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1. Introduction

We propose nonparametric tests to infer bidders’ risk atti-
tudes in ascending (or open out-cry) auctions with endogenous
entry. In these auctions, potential bidders observe some entry
costs, e.g., bid preparation/submission costs and/or information
acquisition costs, that they need to incur before learning private
values and decide whether to pay the costs to be active in the
bidding stage. Bidders make rational entry decisions by comparing
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expected utility from entry with that from staying out, based on
their knowledge of entry costs or preliminary signals of private val-
ues to be realized in the subsequent bidding stage.

Inference of bidders’ risk attitudes has important implications
for sellers’ choices of the revenue-maximizing auction format.
When the participation of bidders is exogenously given and fixed,
the Revenue Equivalence Theorem states that expected revenues
from first-price and ascending auctions are the same if bidders
are risk-neutral in an environment with symmetric independent
private values (IPV). If bidders are risk-averse, however, Matthews
(1987) showed that in such environments first-price auctions
yield higher expected revenues than ascending auctions. Bidders’
risk attitudes also affect revenue rankings among symmetric I[PV
auctions when participation decisions are endogenous. For risk-
neutral bidders, Levin and Smith (1994) showed that any given
entry cost induces the same entry probabilities in first-price
auctions (with each entrant observing the number of the other
entrants) and in ascending auctions. Thus the Revenue Equivalence
Theorem implies that expected revenues must be the same from
both first-price and ascending formats under endogenous entry.
On the other hand, Smith and Levin (1996) established the revenue
ranking of first-price over ascending auctions under endogenous
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entry for risk-averse bidders, except for the case with decreasing
absolute risk aversions (DARA).2

While some earlier papers had studied the identification and es-
timation of bidders’ risk attitudes in first-price auctions (e.g. Bajari
and Hortacsu (2005), Campo et al. (2011) and Guerre et al. (2009)),
inference of risk attitudes in ascending auctions remains an open
question. Athey and Haile (2007) point out that bidders’ risk atti-
tudes cannot be identified from bids alone in ascending auctions
where participation is given exogenously. This is because bidding
one’s true value is a weakly dominant strategy in ascending auc-
tions, regardless of bidders’ risk attitudes. Thus, bidders with vari-
ous risk attitudes could generate the same distribution of bids in
Bayesian Nash equilibria. The distribution of bids from entrants
alone is therefore not sufficient for inferring bidders’ risk attitudes.

In this paper, we propose tests for bidders’ risk attitudes based
on transaction prices and entry decisions under two empirically
relevant data scenarios. In the first scenario, we assume that
the data has information that allows researchers to consistently
estimate the expectation of entry costs, and in the second scenario,
we assume that the data does not provide any information about
the level of entry costs, but does contain the variation in the
number of potential bidders and some auction-level heterogeneity.
In both cases, we show how to relate the distribution of transaction
prices and entry decisions to the underlying risk attitudes
nonparametrically.

In the first scenario, considered in Section 4, we require that the
data contains some noisy measures of entry costs so that the mean
of entry costs in the data-generating process can be consistently
estimated. This is motivated by the fact that entry costs are often
measurable (at least up to some noise) in applications. Examples
of entry costs include bid preparation costs (e.g., mailing costs),
admission fees or other information acquisition expenses, which
are often reported in the data with noise.

The main insight for our test in this scenario can be illustrated
using the mixed-strategy entry model (which is analogous to
that considered in Levin and Smith (1994) for first-price auctions
with risk-neutral bidders). In the entry stage, all potential bidders
observe a common entry cost and decide whether to pay the cost
and enter an ascending auction in the bidding stage. In a mixed
strategy Nash equilibrium in the entry stage, potential bidders’
participation in the auction will be in mixed strategies with the
mixing probability determined to ensure that a bidder’s ex ante
expected utility from entry equals that from staying out. Hence
bidders’ risk attitudes can be identified by comparing the expected
profits from entry with its certainty equivalent. As long as the
expectation of entry costs can be identified from the data, the
distribution of transaction prices and entry decisions alone can be
used to make such a comparison.

We apply the analog principle to construct a non-parametric
test statistic, using observations of transaction prices and entry
decisions as well as estimates of the mean of entry costs. We
characterize the limiting distribution of this statistic and propose
a bootstrap test that attains the correct asymptotic level and is
consistent under any fixed alternative of risk-aversion or risk-
loving.

2 Evenin the case with DARA, first-price auctions yield higher expected revenues
than ascending auctions when entry costs are low enough. To see this, consider
a simple case where entry costs are low enough so that the difference between
entry probabilities in first-price and ascending auctions is sufficiently small. In
such a case, these two probabilities are both close to 1 and only differ by some
small ¢ > 0. By Matthews (1987), conditioning on any given number of entrants,
ascending auctions have smaller expected revenues than first-price auctions. When
the difference between the two entry probabilities is small enough, such a revenue
ranking result is preserved.

In the second scenario, considered in Section 5, we assume that
the data does not provide information about the level of entry
costs, but does contain some auction-level heterogeneity (such as
some characteristics of the auctioned object) and the variation in
the numbers of potential bidders. We propose a nonparametric
test for risk-aversion for this case, under the assumption that the
variation in potential competition is exogenous (in the sense that
it does not alter the marginal distribution of private values once
conditional on the observed auction features). Refraining from
parametric restrictions on how observed auction features change
the distribution of private values, we formalize how risk attitudes
determine entry probabilities under various auction features and
potential competition. OQur test is based on the idea that the
curvature of utility functions affects how the ratios between
the changes in bidders’ interim utilities compare with the ratios
between the changes in expected private values, under different
pairs of observed auction features. The main finding is that, even
if entry costs are unreported in data, we could relate these two
ratios to the observed distributions of transaction prices and entry
decisions, by exploiting the variation in auction features and the
number of potential bidders. We provide encouraging Monte Carlo
evidence for the finite-sample performance of our test.

In Section 6, we discuss possible extensions of our tests by
removing two of the key assumptions. First, we show that when
bidders’ values are affiliated, it is possible to derive testable
implications for risk attitudes using existing results on the sharp
bounds for the surplus of risk-neutral bidders in ascending
auctions (Aradillas-Lopez et al., 2013). Second, we show that if
entry is selective (e.g., when potential bidders observe signals
correlated with private values to be drawn in the bidding stage),
then the idea of testing risk attitudes through the identification of
risk premium applies, provided that the data contains continuous
variation in observed entry costs.

It is worth noting that by “inference of risk attitudes” we
mean to make a data-supported conclusion about whether bidders’
utility functions are concave, linear or convex. We do not address
the question of how to recover the utility function completely over
its domain, which is left for future research.

The remainder of the paper is structured as follows. In Section 2
we discuss the related literature; in Section 3 we present the model
of ascending auctions with endogenous entry; in Sections 4 and
5 we describe the theoretical results for our tests under two data
scenarios and discuss the inference using proposed test statistics;
in Section 6 we discuss how to extend our test to auctions with
selective entry or affiliated private values; and in Section 7 we
conclude. Proofs are collected in the Appendix.

2. Related literature

This paper contributes to two branches of the literature on
structural analyses of auction data. The first branch includes papers
that analyze the equilibrium and its empirical implications in
auctions with endogenous entry and risk-neutral bidders. These
include Levin and Smith (1994), Li (2005), Ye (2007) and Li and
Zheng (2009). Marmer et al. (2013) study a model of first-price
auctions with risk-neutral bidders and selective entry, and discuss
testable implications of various nested entry models. Roberts and
Sweeting (2010) estimate a model of ascending auctions with
selective entry and risk-neutral bidders. Gentry and Li (2014)
provide partial identification results for ascending auctions with
risk-neutral bidders when entry is selective. They derive sharp
bounds on the distribution of private values conditional on signals,
using the variation in factors that affect bidders’ entry behaviors
(such as the number of potential bidders and entry costs). They also
apply these results to bind counterfactual seller revenues under
alternative auction rules. Aradillas-Lopez et al. (2013) provide
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partial identification results for ascending auctions where bidders’
private values are affiliated, exploiting exogenous variation in the
number of entrants, or active bidders.

The second branch includes papers that study the identification
and estimation of bidders’ utility functions and the distribution of
private values in first-price auctions without endogenous entry.
Campo et al. (2011) show how to estimate a semiparametric
model of first-price auctions with risk-averse bidders when the
identification of a parametric utility function is assumed. Bajari
and Hortacsu (2005) use exogenous variation in the number of
bidders in first-price auctions to semi-parametrically estimate the
utility function while leaving the distribution of bidders’ private
values unrestricted. Guerre et al. (2009) use exogenous variation
in the number of potential bidders to non-parametrically identify
bidders’ utility functions along with the distribution of private
values in first-price auctions. Lu and Perrigne (2008) consider
a context where data contain bids from both first-price and
ascending auctions that involve bidders with the same utility
function and the same distribution of private values. They first use
bids from ascending auctions to recover the distribution of private
values, and then use bids from first-price auctions to recover the
utility function.

Our work in this paper contributes to these two branches of em-
pirical auction literature by studying a model which endogenizes
bidders’ entry decisions and relaxes the risk-neutrality assumption
at the same time. To the best of our knowledge, our paper marks the
first effort to non-parametrically infer bidders’ risk attitudes in as-
cending auctions with endogenous entry. Smith and Levin (1996)
present some results on the ranking of auction formats in terms
of seller revenues when auctions are known to involve risk-averse
bidders who make endogenous entry decisions. Their focus is not
on the identification of bidders’ risk attitudes.

Ackerberg et al. (2011) study a class of e-Bay auctions where
a typical online ascending auction is combined with an option
of paying the buy-out price posted by the seller in order to
immediately purchase the object. They show how to identify the
bidders’ utility functions and the distribution of private values
using exogenous variation in the buy-out prices and other auction
characteristics. The format of auctions they study is qualitatively
different from the one we consider in this paper. We do not embark
on a full identification of the utility function in this paper and
therefore require fewer sources of exogenous variation to perform
the test. (With the observed and exogenous variation in entry costs,
the identification of the utility function may be possible in our
model as well.) Our approach does not rely on the variation in entry
costs; thus our test can be performed for any given level of entry
costs. We also propose a robust method of inference.

Our paper also fits in a category of empirical auction literature
on nonparametric tests of the empirical implications/predictions
of auction theory. Earlier works in this category include tests of
bidders’ rationality in first-price auctions with common values in
Hendricks et al. (2003), assessment of winner’s curse in first-price
auctions with common values in Hong and Shum (2002), tests for
the interdependence between bidders’ values in Haile et al. (2004),
and tests for the affiliation between bidders’ private values in Li
and Zhang (2010) and Jun et al. (2010).3 The test proposed by Li and
Zhang (2010) uses bidders’ entry decisions for testing the affiliation
between bidders’ private values.

Li et al. (2012) study first-price and ascending auctions with
risk-averse bidders and selective entry. They find that the ranking
between bidders’ expected utility under these two auction formats
depends on the specific form of risk aversion (DARA, CARA or IARA).

3 See Athey and Haile (2007) and Hendricks and Porter (2007) for recent surveys.

Consequently, the ranking of entry probabilities across these two
auction formats must also depend on the form of risk aversion.
Based on this observation, they propose an original test for
inferring the form of bidders’ risk aversion using entry behaviors,
using data from both first-price and ascending auctions at the same
time. Our research focus in this paper differs from theirs in that
we study the inference of risk attitudes (with hypotheses being
risk-neutral, risk-taking or risk-aversion). Since we do not aim at
inferring the form of risk-aversion, our test does not require the
observation of data from multiple competing auction formats.

3. Ascending auctions with endogenous entry

Consider an empirical context where researchers observe a
large number of independent single-unit ascending auctions in
the data. Each of these auctions involves N potential bidders who
have symmetric independent private values and make endogenous
entry decisions. The entry model we consider here is similar
to those used for first-price auctions with risk-neutral bidders
in Levin and Smith (1994), Li and Zheng (2009) and Marmer
et al. (2013). In the entry stage, each potential bidder decides
whether to incur an entry cost K to become active in the bidding
stage. The entry cost is common knowledge among all potential
bidders. There is a reserve price r that is known to all potential
bidders in the entry stage. Following their entry, each entrant i
draws a private value V; and competes in an ascending auction
in the bidding stage. Across auctions, private values and entry
costs are independent draws from distributions Fy, .. vy)x and Fg
respectively, which are common knowledge among all potential
bidders prior to entry decisions. Upon entry, each entrant may
or may not be aware of the total number of entrants (which we
denote by A). All bidders in the data share the same bounded von
Neumann-Morgenstern utility function u : Ry — R with u’ >
0 and the sign of u” does not change over R, . A winner who has a
private value V; and pays a price P; receives a utility of u(V;—P;—K).

With a slight abuse of notation, we use N and A to denote
the number as well as the set of potential bidders and entrants
respectively. Let Fg g, Fz,e, denote respectively the joint and
conditional distributions of generic random vectors (&1, &). We
use upper cases to denote random variables and lower cases to
denote their realizations. We take N as given and fixed in this
section and, to simplify exposition, we drop N in the notation when
there is no ambiguity.

Assumption 1. Conditional on K, private values V; are indepen-
dent draws from the same continuous marginal distribution Fy g
which has positive density almost everywhere with respect to the
Lebesgue measure on the support [v, v]. Entry costs across auc-
tions are independent draws from a continuous distribution Fy
with a support [k, k].

This assumption states that bidders have symmetric, indepen-
dent private values in the sense that Pr(V; < v, ..., Vy < vy |
K = k) = [ ey Fvik(vi) forall kand (vy, ..., vy). Each entrant i in
a bidding stage follows the weakly dominant equilibrium strategy
to drop out at his true value V; if A > 2. When A = 1 in the bidding
stage, the lone entrant wins and pays the reserve price r.

Let A_; denote the set (and the number) of entrants that i
competes with if he enters. Let the reserve price be binding (i.e.r >
v). Define P; = max({r, maxjes_,{V;}} as is payment if he enters and
wins while all competitors in A_; follow their weakly dominant
bidding strategies. Then is (random) profit in the weakly dominant
strategy equilibrium is (V; — P;). — K, where (), = max{-, 0}.
Let w(k; A_;) denote the expected utility for bidder i conditional
on paying an entry cost k and potential competitors entering with
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probabilities A_; = (%)
Under Assumption 1,
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with Fp, (-|k, A_;) being the distribution of P; when K = k, and
is potential competitors enter with probabilities A_;. Due to the
symmetry in the distribution of private values across bidders,
Fp,(.|k,A_;) does not change with the bidder identity i, and
therefore w does not depend on the bidder identity i. The following
lemma characterizes the symmetric mixed strategy equilibrium in
the entry stage.

Lemma 1. Suppose Assumption 1 holds. For any entry cost k with
w(k; (1,...,1) < u(0) < w(k; (0,...,0)), there exists a unique
symmetric mixed strategy equilibrium in which all bidders enter with
probability A}, where A} solves w(k; (A}, ..., Af)) = u(0).

Whenever w(k; (0, ...,0)) < u(0) (respectively, w(k; (1, ...,
1)) > u(0)), the equilibrium entry probabilities are degenerate
at 0 (respectively, 1). Thus the condition that w(k; (1,...,1)) <
u(0) < w(k; (0,...,0)) can be tested, as long as entry decisions
are reported in data. The equilibrium entry process is non-
selective, as potential bidders’ entry decisions are not based on any
entry-stage information that is correlated with the private values
to be drawn in the bidding stage.

It is worth noting that we can generalize the model to
incorporate auction heterogeneity Z that is known to all potential
bidders and reported in the data. To do this, we need to condition
the private value distribution on Z as well. The characterization of
entry and bidding strategies in equilibrium can be derived for any
given z using an argument similar to that leading to Lemma 1. In
fact, auction heterogeneity reported in the data provides additional
identifying power for inferring bidders’ risk attitudes when entry
costs are not reported in data (see Section 5).

We assume that researchers know the number of potential
bidders in auctions. This means either the data reports the
number of potential bidders directly, or researchers can construct
a measure of N from the data based on institutional details in the
specific environments. Such an assumption holds in a variety of
applications considered in the literature. For example, Li and Zheng
(2009) consider highway mowing auctions by Texas Department of
Transportation. In that case, the number of potential bidders for
each auction is reported as the observed number of contractors
who have requested the official bidding proposal for the project.
Similarly, in Krasnokutskaya and Seim (2011), potential bidders
in highway procurement auctions in California are defined as
companies that have purchased the detailed project plans from
California Department of Transportation. Such purchases are
recorded for all projects in data. Athey et al. (2011) study US
Forest Service (USFS) timber auctions. They measure the number
of loggers potentially interested in an auction by the number
of logging companies that had entered auctions in the same
geographic area in the year before. Such a proxy is constructed by
combining the data from timber auctions with the US Census data.

4. Inference of risk attitudes using entry costs

We now introduce a test for bidders’ risk attitudes when the
data allows researchers to construct a consistent estimator for the
expectation of entry costs. In some contexts, a fixed amount of
entry costs, sometimes also known as admission fees, is charged
to all entrants and recorded in data. Such admission fees occur
in contexts such as auctions of used or new cars in the US and
UK; auctions of vintage wines in the US; and auctions of art items,
etc. In other applications, entry costs are not admission fees but
nevertheless are measurable, at least up to random noise through
additional surveys.* That said, it is also likely that these noisy
measures may systematically underestimate true costs, and tak-
ing the average of these noisy measures would lead to a biased
estimator for the actual mean. Thus the test based on the sign of
risk premia would be biased towards the direction of risk-averse
alternatives.

In addition to its empirical relevance, there is also a theoretical
motivation for this assumption. Without variation in potential
competition or information about entry costs, bidders’ risk
attitudes cannot be inferred from entry decisions and transaction
prices alone without imposing additional parametric assumptions
on the structure. To fix ideas, consider a simplified model where
all auctions in data share the same fixed entry cost k that is
not reported in data. The private value distribution is identified
from the distributions of transaction prices and the number of
entrants using a standard argument using order statistics, and
the equilibrium entry probability is directly recovered from entry
decisions. Nonetheless, u (-) and the unknown entry cost k cannot
be jointly identified in this case.

To see this, suppose that bidders are risk-neutral with a
continuous utility function u (), entry cost k, and entry probability
A* € (0, 1). Fix a continuous private value distribution and let it be
independent of entry costs. Now consider a slightly concave utility
u() # u(-) sothat E[u ((V; — P). — k) |A*] > 1(0). Because
the left-hand side is continuous and strictly monotone in k, we
can increase k to l~<~ > k so that the indifference condition is
restored for (i (-), k) # (u(-), k). That is, the equilibrium entry
probability observed, A*, can be rationalized by more than one
data-degenerating process. Thus, without variation in potential
competition or auction heterogeneity, inference of risk attitudes in
English auctions with endogenous entry must utilize at least some
partial knowledge of entry costs.

All in all, we acknowledge the assumption that the mean of
entry costs can be consistently estimated from the data is strong.
In addition to empirical and theoretical motivations above, we also
hope to motivate the test under such an assumption as a useful
benchmark that shows how entry behaviors can be informative
about bidders’ risk premia, which in turn is useful for inferring their
risk attitudes.

4 For example, in USFS timber auctions considered in Athey et al. (2011), entry
costs for potential bidders (i.e., millers and loggers located in adjacent geographic
regions) consist largely of information acquisition costs. These costs are incurred
while performing “cruises” over the auctioned tracts to learn the distribution of
diameters and heights of trees, etc. Such private cruises are standard practices
institutionalized in the industry, and their costs vary little across millers and
loggers. Thus cruise costs can be treated as practically identical for all potential
bidders. Besides, it is plausible that researchers can construct a consistent estimator
of average costs for cruising tracts with given characteristics, because cruise costs
are likely to be measured up to random errors through additional field work of data
collection (such as surveys or industry interviews). As cruise costs are orthogonal to
bidders’ private values (or realized profitability) upon entry, one could reasonably
expect there to be no incentive to systematically under- or over-state cruise costs
in surveys. In this case, survey data, if collected, could well be expected to provide
a consistent estimator for expected entry costs.
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4.1. Identifying bidders’ risk attitudes

Assume that the number of potential bidders is fixed and known
to researchers. Our test for risk attitudes in this subsection builds
on the simple intuition that the certainty equivalent for risk-
averse bidders is strictly less than ex ante profits from entry. To
fix ideas, we first show that the difference between these two
quantities can be recovered from the distribution of entry decisions
and transaction prices when entry costs are fixed and reported
in data. Later in this subsection, we show how to extend this
approach under a more practical scenario where the data does not
report entry costs perfectly, but allows researchers to construct a
consistent estimator for its mean.

First, we show that bidders’ ex ante expected profits are identi-
fied. Let A} denote entry probabilities in the symmetric BNE when
the common entry cost is k. Let v (k) denote the ex ante profit for
a bidder i if he enters, conditional on entry cost k and that each
of his potential competitors enters with probability A;. That is,
w(k) = E[(V; — P))+ — K | K = k]. (Strictly speaking, the defi-
nition of 7 (k) is conditional on the event that “A; = A} Vj # i".
We suppress this from the notation for simplicity.) Note that 7 (-)
is independent of bidder identities due to the symmetry in private
value distributions. For all s < m, let V&™ denote the sth small-
est among m independent draws of private values from a parent
distribution Fy . Let Fy s denote the distribution of this order
statistic given entry cost k.

Proposition 1. Suppose Assumption 1 holds and entry costs are
reported in data. For any k with 0 < A} < 1, (k) is identified from
bidders’ entry decisions and the distribution of transaction prices.

The intuition builds on two simple observations: first, Assump-
tion 1 guarantees that Fy; can be recovered from the distribution of
transaction prices under cost k. This is because, with the number of
entrants A reported in data, the distribution of prices is a distribu-
tion of the second-largest order statistics out of a known number
of i.i.d. draws from Fy . Second, once Fy, is recovered, m (k) can
be calculated as a known functional of the distribution of private
values. It is worth noting that the identification of ex ante surplus
E[(V;i — P))4+ | K = k] per se does not rely on the assumed knowl-
edge of entry costs from data. Rather, it could be recovered for an
unknown entry cost k, as long as researchers are aware of which
auctions in data share this particular level of entry cost k.

Proposition 2. Suppose Assumption 1 holds. For any k such that 0 <
Ay < 1,7 (k) = Oifand only if bidders are risk-neutral, and t (k) > 0
(or <0) if and only if bidders are risk-averse (or risk-loving).

Proof. Lemma 1 showed that for any such k and in a symmet-
ric BNE, bidders enter with probability A}, where w(k; A;) =
Elu((Vi—=P)4+—k) | K =k, “A; = Af Vj # i”] = u(0). Thus, zero s
the certainty equivalent associated with u(-) and the distribution
of (V; — P+ given an entry cost k and the value distribution Fy .
It then follows that (k) > 0if u” < 0 (bidders are risk-averse).
Likewise, w (k) = 0 (or w (k) < 0) if bidders are risk-neutral (or
risk-loving). O

If the exit prices by all losing bidders are reported in data, the
distribution of other order statistics V™™ with m < m — 2
provides a source of over-identification of 7 (k). This is because
the one-to-one mappings between Fy, and F, ¢m);, exist for m <
m — 2 as well. Such over-identification should be exploited to
improve efficiency in the estimation. We now turn to the more
practical scenario where the data provide enough information to
identify the expectation of entry costs, even though the exact entry
cost in each auction is not reported. Such a scenario is relevant,
for example, when the data do not report K but provide noisy
measures of costs K = K + ¢ with E(¢) = 0. In such cases,
ux = E(K) = E(K) is identified.

Corollary 1 (of Proposition 2). Suppose that Assumption 1 holds.
@ 1If 0 < A; < 1forallk € [k, k], then E[7 (K)] = 0 when bidders
are risk-neutral, and E[7 (K)] > 0 (or <0) when bidders are risk-
averse (or risk-loving). (b) If K is independent of (V;)ien and E(K)
is identified, then E[x (K)] is identified from entry decisions and the
distribution of transaction prices.

The key idea underlying this result is that, with the sign of
u”(.) assumed fixed over its domain, the testable implications
in Proposition 2 are preserved after integrating out entry costs
under conditions of Corollary 1. Thus, with the expectation of entry
costs assumed to be known in Corollary 1, the test only requires
researchers to recover E[m (K)] (i.e., ex ante profits after K is
integrated out). The latter is achieved by exploiting two facts. First,
once conditioning on the number of entrants, bidders’ expectation
of their surplus (V; — P;), is independent of entry costs. This
is because of the orthogonality condition between private values
and the entry costs assumed in Part (b) of Corollary 1. Thus the
expectation of (V; — P;), given the number of competing entrants
A_; can be recovered from the data as in Proposition 2. Second, the
properties of the (binomial) distribution of the number of entrants
can be used to relate the unconditional distribution of the number
of competitors for i in the bidding stage to observed distributions.

Our approach here can be extended to allow for observed
auction-level heterogeneity in the data. To do so, we need to
modify Propositions 1 and 2 and Corollary 1 by conditioning the
assumptions and results therein on the observable auction-level
heterogeneity.

The main limitation of the approach in this subsection is of
course its reliance on the existence of a consistent estimator for
the mean of entry costs. This assumption does not hold when
the noisy measures of entry costs in the data are subject to
systematic omissions or overstatement. In those cases, the average
of these noisy measures yields a biased estimator for expected
entry costs.’ In Section 5 we propose an alternative test that does
not require knowledge of entry costs and thus is not subject to
this limitation. This is done by exploiting exogenous variation in
potential competition and auction heterogeneity reported in data.

4.2. Test statistic and bootstrap inference

We propose a statistic for testing the null hypothesis that
bidders are risk-neutral under the conditions of Corollary 1. The
entry costs K vary across auctions independently from (V;);en, and
for each auction the researcher only observes a noisy measure
of the entry cost K = K + ¢, where ¢ has zero mean and is
independent of K and (V;)en. The zero mean of € ensures that the
sample mean of K is an unbiased and consistent estimator for E (K).
To rule out uninteresting cases with degenerate entry decisions, we
maintain that 0 < A} < 1forall k € [k, k] throughout the rest of
this section.® Let r denote a binding reserve price (Fy (r) > 0) that
is fixed in the data and known to all potential bidders. To simplify
exposition, fix N and suppress it from the notation throughout this
section and Appendix B.

5 If the direction of bias is known to be upward then averaging these noisy
measures gives a consistent estimator for some upper bound on expected entry
costs. One can still test the null that ex ante surplus E[(V; — P;)4+ | K = k] does
not exceed the upper bound of expected entry costs. If the null is rejected then we
can conclude that bidders are risk averse. Nonetheless such a test has limited value
in practice, for it is inconclusive about risk attitudes when the null is not rejected.

6 While Corollary 1 allows for correlation between € and K, we maintain
independence between them throughout this section only for the sake of
simplifying the derivation of the limiting distribution of the test statistic.
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Our goal is to infer which of the three hypotheses below is best
supported by data:

Hy : 79 = 0 (risk-neutral);

Hpa : 19 > 0 (risk-averse); and H; : 19 < O (risk-loving)

where tp = E[x(K)]. The data contain T independent auctions,
each of which is indexed by t and involves N potential bidders.
Let A; denote the number of entrants in auction t. Let W, define
the transaction price in auction t. If the object is sold, then W; =
max{r, VA ~14)} when A, > 2and W, = r when A, = 1.
Otherwise, define W; < r.

Our test statistic 77 is a multi-step estimator for ty based on the
sample analog principle. First, for m > 2, estimate the distribution
of transaction prices:

W, <s, A =m}/1 ) 1A =m}

t<T t<T

Fwiazm,r(s) = 1

forany r < s < v.Then for any m > 2, estimate Fy by:

N
Frr) =55 Y o' Fwipmr(s)) fors>r, (3)
m=2

where ¢p(t) = t™ + mt™ (1 — t) so that its inverse ¢,,' maps
from the distribution of a second-largest order statistic from m
independent draws to the parent distribution.

Note this definition of ﬁv,T(S) takes advantage of the over-
identifying power of Assumption 1 by taking an average of the N—1
independent estimators for Fy. Our test would remain consistent
against any fixed alternative and asymptotically valid under the
null even with the average in (3) replaced by any one of the N — 1
estimates in {¢" (Fwazmr() : 2 <m < N}.

Next, define ¢, = E[(V; — P)4+ | A.i = a]for0 <a <N —1.
Estimate &, by:

b= | [er] [1 = For] s, 4)

where the integral can be calculated using mid-point approxima-
tions. Estimate the distribution of A_; by the column vector p; =

[Po.Ts P1.Ts - - -+ Pn—1.7) Where:
por =7 ) [N 1A = a) + S 1A = a + 1}]
t<T

for0 < a < N — 1.(See Eq. (A.5) in Appendix A for details.) Finally,
calculate the test statistic by:

N-1
A 2 A 1 ~
T = E Ca,TPa,T — T E K.
a=0 t<T

The next proposition establishes the asymptotic property of the
test statistic Ty.

Assumption 2. (i) The elements in (Vqi,V,,...,Vy,K,€) are
mutually independent with finite second moments and E(¢) = 0.
(ii) The marginal density for V; is the same for all i and bounded
above, and is bounded away from zero by a positive constant.
The marginal distribution Fy satisfies frv [1—F/ ()] 'dt < oo.

(iii) 0 < A} < 1forall k € [k, kI.

Condition (i) strengthens Assumption 1. The independence
between private values and entry costs is essential for the
identification result in Corollary 1 while the orthogonality between
€ and K is not indispensable for identification but helps to simplify
the limiting distribution of our test statistic. Condition (ii) contains
a mild restriction on the behavior of the distribution of private
values Fy near the upper bound of its support. It holds, for example,

ifFy(t) = 1 —J/1—tfort € [v,v] = [0,1]and 0 <
r < 1. Such a tail condition ensures that our test statistic is
smooth in the conditional distribution of transaction prices Fiyja=m.
Condition (iii) rules out extremely high or low entry costs that
induce degenerate entry behaviors.

Proposition 3. Suppose Assumptions 1and 2 hold. Then ~/T (21 —15)
converges in distribution to a univariate normal distribution with a
zero mean and a finite variance.

For a given level «, let 61,(,‘/2; denote an estimator for the
100 - (1 — «/2)-percentile of the limiting distribution of TGy —
Tp) using bootstrap procedures. (See Appendix C for the definition
of ¢1_42,7.) The decision rule for the test is to reject Hy in favor of
Hy (Ol‘ H]_) lf«/ffT > (’,\'1,0(/2] (OI‘ lfﬁfr < —61,0(/2,1'), and do not
reject Hy otherwise.’

The next proposition shows that the test is consistent against
fixed alternatives and attains the correct asymptotic level under
the null. Let Pr(~/T%r < - | 7o = t*) denote the distribution of
T conditioning on the true value for ty being t*.

Proposition 4. Under Assumptions 1 and 2,

lim Pr (ﬁfr > 6],0(/2,1' | To = T*) =1 V1*> 0; (5)

T—+00

lim Pr (ﬁfT < —Cl_apr | T0 = r*) =1 V¥ <0; (6)

T—+o00
lim Pr (ﬁfr > 61_0,/2,1' or ﬁf-[ < —61_,1/2,7' | To = 0)
T—+400

Two facts are used for showing these results. First, the empirical
distribution of ~/T (%T,b — %T) provides a consistent estimator for

the limiting distribution of /T (1 — 7o) under the stated condi-
tions, which is verified in Appendix C using results from Beran and
Ducharme (1991). Second, /Tt is zero under the null but diverges
to positive (or negative) infinity under the alternative.®

4.3. Mismeasurement of N

The number of potential bidders N could also be mismeasured
in the data for several reasons, each of which has a different impact
on the performance of our test.

First, under-measurement of N could happen due to finite-
sample limitations. For example, consider the case where equilib-
rium entry probabilities are low and the set of potential bidders is
measured as the union of entrants observed in the sample. In such
a case, a potential bidder may not be counted in because it never
entered as an active bidder in the finite sample. Our estimator for
entry probabilities is thus biased upward under this mismeasure-
ment, because potential bidders who decide not to enter in any
auction reported in data are not counted in the denominator. On

7 Qur bootstrap inference uses an asymptotically non-pivotal statistic
ﬁ(%T — ‘L'o). One could construct asymptotically pivotal statistics using the
pre-pivoting approach. This would help attain asymptotic refinements in the
approximation of the distribution of the test statistic relative to a first-order
asymptotic approximation or a bootstrap procedure using asymptotically non-
pivotal statistics. This is computationally intensive due to bootstrap iterations and
therefore we do not pursue this approach here.

8 The web supplement (see Appendix D, Fang and Tang, 2014) provides some
Monte Carlo evidence for the finite-sample performance of our test under a slightly
different specification where the value distribution is continuous over [v, v) with
a probability mass at v. It also includes some simulation results for the test
performance under systematic mismeasurement of the entry cost.
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the other hand, this mismeasurement does not impact the estima-
tion of the private value distribution, since the number of entrants
is correctly reported in data.

To see how this affects our test, recall that bidders’ risk premia
are weighted sums of interim profits from entry. Such an under-
measurement in N has no impact on the estimation of these interim
profits, which only depend on the private value distribution, the
number of competing entrants A_;, and the expectation of entry
costs. On the other hand, it does affect estimates for the weights,
or probability masses for A_;, through its impact on estimates of
entry probabilities. Unfortunately the sign of the resultant bias
in the estimator for risk premia is indeterminate, for it depends
on the way those interim profits vary with A_;, and how the
distribution of A_; changes with entry probabilities.” Nevertheless,
as N increases in the data-generating process, the effect of under-
measurement on the bias in the estimator for entry probabilities
and risk premium decreases.

The second possibility for mismeasurement is over-counting N
due to problematic assumptions. Again, consider the case where
potential bidders are measured as the union of entrants observed
in data. An implicit assumption is that a bidder who shows up in
one auction is by default also a potential bidder in other auctions
in data. This risks over-counting N when there are bidders who
pay the costs to enter in some auctions but are not interested
as a potential bidder in the others, say, due to budget or time
constraints. Such over-counting leads to a downward bias in
the estimator for entry probabilities but has no bearing on the
estimation of interim profits. Again, the ultimate impact of such
a bias on test performance is indeterminate, but diminishes as the
real N increases.

Yet a third scenario is that the number of potential bidders
reported in data, denoted by N, is a persistent random under-
measurement of the real N in the DGP. In this case, the conditional
distribution of N given N, denoted by g(N | N),is an additional
parameter to be identified. This differs qualitatively from the first
possibility (under-measurement due to finite sample limitations)
in that the distribution g is a model primitive that does not vary
with the sample size. An et al. (2010) studied the estimation
of a related model of first-price auctions where the number of
actual bidders is misclassified due to the truncation by binding
reserve prices. It turns out we can apply their argument to the
current context to identify the joint distribution of (N, N), and the
distribution of transaction prices given N. Consequently, the entry
probabilities conditional on N are also identified and tests for risk
attitudes can be constructed as before.

For easy exposition of how the argument in An et al. (2010)
can be applled here, fix an entry cost and let N = f (N, V) and
N = f(Z, v), where Z are some instruments that do not affect the
distributions of bidders’ private values. Assume that bidders’ pri-
vate values, U and Z, are mutually independent conditional on N.
This implies that the transaction price W is independent of NandZ
given N, and that N is independent of Z given N. Provided that the
joint support of (Z N ) satisfy a mild full-rank condition, the condi-
tional distribution of N given N, the conditional distribution of W
given N, and the joint distribution of (2 , N) are jointly identified
using a typical matrix diagonalization argument. (See Theorem 1
in An et al. (2010) for a proof.) Knowledge of these distributions,
together with the directly identifiable distribution of W given the

9 Knowing that the estimators for entry probabilities are biased upward under
this mismeasurement is not sufficient for deriving the sign of bias in our estimator
for risk premium. This latter sign is determined by primitive elements and
endogenous objects in the model (i.e. the utility function, the private value
distribution, and the true equilibrium entry probabilities).

number of entrants, implies that the entry probabilities are identi-
fied and consistently estimable. The proposed test for bidders’ risk
attitudes can then be constructed. We leave the implementation of
a test based on such an idea for future research.

5. Inference of risk attitudes with unobserved entry costs

In lots of applications, auctions reported in the data differ
in observed characteristics of the auctioned object. Besides, the
number of potential bidders N varies across auctions. In this
section, we show how to use these sources of variation to infer
bidders’ risk attitudes, when entry costs known to bidders are not
reported in data.

Assumption 3. For all i, V; = h(Z) + n;, where Z is a vector of
auction characteristics reported in the data, and »; are i.i.d. draws
from some distribution F, independent of Z and N. The support of
V; is contained in R;..

The function h(-) is a model primitive unknown to the econo-
metrician. It is directly identifiable under a location normalization
E[n] = 0. To see this, let Fy|; denote the distribution of V; con-
ditional on Z, where subscript i is dropped due to symmetry. By
the same argument used in Proposition 1 in Section 4.1, Fyz is
identified from the distribution of transaction prices Fw z a=m. As-
sumption 3 and E[n] = O then imply that h(z) is identified as
h(z) =ElV; | Z =z] = f vdFy|z—,(v) for all z. The support condi-
tion that Pr(V; > 0) = 1 is not indispensable to our identification
argument below. It can be replaced by an alternative condition that
requires u(0) # E[u((n; — nj)+ — k)], which is a mild restriction
on the model elements k, u(.) and F,,.

Independence of n from N in Assumption 3 is analogous to
the assumption of exogenous variation in the number of potential
bidders in Haile et al. (2004) and Guerre et al. (2009). As shown
in Guerre et al. (2009), it is possible to identify bidders’ risk
attitudes even when N is endogenous, as long as the data contains
valid instruments once conditioning on some control variables. We
provide detailed discussions about this in Section 5.4.1.

Under Assumption 3, a test for risk attitudes can be constructed
even when entry costs are not reported in the data. The idea is
to exploit the fact that bidders’ risk attitudes affect how entry
probabilities vary with Z and N in equilibrium. To illustrate this
idea, it is instructive to investigate the indifference condition
in equilibrium. Such conditions equate bidders’ utility from the
certainty equivalent, u(0), with their ex ante utility from entry.
By construction ex ante utility from entry is a weighted average
of “interim” utility, which conditions on the number of competing
entrants with expectations taken with respect to private values.
Entry probabilities enter ex ante utilities in the indifference
condition through the weights assigned to interim utilities. These
weights correspond to probability mass functions for the number
of competing entrants. As Z and N vary, the entry probabilities (and
therefore the weights) change endogenously in order to respect the
indifference condition in equilibrium.

If bidders are risk-neutral, then the variation in Z induces the
same rate of changes in interim utilities as that in expected private
values. On the other hand, this equality fails when bidders are
risk-averse (or risk-loving) due to the decreasing (or increasing)
rate of increase in utility. Under the orthogonality and additive
separability conditions in Assumption 3, the rate of changes in
expected private values is over-identified as the ratio between
changes in expected transaction prices. Thus, a test for bidders’ risk
attitudes would be feasible if the rate of changes in interim utilities
can be related to the distribution of entry decisions and transaction
prices.

We construct a linear system that characterizes the indifference
conditions for various Z and N. Under Assumption 3, the number
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of unknowns in the system (i.e. the interim utilities) increases at
the same pace as the number of equations. As long as the matrix
of coefficients in the linear system (i.e. weights for interim utilities
under various Z and N) has full-rank, we can recover the rates of
changes in interim utilities from the distribution of prices and entry
decisions.! This allows us to conduct a test for risk attitudes when
the entry costs are not reported in the data.

5.1. Identification

Suppose that the entry cost k is fixed across auctions but not
reported in data.'! To simplify exposition, assume that there is no
binding reserve price. Let 1, , denote bidders’ equilibrium entry
probabilities in auctions with Z = z and the number of potential
bidders N = n.For 0 < a < n — 1, define:

Pazn =Pr(A_j=alZ=2z, N=n)

- <”; 1) (hen)” (1= A)™ ™" (8)

In the mixed-strategy equilibrium in the entry stage,

n—1

u(0) = E[u((Vi = P)y —k) [ Z=2,N=n]= Y Ya(2) paz.n (9)
a=0

where V(z) = E[u((V;—P;))+—k) | A_; = a,Z = z],andA_;, V;, P;
are defined as in Section 3. Under Assumption 3, (V; — P;) does
not depend on n given z and the number of competing entrants
A_j=a.Foralla > 1, ¥,(z) is defined as:

Va(2) = E[u((Vi = P)y — k) [ Z=2,A_; =d]

=E [u ((n,- — n<a:a))+ — k)] ,

where 79 is the largest among a independent draws from E,.
Also, by construction,

Yo(z) = E[u(V; — k) | Z = z] = E[u(h(z) + n; — k)]

where the second equality follows from independence between 7;
and z. Clearly v,(z) does not depend on z for a > 1; thus we let
Yy = Yq(z) foralla > 1and any z.

Assumption 4. There exist z,z’, z” on the support of Z and some n
suchthat0 < A, < 1forall2 <s <n,and A, », A7 5 € (0, 1).

Assumption 4 requires there be enough variation in auction
characteristics and in potential competition in data. The condition
that entry probabilities are in (0, 1) rules out uninteresting cases
with degenerate entry behaviors.'? This condition can be directly
verified from the data in principle.

The characterization of entry probabilities forZ = zand N = s
for 2 < s < nleads to a system of (n — 1) equations:

s—1
Vo(@pozs+ Y Vapazs =u(0) fors=2,....n. (10)
a=1

10 gee Assumption 3 and discussions after Lemma 2 for details about the sufficient
rank condition.

11 we could generalize this section by allowing entry costs to vary across auctions
in the data-generating process as well. To do this, we could let the vector of auction
heterogeneity consist of two subvectors (Z, Z ), and let k be an unknown function
of Z alone. Our inference method below applies as long as we could condition on 7
and exploit the variations in Z.

12 This assumption restricts how the certainty equivalent u(0) is compared to
bidders’ interim utility given z and the number of competing entrants. For instance,
in the case with N = 2, this condition suggests that the certainty equivalent u(0) is
bounded between v/y(z) and v/1(z) at least for some z.

We also have additional equations from auctions with different
observed features z’ or z” and N = n. That is,

n—1
WO(Z/)pO,z/,n + Z w;pa,z’,n = u(0);
a=1

and likewise with z’ replaced by z”. (11)

Stacking the system of equations from (10) to (11) and moving the
terms that involve ¥ to the right, we have:

L0,z .n 0 0 P2,z .n Pn—-1,2"n
0 00,2/ ,n 0 P2.7'.n Pn—-1,z/.n
0 0 £0.2,2 0 cee 0
0 0 £0z3 P223 0
0 0 Pozn  P2,z,n Pn—1,z,n
(n+1)-by-(n+1)
u(0)
Yo(z") - Pran
Vo(2) 1 Pz
Vo(2) P1.22
<fwe =1 | ¢ v (12)
Va1 : '
Pz,
—— \yy/
(n+1)-by-1 —— (n+1)-by-1
(n+1)-by-1

The linear system has n+ 2 unknowns (i.e. ¥ (z"), ¥0(2'), ¥0(2)
and {yy; : 1 < a < n— 1})and n + 1 equations. Nonetheless,
the next lemma shows how (12) can be used to relate the ratio of
changes in interim utilities v to entry probabilities as z varies.

Under Assumption 4, the coefficient matrix in (12) has a full
rank of n + 1. (See the proof of Lemma 2 in Appendix A.) Now re-
place u(0) by 0 and replace /] by some arbitrary nonzero constant
¢, and solve for the n + 1 unknowns (Yo(z"), Yo(z"), Yo (2), {¥] :
2 < a < n — 1}) in (12). Denote the unique solutions by

('LO,Z”» IZO,ZH &O,Za {(Yg:2<a<n-1}).
Lemma 2. Suppose Assumptions 3-4 hold. If h(z') # h(z"), then

Yo(z') — Yo(2) _ &o,z/ - 1Nﬁo,z
Yo(z") — Yo(2) 1Zfo,z” - &o,z’.

(13)

Assumption 4 is sufficient but not necessary for (13) to hold
under Assumption 3. We could relax Assumption 4 and only
require the data-generating process to contain enough variation in
Z and N so that a linear system similar to (12) can be constructed
for at least three different values of Z with the coefficient matrix in
(12) being non-singular.'® The next proposition states a testable
implication of bidders’ risk attitudes when entry costs are not
recorded in data.

13 Specifically, a weaker sufficient condition for Lemma 2 is as follows: “There
exist ] > 3 values of Z, denoted {Z/ : 1 < j <]}, and ] overlapping sets of integers on
the support of N, each of which is denoted ¢/ = {1, W2, ... n'Mi} with M; = #{¢7),
such that the matrix of coefficients for {1o(2') : j < J}and W5, ... i) (wheren =
max{uji,{g“f}}) has full-rank in the linear system of ng M; equations characterizing
the equilibrium entry probabilities for various Z and N.” This condition necessarily
requires ng M; > n+ ] — 2. Note Assumption 4 is a special case of this condition

with] =3,(z",2%,2%®) = (z,7,2"),¢' ={2,3,...,n},and ¢? = ¢ = {n}.
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Proposition 5. (a) Under Assumption 3,
hz) —h(z) =EW | Z=2z1,A=0a) —EW [ Z=2,A=0)

for any (z1,z2) and a > 2. (b) Suppose Assumptions 3-4 hold for
(z,7,7") such that h(z") > h(z') > h(z). Then

<
ijfu”{:}o. (14)

>

Yo — Vo, |~ | h@)—h@)
1}0,2,/ — &O‘Z/ <| h@") = h@)

To construct a test based on Proposition 5, one needs to lo-
cate a triple (z,z’,z”) such that h(z’) > h(z’) > h(z). Under
Assumption 3, this sequence of strict inequalities is equivalent to
EW | Z/,A =a] > E(W | Z,A =a] > E[W | z,A = d] for
all a > 2. (See part (a) of Proposition 5.) Thus such a triple can
be found using the distribution of prices conditional on Z and the
number of entrants. Note this does not require the location nor-
malization E[n;] = 0.

In some other contexts, it is possible to locate such a triple
using the shape restrictions on h that are known a priori to
researchers. For example, economic theory or common sense
sometimes restricts h(.) to be monotonic in one of the elements in
Z,or suggests that Fyz is stochastically ordered over a known triple
Z € {z,7',7"}. In such cases, the choice of the triple to be used
in the test is immediate.' In the following subsection, we assume
that a triple z, z’ and z” with h(z”) > h(z’) > h(z) is known and
fixed.

5.2. Test statistic

We now construct a test statistic based on Proposition 5 and
some triple (z, z, z”) and n known to satisfy Assumption 4. First,
estimate the coefficient matrix on the right-hand side in (12) and
the coefficient vector on the left-hand side in (12) by plugging in
sample analogs of the entry probabilities in (8). Next, replace u(0)
with 0 and v} with an arbitrary negative constant ¢ in (12) and

solve it to get estimates for (&072//, fbo,z/, &0,21 {&a 12 <a <
n — 1})." Denote these estimates by v/(z), Vo(z'), Vo(z”) and
{¥F 12 < a < n— 1} respectively. Our test statistic is

Yo@) — @ o

Yo(2") — Yo(2)

where

O (EW|zZ=Z,A=a)—EW |Z=2z,A=q)
=) d| = - (15)
EW|zZ=zA=a)—EW |Z=2,A=0)

T

3>

a=2

with E"(W | Z = z, A = a) being kernel estimators for expected
transaction prices given z and the number of entrants A = g,
and {§, : 2 < a < n — 1} are data-dependent weights. In the
simulations below, we use 4, = 6,2/(3.1—, 6,°2), where 6, is the
standard error for the ratio of differences in the parentheses on the
right-hand side of (15).

We now briefly discuss the asymptotic property of our test
statistic 7. It is instructive to look at the case where the support

14 In other cases, we would need a preliminary step for selecting a triple satisfying
the inequalities, based on comparing the estimates of E(W | Z = z,A = a). We
leave issues such as how to account for the impact of pretesting in inference to
future research.

15 10 identify the ratio of differences between interim utilities v/ under various
z, the sign of the chosen constant ¢ does not matter. However, using a negative ¢
has the additional benefit of recovering the correct ordering of v, under different
z. (See the proof of Lemma 2 in Appendix A for details.)

of Z is discrete, which is also what we consider in the simulations
of Section 5.3 below. In this case, T is by construction a smooth
function of sample averages. (To see this, note that ):z,n are sample
averages and E"(W | Z = z,A = a) are ratios whose numerators
and denominators are sample averages. It then follows that 12/0 (2),

fbo(z’), fbo(z”) and R are smooth functions of sample averages.)
Under Assumptions 3 and 4 and the conditions on finite second
moments of transaction prices, the Delta Method can be applied
to show that T converges at the parametric rate to its population
counterpart t,, which is defined as the difference between the two
ratios compared in (14). Furthermore, the asymptotic distribution
of T is normal with a zero mean.

A test for risk attitudes follows a procedure similar to that
of Section 4.2, with critical values estimated using bootstrap
resampling. With T being a smooth function of sample averages,
the bootstrap estimator is expected to be consistent (see section
2.1in Horowitz (2001) for the definition of bootstrap consistency).
For the same reason, the test using bootstrap critical values is
expected to perform at least as well as one based on first-order
asymptotic approximation both in terms of the errors in rejection
probabilities and its asymptotic power.

Finally, note that if several distinct triples on the support of Z
are known to satisfy Assumption 4, then we can construct a more
efficient version of the test. For example, the test statistic could be
replaced by some form of an average of several 7's, each of which
is calculated based on one of the triples.'®

5.3. Monte Carlo simulation

This subsection presents some Monte Carlo evidence for the
performance of the test above in finite samples. The data-
generating process (DGP) is as follows. The distribution of auction
characteristics Z is multinomial over a discrete support {1, 2, 3}
with equal probability masses. Upon entry, a bidder is private value
is B1 + B2Z + n;, where B = (B4, B2) are parameters to be ex-
perimented with and »; are i.i.d draws from a uniform distribu-
tion over [—2, 2]. The support of potential bidders is {2, 3, 4, 5, 6}.
Conditional on Z, the distribution of N is stochastically increas-
ing: Pr(N = n|lZ = 1) = 1forn = 2and } forany n # 2;
P(N = njZ = 2) = 1forn = 4and § forany n # 4;
and Pr(N = n|Z = 3) = jforn = 6and } foranyn # 6.
Such a specification is meant to capture the possibility that the
value of the auctioned object is positively correlated with poten-
tial competition. An alternative DGP where the distribution of N
is restricted to be invariant in Z produces similar results. Bidders’
von-Neumann-Morgenstern utility is u(c) = (%)V. The entry
cost observed by potential bidders is fixed at K = 1 in all auctions.
As explained in Section 5.1, the test does not require the knowledge
of the actual entry cost in the data.

Table 1 reports equilibrium entry probabilities for 8 = (2, 5)
and (2, 3) respectively. As the theoretical model suggests, for a
fixed B8, the entry probabilities are monotonically decreasing in
N and increasing in Z (due to the monotonicity of h(Z)). Also, as
the marginal effect of Z diminishes from 8, = 5to 8, = 3,
bidders are less likely to enter the bidding stage for any given Z and
N. Under the current utility specification, risk aversion appears to
result in lower entry probabilities ceteris paribus. Most importantly,
the entry probabilities are in the interior of (0, 1). This implies the
non-singularity of the coefficient matrix in (12).

We report the performance of the test in simulated samples that
contain T = 3000 or T = 5000 auctions with variation in Z and

16 \we thank the Associate Editor for pointing this out.
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Table 1a
Equilibrium entry probabilities: 8 = (2, 5).
y =0.6 y =1 y=14
Z=1 zZ=2 zZ=3 Z=1 zZ=2 zZ=3 Z=1 zZ=2 zZ=3
N=2 0.7767 0.8440 0.8756 0.9000 0.9429 0.9600 0.9547 0.9789 0.9871
N=3 0.5120 0.5881 0.6299 0.6667 0.7449 0.7851 0.7714 0.8420 0.8756
N=4 0.3763 0.4419 0.4797 0.5145 0.5930 0.6365 0.6213 0.7034 0.7468
N=5 0.2966 0.3524 0.3854 0.4164 0.4883 0.5297 05152 0.5961 0.6412
N=6 0.2445 0.2927 0.3216 0.3491 0.4139 0.4520 0.4386 0.5147 0.5585
Table 1b
Equilibrium entry probabilities: 8 = (2, 3).
y =06 y =1 y=14
Z=1 zZ=2 Z=3 Z=1 zZ=2 Z=3 Z=1 zZ=2 Z=3
N=2 0.7185 0.7960 0.8349 0.8571 0.9130 0.9375 0.9267 0.9626 0.9762
N=3 0.4556 0.5323 0.5768 0.6051 0.6882 0.7337 0.7119 0.7914 0.8323
N=4 0.3299 0.3934 0.4319 0.4573 0.5354 0.5813 0.5590 0.6435 0.6914
N=5 0.2580 0.3110 0.3438 0.3660 0.4352 0.4774 0.4568 0.5366 0.5840
N=6 02118 0.2569 0.2852 0.3045 0.3658 0.4039 0.3852 0.4585 0.5031
Table 2a
Probabilities for accepting [H;, Hp, Ha]: 8 = (2, 5).
o =5% a = 10% oa = 15%
T = 5000
y =0.6 [0.00%, 0.75%, 99.25%] [0.00%, 0.75%, 99.25%] [0.00%, 0.75%, 99.25%]
y =07 [0.00%, 16.00%, 84.00%] [0.00%, 8.00%, 92.00%] [0.00%, 4.25%, 95.75%]
y =038 [0.00%, 80.75%, 19.25%] [0.00%, 53.75%, 46.25%] [0.00%, 37.00%, 63.00%]
y=1 [4.50%, 94.00%, 1.50%] [6.25%, 89.25%, 4.50%) [10.75%, 83.50%, 5.75%]
y =12 [56.25%, 43.75%, 0.00%] [62.25%, 37.75%, 0.00%] [64.00%, 36.00%, 0.00%]
y=13 [85.75%, 14.25%, 0.00%] [89.25%, 10.75%, 0.00%] [91.75%, 8.25%, 0.00%]
y=14 [97.25%, 2.75%, 0.00%) [97.75%, 2.25%, 0.00%] [98.25%, 1.75%, 0.00%]
T = 3000
y =0.6 [0.00%, 6.75%, 93.25%] [0.00%, 4.25%, 95.75%] [0.00%, 3.00%, 97.00%]
y =07 [0.00%, 38.00%, 62.00%] [0.00%, 19.00%, 81.00%] [0.00%, 13.50%, 86.50%]
y =0.8 [0.00%, 88.50%, 11.50%] [0.00%, 77.75%, 22.25%] [0.00%, 58.50%, 41.50%]
y=1.0 [5.00%, 92.75%, 2.25%] [7.25%, 88.50%, 4.25%] [11.50%, 82.25%, 6.25%]
y =12 [48.50%, 51.50%, 0.00%] [54.50%, 45.50%, 0.00%] [58.00%, 42.00%, 0.00%]
y =13 [76.75%, 23.25%, 0.00%] [80.00%, 20.00%, 0.00%] [83.00%, 17.00%, 0.00%]
y=14 [95.25%, 4.75%, 0.00%) [97.00%, 3.00%, 0.00%] [98.25%, 1.75%, 0.00%]
Table 2b
Probabilities for accepting [H;, Ho, Hal: B = (2, 3).
o =5% o = 10% o =15%
T = 5000
y =0.6 [0.00%, 10.00%, 90.00%] [0.00%, 6.00%, 94.00%] [0.00%, 4.25%, 95.75%)
y =07 [0.00%, 47.25%, 52.75%] [0.00%, 30.25%, 69.75%] [0.00%, 23.00%, 77.00%]
y =038 [0.00%, 88.25%, 11.75%] [0.00%, 79.00%, 21.00%] [0.00%, 66.75%, 33.25%]
y =1.0 [3.00%, 94.25%, 2.75%) [5.75%, 89.50%, 4.75%] [9.75%, 84.00%, 6.25%)
y =12 [39.25%, 60.75%, 0.00%] [45.25%, 54.75%, 0.00%] [50.50%, 49.50%, 0.00%]
y=13 [68.25%, 31.75%, 0.00%] [72.75%, 27.25%, 0.00%] [77.00%, 23.00%, 0.00%]
y=14 [87.25%, 12.75%, 0.00%] [90.50%, 9.50%, 0.00%] [93.00%, 7.00%, 0.00%]
T = 3000
y =0.6 [0.00%, 15.25%, 84.75%] [0.00%, 8.75%, 91.25%] [0.00%, 6.25%, 93.75%]
y =07 [0.00%, 61.25%, 38.75%] [0.00%, 41.25%, 58.75%] [0.00%, 31.00%, 69.00%]
y =038 [0.00%, 91.25%,8.75%] [0.00%, 84.75%, 15.25%] [0.00%, 77.75%, 22.25%]
y =10 [4.75%, 93.00%, 2.25%) [8.00%, 87.50%, 4.50%) [10.75%, 83.00%, 6.25%]
y =12 [33.00%, 67.00%, 0.00%] [41.00%, 59.00%, 0.00%] [45.25%, 54.75%, 0.00%]
y=13 [62.75%, 37.25%, 0.00%] [67.50%, 32.50%, 0.00%] [73.50%, 26.50%, 0.00%]
y=14 [75.75%, 24.25%, 0.00%] [80.75%, 19.25%, 0.00%] [84.50%, 15.50%, 0.00%]

N. For each pair (8, y) and a sample size T, we simulate S = 400
samples. For each simulated sample, we calculate a test statistic T
and record a decision under significance levels o € {5%, 10%, 15%}
respectively, based on critical values estimated from B = 400
bootstrap samples. Table 2 summarizes the performance of the test
fory € {0.6,0.7,0.8, 1.0, 1.2, 1.3, 1.4}.

Each row in Table 2 corresponds to a DGP with a pair (8, ) and
a sample size T. The numbers in each cell are the proportions of S
simulated samples in which H;, Hy, Hu are accepted respectively.

Table 2areports the test results when the auction heterogeneity
Z has a larger marginal impact on bidders’ values (8, = 5). With
a moderate sample size T = 3000, the probabilities for rejecting
the null is reasonably close to the targeted significance levels «
under the null. Errors in rejection probabilities also decrease as
the sample size increases to T = 5000. For both sample sizes
and all significance levels, the power of the test is reasonably high
for almost all alternatives except y = 0.8. Besides, the power is
also shown to approach 1 as sample sizes increase. The probability
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for “Type-III" error (i.e. rejecting the null in favor of a wrong
alternative) is practically zero across all specifications and sample
sizes.

Our empirical estimates for the power of the test are low against
the risk-averse alternative y = 0.8. For example, when the sig-
nificance level is « = 5% in Table 2a, our empirical estimates for
the power are 11.5% with T = 3000 and 19.25% with T = 5000.
However, the power improves at a fast pace as the alternative
moves farther away from the null. For example, in the same Ta-
ble 2a, when y = 0.7 and ¢ = 5%, the estimates for power
under T = 3000 and 5000 increase substantially to 62% and 84% re-
spectively. Also, for y’s with the same distance from the null value
1, the power reported against risk-loving alternatives is consider-
ably higher than that against risk-averse alternatives. For instance,
in Table 2a, when @« = 5% and y = 1.2, the power is 48.5% for
T = 3000 and 56.25% for T = 5000, which are a lot greater than
their counterparts under y = 0.8.

That the reported power can be low against the alternatives
with y € [0.8, 1) is due to the combination of two factors. First,
these risk-averse alternatives correspond to utility functions with
curvatures not too far from that of a linear function. Thus the dif-
ference between the ratios compared in Proposition 5 (i.e. t,, or
the probability limit of 7) is close to zero under these DGPs. On
the other hand, the standard error for estimating conditional entry
probabilities is large relative to the absolute value of this differ-
ence t, because the smaller sample sizes after Z and N are con-
trolled for. (Recall that the T observations consist of auctions with
15 possible combinations of (Z, N) in the DGP considered.) This in
turn translates into relatively large standard errors for 7. To sum
up, the test statistics are asymptotically normal both under y = 1
and y = 0.8, with variances large relative to the difference be-
tween the means. This could explain the observed lower power
against alternatives y € [0.8, 1). We argue that this should not
be interpreted as evidence of unsatisfactory finite sample perfor-
mance of our test. Rather it is due to the fact that the curvature of
utility functions is close to being linear for € [0.8, 1). To reiter-
ate, the power of the test does improve substantially either as the
sample size increases, or as y moves farther away from 1.

Table 2b reports the test performance when 8 = (2, 3).
Overall, it registers the same patterns as those in Table 2a. More
interestingly, a comparison between Tables 2a and 2b suggests
that, for any T, « and a fixed alternative y # 1, the power of
the test is larger in the DGP with a greater marginal effect of
auction heterogeneity. Such a pattern across the two panels is
consistent with the idea that underlies our test: the identification
of risk attitudes is driven by the difference between the rate of
changes in interim utilities and the rate of changes in expected
private values as Z varies exogenously. The distance between these
two ratios under any alternative depends on the difference in
expected private values as Z varies, which depends on how Z
enters h(Z).

5.4. Further discussions

5.4.1. Endogeneity in the number of potential bidders

It is possible to extend the results from Sections 5.1 to 5.2 to the
case where the number of potential bidders N is endogenous. The
main idea is to use additional auction heterogeneity reported in
data as instrumental variables under exclusion restrictions. Guerre
et al. (2009) introduced an instrument-based argument to recover
bidders’ utility functions in first-price auctions. Below we discuss
how their argument can be applied in the current context.

Let the number of potential bidders be given by a structural
equation N = ((Z, X, €), where (Z, X) are auction heterogeneity
reported in data, and ¢ is some auction-level variable not reported

in data. As before, we maintain V; = h(Z) + n; for alli. Now assume
that the idiosyncratic component #; is independent of (X, Z) con-
ditional on €. Conditional on €, n;’s are independent draws from the
same distribution F,;c with E[n; | €] = 0.

Under these conditions, the number of potential bidders may
remain endogenous even after conditioning on (Z, X), because of
the dependence between € and 7; even after conditioning on (Z, X).
On the other hand, these conditions imply that 7; are orthogonal
to both (Z, N) conditional on €. Note that X differs from Z in that
X only affects potential competition but not bidders’ private values.
The existing literature abound in examples of such variables. In e-
bay coin auctions studied in Bajari and Hortacsu (2005), sellers’
reputation affects bidders’ participation decisions but not their
private values. In US Forest Service auctions considered in Athey
et al. (2011), road costs and the density of timber were found to
affect participation but not bidders’ values.!”

Following Guerre et al. (2009), assume ¢ = N — E[N | Z, X].
That s, € can be recovered from data as the residual of the nonpara-
metric regression of N on (Z, X). Our identification method from
Section 5.1 applies once conditioning on €. Specifically, the interim
utilities ¥, (z, €) and the entry probabilities pq ; ,(€) on the right-
hand side of (9) now all depend on ¢, whose realized values can
be recovered through regressions, and therefore can be controlled
for. The identification of risk attitudes then follows from the same
argument as in Proposition 5 after conditioning on €.

5.4.2. Full identification of the utility function

We conclude this section with brief discussions about the
possibility to use auction heterogeneity observed from data to fully
recover bidders’ utility functions. Consider a cross-sectional data
with a large number of independent auctions, which share the
same entry costs k (unknown to econometricians) and the same
number of potential bidders N, but differ in their auction-level
heterogeneity Z. Then in the mixed-strategy Nash equilibrium in
the entry stage,

/ u(y — K dFyzn(y | 2) = u(0) (16)

where Y; = (V; — P;); and Fyjz vy denotes its distribution given
(Z, N). The distribution of Y depends on Z both directly through
Fy,z and indirectly through equilibrium entry probabilities that
affect the distribution of P; through the distribution of the number
of entrants A. Note for a given k, (16) is an integral equation in
u(.), with the kernel being the conditional density fyz y which is
identified by the argument used in Proposition 1 in Section 4.1.
Besides, with exogenous variation in Z and N, we can augment
a system of integral equations of u(.) by including additional
equations similar to (16) that are derived for different N and Z.
We conjecture that it is possible to establish the uniqueness of the
solutions of u(.) and k in such a system of integral equations, after
imposing location and scale normalizations (such as u(0) = 0 and
u'(0) = 1) and additional primitive conditions that restrict how
Fyz n varies with (Z, N). We leave this as a direction for future
research.'®

17 To be precise, the exclusion restrictions in these papers are stated for entry
decisions as opposed to decisions to become a potential bidder. Nevertheless, the
arguments used in those papers can be applied here to justify the inclusion of these
variables in X above.

18 For any fixed k, let I'(u)(z) = [u(t — K)dFyzy(t | z). That is, I" is a
linear operator mapping from the space of continuous, bounded functions over the
support of Y into the space of continuous, bounded functions over the support of Z.



H. Fang, X. Tang / Journal of Econometrics 180 (2014) 198-216 209

6. Extensions
6.1. Affiliated private values

The assumption of independent private values is instrumental
for recovering the distribution of private values from the
distribution of transaction prices, because it implies that a one-
to-one mapping exists between the parent distribution and the
distribution of the second-largest order statistic it generates.
However, independence between private values fails in certain
situations, e.g. if bidders’ values are correlated through auction
heterogeneity known to bidders but not reported in the data. With
affiliated private values, the joint distribution of private values
is no longer point identified from the distribution of transaction
prices for a given N (see Athey and Haile (2002)). Nevertheless,
Aradillas-Lopez et al. (2013) construct sharp bounds on bidders’ ex
ante expected surplus, using exogenous variation in the number of
active bidders (see Theorem 1 in Aradillas-Lopez et al. (2013)).

In our model, exogenous variation in the number of entrants A
follows from a more primitive condition of exogenous variation in
the number of potential bidders N, and from the fact that mixed-
strategy entry equilibria are non-selective. As a result, we can
apply the partial identification result from Aradillas-Lopez et al.
(2013) to construct bounds on bidders’ ex ante surplus from entry.
Comparing these bounds with entry costs reported in data may
reveal some information about the bidders’ risk preference.

To see this, consider a model with no binding reserve price.
Fix the number of potential bidders at n and the entry cost at k.
If the joint distribution Fy, .. v, is affiliated and exchangeable
in bidders’ indices, then there exist symmetric mixed-strategy
Nash equilibria in entry stage where bidders enter independently
with probability A} as characterized in Lemma 1 (see Lemma A.1
for details). In addition, we maintain the following assumption
about exogenous variation in the number of potential bidders. Let
n denote the largest integer on the support of the number of
potential bidders N in the data-generating process.

Assumption 5. For any k, the random vector (V)™ is affiliated
and its joint distribution is continuous and exchangeable in bid-
ders’ identities over the support [v, D]". For any subset i C
{1,2, ..., n}, the joint distribution Fy,,_.|x equals the correspond-
ing marginal distribution derived from F<Vi),f‘,1 ke

Recall that a mixed-strategy entry equilibrium is non-selective
in that, for any set of potential bidders 7 and any set of entrants
a < 7, the joint distribution of private values F, .k equals
the corresponding marginal distribution derived from Fy, ..
Hence this assumption implies that the variation in the number
of entrants is exogenous in the sense that it is not correlated with
the distribution of private values. Thus the approach in Aradillas-
Lopez et al. (2013) can be applied to bound the ex ante expected
profits from entry. Let , (k) denote the expected surplus (V; — P;)+
for i conditioning on competing with A_; = a other entrants and
an entry cost k.

Proposition 6 (An Application of Theorem 1 in Aradillas-Lopez et al.

(2013).). Under Assumption 5, {L(k) < ¢,(k) < ¢Y (k) for any k and
0 <a < n— 1, where

1
L _
W =77

v v
X (f tdF\-/‘—(a+1:a+1)|k,a+1 ) — f tdFw |k A=a+1 (t)) and
v v

1 v v
k)= —— (f tdF, 11 - / tdFw kA= 1(f)>.
a a+1\J, v@tatD |k g1 ) k.A=a+

where Fy.a=s is the distribution of transaction price given k and
A =s, and

n
+ -
FV(S3S)\k,S(t) = Z ﬁl“v(m—l:m)lk(t)‘f’ %Fv(n—l:n)‘k(t)
m=s+1
n
Fraops® = D s Foontm (0 +
m=s+1

[6:" Fyirn ()]

Siw

The intuition of this result is as follows. First, an application
using the Law of Total Probability reveals:

Fv(a+1:a+])|k == ’:I_‘_%Fv(a+1:a+2)|k + %Fv(a+2:a+2)|k-

Then recursive substitutions show that Fy@ttorn (which is not
point-identified from the distribution of transaction prices due
to affiliation) can be written as a linear combination of the
distribution of second-largest order statistic Fym-1m) for m =
a+ 2,...,n(which is directly identifiable from the data) and the
distribution of the largest order statistic Fy @) |- Second, it can be

shown that the distribution of V™™ given k is bounded between
[d)r-l’l(Fv(m;a)”((.))]” and Fya-1(-). These bounds are derived
by exploiting the link between the distribution of the first-order
and the second-order statistics Fy ., and Fy@-1w ) under two
extreme scenarios: full independence or perfect correlation among
private values. These two results imply that Fya), is bounded

+ — - )
between Fv<a:u)|k,a and F ., ka foralla < n— 1. Proposition 6 then

follows from the fact that the ex ante surplus ¢;(k) can be
expressed as the difference between — [ tdF, (@+1e+1 ) (t) and

> a+1
a% fvv tdFy @atn i ().

It then follows from Proposition 6 that a bidder’s ex ante surplus
prior to entry in the presence of n potential bidders (denoted by
£*(k, n)) is bounded between ¢*(k, n) and ¢jj(k, n) foralln < n,
where

n—1

gk, n) = Z Cf(k) Pr(A_; = alk,n) forh € {L, U}. a7

a=0

Unlike in the case with independent private values where we could
point identify ¢*(k, n), here we can only recover a pair of bounds
¢ (k, n) and ¢;j(k, n) when private values are affiliated. However,
provided that entry costs are observed from data, one can still test
the chain of inequalities ¢*(k,n) < k < ¢j(k, n) against the
alternatives of “k < ¢f(k,n)” and “k > ¢j(k, n)”, using a test
statistic based on sample analogs and a bootstrap procedure. If the
null is rejected in favor of one of the alternatives, we can conclude
that there is evidence in the data that supports hypotheses of risk-
aversion or risk-loving. Unfortunately, on the other hand, a failure
toreject the null does not necessarily allow us to conclude whether
there is significant evidence for risk-neutrality or not.

The argument in the preceding paragraph can be extended
where entry costs are measured with noise and are orthogonal to
the joint distribution of private values. In this case, bounds on ex
ante surplus ¢*(k,n) in (17) hold for all k given any n, except
that the bounds on interim surplus {Cé’}h:L,u no longer depend
on the unobserved cost k. Thus, similar to the case with IPV in
Corollary 1, we can identify E[¢; (K, n)|n] as ZZ;S §a“ Pr(A_; =
aln) for h = L, U. Thus, provided that the measurement errors
are zero-mean so that E[K] can be consistently estimated, we can
construct a consistent test for the null “E[¢(K, n)|n] < E[K] <
E[¢;j (K, n)|n]” against the alternatives “E[K] < E[{ (K, n)|n]” and
“E[K] > E[gj(K, n)|n]". As before, a rejection of the null would
provide statistically significant evidence against risk-neutrality
while a failure to rejection would leave the test inconclusive.
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6.2. Selective entry with informative signals

Consider a model where each potential bidder observes in the
entry stage a private signal correlated with his private value. Thus
entry decisions depend on these informative signals. We identify
bidders’ risk attitudes in such a model, assuming the data report
continuous variation in entry costs across auctions. As before, we
fix N (the number of potential bidders) and suppress it from the
notation. Auctions with endogenous and selective entry have been
studied in Ye (2007), Gentry and Li (2014) and Marmer et al.
(2013). Li et al. (2012) consider the same model of auctions with
risk-averse bidders, affiliated signals and selective entry. Their
emphasis is on the inference of the form of risk-aversions using
data from both first-price and ascending auctions.

The model is specified as follows. In an entry stage, each
potential bidder i observes a private signal S; and decides whether
to pay an entry cost k and enter the bidding stage. The entry
cost is commonly known and the same for all bidders. Upon
entry, each entrant draws a private value V; and competes in an
ascending auction with a reserve price r. The joint distribution of
(S1,...,Sn, V1, ..., Vy)aswell as the constants k and r is common
knowledge among potential bidders. Each entrant may or may not
be aware of the number of active competitors A while bidding.

Assumption 6. (i) (S;, V;) are identically and independently dis-
tributed across potential bidders; (ii) for each i, (S;, V;) are affil-
iated; (iii) marginal distributions of S; and V; are continuous and
increasing over bounded supports [s, 5] and [v, v] respectively.

Suppose that the reserve price is binding with r > wv. Let
w;i(si, k; s_;) denote ex ante utility from entry for bidder i with a
signal s; if potential competitors follow monotone, pure-strategy
Bayesian Nash equilibria characterized by cutoffs s_; = (s;);»i. That
isi]ai(sh kis_i) =E[u((Vi =Py —K) | Si=si,Ai={#i:5 >
Sj .

Lemma 3. Under Assumption 6, w;(s;, k; s_;) is increasing in s; and
non-decreasing in s_; for any k.

Let w(s, k) be a shorthand for w;(s, k; (s, ...,s)) = E[u((V; —
P)r —k) | S = s,A; = {j # i : S > s}]. There is no
subscript i for w(s, k) because under Assumption 6, w(s, k) is the
same for all i and is increasing in s due to Lemma 3. An argument
similar to that in Lemma 1 shows that under Assumption 6, there
exists the following unique pure-strategy BNE in the entry stage: a
potential bidder i enters iff s; > sy, where s solves w(s§, k) = u(0)
if w(s, k) < u(0) < @(, k). Otherwise, s; = s (or sy = 3) if
w(s, k) > u(0) (or w(s, k) < u(0) respectively). Entry decisions
in this model are selective in that the distribution of private values
conditional on entry differs from the unconditional distributions.

To find bidders’ risk attitudes when there is selective entry, we
again exploit the fact that concave utilities lead to positive risk
premia in the entry decisions. Let 7 (s, k) = E[(V; — P)+ — k |
Si = s,A = {j # 1 : S > s}], which is identical for all i
under Assumption 6. By the same argument as in Section 4.1, we
can construct a test for bidders’ risk attitudes as long as 7 (s, k)
is identified from the distribution of transaction prices and entry
decisions for any k that yield non-degenerate entry probabilities in
equilibrium. Specifically, consider some entry cost k withs < s; <
s so that uninteresting cases involving degenerate entry decisions
are ruled out. (Whether a level of entry cost k leads to any non-
degenerate entry probabilities is testable using the distribution of
entry decisions from data.) Then, under Assumption 6, 7 (s, k) = 0
when bidders are risk-neutral, and 7 (s;;, k) > 0, or <0, when
bidders are risk-averse, or respectively risk-loving.

The test for risk attitudes introduced in Section 4.2 is not
directly applicable under selective entry, because it leads to

distorted decisions in favor of risk-aversion even when the true
data-generating process has risk-neutral bidders. Such distortion
arises from the affiliation between the private value V; and the
entry signal S;. To see this, recall from the preceding paragraph
that, with selective entry, bidders’ risk attitudes are linked only
to the sign of risk premia for a marginal bidder whose signal
equals the equilibrium cutoff s;. If we were to apply the test from
Section 4.2 in the presence of selective entry, it would amount
to testing the sign of ex ante payoffs for a generic entrant whose
signal is not restricted to be equal to the equilibrium cutoff (that
is,w(sp, k) = E[(Vi—=P)r —k | S = s, Ai={#i:5 >
s;}1). However, the affiliation between S; and V; suggests that ex
ante payoffs for other non-marginal entrants must be greater than
the marginal entrant’s risk premium 7 (s, k). That is, 7 (sj, k) is
bounded below by 7 (s, k). Consequently, applying the test from
Section 4.2 for models with selective entry leads to over-rejection
of risk-neutrality in favor of risk-aversion.!®

The next proposition shows how to recover 7 (s§, k) from entry
probabilities and the distribution of transaction prices. To do this,
it suffices to recover the distribution of V; given S; = s; and the
distribution of P; given A_; = {j # i : §; > s;} from the data.

Proposition 7. Suppose that (i) Assumption 6 holds with (V;, S;)ien
independent of entry costs; (ii) for some fixed k, there exists ¢ > 0
suchthats < s;, < sforall k' € (k—e&, k+¢); and (iii) entry costs are
observed in the data. Then 7w (si, k) is identified from the distribution
of transaction prices and entry probabilities.

Implementing a test based on Proposition 7 requires the data
to report continuous variation in the entry costs. As discussed in
Section 4, such an assumption is strong and has limitations. It
could fail under various empirical environments (say due to bias
in the measurement of entry costs). It remains an open question
whether additional exogenous variation could be used to construct
a test under affiliated endogenous entry without requiring such
knowledge. We also leave the definition of a test statistic based on
Proposition 7 and its asymptotic properties for future research.

7. Conclusion

We propose two tests for bidders’ risk attitudes in ascending
auctions where potential bidders make endogenous entry deci-
sions based on their information of entry costs and ex ante knowl-
edge of the distribution of private values. First, we show that the
risk premium can be non-parametrically recovered from the distri-
bution of transaction prices and entry decisions, as long as the ex-
pected entry cost is identified from the data. Second, we show how
exogenous variation in the number of potential bidders and ob-
served auction heterogeneity provide additional identifying power
to infer risk attitudes even when the knowledge about entry costs
is not available. Monte Carlo simulations suggest that the test has
reasonable finite-sample performance. Finally, we extend our re-
sults to identify bidders’ risk attitudes in models with selective en-
try. Discussions about extensions to cases with affiliated private
values are also provided.

There are several directions for future research. First, is it
possible to recover the utility function over its full domain, not
just the sign of risk attitudes? We conjecture that this is possible
with additional variation in entry costs or auction heterogeneity
from the data. Some additional restrictions on how these factors
affect private values may be needed for this purpose. Second, can
we extend the analyses herein to ascending auctions with discrete
increments? Haile and Tamer (2003) show how to form sharp

19 we are grateful to a referee for this insight.
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bounds on value distributions using price distributions in this case.
These bounds could in turn lead to bounds on the expectation of
risk premia. Thus a test could be constructed to test the null that
zero falls between these bounds. Similar to the case with affiliated
private values in Section 6.1, the rejection of the null could lead
to a decision on risk attitudes while failure to reject the null leaves
the test inconclusive. It remains an open question how to construct
a more informative test under additional economic restrictions on
the model elements.

Appendix A. Proofs of identification

Proof of Lemma 1. First, we show that under Assumption 1,
w(k; A_;) is continuous and decreasing in A_; for all k. To see this,
recall by the Law of Iterated Expectations,

w(k; A_i) = u(=k)Fyp(r) + / h(v, k; A _j)dFy(v) (A1)

r

where forallv > r,

h(v, k; A—) = u(v —r — K)Fp,(r | k, A_)

+ [t —p—odey |2
(K[ = En(v | K A )]

and we have used the independence between private values V;
conditional on entry costs. Note for any t € [r, v], the event
“P; < t” can be represented as

Nienviiy 1 stays out” or “jenters N V; < t”}.

Due to the independence between entry decisions and between
private values, Fp (t | k,A_j) = ]_[#i[l — Aj + AjFyi(®)]. The
marginal effect of A; on this conditional probability is strictly
negative forallj #iatA; € [0, 1]and t € [r, V). (Recall thatrisa
binding reserve price.) This implies that h(v, k; A_;) is decreasing
inA_;givenany kand any v € [r, v]. Hence w(k; A_;) is decreasing
in A_;. Continuity follows from an application of the Dominated
Convergence Theorem. The rest of the proof is similar to the risk-
neutral case in Levin and Smith (1994) and omitted. O

Proof of Proposition 1. Conditional on k, entry decisions are
independent across bidders, and jointly independent of private
values. Besides, private values are i.i.d. across bidders given k.
Hence, once conditional on k and the realization of A_;, (V;, P;) are
independent of mixed strategies adopted by potential competitors.
Thus
N—1
E[(Vi — P)y | Kl = D E[(Vi — Py | k. A_j = a]

a=0

X Pr(A_; =a | k). (A.2)

With k and entry decisions observed from the data, A}, is directly
identified as the probability that a bidder enters under the entry
cost k. Consequently, Pr(A_; = a | k) can be recovered as a bino-
mial distribution with parameters N — 1 and ;. Conditional on en-
tering with the cost k, private values are independent draws from
Fyk. Let 1{.} denote the indicator function. By the Law of Iterated
Expectations, E[(V; — P;))+ | k,A_; = a] is

E[(Vi — P,')]{V,‘ > P,‘ > T} | ]{,A_l‘ = a]
+E[Vi—nDUHV; > r}{Pi =71} | kA = a]

= / (/ (s—v) dFV\k(S)) dFy(v)°

R / (v — ) dFyi(v)

for all a > 1, due to independence between V; and P; given k. Ap-
plying integration by parts to the first term on the right-hand side
of (A.3), we have

E[(Vi—P)y |Ai=a,k] = / (Fue)® = Fy()*") dv

fora > 1.Besides, E[(V; — Pi)+ | A_i =0, k] = E[(V; — 1)+ | k] =
L7 [1 = Fyp(v)] do.

With k assumed known from the data, 7 (k) is recoverable as
long as Fy(v) is identified for v > r. Let W denote transaction
prices observed in data. If no entrants bid above r, then define
W < r. The symmetric IPV assumption implies for any m > 2,
Pr(W < r | A= mk = Pr(V™™ < r | k) = Fy(r)™ and
Pr(W =1 |A=m,k) = mFV|,<(r)m*1[l — Fyjx(r)]. Hence for any
m>2andt >r,

Pr(W <t |A=m,k)
=Pr(W <r|A=m,k)+Pr(W =r |A=m,k)
+Prr<W <t|A=m,k)
= Fyp(®)™ + mFy (O™ '[1 = Fy(0)] = Fym—1m i ().

For any m > 2, define ¢,(t) = t™ + mt™ (1 — t) so that
Fym-tm (t) = ¢m(Fy(t)). Since ¢m(t) is one-to-one for any
m > 2overt e [0, 1], Fyi(t) is (over-)identified for each t > r
from the distributions of W conditionalonkandA =m. O

Proof of Corollary 1. Part (a). By Proposition 1 and the condition
in part (a), w (k) = 0 for all k € [k, k] if bidders are risk-neutral,
and (k) > 0 (or w (k) < 0) for all k if bidders are risk-averse (or
risk-loving). Integrating out k using Fx proves (a).

Part (b). Independence between K and (V;)icy implies that,
given A_; = aq, the vector of ordered values {VE4rD}It! s
independent of K. Thus ¢, = E[(V; — P;)+ | A_; = a, k] does not
depend on k for all a > 0 (recall P; = r when A_; = @). By the Law
of Total Probability, E[7r (K)] is:

n N—-1
/ (—k +) tPrAi=a| k)) dFyc (k)
k

a=0
N—-1
= Z {a PF(A_,' = a) — MK- (A4)
a=0

To identify Pr(A_; = a) (or ff Pr(A_; = a | k)dFy), note that given
any kand N, A_; is binomial (N —1, Ay) while Ais binomial (N, A}).
By construction,

Pr(Asi=alk) = "2 Pr(A=a| k)

+ 4 Pr(A=a+1]k) (A5)
forallkand 0 < a < N — 1. Integrating out k on both sides of
(A5) implies Pr(A_; = a) = ~2Pr(A = a) + *' Pr(A = a + 1).
Since the unconditional distribution of A is directly identified, so

is the distribution of A_;.2° With px assumed known, this implies
that E[7 (K)] is identified. O

Proof of Lemma 2. First note that ¥ # u(0) under Assump-
tions 3 and 4. (To see this, consider the case withzand N = 2. Then
under Assumption 4, pg ; 2% (2)+ 01,221 = u(0) with pg ;> > 0,
0122 > 0and pg ;24 p122 = 1.1t follows from Assumption 3 that

Yo@) = E[u(Vi—k) | Z =2]
> 1@ =y = Eu(Vi = Vp+ — 0 | Z = 2.

20 n fact this provides us with a set of testable implications that can be used for
testing the model specification of symmetric independent private values.



212 H. Fang, X. Tang / Journal of Econometrics 180 (2014) 198-216

This implies that ¥f < u(0).) By construction, the rth row of the
coefficient matrix on the left-hand side of (12) and the rth element
of the coefficient vector in front of ¥} on the right-hand side of (12)
add up to 1. Hence we can write (12) as

M- [(Yo(2"), Yo(2). Yo (@), Y3, - .. Yy — u(0)]
=—p; [vi—u0)] (A6)

where M denotes the (n + 1)-by-(n 4+ 1) matrix of coefficients on
the left-hand side of (12), and p; denotes the (n + 1)-by-1 vector
of coefficients in front of ¥ on the right-hand side of (12). The
matrix of coefficients M has full-rank n+1. To see this, note that the
determinant of Mis just the product of its diagonal elements which
are all positive under Assumption 4.2! Hence with ¥ # u(0) and

M non-singular, (A.6) can be rescaled and written as

M- (Yo7, Yoy Wozs V2 ooy Yno1) = =Py - € (A7)
where

~ ~ - - c
(WO,Z’U Wo,z’s 1)0.0,2’ 1/f27 .. 1pﬂ 1) ‘(//] U(O)

x [(Yo ("), Yo (@), Yo @), Y3, ..., ¥ — u(0)].

The claim of the lemma then follows immediately. O

Proof of Proposition 5. Part (a). It suffices to note that, under
Assumption 3, EW|Z = z,A = a) = h(z) + E[n“ 9] for all
zand a > 2, and E[5® 9] is independent of z. Hence the claim in
(a) holds.

Part (b). By construction,

Vo(2) = E[u(V; — k) | Z = z] = E[u(h(2) + ni — k)]

where the first expectation is taken with respect to V; givenZ = z
and the second is with respect to 7; alone while z is fixed at a
realized value. By Lemma 2, (1//0 7 — woZ)/(x/fo o — 1//0 2/) equals
[Vo(Z') — Yo (2)1/[Wo(2") — Yo (2)], which in turn equals:

E[u(h(z’) + ni — k)] — E[u(h(z) + n; — k)]
E[u(h(z”) + ni — k)] — E[u(h(z’) + n; — k)1’

By the independence between Z and 7 in Assumption 3 and the
Mean Value Theorem, (A.8) equals:

(A8)

[h(z)) — h(@)] E[u'(aeh(z') + (1 — )h(2) + i — k)]
[h(z") — h(ZH]E[W (’h(z") + (1 — a")h(z") + n; — k)]
for some « and o’ € (0, 1) that depend on (z,z") and (z/, z")
respectively. By the ordering of h(z”), h(z’) and h(z), it must be
the case that
ah(@)+ (1 —a)h(z) +n—k <a’h(@’) + (1 — a)h(Z)

+ni—k

(A9)

for any k, n;, « and o',
If bidders are risk-neutral, then
v(aeh(Z) + (1 —a)h(z) +ni — k) = v' (@ h") + (1 — a")h(Z)
+9i—k) >0 (A.10)
forall k, n;, @ and «’, and (A.9) equals [h(z") — h(z)]/[h(z") — h(z))].

Otherwise if bidders are risk-averse then the equality in (A.10) is
replaced by a strict inequality “>" for all k, n;, @ and o’ due to the

21 We thank an anonymous referee for pointing this out.

concavity of u. It then follows from the independence between #;
and Z that

E[u'(eh(z') + (1 = @)h() + ni — k)] -
E[u'(e’'h(z") + (1 — a)h(Z') + ni — k)]

when bidders are risk-averse. Therefore (A.9) is strictly greater
than [h(z') —h(z)]/[h(z") —h(z")] under risk aversion. A symmetric
argument shows that the reverse strict inequality holds when
bidders are risk-loving. O

Lemma A.1. Let the joint distribution of private values F(Vi>,-”:1Ik be
affiliated and exchangeable for any number of potential bidders n and
any entry cost k. If w(k; (1,...,1)) < u(0) < w(k; (0,...,0))
where w is defined as in (1), then there exists a unique symmetric BNE
in which all bidders enter independently with probability A}, where
Ag solves w(k; (A, ..., Ap)) = u(0).

Proof of Lemma A.1. It suffices to show that Fp,(t | k,A_;) is
decreasing in A_; over (v, v) given k and n. To see this, note by the
Law of Total Probability,

n—1

Fr(tlk, Ai) = Y Fyaoy () Pr(A = a | A_i, k),
a=0

where Fy@a i (£) denotes the distribution of the largest order
statistic from an a-dimensional random vector (V;)i<4, and define
Fyoo(t) = 1fort > v. Under the assumptions of the lemma,
Fv(u’:u’)‘k first-order stochastically dominates Fy ) if a > a.
Besides, Pr(A_; = a | A_j, k) is stochastically increasing in A_;
since bidders enter independently with respective probabilities.
Thus for all t € (v, V), Fp(t | k,A_;) is decreasing in A_; given
k and n. The rest of the proof follows from the same argument used
toprove Lemma 1. O

Proof of Lemma 3. Let P; = maxjea {max{V;,r}}, and let
Fpjv,5,,s; denote the CD.F. of P; conditional on (V;,S;,S_) =
(vi, si, s—i). Likewise define Fy,5, s ; as the distribution of V; condi-
tional on (5, S_;) = (s;, s—;). Under Assumption 6, Fp,,; 5;s_; (Pi) =
Fpys_;(pi) and Fy,js; s_; (vi) = Fy,5;(v;) for any (v;, p;, si, s—;). Thus by
the Law of Iterated Expectations,

;(si, k; s_j) = u(—k)Fy,5;(r) + / h(v, k; s_;)dFy;s, (v)
where h(v,k;s_)) = u( —r — KFps () + [Tu@ — p —
k)dFps_.(p) + u(—=k)[1 — Fpys_,(v)]. By the Leibniz Rule,

L. kiso) = U =1 — K)Fpe_ (1)

+ / u'(v—p—k)dFps_(p) > 0. (A.11)

Thus h is increasing in v for any fixed s_; and k. By the affiliation of
V;and S; for all i, the distribution Fy,5, (.) is stochastically increasing
in s;. Hence w;(s;, k; s_;) is increasing in s; given k and s_;.

To show that w;(s;, k; s_;) is non-decreasing in s_; given s; and
k, it suffices to show that Fps_,(p) is stochastically non-decreasing
ins_; for all p > r, which would imply that h(v, k; s_;) is non-
decreasing in s_; for any v € [v, v]. Note for any t € [r, v], the
event “P; < t” can be written as

ﬂ#,-{“Sj <s5"U“S>s5 NV < t”}.
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Under Assumption 6, Pr(P; < t | s_;) = ]_[#i[st(Sj) + Pr(V; <
t,S; > s;j)]. Also note for all t and any sJ/- > §j,

Fs;(sp) + Pr(V; < t,5; > 5) < Fs;(s)) + Pr(V; < t,5; > 5).

Hence Fp,s_;(t | s_;) is non-decreasingins_; forallt € [r,v]. O

Lemma A.2. Under Assumption 6, for any k such that s < s; <
S, Fyyjsi>s; (t) is identified for t > r from the distribution of W
conditional on any k and any number of entrants a (witha > 2).

Proof of Lemma A.2. By definition, for any t > r, Pr(W < t |
k, A = a) isidentical to the distribution of the second-highest order
statistic among a independent draws from the same conditional
distribution Fyjjs;>st- That is, forany t > r

W sclkA=a = 3 (1) Fysagor

m=a—1
X [1 - FVi|SiZS; (t)]aim

Thus for all @ > 2, there exists a one-to-one mapping ¢, so that
Fjsizs; () = ¢;7'(Pr(W < t | k,A = a)). Note the mapping
¢4 does not depend on k as (V;, S;) is assumed to be independent
of entry costs. That Pr(i enters | k) > 0 implies Pr(A > 2 |
k) > 0. Thus FVi\SiESZ (t) is over-identified for t > r, because the
identification arguments above can be applied for any a such that
PrA=alk)>0. O

Lemma A.3. Under Assumption 6, Fv,-|s,-:s;§(f) is identified for any
t >randanyks.t.s < s; <5, provided that Pr(W <t | k', A= a)
and Pr(i enters | k') are identified for all k' in an open neighborhood
around k for some a > 2.

Proof of Lemma A.3. Given LemmaA.2, Fv,-\s,-zs; (t) is identified for

any such k using the distribution of entry decisions and transaction
prices. Hence

Pr(V; <t,Si>sp) = Fyjs;=s; (t) Pr(i enters | k)

= ¢ (Pr(W < ¢t | k, A = a)) Pr(i enters | k)
(A12)

is also identified using any a such that Pr(A = a | k) > 0. We
consider this joint distribution as known for the rest of the proof.
Forany t > r, differentiating this distribution with respect to entry
costs at k gives:

Pr(V, <t,S5 > sp)lk=k

= =% Pr(V; < t,5 < sp)lk=k

d K
=- [(T Pr(Vi<t, S < 5)|szs;] (%h(:k)
dFs (sg)
= —Fyjs=s; (Dfs(5}) ( k= k> —Fyjs=s (f)< Z,:K |1<=k),

where we have used the independence between (V;, S;) and entry
costs. (Gentry and Li (2014) used this derivative-based argument
in their derivation for bounds on value distributions in auction
models with endogenous entry.) Hence

% Pr(V; < t,ienters | K)|x=k

Fuisi=s; (0 = — L Pr(i does not enter | K)|x—x

because Fs(sk) = Pr(i does not enter | k) in the pure-strategy
BNE and —Fs(sK) = dK Pr(i does not enter | K). The denominator
is non-zero under the assumption of the proposition. Hence
Fy,js,=s; (t) is identified for t > r as long as Pr(W < ¢ | K,A=a)
and Pr(i enters | k") are identified for all k¥’ in an open neighborhood
around k for somea > 2. O

Proof of Proposition 7. Because (V;, S;) are independent across
bidders, the joint distribution of (V;, P;) conditional onA_; = {j #
i:S > sg}andS; = sj, evaluated at (P;, V;) = (p, v), is factored
as:

Fpja_i=jiss;=st) (D) Fyyjs,=st (V). (A13)

To identify 7, it suffices to recover the two conditional distribu-
tions in (A.13) at all p and v > r. Because (V;, S;) are identically
distributed across i, forany t > r,

Pr(P<t|Ai={#i:5 =5}

= :Z_; I:FV\sti (t)]m (N _

where N is the number of potential bidders (including i). The
subscript i is suppressed to simplify the notation. By construction,
Fs,(s;) = Pr(i enters |k) is identified. Let a denote the realized
number of entrants. First, under Assumption 6, Fvi|sizs; (t) is over-
identified for t > r from the distribution of prices W under k and
any a > 2. (See Lemma A.2 for details.) Next, Lemma A.3 shows
that, under Assumption 6, Fy,js,=s (t) is identified for any t > r
provided that for somea > 2,Pr(W <t | k', A = a) and Pr(i
enters | k') are observed for all k" in an open neighborhood around
k. Thus the conditional distributions in (A.13), as well as 7w (sy,), are
identified. O

1
)&@W”qn—&@WWAM)

Appendix B. Limiting distribution of the test statistic

Let Fyja=m denote the distribution of W given A = m, and let
Fw = (Fwja=2, Fwja=s, . .., Fwja=n). Let 8B, 7 denote the space
of bounded functions with a domain [v, V], and let Dy, 3 C
Byv,») denote the space of non-decreasing functions that are right-
continuous with left limits and map from [v, v] into [0, 1]. For any
Fw such that Fyp=m € Dy forall2 < m < N, let {(Fyw) =
(Go(Fw), ¢1(Fw), ..., ¢n—1(Fw))" where

v N
mmoE/ Lﬁ}j

(Fwa= m(S))i|

a+1
o (Fwja=m (S))i| ds (B.15)

m=2

forall0 <a<N-—-1and2 <m < N.Let I:‘W‘A:mj denote estima-
tors for Fya—m defined in Section 4.2, and let lEWA,T = (I:"W‘A:mj :
2 < m < N).Define ¢r = (o1, ¢1.75 S2.15 -+ En—1,7) = S (Fw 7).

Throughout this section, let “—” denote the convergence
of sequences in By, 3 in terms of the uniform metric, and let
“~~" denote the weak convergence of stochastic processes. For the
product space By ® RN*1) let the metric be defined as the
maximum of the uniform metric over 8By, and the Euclidean
metric over RN+1,

To fix the main idea and simplify the presentation, we establish
Proposition 3 for the cases where either N = 2 or the average
in the square brackets in (B.15) is replaced by a single estimate
qbnjl(ﬁwmzm;(s)) for some 2 < m < N. In other words, these
are the cases where the definition of components in ¢ in (B.15) is
simplified to:

Ca(Fwja=m) E/ |:(¢y;1(FW|A:m(S)))a

w<mmMmWﬂ (B.16)
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for some m > 2. With a slight abuse of notation, we write ¢ as a
function of Fiya=n for m > 2. That is, £ (Fwja=m) = (Co(Fwja=m),
¢1(Fwja=m)s - - - » {n—1(Fwja=m))" accordingly, where ¢q(Fwia=m) is
defined in (B.16). Establishing the limiting distribution in the
general case with N > 3 in (B.15) essentially requires the same
type of arguments presented below.

Foranya > 1,m > 2and o € [0, 1], define xqm(x)
(¢! (@)]® so that

Xem(@) = apn(@)]"" (dgy" (©)/dt] ) -

Let Dy, 7; denote the subset of Dy, ) that consists of step functions
only.

Lemma B.4. Suppose Assumptions 1 and 2 hold. Forany1 <a <N
and 2 < m < N and any sequence Fya=m 1 € Dy z such that

ﬁ(FWM:m,T — FW|A:m) —> F*forsome F* ¢ QB[EJ],

Jim VT [ Dt (Fwinoms @) = o B (w)

=[ Xo.m (Fwia=m (W) F* (w)dw. (B.17)

The property established in Lemma B.4 is part of the con-
ditions needed for applying the Extended Continuous Mapping
Theorem (see theorem 1.11.1 in Van der Vaart and Wellner
(1996), page 67) to derive the limiting distribution of our test
statistic. This approach does not require the stochastic process
VT xamFwia=m1) — Xa.m(Fwia=m)], indexed over [v, v], to con-
verge weakly to a tight Gaussian process.?? The proof of Lemma B.4
is technical and presented in Section 2 of the web supplement (see
Appendix D, Fang and Tang, 2014).

For each m > 2, let Fyja=m denote a zero-mean Gaussian
Process indexed over [v, v] such that (a) for any s < v on [v, V]
the covariance between Fyyja=m(s) and Fyja=m (v) is:

[Pr(A = m)]™"
|:FW|A=m(S) (1 = Fwia=m(9))
Fwia=m(s) (1 = Fwja=m(»))  Fwja=m () (1 = Fwja=m(v))
(B.18)

’

FW\A:m(S) (1 - FW|A=m(v))i| .

and (b) the covariance between Fys—m(s) and Fyja—n (s') is O for
anys,s’ € [v,v]and m # m'.

Let (N, V,)' be amultivariate normal vector in RN+1such that,
for any finite subset {vi, vz, ..., v} C [v, V], the J + N + 1)-
vector (Fwja=m(v1), .., Fwja=m(v)), N/;, M,)" has a multivariate
normal distribution with a zero mean and a covariance matrix
that depends on population moments in the following way: (i) the
covariance between Fy|a= (S) and Fy|a=n (v) for any s, v on [v, v]
is givenin (B.18). (ii) The variance of the ath element in ¥/, denoted
by Ny is (MF92Pr(A = a) + (51)*Pr(A = a + 1) — (po)?,
where p, = Pr(A_; = a). The covariance between W, , and N,
with @ < b is pep — Papp, Where pgp = % Pr(A = b) if
b = a+ 1and p,, = 0 otherwise. (iii) The variance of W, is
the sum of the variance of K and the variance of €. The covariance
between W, and N, q is = 1q + S g1 — paE(K), where g =
E[K1{A = a}]. (iv) For any v € [v, v], the covariance between
IE‘W|A:m(v) and JV/L is [PI‘(A = m)]7] [,uv,m - ,umFW\A:m(v)]- where
Uym = E[{W < v, A = m}K]. (v) For any a and v, the covariance
between Fya=m(v) and N, 4 is given by the off-diagonal entry of
the 2-by-2 matrix DXD', where X is the 4-by-4 covariance matrix

22 we are grateful to the Associate Editor for pointing this out.

of [1{W < v,A=m})1{A=m},1{A =a},1{A =a+ 1}]if
m>a+ lorm < a, or X is the 3-by-3 covariance matrix of
[1{W < v,A = m},1{A = a}, 1{A = a + 1}] otherwise. The
matrix D is the 2-by-4 (or 2-by-3) Jacobian matrix needed to apply
the multivariate Delta Method. Under Assumptions 1 and 2, both
D and X have full rank.

Lemma B.5. Suppose that Assumptions 1 and 2 hold. For anym > 2,

ﬁ T —p N,
1Y K —E(K) N,
t

Lemma B.5 follows from a standard argument that uses the
Donsker property of classes of indicator functions of lower
rectangles and equalities, as well as the Donsker property of
their pairwise minimum and finite unions. Its proof follows from
standard arguments and is omitted for brevity. We present details
in the derivation of the covariance between Fya—m, ¥, and M in
the web supplement (see Appendix D, Fang and Tang, 2014).

Let Dr denote {b € Bjyv) : Fwiaem + b/~/T € Dyyz). Define
gr 1 Dr @ RVH! — R2VHT 55

ﬁW\A:nl,T — Fwja=m Fuiaem
( ) (©.19)

gr (b, ¢y, c2)

= (ﬁ [; (FW‘A:m + b/ﬁ) -t (FW‘A:m)]/ . Cz)/

forany b € Dr,c; € RV and ¢; € R. For any h € 8y, y), define
¢'(h) = (gg(h), ¢{(h), ..., ¢§_;(h)) where forany0 <a <N — 1

ga(h) = / Xam Fwia=m (W) = Xt 1.mFwia=m () Ih(w)dw.

By construction, &’(h) is a linear functional whose form depends
implicitly on the actual conditional distribution of transaction
prices Fywja=m(.) and ¢, (.).

Proof of Proposition 3. Consider any sequence xr such that (i) xr
= (Xr.1,X1.2, Xr.3) € Dy @ RN for all T, and (ii) x; — x for some
X = (X1, X2, X3) € Bpy.5 ® RVFL. By definition, this means

’

gr(xr) = (ﬁ [¢ (Fwiazmr) — ¢ (FW\A:m)]/v (XT,z)/,Xm)

for a sequence Fwja=m,1 = Fwja=m + T_%XT_] € iA)@ﬂ that satisfies
ﬁ(FW\A:m,T — FW\A:m) — F* with F* = X1 € 3[25]‘ It follows
from Lemma B.4 that under Assumptions 1 and 2,

VT [¢ Fwipemt) — & Fwiam)] — ¢'(F").
Hence it then follows that
grxp) = ((¢'(x1)), %5, x3) = g(x)

for any such sequence xr. Next, let

ﬁ (ﬁwm:m,T - FW\A:m)
ﬁ (,?)T - P)

e —
Xr= ,

Fwia=m
and X* = N, ).
JT (; Sk - W)

t

Ny

By construction, the support of X is Dr @ RN while the support
of X* is B, 71 ® RN*!. Under Assumptions 1 and 2, X; converges
weakly to X* by Lemma B.5 and the limiting stochastic process
X* is tight and measurable due to the Donsker property of the
class of indicator functions of lower rectangles and equalities.
Therefore it follows from the Extended Continuous Mapping
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Theorem (e.g. Theorem 1.11.11in Van der Vaart and Wellner (1996))
that

VT [é‘ Fwiazmr) — ¢ (FWIA=m)]
vT (ﬁr - ,0)

g (Xp) =
Vi (; Sk - MK)
t
¢ (Fwia=m)
~ g(X*) = Np .
Ny

An application of the Multivariate Delta Method then shows that
ﬁ(fr —170) ~ N = p - Fwpazm) + L Fwiazm) - Ny — Ny,
where “-” denotes the dot product between vectors. It then follows
from lemma 3.9.8 of Van der Vaart and Wellner (1996) that .; is a
univariate normal with a zero mean and a finite variance. 0O

Appendix C. Bootstrap inference: consistency and asymptotic
validity

Let c1_4 2 denote the actual (1 — «/2)-quantile of the limiting

distribution of ﬁ(ftr —1p). We estimate ¢1_,» using the following
bootstrap procedure.

Step 1: Calculate 77 using the original estimation sample.

Step 2: Draw a bootstrap sample with size T from the original
sample with replacement. Estimate 7o using this bootstrap sample
and denote the estimate by 77 ;.

Step 3: Repeat Step 2 for B times and denote the bootstrap
estimates by {%r }s<p. Find the (1 — «)-quantile of the empirical
distribution of {~/T|%r, — #r|}p<p. Denote it by &;_y/2.7.

Let Gr(.; F) and G (.; F) denote respectively the finite sample
distribution and the limiting distribution of VT(Zr — 19) when
the actual joint distribution of (W, A, K, €) is given by a generic
permissible distribution F. Let Fr and Fy, denote the empirical
distribution of (W, A, K, €) and its true distribution in the data-
generating process respectively.

Lemma C.6 (Bootstrap Consistency). Suppose Assumptions 1 and
2 hold. Then for any ¢ > 0,

lim Pr (sup |Gr(T; Fr) — Goo (T, Fo)| > e) =0
T—o0 T

regardless of bidders’ risk attitudes.

Proof of Lemma C.6. By Proposition 3, /T(f; — 75) converges
weakly to a zero-mean normal distribution whose variance de-
pends on Fy. Across auctions in the data, (W, A;, K;, €;) are i.i.d.
draws from Fy, and by the Uniform Law of Large Numbers, the em-
pirical distribution of (W;, A;, K;, €;) converges in probability to its
population counterpart uniformly over the joint support. Also by
Proposition 3, for any permissible joint distribution of (W, A, K, €)
in the data-generating process, the limiting distribution of v/T (#r —
Tg) is continuous over R.

Next, we will show that for any sequence of permissible distri-
butions Hy that converges to Hy uniformly as T — 400, the distri-
bution of ~/T(fr — 1) under Hy (denoted by Gr(.; Hr)) converges
to Goo (-; Hp) pointwise on the real line. Note for any s € R and pair
of permissible distributions H; and H,,

|Gr(s; Hi) — Goo (55 Ha)| < |Gr(s; Hp) — Goo (S5 Hy)|

+ [Goo(s; H1) — Goo(s3 H2)| . (C.20)

For any s, the first term on the right-hand side of (C.20) con-
verges to 0 as T — +o0o by weak convergence of the test statistic
under H;.

Let ||.||, denote the supremum norm. We now show that, for
any s € Rand ¢ > 0, there exists > 0 (possibly depend-
ing on s, ¢) such that for any pair Hq, H, with |[H; — Ha|lo < 7,
|Goo(S; H1) — Goo(s; H2)| < €. To see this, note by Proposition 3,
for any generic distribution of (W, A, K, €), denoted by H, that sat-
isfies Assumptions 1 and 2, the limiting distribution G (.; H) is a
univariate normal with a zero mean and a variance that depends on
the moments of (W, A, K, €) under the distribution H (see the sec-
ond and the third paragraphs following Lemma B.4 in Appendix B
above). More specifically, the variance of the distribution G, (.; H)
takes the form of D* X* (D*)’, where D* = (o', ¢ (Fwja=m)’, —1) €
R?N*1 and X* is the covariance matrix for the random vector
(&' (Fwja=m), N,, N,)'. By Lemma B.4, { (and therefore D*) is con-
tinuous in H under the uniform (supremum) metric between dis-
tributions. By Lemma 3.9.8. in Van der Vaart and Wellner (1996),
X* is a smooth functional of the covariance kernels between
Fw|a=m and (N, N,,)’, which are continuous functions of H and its
moments. Because these moments are continuous in H, the covari-
ance matrix X* is continuous in H. It then follows that the univari-
ate normal distribution G, (s, H) is continuous in H at any s € R.

Now consider any Hy converging to Hy under the supremum
metric as T — +o0. The results above imply that for any ¢ > 0,
|Gr(s; Hr) — Goo(s; Ho)| < & for T large enough (or equivalently for
[|[Hr — Hpll» small enough). The lemma then follows from Beran
and Ducharme (1991) (or Theorem 2.1 in Horowitz (2001)). O

To simplify the notation, we suppress dependence of .V, on
the actual joint distribution of (W, A, I~<) in the data for the rest
of the proof. Since the limiting distribution of VTGEr — 1) is
absolutely continuous with positive density almost surely over
R, an immediate corollary of the preceding lemma is that our
bootstrap estimator ¢;_ /> 1 converges in probability to the actual
(1 — a/2)-quantile of the limiting distribution (i.e. ¢1_4/2). Such
consistency holds regardless of bidders’ risk attitudes.

Proof of Proposition 4. Suppose that o = 7* > 0 in the data-
generating process. By definition,

Pr (ﬁfr > Ci_ar | To = 7—'*)
=Pr (ﬁ(f‘[ — 'L'o) — 6]—a/2,T > _ﬁl’o | Tp = T*) .

It follows from Proposition 3 that VTG — 1) converges in
distribution to a univariate normal .#; with a zero mean and a
finite variance. For any ¢ € (0, 1), let ¢, < 400 denote the ¢-

quantile of ;. Since ¢1_q /2,7 LY Ci—as2 and 7o > 0 under Hy, we

have limy_, oo Pr(C1_a2,1 < Cc + VTt | o = ) — 1for any
¢ € (0, 1). Hence for any ¢ € (0, 1),

Pr (ﬁf’T > Ci_ar | To = 7—'*)
> Pr (ﬁfr > Ci_qja,r and C1_gp21 < Co + VTt | 0 = T*)
> Pr (ﬁ (fr — 7o) = coand &—qjar < Ce + VTt |10 = r*)
— Tan;OPr(ﬁ(fT—fo) >c | rozr*) =1—c¢

as T — +oo. This proves the consistency of our test under any
fixed alternative of risk-averse bidders (Hy : 70 = t* > 0). A
symmetric argument shows

lim Pr (ﬁ%‘r < —61,0[/2’7' | To = ‘[*) =1

T—+o00o
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for any t* < 0 (bidders are risk-loving). If bidders are risk-neutral
with g = 0,

Pr (—61701/21 < VTt < Clajar | To = 0)
=Pr (ﬁ (‘I?T — 'L'()) + 61704/2.1 > O0and

ﬁ(fT —70) —C1a2r <0 |10 = 0)

—> Pr(—Ci—q2 S M < Ci_gpp) =1—aasT — +oo,

where the second equality follows from that /T (%T - ro) 4 Ny

and 61_0(/2,1 RS Ci—a/2 (1 — /2 quantile of the zero-mean normal
variable ;) and an application of Slutsky’s Theorem. O

Appendix D. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jeconom.2014.02.010.
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