
Online Appendix

In this online appendix, we collect the materials omitted from the main text of the paper. The

appendices are ordered according to where they are first referenced in the main text (Fang and Wang,

2014). In Appendix A we provide a table that summarizes the main notations in the paper for the

convenience of the readers; in Appendix B we provide the details for a couple of intermediate steps in

the derivation of Eq. (11); in Appendix C we provide the details of the omitted proof for Proposition

2; in Appendix D we provide some intuition for How β, β̃ and δ are distinguished in short-panel data

when exclusion variables are available; in Appendix E we describe how we can replicate the proof of

Proposition 2 in Magnac and Thesmar (2002) as a special case of our analysis when β = β̃ = 1; in

Appendix F we derive the asymptotic distribution of the estimator; in Appendix G, we report the

estimation results without a priori restrictions that β ∈ [0, 1] and β̃ ∈ [β, 1]; and in Appendix H we

discuss the extension to the context of finite horizon models with non-stationary state transitions.

A Summary of Notations

Table A1 summarizes the main notations in the paper for the convenience of the readers.

Notation Interpretation Equation/Definition

ui (x)
Deterministic payoff from choosing alternative i

when state vector is x

u∗i (x)
Payoff, including the choice-specific shock, from choosing

alternative i when state vector is x : u∗i (x)≡ ui (x) +εi
Eq. (1)

β The present-bias factor Definition (1)

β̃ The partial naivety parameter

δ The standard discount factor Definition (1)

Vi (x) Perceived choice-specific long-run value function Eq. (8)

V (x) Perceived long-run value function Eq. (4)

Wi (x) Current choice-specific value function Eq. (3)

Zi (x)
Choice-specific value function of the next-period self

as perceived by the current self
Eq. (5)

σ̃ (x, ε) Perceived continuation strategy profile for a partially naive agent Definition (2)

σ∗ (x, ε) Perception-perfect strategy profile for a partially naive agent Definition (3)

Table A1: Summary of Key Notations.
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B Derivation of Eq. (11): Details

Here we provide some intermediate steps in the derivation of Eq. (11):

V (x) = Eε
[
Vσ̃(x,ε) (x) + εσ̃(x,ε)

]
= Eε

[
Zσ̃(x,ε) (x) + εσ̃(x,ε) +

(
1− β̃

)
δ
∑
x′∈X

V (x′)π(x′|x, σ̃ (x, ε))

]
= Eεmax

i∈I
[Zi (x) + εi] +

(
1− β̃

)
δEε

∑
x′∈X

V (x′)π(x′|x, σ̃ (x, ε) )

= Eεmax
i∈I

[Zi (x) + εi] +
(

1− β̃
)
δ
∑
j∈I

[
P̃j (x)

∑
x′∈X

V (x′)π(x′|x, j)

]

where the first equality is just copying (9); the second equality follows from (10); and the third equality

follows from (6) and thus

Eε
[
Zσ̃(x,ε) (x) + εσ̃(x,ε)

]
= Eεmax

i∈I
[Zi (x) + εi] ;

and the fourth equality follows from the fact that

Eε
∑
x′∈X

V (x′)π(x′|x, σ̃ (x, ε) ) =
∑
j∈I

[
Pr (σ̃ (x, ε) = j)

∑
x′∈X

V (x′)π(x′|x, j)

]

=
∑
j∈I

[
P̃j (x)

∑
x′∈X

V (x′)π
(
x′|x, j

)]
.

C Proof of Proposition 2

Proof. If the data set is generated by the assumed data generating process for some primitives(
u∗, β∗, β̃

∗
, δ∗
)

, the observed choice probabilities P̃ and transition probabilities Π must satisfy the

system of I × X nonlinear equations defined by (25). When there are variables that satisfy the ex-

clusion restrictions, the data must also satisfy the additional I × |Xe| × |Xr| equations requiring that

ui (xr, xe) = ui (xr) for each i ∈ I\ {0}, each xe ∈ Xe and each xr ∈ Xr. Denote the augmented system

of equations as :

G̃
(
u,β, β̃, δ;

(
P̃,Π

))
= 0, (C1)

where
(
P̃,Π

)
indicates the data set. This new system of equations has I×X+I×|Xe|×|Xr| equations

in I ×X + 3 unknowns
(
u,β, β̃, δ

)
.

We now show that our results follow from the Transversality Theorem (see Proposition 8.3.1,

Mas-Colell, 1985):

Theorem 1 (Transversality Theorem, Proposition 8.3.1 in Mas-Colell, 1985.). Let F :

N × B → Rm, N ⊂ Rn, B ⊂ Rs be Cr with r > max {n−m, 0} . Suppose that 0 is a regular value

of F ; that is, F (x, b) = 0 implies rank ∂F (x, b) = m. Then, except for a set of b ∈ B of Lebesgue

measure zero, Fb : N → Rm has 0 as a regular value.

It is useful to be explicit about the mapping between notations in the Transversality Theorem

stated above and the corresponding terms in our application:
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Transversality Theorem This Paper

F (x, b) G̃
(
u,β, β̃, δ;

(
P̃,Π

))
x ∈ N ⊂ Rn

(
u,β, β̃, δ

)
∈ RI×X × (0, 1]3 ⊂ RI×X+3

n Number of unknowns: I ×X + 3

b ∈ B ⊂ Rs
(
P̃,Π

)
∈ ∆(I+1)X ×


X copies︷ ︸︸ ︷

∆X × ...×∆X


I+1

⊂ RIX+(I+1)X(X−1)

s IX + (I + 1)X (X − 1)

m Number of equations in G̃ : I ×X + I × |Xe| × |Xr|
Fb : N → Rm G̃

(
·;
(
P̃,Π

))
: RI×X × (0, 1]3 → RI×X+I×|Xe|×|Xr|

Note that in the last line of the above table, G̃
(
·;
(
P̃,Π

))
is simply the system G̃

(
u,β, β̃, δ;

(
P̃,Π

))
but with

(
P̃,Π

)
considered as parameters instead of arguments.

First, all functions in our system G̃ are continuously differentiable, so the first requirement that

F ∈ Cr is satisfied trivially. Second, we need to check that “0 is a regular value of F ; that is, F (x, b) = 0

implies rank ∂F (x, b) = m.” It is important to note that in writing out the ∂F (x, b) , we need to take

derivatives of F with respect to both x and b. In our application, ∂G̃
(
u,β, β̃, δ;

(
P̃,Π

))
is thus a ma-

trix of dimensions


m︷ ︸︸ ︷

I ×X + I × |Xe| × |Xr|

×


n︷ ︸︸ ︷
(I ×X + 3) +

s︷ ︸︸ ︷
IX + (I + 1)X (X − 1)

 . Note that

|Xe|+|Xr| = X, thus the number of rows in ∂G̃
(
u,β, β̃, δ;

(
P̃,Π

))
, which is

m︷ ︸︸ ︷
I ×X + I × |Xe| × |Xr|, is

smaller than (and potentially a lot smaller than) the number of columns

n︷ ︸︸ ︷
(I ×X + 3)+

s︷ ︸︸ ︷
IX + (I + 1)X (X − 1).

The “beauty” of the Transversality Theorem is that we only need to check that ∂G̃
(
u,β, β̃, δ;

(
P̃,Π

))
has a rank of m (the smaller number) whenever G̃

(
u,β, β̃, δ;

(
P̃,Π

))
= 0. This can be verified in the

same way that we verify that ∂uG(u∗; ·) has full rank whenever G(u∗; ·) = 0.

Given these, we can appeal to the Transversality Theorem and conclude that “except for a set of

b ∈ B of Lebesgue measure zero, Fb : N → Rm has 0 as a regular value”, which in our application

means that, “except for a set of
(
P̃,Π

)
∈ ∆(I+1)X ×


X copies︷ ︸︸ ︷

∆X × ...×∆X


I+1

⊂ RIX+(I+1)X(X−1) with

Lebesgue measure 0, G̃
(
·;
(
P̃,Π

))
has 0 as a regular value.”

However, “G̃
(
·;
(
P̃,Π

))
has 0 as a regular value” means that, whenever G̃

(
u,β, β̃, δ

)
= 0,1

∂(u,β,β̃,δ)G̃
(
u,β, β̃, δ

)
must have rank m (the number of equations). But this is impossible because

in our application m is equal to I × X + I × |Xe| × |Xr| , which is larger than the number of un-

knowns I ×X + 3 under our identifying assumption that I × |Xe| × |Xr| ≥ 4. Therefore, generically

G̃
(
u,β, β̃, δ;

(
P̃,Π

))
= 0 should have no solution except the true primitives

(
u∗,β∗, β̃

∗
, δ∗
)

that

generated the data.

1Here we supress the notation of
(
P̃,Π

)
to clarify that now we are only counting

(
u,β, β̃, δ

)
as unknowns, and(

P̃,Π
)

are simply parameters.
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D Intuition for How β, β̃ and δ are Distinguished in Short Panel

Data

Here we provide some intuition as to how
〈
β, β̃, δ

〉
come to differentially affect the observed choice

behavior of the current self depending on the values of the exclusion variables.2

Distinguishing β and δ. It may seem counter-intuitive that β and δ could be separately identified

in a short two-period panel data set. To provide some intuition, let us consider the case that β̃ = β.

The question is: “Can we distinguish the behavior of an agent with exponential discounting rate

δ̂ = βδ from the behavior of a sophisticated time-inconsistent agent with preference (β, δ)?” Under

stationarity assumption, if an agent has time consistent exponential discounting rate δ̂ = βδ, her

expected continuation utilities are completely determined by the observed choice probabilities. To see

this, observe that in equation (22), if one replaces β̃ by 1 and δ by δ̂, we will have

V (x) = Z0 (x) + ln

{∑
i∈I

exp [Zi (x)− Z0 (x)]

}
,

which only depends on Di (x) when β = β̃.

However, for a sophisticated time-inconsistent agent with preference (β, δ) , there is an incongruence

between current self and her perceived future self regarding how they evaluate the future stream of

payoffs. Though the current self has to defer to her next-period self in terms of the actual next-period

choice that will be chosen, they disagree on how much weight to put on payoffs two-periods from now.

It is this incongruence that leads to the last term in Eq. (22), which in turn breaks the tight link

between observed choice probabilities and the continuation utilities.

As we demonstrated in Section 3.2.1, the continuation utilities will ultimately determine the identi-

fied values of 〈{ui (x) : i ∈ I\ {0} , x ∈ X}〉 . Thus β and δ can be distinguished when there are exclusion

variables because they require that ui (x) does not depend on the xe components of the state vector.

Distinguishing β and β̃. To help provide intuition for why β could be distinguished from β̃, let

us suppose that δ = 1. First note that the ratio β̃/β appears in term Zi (x) [see Eq. (20)]. This ratio

regulates the incongruence between the current self’s own behavior and her perception of the behavior

of her future selves. Eq. (21) shows that if β̃/β = 1, then Zi (x) − Z0 (x) is uniquely determined by

the observed Di (x) ; and thus the current self’s perception about her future self’s action is identical

to her own action. This implies that β̃/β = 1 (and δ = 1) will pin down completely the identified

values of 〈{ui (x) : i ∈ I\ {0} , x ∈ X}〉 from the data, which could be refuted if the identified values

of ui (x) do not satisfy the exclusion restrictions, i.e., ui (x) should not depend on the xe components

of the state vector.

E Exponential Discounting Special Case: β = β̃ = 1

We here show that the non-linear equation system (21) and (24), for the special case of dynamic

discrete choice models with exponential discounting (i.e., the case with β̃ = β = 1), replicates the

known results in the literature. In that case, (21) is reduced to the well-known relationship

Zi (x)− Z0 (x) = lnPi (x)− lnP0 (x) ; (E2)

2In some sense, the exclusion state variables play the role of time delay in the experimental literature cited in Footnote

2 which relies on preference reversal to identify time inconsistent preferences.
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that is, in standard models the difference in the choice probabilities for alternative i and the reference

alternative 0 informs us about the difference in the value from choosing i relative to the value from

choosing 0. This is of course also true when β̃ = β < 1. The potential naivety we allow in our setup

breaks this direct relationship between Pi (x) /P0 (x) and Zi (x)− Z0 (x) .

Moreover, when β̃ = β = 1, (24) for i = 0 is reduced to (using the normalization that u0 (x) = 0) :

Z0 (x) = δ
∑
x′∈X

Z0

(
x′
)
π
(
x′|x, 0

)
+ δ

∑
x′∈X

ln

[∑
i∈I

Pi (x′)

P0 (x′)

]
π
(
x′|x, 0

)
.

For simplicity, denote the X × 1 vector {Z0 (x)}x∈X as Z0; write the X ×X matrix π (x′|x, 0) as Π0,

and write the X × 1 vector
{

ln
[∑

i∈I
Pi(x

′)
P0(x′)

]}
x∈X

as m. The above equation can be written as

Z0 = δΠ0 (Z0 + m) .

Thus,

Z0 = (I−δΠ0)
−1 δΠ0m.

Given this unique solution of Z0, (E2) immediately provides Zi (x) for all i ∈ I/ {0} and all x ∈ X .
To obtain ui (x) for i ∈ I\ {0}, note that (24) implies that

ui = Zi − δΠiZ0 − δΠim, (E3)

where Zi and ui are X×1 vectors of {Zi (x)}x∈X and {ui (x)}x∈X respectively, Πi is the X×X matrix

π (x′|x, i) . Recall that in the standard exponential discounting model we have Zi (x) = Vi (x) , thus we

can conclude that , {ui}i∈I\{0} and {Vi}i∈I are identified once δ,G and {u0 (x)}x∈X are fixed. This

replicates the proof of Proposition 2 in Magnac and Thesmar (2002).3

F Asymptotic Distribution of the Estimator

This appendix contains the proof of Proposition 3. Recall that the objective function for our

maximum pseudo-likelihood estimator is defined to be:

ψ̂ = arg max
{ψ}
L (data; ψ) = Πn

j=1Π
I
i=1Πx∈X P̂i (x;ψ)Di,j(x) , (F4)

where j stands for an individual and n is the sample size; Di,j (x) is an indicator with value 1 if

individual j chooses alternative i when state variable is x, and 0 otherwise; and P̂i (x;ψ) is the model’s

predicted choice probability for alternative i when state is x and parameter values are given by ψ.

Note from our discussion in Footnote 21 prior to Proposition 1, we know that in the neighborhood

around the true parameter values ψ∗, P̂i (x;ψ) is continuous and differentiable with respect to ψ.

The pseudo-maximum likelihood estimator defined in (F4) is consistent, asymptotically normal

and efficient, under the usual technical assumptions for the asymptotic normality and efficiency of

MLE estimators (see e.g, Hayashi, 2000). Indeed, to simplify the exposition, consider the case of two

alternatives as in the empirical application implemented in the paper, i.e., when I = 1;4 and consider

a limiting argument as the number of individual observations per state goes to infinity, i.e. when

n→∞ while keeping the set of states X fixed.

3The only difference is that our argument above indicates that V0 does not have to be fixed. It can be identified from

the model.
4The proof can be trivially generalized for I > 1 at the cost of much more cumbsersome notation.
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Note that we can rewrite the logarithm of likelihood function in Eq. (F4) as:

logL =
n∑
j=1

∑
x∈X

(
D1,j(x) log P̂ (x;ψ) + (1−D1,j(x)) log(1− P̂ (x;ψ))

)
, (F5)

where for notational simplicity P̂ (x;ψ) ≡ P̂1 (x;ψ). The MLE estimator ψ̂ satisfies the first-order

condition ∂logL
∂ψ (ψ̂) = 0; thus we have:

1

n

n∑
j=1

∑
x∈X

(
D1,j(x)− P̂ (x; ψ̂)

P̂ (x; ψ̂)(1− P̂ (x; ψ̂))

)
∂P̂ (x; ψ̂)

∂ψ
= 0. (F6)

Taking the first-order Taylor expansion of the above first-order condition around the true parameter
vector ψ∗, we have:

0 =
1

n

n∑
j=1

∑
x∈X

(
D1,j(x)− P̂ (x; ψ̂)

P̂ (x; ψ̂)(1− P̂ (x; ψ̂))

)
∂P̂ (x; ψ̂)

∂ψ

=
1

n

n∑
j=1

∑
x∈X

 D1,j(x)− P̂ (x;ψ∗)

P̂ (x;ψ∗)
(

1− P̂ (x;ψ∗)
)
 ∂P̂ (x;ψ∗)

∂ψ

+
1

n

n∑
j=1

∑
x∈X


(

D1,j(x)−P̂ (x;ψ∗)

P̂ (x;ψ∗)(1−P̂ (x;ψ∗))

)
∂2P̂ (x;ψ∗)
∂ψ∂ψ′

− P̂ (x;ψ∗)2+D1,j(x)(1−2P̂ (x;ψ∗))
P̂ (x;ψ∗)2(1−P̂ (x;ψ∗))

2
∂P̂ (x;ψ∗)

∂ψ
∂P̂ (x;ψ∗)

∂ψ′

 (ψ̂ −ψ∗). (F7)

The Law of Large Numbers implies that, for each x ∈ X , 1
n

∑n
j=1D1,j(x) → E(D1,j(x)) = P̂ (x;ψ∗).

Thus, as n→∞,

1

n

n∑
j=1

∑
x∈X


 D1,j(x)− P̂ (x;ψ∗)

P̂ (x;ψ∗)
(

1− P̂ (x;ψ∗)
)
 ∂2P̂ (x;ψ∗)

∂ψ∂ψ′
−
P̂ (x;ψ∗)2 +D1,j(x)

(
1− 2P̂ (x;ψ∗)

)
P̂ (x;ψ∗)2

(
1− P̂ (x;ψ∗)

)2 ∂P̂ (x;ψ∗)

∂ψ

∂P̂ (x;ψ∗)

∂ψ′


→ −

∑
x∈X

1

P̂ (x; ;ψ∗)
(

1− P̂ (x; ;ψ∗)
) ∂P̂ (x;ψ∗)

∂ψ

∂P̂ (x;ψ∗)

∂ψ′
≡ −H (F8)

where H denoted the negative of the expected value of the Hessian matrix. Now, the Central Limit

Theorem implies that

1√
n

n∑
j=1

∑
x∈X

 D1,j(x)− P̂ (x;ψ∗)

P̂ (x;ψ∗)
(

1− P̂ (x;ψ∗)
)
 ∂P̂ (x;ψ∗)

∂ψ
→d N (0, J), (F9)

where the Fisher information J is given by

J =
∑
x∈X

V ar

 D1,j(x)− P̂ (x; ;ψ∗)

P̂ (x; ;ψ∗)
(

1− P̂ (x; ;ψ∗)
)
 ∂P̂ (x)

∂θ
(θ).

Using (F7), (F8) and (F9), we thus have that:

√
n(ψ̂ −ψ∗)→d N (0, H−1JH−1).

Finally, it follows from the information matrix equality (see Hayashi, 2000, p. 50) that H = J. Thus,

√
n(ψ̂ −ψ∗)→d N (0, H−1).
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F.1 Standard Error Correction When Parameter is on the Boundary

In this subsection, we provide some details about the standard error correction for the parameter

estimate of β̃, which we estimated to be on the boundary of the parameter space. Our correction

procedure follows Andrews (1999, 2001) and in particular Moran (1971). In order to be as close as

possible to the notations used in Theorem 1 in Moran (1971), we write β̃1 = 1− β̃, so that the estimate

of β̃1, i.e.,
̂̃
β1, is on the boundary of zero. Let K−1 be the dimension of the remaining variables in ψ.

Let hij denote the (i, j)-element of Hessian H, where the Hessian is adjusted appropriately to reflect

the change in variables from β̃ to β̃1 = 1− β̃. Let σij denotes the (i, j)-element of H−1. Then, under

the MLE assumptions 1-7 in Moran (1971), the asymptotic distribution of
√
n(ψ̂ − ψ∗) converges to

the mixture of two distributions F1 and F2 :

√
n(ψ̂ −ψ∗)→d

1

2
F1 +

1

2
F2. (F10)

In (F10), F1 isK-dimensional truncated multivariate Normal distribution defined on {(0,+∞), (−∞,+∞)K−1}
whose density is equal to twice the density of a multivariate Normal distribution with mean zero and

covariance matrix of H−1. F2 is a (K − 1)-dimensional distribution concentrated on the the subspace

{0, (−∞,+∞)K − 1} such that the joint distribution of
√
n(ψ̂k − ψ∗k) for k = 2, . . . ,K + 1 is that of

√
n(ψ̂k − ψ∗k) =

K∑
j=2

σ̃i,j−1yj ,

where the vector y follows multivariate Normal distribution with mean zero and variance matrix H,

and the distribution of y is being taken conditional on the inequality σ−111

∑
σ1sys ≤ 0 where σ̃ij is

defined as the (i, j)- element of the inverse of the matrix obtained by removing the first column and

the first row of matrix H. See Moran (1971, p. 444) for more details.

G Estimation Results without A Priori Restrictions on β and β̃

In this section, we report the estimation results without a priori restrictions that β ∈ [0, 1] and

β̃ ∈ [β, 1].5

In Table G2 we report the estimation results when β̃ is relaxed to (0, 1]. In comparison to the

results reported in Table 6 in the main text when β̃ is constrained to be [β, 1], the estimates do

not change much except for standard errors, which is not surprising since β̃ reaches 1 in the original

estimation.

In Table G3 we report the estimation results when β and β̃ are both relaxed to be (0, 2]. Again,

the parameter estimates are very close to the original specifications reported in Table 6 of the main

text. Even though we do obtain estimates of β̃ that exceed 1, we can not formally reject the hypothesis

that β̃ = 1 (see Panel C of Table G3).

H Finite Horizon with Non-Stationary State Transition

In this appendix we discuss the identification strategy for a dynamic discrete choice model for

(potentially naive) hyperbolic discounters with finite horizon and non-stationary state transitions.

The time period in this case goes from t, the current period, until T , the end of horizon. In this

5We thank an anonymous referee for suggesting these relaxations.
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(1) (2) (3) (4) (5) (6)

Panel A: Instantaneous Utility Function Parameters

Bad Health
-0.434***

(0.147)

-0.724***

(0.216)

-0.138

(0.087)

-0.913***

(0.163)

-0.335***

(0.082)

-0.472***

(0.131)

Log Income
1.177***

(0.016)

1.167***

(0.016)

1.346***

(0.009)

1.153***

(0.034)

1.265***

(0.011)

1.280***

(0.009)

Constant
-0.811***

(0.117)

-0.928***

(0.238)

-2.732***

(0.097)

-0.926***

(0.096)

-1.722***

(0.060)

-2.014***

(0.124)

Panel B: Time Preference Parameters

δ
0.681***

(0.318)

0.792***

(0.206)

0.741***

(0.103)

0.947***

(0.089)

0.759***

(0.258)

0.764***

(0.164)

β
0.679***

(0.282)

0.791

(0.584)

0.679***

(0.341)

0.508***

(0.133)

0.578***

(0.246)

0.762

(0.503)

β̃
1.000***

(0.452)

1.000***

(0.278)

0.984***

(0.253)

1.000***

(0.094)

1.000***

(0.340)

1.000***

(0.130)

Panel C: Hypothesis Tests

H0 : β = 1 Reject Reject Reject Reject Reject Reject

H0 : β̃ = β Reject Reject Reject Reject Reject Reject

Exclusion Variables:

White Yes Yes Yes Yes Yes Yes

Age Yes Yes Yes Yes Yes Yes

Married Yes Yes Yes Yes Yes Yes

HighSchool Yes Yes Yes No No Yes

Insurance Yes Yes Yes Yes Yes No

Mother70 Yes No No No No Yes

MotherHighSchool Yes No Yes No Yes Yes

Father70 No Yes No Yes No No

FatherHighSchool No Yes No No No No

Table G2: Parameter Estimates for the Instantaneous Utility Function and Time Preference Parame-

ters Under Six Different Sets of Exclusive Restriction Variables with β̃ ∈ [0, 1].

Notes: (1). The last panel indicates the exclusive restriction variables used in the specification in that column,

with “Yes” meaning the variable is used, and “No” otherwise; (2). Standard errors for parameter estimates are in

parenthesis, and *, **, *** represents statistical significance at 10%, 5% and 1% respectively; (3). For hypothesis tests

reported in Panel C, all are rejected with p-value less than 0.01.
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(1) (2) (3) (4) (5) (6)

Panel A: Instantaneous Utility Function Parameters

Bad Health
-0.258***

(0.080)

-0.313***

(0.087)

-0.143**

(0.073)

-0.123***

(0.053)

-0.224***

(0.052)

-0.569***

(0.097)

Log Income
0.585***

(0.175)

0.723***

(0.244)

0.606***

(0.266)

0.531

(0.295)

0.434***

(0.155)

0.230

(0.144)

Constant
-1.354***

(0.122)

-0.845***

(0.121)

-1.557***

(0.131)

-1.458***

(0.125)

-1.437***

(0.120)

-2.289***

(0.087)

Panel B: Time Preference Parameters

δ
0.752***

(0.267)

0.701***

(0.137)

0.669***

(0.259)

0.610

(0.338)

0.820***

(0.299)

0.742***

(0.373)

β
0.680***

(0.259)

0.528***

(0.241)

0.500

(0.298)

0.571***

(0.208)

0.625***

(0.103)

0.718***

(0.123)

β̃
1.050***

(0.196)

1.117***

(0.435)

1.219***

(0.135)

1.055***

(0.310)

1.042***

(0.179)

1.250***

(0.185)

Panel C: Hypothesis Tests

H0 : β = 1 Reject Reject Reject Reject Reject Reject

H0 : β̃ = β Reject Reject Reject Reject Reject Reject

H0 : β̃ = 1 Not Reject Not Reject Not Reject Not Reject Not Reject Not Reject

Exclusion Variables:

White Yes Yes Yes Yes Yes Yes

Age Yes Yes Yes Yes Yes Yes

Married Yes Yes Yes Yes Yes Yes

HighSchool Yes Yes Yes No No Yes

Insurance Yes Yes Yes Yes Yes No

Mother70 Yes No No No No Yes

MotherHighSchool Yes No Yes No Yes Yes

Father70 No Yes No Yes No No

FatherHighSchool No Yes No No No No

Table G3: Parameter Estimates for the Instantaneous Utility Function and Time Preference Parame-

ters Under Six Different Sets of Exclusive Restriction Variables with β ∈ [0, 2] and β̃ ∈ [0, 2].

Notes: (1). The last panel indicates the exclusive restriction variables used in the specification in that column,

with “Yes” meaning the variable is used, and “No” otherwise; (2). Standard errors for parameter estimates are in

parenthesis, and *, **, *** represents statistical significance at 10%, 5% and 1% respectively; (3). For hypothesis tests

reported in Panel C, all are rejected with p-value less than 0.01.
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section, we will use superscripts t, t + 1, t + 2, ..., T to denote the time period for all the components

in our analysis for clarification. The discussion in this section will be shorter and less detailed than

that in Section 2, as it will soon be clear that the identification strategy for this non-stationary case

is essentially the same as the one for the stationary case, with only minor modification. However, we

should emphasize that the identification for this case requires, not surprisingly, that we have access to

a panel data set that covers the entire finite horizon.

First, define the current choice-specific value function, W t
i

(
xt
)
, as follows:

W t
i (xt) = uti(xt) + βδ

∑
xt+1∈X

V t+1(xt+1)π(xt+1|xt, i)dxt+1. (H11)

Then, define the choice-specific value function of the next-period self as perceived by the current

self, Zt+1
i (xt+1), as follows:

Zt+1
i (xt+1) = ut+1

i (xt+1) + β̃δ
∑

xt+2∈X
V t+2 (xt+2)π(xt+2|xt+1, i). (H12)

Given Zt+1
i (xt+1), we know that the current self’s perception of her future self’s choice, i.e., σ̃ as

defined in Definition 2 is simply

σ̃
(
xt+1, ε

t+1
i

)
= max

i∈I

ut+1
i (xt+1) + εi,t+1 + β̃δ

∑
xt+2∈X

V t+2(xt+2)π(xt+2|xt+1, i)


= max

i∈I

[
Zt+1
i (xt+1) + εi,t+1

]
.

Let us define the probability of choosing alternative j by the the next period self as perceived by

the current period self, P̃j (xt+1), when next period state is xt+1 :

P̃ t+1
j (xt+1) = Pr [σ̃ (xt+1, εt+1) = j]

= Pr
[
Zt+1
j (xt+1) + εj,t+1 ≥ Zt+1

j′ (xt+1) + εj′,t+1,∀j′ 6= j
]
.

Further denote

V t+1
i (xt+1) = ut+1

i (xt+1) + δ
∑

xt+2∈X
V t+2(xt+2)π(xt+2|xt+1, i). (H13)

According to the definition of V (·) as given by (2), V t+1 (xt+1) is simply the expected value of[
V t+1
i (xt+1) + εt+1

i

]
where i is the chosen alternative according to σ̃ (xt+1, εt+1). Thus it must satisfy

the following relationship:

V t+1 (xt+1) = Eεt+1

[
V t+1
σ̃(xt+1,εt+1)

(xt+1) + εt+1
σ̃(xt+1,εt+1)

]
. (H14)

Now note from (H12) and (H13), we have

V t+1
i (xt+1) = Zt+1

i (xt+1) +
(

1− β̃
)
δ
∑

xt+2∈X
V t+2(xt+2)π(xt+2|xt+1, i). (H15)
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The relationship in (H15) is crucial as it allows us to rewrite (H14) as:

V t+1 (xt+1) = Eεt+1

[
V t
σ̃(xt+1,εt+1)

(xt+1) + εσ̃(xt+1,εt+1),t

]
= Eεt+1

[
Zt+1
i (xt+1) + εσ̃(xt+1,εt+1),t

+
(

1− β̃
)
δ
∑

xt+2∈X V
t+2(xt+2)π(xt+2|xt+1, σ̃ (xt+1, εt+1))

]
= Eεt+1max

i∈I

[
Zt+1
i (xt+1) + εi,t+1

]
+
(

1− β̃
)
δEεt+1

∑
xt+2∈X

V t+2(xt+2)π(xt+2|xt+1, σ̃ (xt+1, εt+1))

= Eεt+1max
i∈I

[
Zt+1
i (xt+1) + εi,t+1

]
+

(
1− β̃

)
δ
∑
j∈I

P̃ t+1
j (xt+1)

∑
xt+2∈X

V t+2(xt+2)π(xt+2|xt+1, j) (H16)

The probability of observing action i being chosen at a given state variable x, in this non-stationary

case, is still:

P ti (xt) = Pr

[
W t
i (xt) + εi,t > max

j∈I\{i}

{
W t
j (x) + εj,t

}]
=

exp
[
W t
i (xt)

]∑I
j=0 exp

[
W t
j (xt)

] , (H17)

where P ti (xt) is the current-period self’s equilibrium choice probabilities and will be observed in the

data.

The relationship between Wi and Zi can no longer be described as in Equation 13, however, we

still have

Eεt+1max
i∈I
{Zt+1

i (xt+1) + εi,t+1} = ln

{∑
i∈I

exp
[
Zt+1
i (xt+1)

]}
, (H18)

and

P̃ t+1
j (xt+1) =

exp
[
Zt+1
j (xt+1)

]
∑I

i=0 exp
[
Zt+1
i (xt+1)

] . (H19)

Using (H18) and (H19), we can rewrite (H16) as

V t+1 (xt+1) = ln

{∑
i∈I

exp
[
Zt+1
i (xt+1)

]}

+
(

1− β̃
)
δ
∑
j∈I

exp
[
Zt+1
j (xt+1)

]
∑I

i=0 exp
[
Zt+1
i (xt+2)

] ∑
xt+2∈X

V (xt+2)π(xt+2|xt+1, j). (H20)

In this non-stationary case with finite horizon, at t = T where the continuation value is zero, we

have that

ZTi = uTi = V T
i

which leads to:

V T = ln
∑
i∈I

exp[ZTi ] = ln
∑
i∈I

exp[uTi ]. (H21)

Equations (H21) and (H12) combined give us ZT−1i , which can be further combined with equations

(H19) and (H20) for t = T − 1 to give us V T−1. We can keep doing backward induction in this way

until we reach V t+1, which can be used in (H11) to derive W t
i , the current choice specific continuation

value function. Equation (H17) shows the relationship between the observed choice pattern from the

data and W t
i .
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