​  + ​γ​ i​ j​​(​θ​i​)​  − ​ ϕ​ i​ j​​(​θ​i​)​  =  0;

(A6)	 ​γ​ i​ j​​(​θ​i​)​​η​ i​ j​​(​θ​i​)​  =  0 and ​ϕ​ i​ j​​(​θ​i​)​​(1  − ​ η​ i​ j​​(​θ​i​)​)​  =  0,

where ​γ​ i​ j​​(​θ​i​)​ ≥ 0 and ​ϕ​ i​ j​​(​θ​i​)​ ≥ 0 are the multipliers for the constraints ​η​ i​ j​​(​θ​i​)​ ≥ 0 
and 1 − ​η​ i​ j​​(​θ​i​)​ ≥ 0, respectively. Using (A3) as in the proof of Lemma 3, we may 
rearrange (A5) as

(A7)	 β​(​θ​i​)​l  +  λ​(m)​ml  −  λ​(m  +  1)​​[​(M  −  m  −  1)​l  +  h ]​ 

	 + ​ 
​γ​ i​ j​​(​θ​i​)​  − ​ ϕ​ i​ j​​(​θ​i​)​  __  

​∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​(​θ​− i​)​​​ρ​ j​​(θ)​
 ​  =  0.
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Note that

(A8) β​(​θ​i​)​l  +  λ​(m)​ml  −  λ​(m  +  1)​​[​(M  −  m  −  1)​l  +  h]​

	 =  β​(​θ​i​)​l​(1  +  Λ)​  −  λ​(m  +  1)​​(h  −  l)​

	 =  β​(​θ​i​)​l​(1  +  Λ)​  − ​ (h  −  l )​ ​ 
m!​(M  − ​ (m  +  1)​)​!  __  

M! ​  Λ ​ ∑ 
j=m+1

​ 
M

  ​ ​β​j​​

	 = ​ 
m!​(M  − ​ (m  +  1)​)​!  __  

M! ​ ​ [​β​m​(M  −  m)l​(1  +  Λ)​  − ​ (h  −  l )​Λ ​ ∑ 
j=m+1

​ 
M

  ​ ​β​j​​]​

	 = ​ 
m!​(M  − ​ (m  +  1)​)​!  __  

M! ​ ​ (1  +  Λ)​​G​m​​(Φ)​

for Φ = Λ/(1 + Λ), where the first equality uses (14), the second uses Lemma 2 
and the third uses the formula (12) for ​β​m​. Substituting (A8) into (A7) and using the 
complementary slackness conditions in (A6), we immediately have (18), as asserted 
in the lemma.

PROOF OF LEMMA 5: 
Using the notation ​H​ j​​(θ, m)​ and ​L​ j​​(θ, m)​ introduced in Section IID, we can write 

the optimality conditions for problem (9) with respect to ​ρ​ j​​(θ)​ as

(A9)  β​(θ)​ [ ​∑ 
j=1

​ 
n

 ​ ​η​ i​ j​​(​θ​i​)​​​θ​ i​ j​  −  cn]
	 + ​ ∑ 

m=0
​ 

M

  ​ λ​(m)​​m [​H​ j​​(θ,m)​​β​− i​​(​θ​− i​)​h  +   ​L​ j​​(θ, m)​​β​− i​ ​(​θ​− i​)​η​(m)​l ] 

	 −   ​∑ 
m=0

​ 
M−1

​ λ​(m  +  1)​​ {​H​ j​​(θ, m)​​β​− i​ ​(​θ​− i​)​​(M  −  m)​h

	 + ​ L​ j​​(θ, m)​​β​− i​​(​θ​− i​)​η​(m)​​[​(M  −  m)​l  + ​ (h  −  l)​]​}

	 −  Λβ​(θ)​cn  + ​ γ​ j​​(θ)​  − ​ ϕ​ j​​(θ)​  =  0,

together with the complementary slackness conditions, where η​(m)​ denotes the 
probability that an agent with m high valuation goods gets access to her low valua-
tion goods valuations (as characterized in Lemma 4), ​γ​ j​​(θ)​ ≥ 0 and ​ϕ​ j​​(θ)​ ≥ 0 are 
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the multipliers associated with the boundary conditions for ​ρ​ j​​(θ)​ ∈ ​[0, 1]​. 25 Using 
(A3) and the fact that

	 ​∑ 
i=1

​ 
n

 ​ ​η​ i​ j​​(​θ​i​)​​​θ​ i​ j​  = ​ ∑ 
m=0

​ 
M

  ​ ​H​ j​​(θ, m)​​h  + ​ ∑ 
m=0

​ 
M

  ​ ​L​ j​​(θ, m)​​η ​(m)​l,

we can rewrite (A9), after collecting terms, as

	  ​∑ 
m=0

​ 
M

  ​ ​H​ j​​(θ, m)​​{h  + ​   h _ β​(​θ​i​)​
 ​ ​[λ​(m)​m  −  λ​(m  +  1)​​(M  −  m)​]​}​​ 

	 +  	​∑ 
m=0

​ 
M

  ​ ​L​ j​​(θ, m)​​{η​(m)​l + ​ 
η​(m)​

 _ β​(​θ​i​)​
 ​ {λ​(m)​ml − λ​(m  +  1)​​[​(M − m)​l  + ​ (h − l)​]​}}​​

	 −   ​(1  +  Λ)​cn  + ​ 
​γ​ j​​(θ)​  − ​ ϕ​ j​​(θ)​  __ β​(θ)​ ​   = 0,

which we can further simplify, after using (14), to

(A10)    ​∑ 
m=0

​ 
M

  ​ ​H​ j​​(θ, m)​​(1  +  Λ)​h ​ + ​ ∑ 
m=0

​ 
M

  ​ ​L​ j​​(θ, m)​​  ​{η​(m)​l  +  η​(m)​​[Λl  − ​ 
λ​(m  +  1)​

 _ 
β​(​θ​i​)​

 ​ ​ (h  −  l)​]​}​

	 −   ​(1  +  Λ)​cn  + ​ 
​γ​ j​​(θ)​  − ​ ϕ​ j​​(θ)​

  __ 
β​(θ)​

 ​   =  0.

From (13) and (12), we have

(A11)	 ​ 
λ​(m  +  1)​

 _ β​(​θ​i​)​
 ​   = ​   1 _  ​β​m​ ​(M  −  m)​

 ​ Λ ​ ∑ 
j=m+1

​ 
M

  ​ ​β​j​​ .

Hence,

η​(m)​l  +  η​(m)​​[Λl  − ​ 
λ​(m  +  1)​

 _ β​(​θ​i​)​
 ​ ​ (h  −  l )​]​ 

	 =  η​(m)​l  +  η​(m)​​[Λ l  − ​   1 _  ​β​m​​(M  −  m)​
 ​Λ  ​∑ 

j=m+1
​ 

M

  ​ ​β​j​​(h  −  l )​​]​
	 = ​ 

​(1  +  Λ)​η​(m)​
  __  ​β​m ​​(M  −  m)​
 ​  {​(1 − Φ)​​β​m​​(M − m)​l

	 +  Φ[​β​m​​(M − m)​l −  ​ ∑ 
j=m+1

​ 
M

  ​ ​β​j​ ​(h − l )​]}​
	 = ​ 

​(1  +  Λ)​ _  ​β​m​​(M  −  m)​
 ​ max {(0, ​G​m​​(Φ)​}.

25 The notation is somewhat unsatisfactory in that ​β​− i​​(​θ​− i​)​ would be more appropriately denoted by ​β​− i​​(θ | ​θ​i​)​ 
where ​θ​i​ would describe a type that would enter in the particular term (and therefore change with each term).
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Substituting this into (A10) gives us

​(1  +  Λ)​[ ​∑ 
m=0

​ 
M

  ​ ​H​ j​​(θ, m)​​h  + ​ ∑ 
m=0

​ 
M

  ​ ​L​j​​(θ, m)​​  ​{ ​  1 _  ​β​m​​(M  −  m)​
 ​ max ​{ 0, ​G​m​​(Φ)​}​}​  −  cn]

	 + ​ 
​γ​ j​​(θ)​  − ​ ϕ​ j​​(θ)​  __ β​(θ)​ ​   =  0,

which, together with the complementary slackness conditions, gives the desired 
result.

PROOF OF PROPOSITION 2: 
First note that (18) is irrelevant when m = M. Moreover, it is immediate from (21) 

that the probability of provision given ​(h, ​θ​− i​)​ is always weakly higher than under ​
(​θ​i​ , ​θ​− i​)​ for any ​θ​− i​ ∈ ​Θ​− i​. Finally, from (18) and (21), we know that a sufficient 
condition for monotonicity is that (1/​β​m​​(M − m)​)max ​{ 0, ​G​m​​(Φ)​}​ increases
in m on ​{0, … , M − 1}​, which follows if (​(h − l  )​/​β​m​​(M − m)​)​∑ j=m+1​ 

M
  ​ ​β​j​​

strictly decreases in m since

(A12)	​ 
​G​m​​(Φ)​ _  ​β​m​​(M  −  m)​

 ​  =  l  −  Φ​[​  ​(h  −  l)​
 __  ​β​m​​(M  −  m)​ 

 ​​∑ 
j=m+1

​ 
M

  ​ ​β​j​​]​.
PROOF OF PROPOSITION 3: 

[Part 1(a)] Suppose, for a contradiction, that there is a subsequence of feasible 
mechanisms with li​m​ n→∞ ​     ​ E ​[​ρ​ n​ j

 ​​(θ)​]​ = ​ρ​*​ and ​lim​ n→∞​​ η​n​ ​(​ ˜   m​)​= ​η​*​, where ​ ˜   m​ is the 
threshold number of high valuation goods in the sense of Lemma 1, which without 
loss of generality is taken to be constant along the sequence by the choice of a con-
verging subsequence. We introduce the following notations:

	 •	 E ​[​ρ​ n​ j
 ​​(θ)​|m, ​θ​ i​ j​ = h ]​ denotes the conditional provision probability for good j 

perceived by agent i given that ​θ​ i​ j​ = h and ​θ​ i​ k​ = h with k ∈  for exactly m 
goods (including j ).

	 •	 E ​[ ​ρ​ n​ k
 ​​(θ)​| m, ​θ​ i​ k​ = l ]​ denotes the conditional provision probability for good j 

perceived by agent i given that ​θ​ i​ k​ = l and ​θ​ i​ j​ = h with j ∈  for exactly m 
goods.

Notice that, by Proposition 1 of Fang and Norman (2006a), neither of the con-
ditional probabilities above depends on j ; moreover, Propositions 1 and 2 in Fang 
and Norman (2006a) jointly imply that for every m ∈ ​{0, … , M }​, there exists some
​t​n​​(m)​ such that the transfer ​t​n​​(m)​ is paid by every agent i with m high valuations. The 
utility from truth-telling for an agent with m high-valuation goods is

mhE​[​ρ​ n​ j
 ​​(θ)​ | m, ​θ​ i​ j​  =  h]​  − ​ t​n​​(m)​   if m  <  ​     m​

​ ˜   m​hE​[​ρ​ n​    j ​​(θ)​ | ​     m​, ​θ ​ i​ j​  =  h]​  +  (M  −  ​ ˜   m​)​η​n​(​     m​)E​[​ρ​ n​ k
 ​​(θ)​ | ​     m​, ​θ​ i​ k​  =  l ]​l  −  ​t​n​​(​ ˜   m​)​   if m  =  ​     m​

mhE​[​ρ  ​ n​ j
 ​​(θ)​|m,​θ  ​ i​ j​  =  h]​  +  (M  −  m)E​[​ρ​ n​ k

 ​​(θ)​ | m, ​θ​ i​ k​  =  l  ]​l  −  ​t​n​​(m)​   if m  >  ​ ˜   m​.
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Hence, the participation constraints for type-​θ​i​ agents with m​(​θ​i​)​ = m < ​ ˜   m​ high 
valuations imply that26

(A13)	​ t​n​​(m)​  ≤  mhE ​[​ρ​ n​ j
 ​​(θ)​|m, ​θ​ i​ j​  =  h]​ if m​(​θ​i​)​  =  m  < ​  ˜   m​.

Similarly, the participation constraint for agents with high valuations implies that

(A14)	​ t​n​​(​ ˜   m​)​  ≤ ​  ˜   m​hE ​[ ​ρ​ n​ j
 ​​(θ)​ | ​     m​, ​θ​ i​ j​  =  h ]​ 

	 +  (M  − ​  ˜   m​)​η​n​(​     m​)E ​[​ρ​ n​ k
 ​​(θ)​| ​     m​, ​θ​ i​ k​  =  l]​l    if m​(​θ​i​)​  = ​  ˜   m​.

The downward adjacent incentive constraint for an agent with type ​θ​i​ with m​(​θ​i​)​ = ​ ˜   m​
+ 1 against misreporting as type ​​   

 
 θ​​i​ (which differs from ​θ​i​ only in that one of the high 

valuations in ​θ​i​ is reported as low valuation) requires that

	 (​     m​  +  1)hE ​[​ρ​ n​ j
 ​​(θ)​ | ​     m​  +  1, ​θ​ i​ j​  =  h ]​ 

	 + ​ [M  − ​ (​ ˜   m​  +  1)​]​E ​[​ ρ​ n​ k
 ​​(θ)​ | ​     m​  +  1, ​θ​ i​ k​  =  l]​l  − ​ t​n​​(​ ˜   m​  +  1)​

≥ ​  ˜   m​hE​[​ρ​ n​ j
 ​​(θ)​ | ​     m​,  ​​   

 
 θ​​ i​ 
j
​  =  h]​  + ​ η​n​​(​ ˜   m​)​E ​[ ​ρ​ n​ k

 ​​(θ)​ | ​     m​, ​​   
 
 θ​​ i​ 
k
​  =  l ]​ 

	 × ​ {​[M  −  (​     m​  +  1)]​l  +  h}​  − ​ t​n​​(​ ˜   m​)​

≥ ​ η​n​​(​ ˜   m​)​E ​[​ρ​ n​ j
 ​​(θ)​ | ​     m​, ​θ​ i​ k​  =  l ]​​(h  −  l)​,

where the first inequality is required by the downward adjacent incentive constraint, 
and the second inequality follows from (A14). Thus,

(A15)	​ t​n​​(​ ˜   m​ + 1)​  ≤  (​     m​  +  1)hE ​[​ρ​ n​ j
 ​​(θ)​ | ​     m​  +  1, ​θ​ i​ j​  =  h]​

	 +   (M  − ​      m​  −  1)E ​[​ρ​ n​ k
 ​​(θ)​ | ​     m​  +  1, ​θ​ i​ k​  =  l ]​l

	 − ​ η​n​ (​ ˜   m​) E ​[​ρ​ n​ k
 ​​(θ)​ | ​     m​, ​θ​ i​ k​  =  l ]​​(h  −  l )​.

26 Strictly speaking, we only impose the participation constraint on type-l. However, as we mentioned in the 
text, the downward adjacent incentive constraints together with the participation constraint for type-l imply that all 
participation constraints hold.
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Finally, for every type ​θ​i​ with m​(​θ​i​)​ = m > ​     m​ + 1, the incentive constraint that
type ​θ​i​ will not find it profitable to misreport as type ​​   

 
 θ​​i​ with m​(​​   

 
 θ​​i​)​ = ​ ˜   m​ + 1 implies 

that

	 mhE ​[​ρ​ n​ j
 ​​(θ)​|m, ​θ​ i​ j​  =  h]​  + ​ (M  −  m)​ E ​[​ρ​ n​ k

 ​​(θ)​|m, ​θ​ i​ k​  =  l ]​l  − ​ t​n​​(m)​

  ≥  (​     m​  +  1)hE ​[ ​ρ​ n​ j
 ​​(θ)​| ​     m​  +  1, ​​   

 
 θ​​ i​ 
j
​  =  h]​  +  E ​[ ​ρ​ n​ k

 ​​(θ)​ | ​     m​  +  1, ​​   
 
 θ​​ i​ 
k
​  =  l ]​

	 × ​ [​(M  −  m)​l  + ​ (m  − ​      m​  −  1)​h]​  − ​ t​n​​(​ ˜   m​  +  1)​

  ≥  E ​[​ρ​ n​ j
 ​​(θ)​ | ​     m​  +  1, ​θ​ i​ j​  =  l ]​​[​(m  − ​      m​  − 1)​​(h  −  l)​]​

	 + ​ η​n​(​     m​)E ​[​ ρ​ n​ j
 ​​(θ)​| ​     m​, ​θ​ i​ k​  =  l ]​​(h  −  l )​,

where the last inequality follows from (A15). Hence, for all m > ​ ˜   m​ + 1,

(A16) ​ t​n​​(m)​  ≤  mhE ​[ ​ρ​ n​ j
 ​​(θ)​|m, ​θ​ i​ j​  =  h]​  +  (M  −  m)E ​[​ρ​ n​ j

 ​​(θ)​|m, ​θ​ i​ k​  =  l ]​l

	 − E ​[ ​ρ​ n​ k
 ​​(θ)​ | ​     m​  +  1, ​θ​ i​ k​  =  l ]​​(m  − ​  ˜   m​  − 1)​​(h  −  l )​

	 −  ​η​n​(​     m​)E ​[ ​ρ​ n​ k
 ​​(θ)​ | ​     m​, ​θ​ i​ k​  =  l ]​​(h  −  l )​.

From the “Paradox of Voting” -like Lemma 6, we have

(A17)    ​  lim   
n→∞​E ​[ ​ρ​ n​ j

 ​​(θ)​|m, ​θ​ i​ j​  =  h]​  = ​  lim   
n→∞​E ​[ ​ρ​ n​ k

 ​​(θ)​|m, ​θ​ i​ k​  =  l ]​

	 = ​  lim   
n→∞​E ​[​ ρ​ n​ k

 ​​(θ)​|​     m​, ​θ​ i​ k​ = l ]​ = ​ lim   
n→∞​E ​[ ​ρ​ n​ j

 ​​(θ)​]​ = ​ ρ​*​.

Combining (A17) with (A13)–(A16), it follows that, for every ε > 0 there is some 
N such that when n ≥ N,

​t​n​​(m)​ ≤ { ​ρ​*​mh  +  ε if m  < ​      m​

​ρ​*​​[​ ˜   m​h  +  (M  − ​  ˜   m​)​η​*​l ]​  +  ε if m  = ​      m​

​ρ​*​​[(​     m​  +  1)h  +  (M  − ​  ˜   m​  − 1)l  − ​ η​*​​(h  −  l)​]​  +  ε if m  ≥ ​  ˜   m​  +  1.
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Now, summing over m, we find that the expected per capita transfer revenue must 
satisfy

(A18) ​ ∑ 
m=0

​ 
M

  ​ ​β​m​​ t​n​​(m)​​

	 ≤ ​ ρ​*​ ​[h​∑ 
m=0

​ 
​     m​

  ​ ​β​m​m​  + ​ (  ​ ∑ 
m=​     m​+1

​ 
M

  ​ ​β​m​​)​​{(​     m​  +  1)h  +  (M  − ​      m​  −  1)l }​]​

	 +   ​ρ​*​​η​*​​[​β​​     m​​ (M  − ​  ˜   m​)l  − ​ (  ​ ∑ 
m=​     m​+1

​ 
M

  ​ ​β​m​​)​​(h  −  l )​]​  +  ε

 	  = ​ ρ​*​​(1 − ​η​*​)​​{​(  ​ ∑ 
m=​     m​+1

​ 
M

  ​ ​β​m​​)​​[​(​ ˜   m​ + 1)​h + ​(M − ​     m​ − 1)​l ]​ + h​∑ 
m=0

​ 
​     m​

  ​ ​β​m​​ m}​

	 + ​ρ​*​​η​*​​{​( ​∑ 
m=​     m​

​ 
M

  ​ ​β​m​​)​​[​ ˜   m​h  + ​ (M  − ​  ˜   m​)​l ]​  +  h​∑ 
m=0

​ 
​     m​−1

​ ​β​m​ ​m}​  +  ε

	 = ​ ρ​*​​[​(1  − ​ η​*​)​R​(​ ˜   m​  +  1)​  + ​ η​*​R​(​ ˜   m​)​]​  +  ε.

Moreover, for any ε > 0, we can find N such that when n > N, M​∑ θ∈​Θ​ n​​ 
 
  ​ β​(θ)​​​ρ​ n​ j

 ​​(θ)​c 
≥ ​ρ​*​Mc − ε. Together with (A18), this implies that

(A19)   ​   ∑ 
i=1

​ 
n

 ​  ​∑ 
​θ​i​∈Θ

​ 
 

  ​ β​(​θ​i​)​​​​t​in​​(​θ​i​)​  − ​ ∑ 
θ∈​Θ​ n​

​ 
 

  ​ β​(θ)​​​∑ 
j=1

​ 
M

 ​ ​ρ​ n​ j
 ​​(θ)​​cn

	   =  n​∑ 
m=0

​ 
M

  ​ ​β​m​​ t​n​​(m)​​  −  M​∑ 
θ∈​Θ​ n​

​ 
 

  ​ β​(θ)​​ρ​ n​ j
 ​​​(θ)​c

	   ≤ ​ ρ​*​​[​(1  − ​ η​*​)​R​(​ ˜   m​  +  1)​  + ​ η​*​R​(​ ˜   m​)​  −  cM ]​  +  2ε.

Under the hypothesis that ma​x​ m​    ​  R​(m)​ < cM, we know that ​(1 − ​η​*​)​R​(​ ˜   m​  +  1)​ + ​
η​*​R​(​ ˜   m​)​ − cM < 0. Thus, for any ​ρ​*​ > 0, there exists ε > 0 such that the right hand 
side of (A19) is negative. Hence, the budget constraint (5) is violated for large n 
along any sequence with positive provision probability. Thus ​lim​ n→∞​ E ​[​ρ​ n​ j

 ​​(θ)​]​ = 0 
for any convergent subsequence.

[Part 1(b) and Part 2] Let ​m​*​ be the smallest m such that R​(m)​ − cM > 0. 
Consider the sequence of mechanisms ​(​​  ρ ​​n​, ​​  η ​​n​, ​​  t ​​n​ )​ where ​​  ρ ​​ n​ j

 ​​(θ)​ = 1 for every n and 
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θ, where all agents are given access to their high valuation goods and the inclusion 
rule for low valuation goods is

	 	 0	 if m  ≤ ​ m​*​  −  2

	 ​​  η ​​n​​(m)​  =  {	 ​η​*​  = ​ 
R​(​m​*​)​  −  cM

  __  
R​(​m​*​)​  −  R​(​m​*​  −  1)​

 ​	 if m  = ​ m​*​  −  1

		  1	 if m  ≥ ​ m​*​,

and where the transfer rule is

​​  t ​​n​​(m)​  = { mh if m  ≤ ​ m​*​  −  2

​(​m​*​  −  1)​h  + ​ (M  − ​ m​*​  +  1)​​η​*​l if m  = ​ m​*​  −  1

​m​*​h  +  (M  − ​ m​*​)l  − ​ η​*​​(h  −  l)​ if m  ≥ ​ m​*​.

It can be verified that under the above mechanism, truth-telling is incentive compat-
ible and individually rational. Also, the per capita expected transfer under the above 
mechanism is

(A20)	 ​∑ 
m=0

​ 
M

  ​ ​β​m​​  ​t​n​ ​​(m)​​  =  h​∑ 
m=0

​ 
​m​ *​−2

​ ​β​m​m  + ​​ β​​m​*​−1​​[​(​m​*​  −  1)​h  + ​ (M  − ​ m​*​  +  1)​​η​*​l ]​

	 + ​ ( ​ ∑ 
m=​m​ *​

​ 
M

  ​ ​β​m​​)​​[​m​*​h  +  (M  − ​ m​*​)l  − ​ η​*​​(h  −  l )​]​

	 = ​ (1  − ​ η​*​ )​R​(​m​*​  +  1)​  + ​ η​*​R​(​m​*​)​  =  cM,

thus the balanced budget constraint also exactly holds. Hence, ​(​̂  ​ρ​n​ ​, ​  ​η​n​ ​, ​  ​t​n​ ​ )​ is incen-
tive feasible for every n. The associated per capita social surplus with the above 
mechanism is

(A21)	​ ​S​ n​ *​​(θ)​ _ 
n
 ​   =  ​ ∑ 

j=1
​ 

M

 ​ ​{ h ​∑ 
m=1

​ 
M

  ​ ​ ​H​ j​​(θ, m)​
 _ 

n
 ​​   +  l ​[​η​*​​ ​L​j​​(θ, ​m​*​)​

 _ 
n
 ​   + ​ ∑ 

m=​m​ *​

​ 
M

  ​ ​ ​L​ j​​(θ, m)​
 _ 

n
 ​​  ]​}​​  −  cM,

where the notations ​H​ j​​(θ, m)​ and ​L​ j​​(θ, m)​ were explained in Section IID. Noting 
that ​lim​ n→∞​ ​H​ j​​(θ, m)​/n = (m/M  )​β​m​ and ​lim​ n→∞​ ​L​ j​​(θ, m)​/n = ((M − m)/M  )​β​m​ , 
we have

(A22) ​  lim   
n→∞​ ​ ​S​ n​ *​​(θ)​ _ 

n
 ​   =  h​∑ 

m=1
​ 

M

  ​ m​β​m​  +​  l ​[​η​*​M  − ​ m​*​​β​​m​*​​  + ​ ∑ 
m=​m​ *​+1

​ 
M

  ​ ​(M  −  m)​​​β​m​]​

	 −  cM  >  ε  =  0.
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Now, we show that, as n→∞, there is no other incentive feasible mechanism 
that yields higher per capita social surplus than the above mechanism. Invoking 
Corollary 1, suppose that the surplus maximizing mechanism is characterized by an 
inclusion rule with threshold ​​ ˜   m​​*​ and inclusion probability ​​     n​​*​ given ​​ ˜   m​​*​, and a provi-
sion rule ​​     p​​ n​ 

j
 ​ that must be characterized by (21).

Since by definition ​m​*​ is the smallest m such that R​(m)​ − cM > 0, we know that 
there are three possibilities: (1). R​(​​ ˜   m​​*​ )​ − cM < 0; (2). R​(​​ ˜   m​​*​ )​ − cM > 0 but ​​ ˜   m​​*​ > ​
m​*​; or (3). ​​ ˜   m​​*​ = ​m​*​. If R​(​​ ˜   m​​*​ )​ − cM < 0, then an argument identical with that in 
the proof of Part 1(a) establishes that ​lim​n→∞​ E​[ ​​     p​​ n​ 

j
 ​​(θ)​]​ → 0 ; thus the social wel-

fare is lower than that obtained from ​(​​  ρ ​​n​, ​​  η ​​n​, ​​  t ​​n​ )​. If ​​ ˜   m​​*​ > ​m​*​ but R​(​​ ˜   m​​*​ )​ − cM > 0, 
then ​lim​n→∞​ E ​[ ​ρ​ n​ j

 ​​(θ)​]​ → 1. The social surplus must therefore converge toward the 
same expression as in (A22), but with ​m​*​ replaced by ​​ ˜   m​​*​. But, if ​​ ˜   m​​*​ > ​m​*​, the social 
surplus is smaller because there is more exclusion. Finally, suppose that ​​ ˜   m​​*​ = ​m​*​.
If ​​  η ​​n​​(​m​*​ )​ → ​​     η​​*​ > ​η​*​ an argument identical with Part 1(a) establishes that ​lim​ n→∞​ E​
[​(θ)​]​ → 0; if ​​  η ​​n​​(​m​*​)​ → < ​η​*​, we have that ​lim​n→∞​ E ​[ ​​     p​​ n​ 

j
 ​​(θ)​]​ → 1 and again social 

surplus converges towards the same expression as in (A22), but with ​η​*​ replaced 
by ​​     η​​*​. Again, the social surplus is smaller if ​​     η​​*​ < ​η​*​ since there is more exclusion.

PROOF OF PROPOSITION 4: 
To prove Proposition 4, we add the (nonadjacent) constraint that the highest type 

should not have an incentive to pretend to be the lowest type, i.e.,

(A23)	 0  ≤ ​ ∑ 
​θ​− i​∈​Θ​− i​

​ 
 

  ​ ​β​− i​​​(​θ​− i​)​​∑ 
j=1

​ 
M

 ​ ​ρ​ j​​(​θ​− i ​, h)​​h  − ​ t​i​ ​(h)​

	 − ​ [ ​ ∑ 
​θ​− i​∈​Θ​− i​

​ 
 

  ​ ​β​− i​​​(​θ​− i​)​​∑ 
j=1

​ 
M

 ​ ​ρ​ j​​(​θ​− i​, l )​​​η​ i​ j​​( l )​h  − ​ t​i​ ​( l )​]​,

to program (9). Let ψ ≥ 0 denote the multiplier for constraint (A23). Similar to 
(14), with the additional constraint (A23) the optimality conditions with respect to
t​(​θ​i​)​ for types with 2, 1 and 0 high valuation goods are, respectively,

	 − 2λ​(2)​  −  ψ  + ​ β​2​ Λ  =  0

	 λ​(2)​  −  λ​(1)​  + ​  1 _ 
2
 ​​ β​1​ Λ  =  0

	 2λ​(1)​  +  ψ  −  λ​(0)​  + ​ β​0​ Λ  =  0.

We now proceed with a sequence of intermediate results.

Claim A1: Suppose that (​β​1​/2) < ​β​0​​ β​2​/(1 − ​β​0​). Then (A23) binds.
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To see this, suppose that constraint (A23) does not bind. Then we know the solution 
with constraint (A23) is unchanged from (9). The inclusion rule (18) for the special 
case with M = 2 is simplified to:

	 0	 if ​G​1​​(Φ)​  <  0	 	 0	 if ​G​0​​(Φ)​  <  0

  η​(1)​  ≡ {	z  ∈ ​ [0, 1]​	 if ​G​1​​(Φ)​  =  0	 η​(0)​  ≡ {	z  ∈ ​ [0, 1]​	 if ​G​0​​(Φ)​  =  0

	 1	 if ​G​1​​(Φ)​  >  0,		  1	 if ​G​0​​(Φ)​  >  0,

and the provision rule (21) is simplified to:

	 0	 if ​[​H​ j​​(θ, 1)​ + ​H​ j​​(θ, 2)​]​h  + ​ 
​L​ j​​(θ, 0)​

 _ 
2​β​0​

 ​  max ​{0, ​G​0​​(Φ)​}​

	 + ​ 
​L​j​​(θ, 1)​

 _ ​β​1​
 ​  max ​{0, ​G​1​Φ}​  −  cn  <  0

 ​ρ​ j​​(θ)​  =  { z ∈ ​[0,1]​	 if [​H​ j​​(θ, 1)​  + ​ H​ j​​(θ,2)​]h  + ​ 
​L​j​​(θ, 0)​

 _ 
2​β​0​

 ​  max 0, ​G​0​​(Φ)​

	 + ​ 
​L​ j​​(θ, 1)​

 _ ​β​1​
 ​  max ​{0, ​G​1​​(Φ)​}​  −  cn  =  0

	 1	 if [​H​ j​​(θ, 1)​  + ​ H​ j​​(θ,2)​]h  + ​ 
​L​j​​(θ, 0)​

 _ 
2​β​0​

 ​  max ​{0, ​G​0​​(Φ)​}​

	 + ​ 
​L​j​​(θ, 1)​

 _ ​β​1​
 ​  max ​{0, ​G​1​​(Φ)​}​  −  cn  >  0,

where ​G​1​​(Φ)​ = ​β​1​l − Φ​(h − l )​​β​2​ and ​G​0​​(Φ)​ = ​β​0​ 2l − Φ​(h − l )​​(​β​1​ + ​β​2​)​. Notice 
that

  ​  
​G​1​​(Φ)​ _ ​β​1​

 ​   =  l  − ​ 
Φ​(h  −  l)​​β​2​ _ ​β​1​

 ​

	 <  l  − ​ 
Φ​(h  −  l)​​β​2​ _ 
2​ 

​β​0​​β​2​ _ 
1  − ​ β​0​

 ​
 ​   =  l  − ​ 

Φ​(h  −  l)​​(​β​1​  + ​ β​2​)​  __  
2​β​0​

 ​   = ​ 
​G​0​​(Φ)​ _ 

2​β​0​
 ​ .

Thus, we must have η​(1)​ ≤ η​(0)​ and ​ρ​ j​​(​θ​− i​, ​θ​i​)​ ≤ ​ρ​ j​ ​(​θ​− i​, ll )​ if ​θ​ i​ j​ = l and ​θ​ i​ k​ = h for 
k ≠ j.

Let t ​(0)​, t ​(1)​ and t ​(2)​ denote transfers for types with 0, 1 and 2 high-valua-
tion goods respectively. Now we show that type-​(h, h)​ will have a strict incentive 
to misreport as type-​(l, l )​, a contradiction. To see this, recall from the discussion 
prior to Proposition 1 that in the solution to the original problem (9), the downward 
adjacent incentive constraints for type-​(h, h)​ and types ​(h, l )​ or ​(l, h)​ must bind if 
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the postulated mechanism is not ex post efficient (which is clearly the case). Let 
U​(​​   

 
 θ​​i​|​θ​i​)​ denote the expected utility for type- ​θ​i​ agent from truth-telling and from 

misreporting as type-. We have

 U​ (hh | hh)​  = ​ ∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​(​θ​− i​)​​​[​ρ​1​​(​θ​− i​, hh)​  + ​ ρ​2​​(​θ​− i​, hh)​]​h  −  t​(2)​

	 = ​ ∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​(​θ​− i​)​​​[​ρ​1​​(​θ​− i​, hl )​h  + ​ ρ​2​​(​θ​− 1​, hl )​η​(1)​h]​  −  t​(1)​

	 = ​ ∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​(​θ​− i​)​​​[​ρ​1​​(​θ​− i​, ll )​η​(0)​h  + ​ ρ​2​​(​θ​− i​, ll )​η​(0)​l ]​  −  t​(0)​

	 +   ​∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​(​θ​− i​)​​​ρ​2​​(​θ​− i​, hl )​η​(1)​​(h  −  l )​

	 = ​ ∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​(​θ​− i​)​​​[​ρ​1​​(​θ​− i​,ll )​η​(0)​h  + ​ ρ​2​​(​θ​− i​,ll )​η​(0)​h]​  −  t​(0)​

	 + ​ ∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​(​θ​− i​)​​​[​ρ​2​​(​θ​− i​,hl )​η​(1)​  − ​ ρ​2​​(​θ​− i​,ll )​η​(0)​]​​(h  −  l )​

	   ≤  U​(ll | hh)​,

where the first inequality follows from binding downward adjacent incentive con-
straint for type-​(h, h)​, the second equality follows from binding downward adjacent 
incentive constraint for type-​(h, l)​, the third equality follows from rearranging, and 
the last inequality follows from the result above that η​(1)​ ≤ η​(0)​ and ​ρ​ j​​(​θ​− i​, ​θ​i​)​ ≤
​ρ​ j​​(​θ​− i ​, ll )​. Thus, constraint (A23) binds or is violated, a contradiction.

Claim A2: Suppose that ​(β​1​/2) < ​β​0 ​​β​2​/(1 − ​β​0​) . Then the downward adjacent 
constraints for type-​(h, h)​ and type-​(h, l)​ or type-​(l, h)​ must both bind in the optimal 
solution.

To see this, first note that it could not be the case that both the downward adjacent 
constraints for type-​(h, h)​ and type-​(h, l )​ are slack in the optimal solution. If so, then 
it will immediately follow that type-​(h, h)​ will have strict incentive to misreport as 
type-​(l, l )​, contradicting Claim A1. So suppose that the downward adjacent incen-
tive constraint for type-​(h, l )​ [or type-​(l, h)​] binds, but the downward adjacent incen-
tive constraint for type-​(h, h)​ is slack, i.e.,

(A24)	 ​∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​(​θ​− i​)​​​[​ρ​1​​(​θ​− i​ , hh)​  + ​ ρ​2​​(​θ​− i ​, hh)​]​h  −  t ​(2)​

	   > ​ ∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​(​θ​− i​)​​​[​ρ​1​​(​θ​− i ​, hl )​h  + ​ ρ​2​​(​θ​− i ​, hl )​η​(1)​h]​  −  t ​(1)​.
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Given (A24) and a binding (A23), the optimality conditions with respect to ​η​ i​ 2​​(hl )​ 
are the complementary slackness conditions together with the first order condition:

	 ​∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ β​(​θ​− i​, hl )​​​ρ​2​​(​θ​− i ​, hl )​l  +  λ​(1)​

	​ ∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​(​θ​− i​)​​​ρ​2​​(​θ​− i ​, hl )​l

	 + ​ γ​ i​ 2​​(hl )​  − ​ ϕ​ i​ 2​​(hl)​  =  0,

where ​γ​ i​ 2​​(hl )​ and ​ϕ​ i​ 2​​(hl )​ are the multipliers associated with ​η​ i​ 2​​(hl )​ ≥ 0 and 
​η​ i​ 2​​(hl )​ ≤ 1 respectively. This immediately implies that ​η​ i​ 2​​(hl )​ = ​η​ i​ 1​​(lh)​ = η​(1)​ = 1 
in optimum.

Similarly, given (A24) and a binding (A23) the optimality conditions with respect 
to ​ρ​1​​(θ)​ are the complementary slackness conditions together with the first order 
condition

(A25)	​ { h​[​H​1​​(θ, 1)​  + ​ H​1​​(θ, 2)​]​  +  l​[​L​1​​(θ, 1)​  +  η​(0)​​L​1​​(θ, 0)​]​  −  cn}​ 

	   +  λ​(1)​​ 2 _ ​β​1​
 ​​[​H​1​​(θ, 1)​h  + ​ L​1​​(θ, 1)​η​(0)​l ]​

	   +  ψ ​ 1 _ ​β​2​
 ​​ H​1​​(θ, 2)​h  −  ψ ​ 1 _ ​β​0​

 ​​β​− i​​(​θ​− i​)​η​(0)​​H​1​​(θ, 2)​ 

	   −  λ​(1)​​ 
η​(0)​

 _ ​β​0​
 ​​ [​H​1​​(θ, 1)​h  + ​ L​1​​(θ,1)​l ]​

	   +  λ​(0)​​ 1 _ ​β​0​
 ​​ L​1​​(θ, 0)​l  −  Λcn

	   + ​ 
​γ​1​​(θ)​  − ​ ϕ​1​​(θ)​  __ β​(θ)​ ​    =  0,

where ​γ​1​​(θ)​ ≥ 0 and ​ϕ​1​​(θ)​ ≥ 0 are respectively the multipliers associated with 
​ρ​1​​(θ)​ ≥ 0 and 1 − ​ρ​1​​(θ)​ ≥ 0. Now consider the first order condition (A25) for profile 
θ′ = ​(​θ​− i ​, lh)​ and θ″ = ​(​θ​− i ​, ll )​ for any ​θ​− i​ ∈ ​Θ​n−1​, we have ​L​1​​(θ′, 0)​ = ​L​1​​(θ″, 0)​ − 1, ​
H​1​​(θ′, 1)​ = ​H​1​​(θ″, 1)​, ​L​1​​(θ′, 1)​ = ​L​1​​(θ″, 1)​ + 1, ​H​1​​(θ′, 2)​ = ​H​1​​(θ″, 2)​. Thus the terms 
in the first two lines in (A25) is higher under θ′. Thus it must be the case that
​ρ​1​(θ′ ) ≥ ​ρ​1​(θ″ ), i.e., ​ρ​1​​(​θ​− i​, hl )​ ≥ ​ρ​1​​(​θ​− i ​, ll )​ for every ​θ​− i ​. Together with the fact 
that η​(1)​ = 1 ≥ η​(0)​ we established above, we thus have

(A26)	 ​∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ β​(​θ​− i​)​​ρ​1​​​(​θ​− i​, lh )​η​(1)​  ≥ ​ ∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ β​(​θ​− i​)​​ρ​1​​​(​θ​− i​ , ll )​η​(0)​,
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i.e., the perceived probability to consume a low valuation good is weakly higher for 
a consumer with a high valuation for the other good. Hence,

  U(hh | hh)    = ​ ∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​(​θ​− i​)​​​[​ρ​1​​(​θ​− i​ , hh)​  + ​ ρ​2​​(​θ​− i ​, hh)​]​h  −  t ​(2)​

	 U(ll | hh)
	 7
	 =  ​  ∑ 

​θ​−i​∈​Θ​−i​
​ 

 

  ​ ​β​− i​​(​θ​− i​)​​​[​ρ​1​​(​θ​− i​,ll  )​η​(0)​h  + ​ ρ​2​​(​θ​− i​,ll  )​η​(0)​h]​  −  t​(0)​

	U (ll | lh)
	 7
	 =  ​  ∑ 

​θ​−i​∈​Θ​−i​
​ 

 

  ​ ​β​− i​​(​θ​− i​)​​​[​ρ​1​​(​θ​− i​, ll)​η​(0)​l  + ​ ρ​2​​(​θ​− i​, ll)​η​(0)​h ]​  −  t​(0)​

	 +  ​(h − l )​   ​∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​(​θ​− i​)​​​ρ​1​​(​θ​− i​, ll  )​η​(0)​ 

	 U(lh | lh)
	 7
	 =  ​  ∑ 

​θ​−i​∈​Θ​−i​
​ 

 

  ​ ​β​− i​​(​θ​− i​)​​​[​ρ​1​​(​θ​− i​, lh)​η​(1)​l  + ​ ρ​2​​(​θ​− i​, lh)​h ]​  −  t​(1)​

	 + ​ (h − l )​  ​ ∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​(​θ​− i​)​​​ρ​1​​(​θ​− i​, ll  )​η​(0)​ 

	 U(lh | hh)
	 7
	 =  ​  ∑ 

​θ​−i​∈​Θ​−i​
​ 

 

  ​ ​β​− i​​(​θ​− i​)​​​[​ρ​1​​(​θ​− i​, lh)​η​(1)​h  + ​ ρ​2​​(​θ​− 1​, lh)​h ]​  −  t​(1)​

	 + ​ (h − l )​​[   ​ ∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​(​θ​− i​)​​​ρ​1​​(​θ​− i​, ll )​η​(0)​  − ​ ∑ 
​θ​−i​∈​Θ​−i​

​ 
 

  ​ ​β​− i​​(​θ​− i​)​​​ρ​1​​(​θ​− i​, lh)​η​(1)​ ]​

	 ≤  U​(lh | hh)​,

where the second equality follows from the binding (A23), third and fifth equality 
are simply rearrangement of terms, and the fourth equality follows from the postu-
lated downward adjacent incentive constraint for type-​(l,  h)​ and the last inequality 
follows from (A26). This inequality contradicts the postulated (A24).

The statement that the downward adjacent incentive constraint for type-​(h,  l)​, or 
type-​(l,  h)​ must bind can be proved analogously.

We thus conclude from Claims A1 and A2 that all the incentive constraints bind 
for this case. Examining these incentive constraints and using the key “Paradox 
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of Voting” -like Lemma 6, we have that in the limit as n → ∞, these constraints 
imply

	 2h  −  t​(2)​  =  h  +  η​(1)​h  −  t​(1)​

	 2h  −  t​(2)​  =  2hη​(0)​  −  t​(0)​

	 h  +  η​(1)​l  −  t​(1)​  = ​ (h  +  l )​η​(0)​  −  t​(0)​,

where the first equality is the limit of the binding constraint (A23) and the second is 
the limit of the binding downward adjacent incentive constraints (10) for types ​(h, h)​ 
and ​(h, l)​ respectively. These three equalities immediately imply that in the limit as 
n → ∞, η​(1)​ = η​(0)​. This inclusion rule immediately implies that bundling is not 
used in the optimal mechanism in the limit (as well as when n is sufficiently large). 
We thus conclude that the limit provision and inclusion rules for this case is identical 
to the single good case analyzed in Section IIIA. The desired results follow.
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