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1. INTRODUCTION

A range of empirical and anecdotal evidence demonstrates the impor-
tance of buyers’ financial constraints in auctions. Financial constraints are
used by Cramton (1995) to explain some bidders’ exit decisions in the
personal communications services (PCS) auctions and by Genesove (1993)
to explain the end-of-day drop in prices at used car auctions. The impor-
tance of financial constraints is also recognized in auction design. The U.S.

!'We are grateful to an anonymous referee, George Mailath, Steven Matthews, Stephen
Morris, Nicola Persico, and seminar participants at University of British Columbia, Hong Kong
University, Hong Kong University of Science and Technology, North Carolina at Chapel Hill,
Pennsylvania, Stanford, and Yale for useful comments and suggestions. Parreiras gratefully
acknowledges partial financial support from CNPq-Brazil. All remaining errors are ours.

2To whom correspondence should be addressed. E-mail: hanming.fang@yale.edu.

3 E-mail: sergiop@email.unc.edu.

0899-8256/02 $35.00
© 2002 Elsevier Science (USA)
All rights reserved



2 FANG AND PARREIRAS

government often limits the length and size of mineral leases and sets some
leases aside for sale to small firms. Recently governments in many parts of
the world have aggressively sought to privatize once socially held assets.
Given the magnitude of these privatization sales, it is often realistic to
assume that buyers may run up against financial constraints.

There is a growing body of literature on auctions with financially con-
strained bidders. In a series of seminal papers, Che and Gale (1996a, 1998)
study independent private value (IPV) auctions of a single object with
financially constrained bidders. They show that the revenue equivalence
between standard IPV auctions no longer holds once financial constraints
are introduced. The IPV setting, however, precludes one from analyzing
how bidding constraints interact with information revelation in auctions.
Che and Gale (1996b) consider a model in which bidders have identi-
cal common valuation of the object but have independent and privately
observed bidding constraints. Their focus is to show that, in the presence
of budget constraints, standard auctions are not revenue equivalent and
may be dominated by a lottery and an all-pay auction. Again, the setting
of known common valuation prevents them from studying the interaction
among the budget constraints, the information revelation, and the winner’s
curse. Benoit and Krishna (2001) study the auctions of multiple objects with
financially constrained bidders under complete information. They focus on
how the optimal orders of sale depend on the bidding constraints and
on whether the multiple objects are complements or substitutes. Maskin
(2000) studies the constrained efficient auction mechanism with liquidity
constrained buyers in an IPV setting. Zheng (2000) provides a complete
solution to the first price IPV auction with financially constrained bidders
when costly outside financing and bankruptcy are allowed.

In this paper we introduce financial constraints in a two-bidder version of
Milgrom and Weber’s (1982) general affiliated value auction model. Each
bidder privately observes a signal about the value of the object and is pri-
vately informed of his or her available budget in the auction. We establish,
under quite general conditions, the existence of a symmetric equilibrium for
the second price auction (SPA). It is shown that, with financially constrained
bidders, the budget constraints and the signals closely interact in the equi-
librium conditions of the SPA. The symmetric equilibrium we identify takes
the following form: a bidder with a bidding budget w and a private sig-
nal x will bid min{w, b(x)} where b(-), called the “unconstrained” bidding
function, is an increasing function in x. In words, b(x) is the amount that
an unconstrained bidder will bid in equilibrium, knowing that her oppo-
nent may be constrained and may think that she is constrained and so
on. It is shown that the unconstrained bidders are more aggressive when
his or her opponents may be financially constrained in environments with
interdependent values. The intuition is simple: The likelihood that one’s
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opponent may be financially constrained entails the possibility that a bid-
der wins the object even though her opponent has a higher signal, which
attenuates the winners’ curse and makes a bidder more aggressive.

The remainder of the paper is structured as follows. Section 2 presents
the model. Section 3 derives the ordinary differential equation that the
“unconstrained” bidding function must satisfy in equilibrium. Section 4
proves, under quite general conditions, the existence of a symmetric equilib-
rium. Section 5 presents the comparative statics of the “unconstrained” bid-
ding function with respect to public signals and the severity of the bidding
constraints. Section 6 provides further discussions and extensions.

2. THE MODEL

The main text of this paper studies the fwo bidder case, but we will
here present the model of an arbitrary n > 2 risk neutral bidders who
compete for a single object in a SPA. Each bidder possesses some informa-
tion concerning the value of the object for sale: let X; be the real-valued
information variable (or value estimate, or signal) observed by bidder i.
Let X = (X4, ..., X,) be a vector of information variables observed by all
bidders. Let S = (S, ..., S,,) be a vector of additional real-valued variables
which influence the value of the object to the bidders. Some of the com-
ponents of S might be observed by the seller. Let f(s, x) denote the joint
probability density of the signals and let F be the corresponding cumulative
distribution function.

The actual value of the object to bidder i depends on all the information
variables and is denoted by V; = u;(S, X;, X_;). The following assumptions
from Milgrom and Weber (1982) are maintained:

Assumption 1. There is a function u on R"™ such that for all i, u;(S,
X) = u(S, Xi7 {XJ}/?ﬁl)

Assumption 2. The function u is non-negative, is continuous, and is non-
decreasing in its variables.

Assumption 3. f is symmetric in its last n arguments.
Assumption 4. The variables Sy, ..., S,,, X;, ..., X, are affiliated.

Now we add the following feature to the above model of Milgrom and
Weber (1982): we assume that each bidder i gets an independent random
draw W, from a common distribution G, which represents her available
bidding budget. The corresponding density is denoted by g. We assume
that g(-) is strictly positive on the support of W,. Let W = (W,,..., W)
be the random vector of bidding budgets for the n bidders. The following
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assumptions are maintained:
Assumption 5. For each i, W, is independent of (S, X, W_,).

Assumption 6. For i = 1,...,n, supp(W;) = [w, w] and supp(X;) =
[x, %], and for k = 1, ..., m, supp(Sy) = [s;,5x]. The bounded support
assumption on X; and S, together with Assumption 2 implies that for
each i, E[V;] is finite.

Assumption 7. w > u(s, X, X, ..., x) > w. This assumption implies that,
first, with probability one a bidder with budget w is not constrained; second,
ex ante there is a positive probability that any bidder will be financially
constrained.

3. DERIVING THE FIRST-ORDER CONDITION

We will analyze the equilibrium for the case n = 2. We will focus on the
symmetric equilibrium in which the bidding function takes the form that
foreachi=1,2,

B(w;, x;) = min{w;, b(x,)}, 1)
where b(-) is a strictly increasing and piecewise differentiable function. We
can think of b(x;) as the bid of bidder i who has a signal x;, who is not
herself financially constrained but understands that her opponents may be
constrained and so on. We will refer to b(-) as the “unconstrained” bid-
ding function. For expositional ease we will refer to bidder 1 as “she” and
bidder 2 as “he.”

Suppose that bidder 2 follows the bidding rule B(-, -) as in (1), and con-
sider the optimal strategy for bidder 1 who has a budget w and a signal
x;. By Assumption 7, bidder 1 will not herself be financially constrained,
but she understands that her opponent may be constrained and may expect
him to be constrained with positive probability, and so on.

To analyze bidder 1’s best response, we write Q(b, w,, x,) and P(b, w,,
X,) as, respectively, bidder 1’s probability of winning the object and her
expected payment, if she bids b and if bidder 2 is of type (w,, x,) and is
following the bidding strategy (1). By the rules of SPA, Q(b, w,, x,) and
P(b, w,, x,) can be expressed respectively, as,

0 if b < B(w,,
Qb w2, 12) = Hb = Blwa, 1)} = { | irh o BEZE Z; &)

P(b, wy, x3) = B(wy, x2)1{b > B(w,, x;)}
0 if b < B(w,, x,)
= [ w, if b > B(w,, x,) = w, 3)
b(x,) if b > B(w,, x,) = b(x,).
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By Assumption 7, a type-(w, x;) bidder 1 will be unconstrained and hence
she solves the following problem:

maxTI(b:xy) = [ [ {E[u(S. X1, Xo)l X1 = 01, X5 = 2:10(b, w2, x2)
— P(b, wy, x5)} dFXz\Xl(x2|x1)dG(w2)' 4)

To further analyze (4), it is useful to define the “generalized inverse” of
b(-), which we denote by i, as

w(b) = sup{x : b(x) < b}. 6)

It is clear that if b(-) is everywhere continuous then we will simply have
¥(z) = b~!(z), which follows directly from the assumed strict monotonicity
of b(-).

Using (2) and (3), we can rewrite bidder 1’s objective function (4) as

(o)
(bix) = [ 11 = G(b(x2)) HE[(S, X, X)|X; = 21, X, = ]
—b(xy)} dFX2|X1 (x2lx1)
b
+ /w{E[M(S, X1, X)Xy = x1, Xo = (wy)] — wy}

x[1 —FXZ|X1(¢(w2)|x1)]dG(w2)- (6)

The right-hand side of (6) is the sum of bidder 1’s expected surplus under
the two events when her bid, b wins the object (see Fig. 1 for a graphical
illustration.) The first term is her expected surplus in event I, when she
wins the object and pays bidder 2’s bid which is b(x,). Note that in this

Wa

T b(mg)
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| Event II|
wz B;b) T 2

FIG. 1. The two events in which bidder 1 wins the object with a bid b. Event I: {(w,, x,): b >
min{w,, b(x,)} = b(x,)}; event II: {(w,, x,): b > min{b(x,), w,} = w,}.
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TABLE 1
Notations

v(x, z): E[u(S, X;, X))|X; =x, X; = z], jH#I

e(x, z): E[u(S, X;, X))|X; =x, X; > 7], j#I
fX/\X[(Z|x) ..

— Py 7

. 8(w)

Az|x):

event, conditional on bidder 2’s signal x,, the probability that w, is higher
than b(x,) is 1 — G(b(x,)). The second term is her expected surplus in
event II, when she wins the object and pays bidder 2’s bid, which is w,.
Notice that in this event, bidder 1 can only infer from her winning the
object that X, > #(w,), which, conditional on her own signal, occurs with
probability 1 — Fy x, (¢(w,)|xy).

We now introduce in Table I some notation that eases exposition. The
interpretation of the four terms in Table I is as follows:

* v(x, z) is the expected valuation of the object to bidder i when i and
j’s (j # i) signals are, respectively, x and z;

* ¢(x, z) is the expected valuation of the object to bidder i when i’s
signal is x and j’s (j # i) signal is at least z;

* A(z|x) is the hazard function of j’s signal conditional on #’s signal x;

* y(w) is the hazard function of the budget constraint distribution.

Using the above notation, we can now differentiate 11(b; x;) with respect
to b and obtain, after applying Leibniz’s rule and some simplifications,

aH(xb b) _

b (1= GO)w(x1, ¥(b)) — bl fx,x, (b(D)]x1) 9’ (b)

+[e(x1, $(b)) — bI[1 = Fy,x, (4(b)x)]8(b). (™)

It will prove more convenient to verify the second-order condition if we
interpret the auction as a revelation mechanism: each bidder i = 1, 2 reports
his or her type to a mediator who will submit a bid for i according to
(1). Assume truth-telling by bidder 2. Then the expected payoff for bid-
der 1 of type (w, x;) if she reports z, assuming that she reports her bud-
get type truthfully (which is verified in the proof of Theorem 1), is given
by I1(b(z); x;) because the mediator will bid b(z) for her. The first-order
condition for truth-telling to be an equilibrium is that the derivative of
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I1(b(z); x;) with respect to z evaluated at x; is equal to zero. Note that
I(b(2), x1) _ d1I(b(z); x1)
dz ab
= [1 = GB][V(x1, 2) = b(2)fx,x, (2]%1)
+[e(x1, 2) = b(D][1 — Fx,x, (2]x1)]g(b(2))b'(2)
=[1-G(b(2)][1 - FX2|X1(Z|x1)]
Aw(x1, 2) = b(2)A(z]x1) + v(b(2))[@(x1, 2)
—b(2)]p'(2)}- (®)

We denote expression (8) as FOC(z|x;). In order for truth-telling to be
optimal, we require that

b'(2)

FOC(xl |x1) =0.

Noting that [1 — G(b(x))][1 — Fyx,x,(x1]x1)] is positive for all x; < X, we
can simplify the first-order condition as

[v(x1, x1) = b)) Ay |xq) + y(D(x)[@(xq, x1) — b(x1)]b'(x1) = 0. (9)

It is easier to interpret the first-order condition if we rewrite (9 ) as

Term 1 Term 2
[1- FXZ\Xl(xl lx)]g(b(x1))D (x)Ax  [@(xq, x1) — b(xy)]
Term 3 Term 4

=[1 =G ))]fx,x, (x1lx)Ax  [b(x1) —w(xp, x)] . (10)

The left-and right-hand sides of Eq. (10) are, respectively, bidder 1’s
expected net benefit and expected net cost if she marginally raises the
announcement of her type by Ax. To see this, note that term 1 in Eq. (10)
is the increase in the probability of bidder 1 winning the object when
her opponent was a marginal winner who was previously bidding his bud-
get, and term 2 is the accrued net surplus to bidder 1 from winning the
object in such events, term 3 is the increase in the probability of winning
the object when her opponent was a marginal winner who was previously
unconstrained (hence he has a signal no more than x;), and term 4 is
the accrued net cost of winning in such events. The optimality condition
requires that the expected net benefit and cost be exactly balanced when
bidder 1 announces her true signal.

Notice that if the bidders’ valuations are private, that is, if u(S, X;, X_;)
does not depend on X _;, then it is immediate that »(x, x) = ¢(x, x). Hence
the first order condition (9) can be satisfied only if b(x;) = v(xy, x¢).
In what follows we will consider the interdependent value case in which
u(S, X;, X_;) is strictly increasing in all of its arguments.
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4. EXISTENCE OF EQUILIBRIUM

In this section, we first obtain the properties of the “unconstrained” bid-
ding function b(-) by examining the necessary first order condition (9), then
we show the existence of solutions to (9), and finally we provide a technical
condition under which condition (9) is also sufficient for b(-) to be part of
an equilibrium.

4.1. Properties of b(-)

The first property of b(-) is that, if b(x) < w, then b(x) = v(x, x). There
are two ways to understand this property. The first is to examine Eq. (9) and
note that the term y(b(x)) is equal to zero when b(x) < w, which entails
that condition (9) can be satisfied only if b(x) = v(x, x). Alternatively,
when b(x) < w, bidder 1 knows that her marginal losing opponent is not
constrained. Hence the budget becomes irrelevant to her marginal benefit—
cost trade-off in Eq. (10), which implies that she should bid exactly the
same amount as in Milgrom and Weber’s (1982) second price auction with
no financial constraints.

The second property of b(-) is that, if b(x) > w and x < X, then function
b(-) must satisty the ordinary differential equation (ODE)

by = 200 [66) — v )
Y(b(x)) [@(x, x) = b(x)]’
which is a re-arrangement of condition (9).

To summarize, bidders who place bids lower than the minimum budget
shall ignore the constraints and bid the same amount as that prescribed by
the equilibrium with no financial constraints; bidders who place bids higher
than the minimum budget shall bid according to the solution of ODE (11).
We will denote a solution to ODE (11) by b*(x). From the above discussion,
it is worth remarking that the solution to ODE (11) determines the domain
on which the equation itself is defined: {x € [x, X]: b*(x) > w}.

For the solution to ODE (11) to be monotonically increasing as postu-
lated in (1), it must satisfy that, for all x < X,

v(x, x) < b*(x) < ¢(x, x), (12)

(11)

because the hazard functions A(x|x) and y(b(x)) are both positive and
v(x, x) < ¢(x, x) for x < X in the interdependent value case.

Finally, since v(X,Xx) = ¢(X, X), it must be the case that if b(-) is
continuous at x, then

b(x) = (¥, ¥) = (&, ¥). (13)

We will refer to (13) as the boundary condition.
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4.2. Existence of Monotonic Solutions to ODE (11)

Here we prove the existence of increasing solutions to ODE (11) that
satisfy the boundary condition (13) and provide a local condition on the
hazard function of the budget distribution that guarantees the uniqueness
of the solution.

PROPOSITION 1.  There exist solutions to ODE (11) that satisfy the mono-
tonicity condition (12) and the boundary condition (13). Furthermore, if y(-) is
non-increasing around a neighborhood of v(x, k), then the solution is unique.

Proof (Existence). The main difficulty to prove existence lies in the fact
that in the proximity of curve ¢ or point X, ODE (11) does not satisfy the
Lipschitz condition. Moreover, boundary condition (13) requires that any
solution to ODE (11) get arbitrarily close to ¢ as x converges to X¥. The
idea of the proof is to first apply the standard existence and uniqueness
theorem for a compact region strictly below ¢ and away from X, where the
Lipschitz condition holds and then exploit the particular structure of our
problem to extend the solution to the whole domain D given by

D=A{(x,b): v(x,x) <b<eo(x,x),b>wand x < x <X}.

Step 1. We first consider a subset of D uniformly bounded away from
¢ by € > 0 and from x by é > 0:

D(e,8)={(x,b) e D: b < o(x,x) —&,x <X — 8}.

Clearly ODE (11) satisfies the Lipschitz condition on D(¢, 6). By standard
results in ordinary differential equations (see, e.g., Theorem 6 of Birkoff
and Rota, 1969, p. 23), for any point (x, b) € D(e, 8), there exists a unique
flow curve starting from (x, b). Moreover, since ¢ is arbitrary, we can extend
such a flow curve by continuity to the boundary of D(0, 8) (for the extension
technique, see, e.g., Cronin, 1980). Also by taking 6 to zero, we can extend
the flow curves to the whole domain D. But note that the extension does
not need to satisfy ODE (11) at the boundary of D. To summarize, we have
shown that for any point in the interior of D there is a unique flow curve
induced by ODE (11).

Step 2. To prove existence it now suffices to show that there is a
flow curve that hits (X, ¢(X, x)). Let F = {(x,b): w < b < ¢(x,x)} U
{(x, w): v(x, x) < w < ¢(x, x)}. Note that F is a closed connected set. We
then define

F” = {(x,b) € F: the flow curve induced by ODE (11)
starting at (x, b) hits v}

F? ={(x,b) € F : the flow curve induced by ODE (11)
starting at (x, b) hits ¢}.
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(a) Case A: ¢ (z,z) <w (b) Case B: ¢ (z,2) > w

FIG. 2. Two possible configurations of the closed connected set F = F¢ U F”.

We first establish that F” and F¢ are both non-empty (see Fig. 2 for an
illustration of the two possible configurations of F). Take any point in
F that is sufficiently close to ¢, inspection of ODE (11) reveals that the
flow curve from that point must intersect ¢ because the right-hand side of
ODE (11) can be made sufficiently larger than the derivative of ¢. Hence
F¢ is non-empty. The same argument shows that F” is non-empty. Since
D is bounded, it is immediate that F = F” U F¢. Since the end-point of a
curve depends continuously on the starting point, the sets F” and F¢ are
both closed. Because F is connected, F” and F¥ must have a non-empty
intersection. Since the graphs of v and ¢ intersect only at (¥, ¢(¥, X)), we
have proved that there is at least one point from which the flow curve
induced by ODE (11) satisfies boundary condition (13).

(Uniqueness). We know that the flow curves do not intersect each other
in the interior of D, but to rule out the possibility that the flow curves
intersect at the boundary point (X, ¢(%, X)) requires a different argument.
Suppose that the solution is not unique and let b(-) and b(-) be two dis-
tinct solutions. Pick any x’ close to x. Due to the local uniqueness in the
interior, we can, without loss of generality, assume that b(x') > b(x'). But
then if y(-) is non-increasing around a neighborhood of »(x, X), then direct
inspection of ODE (11) reveals that b'(x’) > b'(x’), which implies that
b(x) > b(%), a contradiction. Hence the solution must be unique. Q.E.D.

The domain on which ODE (11) is defined is then given by the interval
[x,,, X], where

x,, = inf{x € [x, X]: b*(x) = w}. (14)
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FIG. 3. An illustration of the “unconstrained” equilibrium bidding function b(-).

The “unconstrained” bidding function b(-) in a candidate symmetric equi-
librium in the form of (1) will be given by

v(x,x) if x <x,

b(x) = {b*(x) otherwise. (1)
The “unconstrained” bidding function b(-) is illustrated in Fig. 3.
The “unconstrained” bidding function (15) possesses, potentially, an
interesting discontinuity feature. Note that v(x,,, x,,) < w holds by the def-
inition of x,,. But there is no guarantee that v(x,, x,,) = w. If the strict
inequality v(x,,, x,,) < w holds, then there is a discontinuity in the “uncon-
strained” bidding function. The empirical consequence of this discontinuity
is that the bids in the interval (v(x,, x,,), w) will be observed with proba-
bility zero. This can be related to the explanation of jump bidding by Avery
(1998). In his paper, two bidders are allowed to open an English auction by
choosing to post a bid of 0 or K > 0. Avery shows that there exists an asym-
metric equilibrium in which jump bidding strategies are used by bidders
with higher signals to intimidate her opponents. However, by construc-
tion, the jump bidding in Avery’s paper can occur only in the beginning of
the auction. In reality, jump bids often occur in the middle of an auction.
For example, Cramton (1997) found that in the Federal Communications
Commission (FCC) auction of the radio spectrum, “49% of all new high
bids were jump bids ..., 23% of these jump bids were raises of one’s own
high bids.” Even though we study SPA in this paper, the equilibrium of
the SPA is also an equilibrium of an English auction with two bidders. We
can hence interpret the gap between v(x,, x,,) and b*(x,,) as a jump bid:
as the standing bids are raised past v(x,, x,,), a bidder will realize that
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her opponent may be financially constrained, and hence she will bid more
aggressively if she herself is not yet financially constrained.

Finally, two features of Proposition 1 are worth noting. First, the exis-
tence of solutions to ODE (11) does not depend on the hazard function
of the budget constraint distribution vy(-); second, the sufficient condition
for the uniqueness is only a local condition: it requires that y(-) be non-
increasing in a neighborhood of v(x, x). Because it is a local condition on
v(+), one can always slightly perturb any budget density distribution g(-)
around the neighborhood of v(x, X¥) into a new density g(-) that satisfies
the local non-increasing condition.

4.3. Existence of Equilibrium

Proposition 1 establishes the existence of solutions to the first-order con-
dition (9). To prove that the “unconstrained” bidding function identified
in (15) constitutes a symmetric equilibrium in the form of (1), we need
to further verify that the first-order condition is in fact sufficient for the
optimality of problem (4).

We will show below that a sufficient condition that guarantees the suf-
ficiency of the first-order condition for optimality is that FOC(z|x;) as
defined in (8) is strictly quasi-monotone (SQOM) in x; (see Lizzeri and
Persico, 2000, for another application of the SOM condition).

DEerINITION 1. A function H(y) is SOM in y if H(y) > 0 implies that
H(y)>0forall y > y.

In words, a function H(y) is SOM in y if it crosses zero at most once
from below. To guarantee that FOC(z|x,) is quasi-monotone in x;, we only
need to ensure that the term in the brackets in (8), namely

[v(x1, 2) = b(2)]A(z]x1) + ¥(B(2))[@(x1, 2) = b(2)]P'(2),  (16)

is SQOM in x; because, for all z € (x, ¥), the term [1 — G(b(2))][1 — F(z|x,)]
is strictly positive and SQM is preserved under positive multiplication.* The
second term in (16) is strictly increasing in x; due to the interdependent
value assumption and the fact that b’(-) > 0. However, the first term in (16)
is not necessarily increasing in x; due to two competing forces: on the one
hand, »(x;, z) is increasing in x; due to affiliation; on the other hand, the
affiliation between X, and X, also implies that the hazard function A(z|x;)

“Note that SOM is weaker than strict monotonicity, moreover, strict monotonocity is not
necessarily preserved by positive multiplication.
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is non-increasing in x,.°Therefore we need to make the following sufficient
assumption for FOC(z|x;) to be strictly quasi-monotone in x;.

Assumption 8. A(z|x;)v(xq, z) is non-decreasing in x; for all z.

This assumption is identical to that for Theorem 1 of Krishna and
Morgan (1997) in their analysis of war of attrition. It requires that the affil-
iation between X and X, is not so strong that it overwhelms the increase
in the expected value of the object, »(-, z), resulting from a higher signal
x;. It is clear that Assumption 8 ensures that FOC(z|x;) is SOM in x; for
all z € (x, X).

LemMA 1. If FOC(z|x,) is SOM in x, for all z € (x, X), then the first-
order condition (8) is sufficient for optimality.

Proof. Consider SPA as a revelation mechanism. If an unconstrained
bidder 1 of type x; reports a type y < x;, then the first-order deriva-
tive of her objective with respect to her report, FOC(y|x,), will be strictly
positive because, if x; > y, then SQOM implies that FOC(y|x;) > 0 since
FOC(y|y) = 0. Similarly if she reports y > x;, then FOC(y|x;) < 0 since
FOC(y|y) = 0. Hence SQM of FOC(z|x,) in x; entails that I1(x, b(-)) is
single peaked at x; for every x; € (x,,, X). Q.E.D.

Using Lemma 1, we can now prove the main result of this paper:

THEOREM 1. Let b(x) be given by (15). Then under Assumptions 1-8,
B(w, x) = min{w, b(x)} is a symmetric equilibrium of the SPA. Moreover, let
B(w x) be any symmetric equilibrium in the form of min{w, b(x)} for some
strictly increasing and piecewise continuous function b(-); then B(w x) =
B(w, x) except when x = x,, or X.

Proof.  Suppose that bidder 2 is bidding according to (1). If bidder 1’s
type (x, w) is such that w > b(x), then by Lemma 1, her best response is
to bid b(x). Hence it suffices to show that, if bidder 1’s type (x, w) is such
that w < b(x), her best response is to bid w. To show this, first note that,
by the strict monotonicity of b(-), b(x) > w > w implies that x > x,,. Since
b*(-) is monotonically increasing, there exists a unique z = b* 1(w) < x.

5To see this, let x' > x, z > z; affiliation implies that
ij\xi(z/|x) ij\X,-(z/|x’)
< .
ij\x,-(zlx) N fx]-\x,-(z|x,)
Integrating over z’ € (z, +00) yields
1- ij\X,»(z|x) _ 1- FX/\X,‘(Z‘X/)
fx,»\x,»(z|x) - fx]-\x,-(z|x/)

< AMz|x) > A(z|x").
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Since by Lemma 1 bidder 1’s objective function I1(x;, b(-)) is single-peaked
at x;, bidding w is then optimal. Thus her best response is again truth-
telling: by reporting that her type is (w, x), the mediator will submit a bid
min{w, b(x)} = w for her.

However, the first-order condition (8) does not uniquely determine the
best response of an unconstrained bidder 1 if she receives a signal x; €
{x,, X}. In fact, a bidder of type x,, is indifferent in placing any bid in the
interval [v(x,,, Xx,,), w] because the probability that her opponent also bids
in this interval is zero, which, under the rules of the SPA, implies that nei-
ther her probability of winning nor her expected payment depends on how
much she bids in this interval. Conversely, her opponent’s best response
will not be affected when bidder 1 of type x,, changes her bids since she
is of measure zero. Analogously, the expected surplus of an unconstrained
bidder of type x is constant for any bid above v(x, x). To see this, note
that, by bidding more than v(x, X, ), a type X bidder still wins the object
with probability 1 and pays the opponent’s bid. Conversely, her opponent’s
best response is not affected because the distribution of bids is not changed
when a type x bidder changes her bids. Q.E.D.

We now relate our results to the existing literature. As we discussed ear-
lier, when the bidders’ valuations are private, then v(x, x) = ¢(x, x) and
the first-order condition (9) is satisfied only by b(x) = v(x, x), confirm-
ing Che and Gale’s (1998) results. When the bidders have interdependent
values, we have v(x, x) < ¢(x, x); hence the “unconstrained” bid b(x) is
higher than v(x, x) for all x > x,,. The intuition is simple: the presence
of financial constraints attenuates the winner’s curse. A buyer may win the
object even if her competitors have higher signals, thus it is no longer true
that the winner is the buyer who has most overestimated the value of object.
Consequently, unconstrained bidders bid more aggressively.

4.4. A Linear Example

Here we present a simple linear example to illustrate that unconstrained
bidders will bid more aggressively when it is possible that her opponents
face financial constraints. For i = 1, 2, let X; be bidder i’s signal, and let
the common value of the object be V' = X, + X,. Suppose that X; and X,
are independent and uniformly distributed on [0, s], where s > 0. Let W,
be bidder i’s budget and suppose that W, and W, are independent and uni-
formly distributed on [0, 2s]. The following can be verified for this example:

S+Z.
2 2

v(x,z)=x+z; o(x,z) =x+

1 1
AM(z|x) = T2’ y(w) = s —w
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FIG. 4. The functions b(x), v(x, x) and ¢(x, x) in the linear example with s = 10.

Plugging these expressions into (11) we obtain
[2s — b(x)][b(x) — 2x]
(s = 0)[Bx +5)/2 = b(x)]’

together with the boundary condition that b(s) = v(s, s) = ¢(s, s) = 25, we
obtain the unique solution

b'(x)=

s
1
The three curves, v(x, x), ¢(x, x), and b(x) are plotted in Fig. 4 for s = 10.

b(x) = % +

5. COMPARATIVE STATICS

In this section, we provide the comparative statics results of the equilib-
rium “unconstrained” bidding function with respect to public signals and
the severity of the financial constraints.

5.1. Equilibrium with Public Signals

Suppose that, prior to the bidding, both bidders publicly observed a signal
X, which is a component of S. For notational ease, however, we write X,
separately from S. The signal X, could be, for example, a signal publicly
revealed by the seller. Bidders can now condition their bids both on their
private signals and the public signal x,. We will write b(x; x) as the “uncon-
strained” bid of a bidder with a private signal x and a public signal x.
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It is important to note that since x, is publicly observed, we can essentially
treat x, as a parameter of the model. Analogous to the case without pub-
lic signals, the “unconstrained” bidding function b(-;x,) must satisty the
following differential equation if b(x; xy) > w,

A(x|x; x0) [b(x; x9) — v(x, x; %0)]
y(b(x;x0)) [@(x, X3 x9) — b(x;x0)]

b'(x; x) = (17)

where
e(x, z;x9) = E[u(S, X, X5, Xo)| X1 = x1, Xy > z, Xy = x¢]
v(x, z; x0) = E[u(S, Xy, X5, X)|X; = x1, X = z, X = x¢]

fX2|(X1,XD)(Z|xa Xo)

1 - FX2|(X1,XU)(Z|X, x()) '

Mz|x; xp) =

Under conditions analogous to those in Theorem 1, we can prove the
existence of a symmetric equilibrium. The proof is omitted. The follow-
ing proposition shows how the public signal affects the “unconstrained”
bidding function b(-).

PROPOSITION 2. If the bidders have interdependent values and the signals
are strictly affiliated, then the “unconstrained” bidding function b(x;x,) is
increasing in the public signal x for all x € (x, ¥).

Proof. Let xf) < x{)’ be two public signals. The boundary con-
dition requires that b(¥;x)) = w(¥x)) = e(¥;x)) and b(¥;xl!) =
v(%;xl) = go()'c;xé‘). By the interdependent values assumption, we have
b(¥;xh) < b(¥;x!). We want to show that b(x;x)) < b(x;x!) for all
x € (x, X). Suppose that this is not so. Then the boundary condition
implies that there exists some ¥ € (x, ¥), b(¥; x})) = b(¥; x}}). But inspec-
tion of ODE (17) reveals that b'(¥; x}) > b'(¥; x}1) since the strict affiliated
signals assumption implies that A(x|x;x)) > A(x|x;x{!) and the inter-
dependent values assumption implies that »(x, x;x!) > w(x, x;x}) and
@(x, x;x) > @(x, x;xh) for all x € (x, %), which, in turn, implies that
b(x; x}) can only intersect b(x;x!') from below. This subsequently implies
that in the interval (¥, ¥), b(x;x}) must always lie above b(x;x{'), which
then implies that b(X;x)) > b(x;x!), a contradiction to the boundary
condition. Q.E.D.

Proposition 2 is not a surprising result: the release of good news will intu-
itively make the unconstrained bidders bid more aggressively. The proof,
however, is less trivial because we lack an explicit solution to differential
equation (17).
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5.2. The Severity of the Financial Constraints

Consider a parametric family of financial constraint distributions G(-; 6)
with g(-; 6) being the corresponding probability density function. The para-
metric family of hazard function of the budget function, y(w; 0), is denoted
by

oy 8(w;0)
y(w;0) = 1-G(w;0)

Suppose that the parametric family of hazard functions satisfies the increas-
ing hazard rate condition (IHR): if 6, > 6,, then y(w; 0;) > y(w; 6,) for all
w.® It can be shown that IHR implies first-order stochastic dominance: if
6, > 0,, then G(w; 0,) < G(w; 0;) for all w. In other words, when the value
of 0 is higher, it is more likely that one’s opponent is financially constrained.
This means that an unconstrained bidder is more likely to win the object
because of his or her opponent having a lower budget instead of having
a lower signal. This attenuates the winner’s curse and makes the “uncon-
strained” bidders bid more aggressively. Let b*(-; #) denote the solution
to ODE (11) when G(-; 6) is the cumulative distribution function of the
budget constraints.

PROPOSITION 3.  Suppose that IHR holds and that the bidders have inter-
dependent values. Then b*(x; 0,) > b*(x; 6,) for all x if 6; > 0,.

Proof. Suppose that the contrary is true. Then either b*(X;0;) =
b*(%;0,) for some ¥ < X, or b*(x;6,) > b*(x;0;) for all x < ¥ and
b*(x; 6;) = b*(x; 6,). We now show that neither is consistent with equilib-
rium.

Case I If b*(%;0;) = b*(X;6,) for some ¥ < X, then inspection of
ODE (11) reveals that under IHR, b*(¥; 6,) < b*(¥; 6,) must hold. Thus
if b*(-;0,) and b*(-; 6,) crosses ¥ < X at some point, b*(-; §,) must cross
b*(+; 6;) from below, which implies that they can only cross once. However,
the boundary condition (13) requires that b*(x; 6,) = b*(X; 60,), a contra-
diction.

Case II. If b*(x;0,) > b*(x;6,) for all x < X and b*(x;6,) =
b*(x; 6,), we will rule out this possibility as follows: we show that if
b*(x;60;) = b*(x;0,), then there exists a neighborhood of X in which

®Note that IHR is implied by the following condition: If 6, > 6, and w; > w,, then
g(wy; 0,)/8(w,; 0,) > g(wy; 0,)/8(ws; 6)).
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b*(x; 0,) > b*(x; 6,). To this end, we first show the following lemma:

LEMMA 2. Let b*(-) be an equilibrium “unconstrained” bidding function
that satisfies the boundary condition (13). Then the left derivative of b*(-) at
X exists and is given by

D@ b)) _dv

b*(x) = dx()'c, ).

XTx X—Xx

Proof. 1If b*(-) is an equilibrium “unconstrained” bidding function,
then v(x, x) < b*(x) < ¢(x, x) for all x < x. Together with the boundary
condition (13) we have that, for all x < X,

e(x, %) — o(x, x) b*(x, x) — b*(x, x) V()_C,)_C)—V(x, x)
X—x X—x X—x '

Let {x,} with x,, < x for all n be a sequence that converges to x. We have
then

do . *(X) b*(x,) br(¥) = b*(xa) _

E()_C, X) < limmf _—y < hmsup iz, (" X).
Now note that from ODE (11) we have
b*/(x ) — f(xn|xn) b*(xn) - V(xn’ xn)
" [1 - F(xn|xn)]7(b*(xn)) QD(xm xn) - b*(xn) ’
which can be rewritten as
b*(x,)=b*(x) | v(F,X)-v(x,,%,)
* _ f(xn|xn) X—x, + X=X,
b (xn)[l - F(xn|xn)] - ')’(b*(xn)) o(x,, )f") o(%,%) N b*(x) b*(x,) " (18)

Consider subsequences {x, } and {xni} along which the lim inf and lim sup
of [b*(x) — b*(x,)]/(X — x,), respectively, are obtained. Computing the
limits of expression (18) along the subsequences {x, } and {x,,l,}, respec-

tively, yields
JEX) < (%, )'c)—llmmf M)

= 3 @) ¥,
G (v, b () - b (x,)
<b*<x>>< (%, %) ~ limsup —5— )

where the limit of the left-hand side of expression (18) is zero because
b¥(x,) must be bounded if x, is close enough to X and 1 — F(x,]|x,) con-
verges to zero. To see that b*(x,,) is bounded in a neighborhood of ¥, note
that b*(x,,) lies between v(x,, x,) and ¢(x,, x,), but they must meet at x;
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hence in a neighborhood of x, b*'(x,) must be higher than dv(x,, x,,)/dx
and lower than de(x,, x,)/dx. Therefore we have

b(%) = b(x,) b(%) — b*(x,) _ dv

lim inf =i —(x, x);
im in Tox, im sgp Tz, e (%, x);
hence,
L B® b)) dv
b* =lim—— = — .
®O=n—==a®9

Since the above lemma holds regardless of the distribution of the budget
constraint, we know that

*/ (= */ (= dV - =
b™(%;01) = b7(%;0,) = (%, ¥).

For any X < ¥, we know from ODE (11) that
b*(%;01) _ y(b"(¥:0,); 0) [b*(%; 0,) — v(X, D)] [¢(%, %) — b*(X; 0,)]
b¥(X;0,)  y(b*(X;6,);6) [@(X, X) — b*(X; 6,)] [b*(%; 6,) — v(X, X)]
Taking limits as X 1 X, we obtain
. b(E60) _ y(u(E, X);6,)
1 =1lim—— = —
e b (%;0,)  y(v(X;X); 01)
i 107G 00) = (5 D] [6°(E: 65) = v(E, 5))
i [@(X, X) — b*(X; 0,)] [e(X, X) — b*(X; 6,)]
Since THR implies that
YO58 0)
— a1
y(v(X;%); 6,)

we must then have
i 1073 6,) — »(&, )] [b°(X; 6,) — v(¥, ¥)]
~ln-1 ¥ ¥ x( 3 ¥ ¥ x( 3 >
i [@(X, X) = b*(X; 01)] [¢(X, X) — b*(%; 6,)]
which in turn implies that b*(%; 6,) > b*(¥; 6,) for X within a neighborhood
of X, a contradiction to b*(x; 6,) > b*(x; 6,) for all x < x. Q.E.D.

L,

6. DISCUSSIONS

In this paper, we study an affiliated value SPA with two financially con-
strained bidders. We prove the existence of a symmetric equilibrium under
quite general conditions. Comparative static results with respect to the
release of public information and the severity of the budget constraints
are provided. This paper serves as a step toward a better understanding of
the interaction among bidding constraints, information revelation, and the
winner’s curse in auctions with affiliated values.



20 FANG AND PARREIRAS

6.1. The Possible Failure of the Linkage Principle

The analysis of the equilibrium of the affiliated value auction with finan-
cially constrained bidders conducted in this paper allows one to study other
interesting questions such as the linkage principle. In a companion article,
Fang and Parreiras (2000), we provide an explicit example of a common
value auction model with financially constrained bidders for which we ana-
Iytically solve the differential equation (11). We then demonstrate that the
linkage principle uncovered by Milgrom and Weber (1982) may not hold in
auctions with financially constrained bidders. The intuition for the failure
of the linkage principle with financially constrained bidders is that, in the
presence of financial constraints, the extent of bidders’ upward response
to seller’s good signals is limited by the financial constraints, while their
downward response to seller’s bad signals is not. The simplest example
that demonstrates the bidders’ asymmetric responses to good and bad news
released by the seller is as follows. Suppose that two bidders compete for
an object. Each bidder has a bidding budget of 3/4. The common valuation
is either 0 or 1. The common prior of the bidders and the seller is that 0
and 1 occur with equal probability. Bidders do not receive any private sig-
nal before they bid, while the seller will receive a signal that tells her the
true value of the object. If the seller commits to a concealing policy, the
bidders will both bid 1/2 for the object. If the seller commits to a reveal-
ing policy, then the bidders will both bid 0 if the true value is 0 and 3/4 if
the true value is 1. Hence the seller’s expected revenue under the conceal-
ing policy is 1/2, while that under the revealing policy is 3/4 x 1/2 = 3/8,
which is smaller. The reason is clear: when the low value 0 is revealed,
the bidders both drop their bids unfettered by the budget, but when the
high value 1 is revealed, the bidders can only increase their bids up to the
bidding budget.

6.2. Relation to Che and Gale (1998)

It is interesting to relate our equilibrium characterization to Che and
Gale’s (1998) characterization of the first price IPV auction with financially
constrained bidders. Their Lemma 1 states that under a technical condi-
tion there exists a unique, symmetric equilibrium in the form B(w, x) =
min{w, b(x)} for some continuous and strictly increasing function b(-).”

Recall that in our characterization, the “unconstrained” bidding function
b(-) could have a jump. The reason is that, in the first price auction, if

"However, in Fang and Parreiras (2001), we show, by way of a counterexample, that there
is an important oversight in Che and Gale’s analysis. Therefore the complete equilibrium
characterization of the first price IPV auction with financially constrained bidders is still an
open question.
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there is a jump at, say x*, such that lim ;. b(x) = b~ < limx . = b*, then
there must be a positive measure of bidders who submit bids in the interval
(b~, b™) because otherwise the bidder who submits ™ is not optimizing
under the first price auction. However, this implication does not hold in a
second price auction: a bidder could be optimizing with a bid b* when there
is a zero measure of opponents bidding in (b, b™) because her expected
payment in the event of winning is determined solely by the distribution
of other bidders’ bids. This explains why in the second price auction the
unconstrained bidding function b(-) could be discontinuous.

6.3. Extensions

A few extensions are worth pursuing. First, when there are more than two
bidders, under what conditions can we obtain a similar symmetric equilib-
rium? Our preliminary analysis of the general n bidder case suggests that
the basic features of two-bidder case may remain, even though the analy-
sis becomes significantly more involved. Second, it is interesting to study
the English and the first price affiliated value auctions with financially
constrained bidders and to study how the revenue ranking of these auc-
tion mechanisms is altered by the presence of financial constraints. Third,
what is the effect of seller financing on the seller’s expected revenue in the
affiliated value setting?
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