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1 Probability Mass at v

This section shows the theoretical, identi�cation and inference results in Fang and Tang (2014) hold

when the value distribution is continuous over [v; v) with a probability mass at v. The model assumptions

considered in this section are almost identical to that in Section 3 in Fang and Tang (2014), except for

the probability mass at v.

Assumption M1. Conditional on K, private values Vi are independent draws from the same continuous
marginal distribution FV jK which has positive density almost everywhere with respect to the Lebesgue

measure over [v; v) with a probability mass at v. Entry costs across auctions are independent draws from

a continuous distribution FK with a support [k; k].

Let the notations be de�ned as in the text. To begin with, recall the auction theory suggests that a

bidder�s dominant strategy in a English auction is still to exit at the true value Vi even in the presence of

probability mass at v and regardless of the assignment rules when more than one bidders�private values

tie at v.

1.1 Identi�cation

For any generic integrable function g, we use
R v
� g(s)ds and

R �
r
g(s)ds as shorthands for the improper

integrals limv"�v
R v
� g(s)ds and limv#r

R �
v
g(s)ds respectively. Let !(k;��i) denote expected utility for

bidder i conditional on paying entry cost k and potential competitors entering with probabilities ��i =

(�j)j2Nnfig � (�1; :; �i�1; �i+1; :; �N ). Under Assumption M1,

!(k;��i) � u(�k)FV jk(r) +
Z v

r

h(v; k;��i)dFV jk(v) + h(v; k;��i) Pr(V = v j k) (1)
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where for all v 2 [r; v),

h(v; k;��i) � u(v � r � k)FPi(r j k;��i) +
Z v

r

u(v � p� k)dFPi(p j k;��i)

+u(�k)[1� FPi(v j k;��i)] (2)

with FPi(� j k;��i) being the distribution of Pi when K = k, and i�s potential competitors enter with

probabilities ��i. For the boundary case with v = v, the de�nition in (2) is adjusted to

h(v; k;��i) � u(v�r�k)FPi(r j k;��i)+
Z v

r

u(v�p�k)dFPi(p j k;��i)+u(�k) Pr(Pi = v j k;��i) (3)

where Pr(Pi = v j k;��i) = 1� lim~v!v FPi(~v j k;��i).
It is important to note that the form of h(v; k;��i) in (3) is invariant to the assignment rules used

when more than one bidders tie at the upper end of the support v. This is because when Vi = v and

Pi = v, the ex post utility for bidder i is u(�k) regardless of whether he is assigned the object or not.
Due to symmetry in the private value distribution between bidders, FPi(:jk;��i) does not change with

the bidder identity i, and therefore ! does not depend on the bidder identity i. The following lemma

characterizes the symmetric mixed strategy equilibrium in the entry stage:

Lemma M1. Suppose Assumption M1 holds. For any entry cost k with !(k; (1; :; 1)) < u(0) <

!(k; (0; :; 0)), there exists a unique symmetric mixed strategy equilibrium in which all bidders enter with

probability ��k, where �
�
k solves !(k; (�

�
k; :; �

�
k)) = u(0).

Proof of LemmaM1. First, we show that under Assumption M1, !(k;��i) is continuous and decreasing
in ��i for all k. To see this, note for any t 2 [r; v], the event �Pi � t�can be represented as

\j2Nnfigf"j stays out" or "j enters \ Vj � t"g.

Due to the independence between entry decisions and between private values,

FPi(t j k;��i) =
Q
j 6=i[1� �j + �jFV jk(t)]: (4)

for all t 2 [r; v]. Besides, the probability mass in the distribution of Pi at v = v is

Pr(Pi = v j k;��i) = 1� lim
~v!v

FPi(~v j k;��i).

The marginal e¤ect of �j on this conditional probability in (4) is strictly negative for all j 6= i at �j 2 [0; 1]
and t 2 [r; v). (Recall r is a binding reserve price.) Thus for all v 2 [r; v] (including the boundary case
with v = v):

h(v; k;��i) = E[u(v � ~Pi � k) j k;��i]

where the expectation is taken with respect to a random variable ~Pi whose support is [r; v] and whose

distribution satis�es Pr( ~Pi = r j k;��i) = FPi(r j k;��i) and Pr( ~Pi � t j k;��i) = FPi(t j k;��i) for
all t 2 (r; �v) and Pr( ~Pi = v j k;��i) = Pr(Pi = v j k;��i). It then follows that h(v; k;��i) is decreasing
in ��i given any k and v 2 [r; v). Because it is shown above that the distribution of ~Pi (which has
a probability mass at the upper end of its support) is stochastically increasing ��i and because u(:) is

increasing, it follows that !(k;��i) is decreasing in ��i. The rest of the proof follows from the same

arguments as those used for Lemma 1 in Section 3 of Fang and Tang (2014). �
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Whenever !(k; (0; :; 0)) � u(0) (respectively, !(k; (1; :; 1)) � u(0)), the equilibrium entry probabilities

are degenerate at 0 (respectively, 1). Thus the condition that !(k; (1; :; 1)) < u(0) < !(k; (0; :; 0)) can be

tested, as long as entry decisions are reported in data.

Proposition M1. Suppose Assumption M1 holds. If K is independent from (Vi)i2N and E(K) is known

to the researcher, then E[�(K)] is identi�ed from entry decisions and the distribution of transaction prices.

Proof of Proposition M1. First o¤, we show E[(Vi�Pi)+ j A�i = a] =
R v
r
FV (v)

a[1�FV (v)]dv under
Assumption M1 and the other conditions in Proposition M1. By de�nition, E[(Vi � Pi)+ j A�i = a] is

E[1fPi < �vg(Vi � Pi)+ j A�i = a] + E[1fPi = �vg � 0 j A�i = a]
= E[(Vi � Pi)1fVi > Pi > rg1fPi < �vg j A�i = a] + E[(Vi � Pi)1fVi > Pi = rg j A�i = a]

=

Z �v

r

��(p)dFPijA�i=a(p) + FV (r)
a

�Z �v

r

(v � r) dFV (v) + (�v � r)q0
�

where q0 � 1� limv"�v FV (v) and ��(p) � (�v� p)q0+
R v
p
(v� p)dFV (v). Thus we can write E[(Vi�Pi)+ j

A�i = a] as:Z �v

r

�
(�v � p)q0 +

Z �v

p

(v � p)dFV (v)
�
dFPijA�i=a(p) + FV (r)

a

�Z �v

r

(v � r) dFV (v) + (�v � r)q0
�

= q0

�Z �v

r

(�v � p)dFPijA�i=a(p)

�
+

Z �v

r

�Z �v

p

(v � p)dFV (v)
�
dFPijA�i=a(p) (5)

+FV (r)
a

�Z �v

r

(v � r) dFV (v) + (�v � r)q0
�
.

Using integration by parts, the �rst term on the R.H.S. of (5) is

q0

�
0� (�v � r)FPijA�i=a(r) +

Z �v

r

FPijA�i=a(p)dp

�
. (6)

By an application of the Bounded Convergence Theorem and integration by parts, the second term on

the R.H.S. of (5) is:

lim
s!r+

lim
v0!�v�

lim
v00!�v�

Z v0

s

"Z v00

p

(v � p)dFV (v)
#
dFPijA�i=a(p)

= lim
v0!�v�

lim
v00!�v�

"Z v00

v0
(v � v0)dFV (v)

#
FPijA�i=a(v

0)� lim
s!r+

lim
v00!�v�

"Z v00

s

(v � s)dFV (v)
#
FPijA�i=a(s)

+ lim
s!r+

lim
v0!�v�

lim
v00!�v�

Z v0

s

FPijA�i=a(p)[FV (v
00)� FV (p)]dp (7)

where the derivation of the third term follows from the Leibniz Rule and

d

dp

 Z v00

p

(v � p)dFV (v)
!
= 0� 0 +

Z v00

p

(�1)dFV (v) = �[FV (v00)� FV (p)].

The �rst term on the R.H.S. of (7) is 0 while the second equals
hR �v
r
(v � r)dFV (v)

i
FPijA�i=a(r). By

another application of the Bounded Convergence Theorem, the third term on the R.H.S. of (7) is:

lim
s!r+

lim
v0!�v�

Z v0

s

[FV (p)]
a
[ lim
v00!�v

FV (v
00)� FV (p)]dp =

Z �v

r

[FV (p)]
a
[1� q0 � FV (p)]dp. (8)
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Substituting (6)-(8) into (5) and using FPijA�i=a(p) = FV (p)
a for p � r, we get:

E[(Vi � Pi)+ j A�i = a] =
Z �v

r

FV (v)
a[1� FV (v)]dv. (9)

The rest of the proof follows from the same steps as in the text. �

1.2 Asymptotic Property of �̂T

We sketch the proof of the limiting distribution of the test statistic in almost the same environment

as in Section 3 of Fang and Tang (2014), except that there is a probability mass at v (as stated in

Assumption M1). We also need additional assumptions of independence.

Assumption M2. (i) The elements in (V1; V2; :::; VN ; K; �) are mutually independent with �nite second
moments and E(�) = 0. (ii) The marginal density for Vi is the same for all i and is bounded above and

away from zero by a positive constant. (iii) 0 < ��k < 1 for all k 2 [k; k].

Note the tail condition in part (ii) of Assumption 2 in Fang and Tang (2014) is no longer necessary

when the distribution of private values assigns a probability mass at v. Let P0 denote the true probability
measure for (W;A) in data-generating process. Let PT denote the corresponding empirical measure. For
any signed measure Q, let Qf �

R
f dQ (e.g. P01fW � sg = Pr(W � s)). Let FW jA=m denote

the distribution of W given A = m, and F ~W jA=m denote fFW jA=m(t) : t 2 [r; �v)g. Let F̂ ~W jA=m;T
denote estimators for F ~W jA=m as de�ned in the text. Let �̂T;m � PT 1fA = mg, �̂T � (�̂T;m)

N
m=0 and

� � (�m)Nm=0 where �m � P01fA = mg. By de�nition, FW jm(s) � Pr(W � s j A = m) = ��1m P01fW �
s, A = mg. Recall �̂T � (�̂T;a)

N�1
a=0 where �̂T;a � 1

T

P
t�T [

N�a
N 1fAt = ag+ a+1

N 1fAt = a + 1g], and
� � (�a)

N�1
a=0 where �a � Pr(A�i = a). The distribution FW;A in the data-generating process (DGP)

takes the form of a mixture distribution: FW;A =
R
FW;AjkdFK .

The �rst step is to characterize the joint asymptotic property of three building blocks of the test

statistic: F̂ ~W jA=m;T for 2 � m � N , �̂T and 1
T

P
t�T

~Kt. For 2 � m � N , let fF ~W jA=m : 2 � m � Ng
denote N � 1 zero-mean Gaussian Processes, each of which is indexed by [r; �v]. The N � 1 processes are
independent with the covariance between F ~W jA=m(s) and F ~W jA=m0(s0) being zero for all m 6= m0 and s

and s0 � r. Let (N 0
�;N�)0 denote a multivariate normal random vector in RN+1. For each m, let the

covariance between (N 0
�;N�)0 and F ~W jA=m be as speci�ed in Appendix B of Fang and Tang (2014).

Under Assumptions M1 and M2,

p
T

0BBBBBBB@

F̂ ~W jA=2;T � F ~W jA=2
...

F̂ ~W jA=N;T � F ~W jA=N
�̂T � �

1
T

P
t�T

~Kt � �K

1CCCCCCCA
 

0BBBBBBB@

F ~W jA=2
...

F ~W jA=N
N�
N�

1CCCCCCCA
.

The proof uses the Donsker Property of classes of indicator functions. De�ne three classes of functions

with domain over the support of (W;A):

FW � f1fW � sg: s 2 [r; �v]g;
FA � f1fA = mg : 0 � m � Ng; and
F� � fN�aN 1fAt = ag+ a+1

N 1fAt = a+ 1g: 0 � a � N � 1g.
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Let FW;A � ffW ^ fA : fW 2 FW ; fA 2 FAg � f1fW � s, A = mg: s 2 [r; �v], 0 � m � Ng denote
a class formed by taking the pair-wise in�mum of FW and FA. Note FW and FA are both Donsker

Classes. By Theorem 2.10.6 in van der Vaart and Wellner (1996), both F� and FW;A are Donsker classes,
and consequently F � FW;A[ F�[ FA is Donsker. For a set S, let B(S) denote the space of bounded,
real-valued functions with domain S, equipped with the sup-norm. By Theorem 2.1 (and the semi-metric
de�ned on page 16) in Kosorok (2008), the empirical process GT �

p
T (PT �P0) indexed by F converges

weakly to a tight zero-mean Gaussian Process G in B(F), with covariance P0ff 0�P0fP0f 0 for any f and
f 0 2 F .
The second step is to characterize the joint limiting behavior of F̂V;T , �̂T and T�1

P
t
~Kt. Let

F̂V;m;T (s) � ��1m (F̂W jA=m;T (s)). To simplify notations, let F ~V denote fFV (t) : t 2 [r; �v)g, and similarly

let F̂ ~V ;m;T and F̂ ~V ;T denote the section of F̂V;m;T and F̂V;T over [r; �v). For each m, let �m(t) � �
�1
m (t) for

t 2 [0; 1). For any s; v 2 [r; �v) and m � 2, let D0;m denote a 2-by-2 diagonal matrix with diagonal entries

�0m
�
FW jA=m(s)

�
and �0m

�
FW jA=m(v)

�
. Let �s;v be a (2N � 2)-by-(2N � 2) block-diagonal matrix such

that the (m� 1)-th diagonal block is the 2-by-2 matrix D0;m
~�s;v;mD

0
0;m, where

~�s;v;m � [Pr(A = m)]�1
 
FW jA=m(s)

�
1� FW jA=m(s)

�
FW jA=m(s)

�
1� FW jA=m(v)

�
FW jA=m(s)

�
1� FW jA=m(v)

�
FW jA=m(v)

�
1� FW jA=m(v)

� !
which is the covariance between FW jA=m(s) and FW jA=m(v). Furthermore, de�ne:

D1
2-by-(2N�2)

�
 

1
N�1 0 1

N�1 0 � � � 1
N�1 0

0 1
N�1 0 1

N�1 � � � 0 1
N�1

!
.

For any s � r, let �s denote the variance of the limiting distribution of the random vector GT (1fW �
s;A = 2g; 1fA = 2g; :::; 1fW � s;A = Ng; 1fA = Ng; ~K) in R2N�1.De�ne a 2-by-(2N � 1) matrix D2

as:  
1

N�1 � � � 1
N�1 0

0 � � � 0 1

!
D�

0BBBB@
1
�2

�ps2
�2�2

� � � 0 0 0

. . .

0 0 � � � 1
�N

�psN
�N�N

0

0 0 � � � 0 0 1

1CCCCA
N -by-(2N�1)

where D� is a N -by-N diagonal matrix with diagonal matrix being (�02(FW jA=2(s)); :; �
0
N (FW jA=N (s)); 1)

and psm � P01fW � s;A = mg for s � r.
Under Assumptions M1 and M2,

p
T

0B@ F̂ ~V ;T � F ~V
�̂T � �

1
T

P
t
~Kt � �K

1CA 
0B@ GV
N�
N�

1CA
where GV is a zero-mean Gaussian Process indexed by [r; �v). The covariance kernel for GV is (GV (s),
GV (v)) = D1�s;vD

0
1 for any s; v 2 [r; �v); and (GV (s),N�) is a bivariate normal with the covariance being

D2�sD
0
2 for any s 2 [r; �v). The covariance between GV and N� can also be characterized in a similar

fashion using the Delta method. Proof of these results follow from the di¤erentiability of � over [r; v) and

an application of the Multi-variate Delta Method, and is omitted. Note that the delta method can be

applied here because �0(:) is bounded above over [r; v) due to the probability mass at v.

The �nal step is to apply the Functional Delta Method to derive the limiting distribution of
p
T (�̂T �

�0). Recall B[r;�v) denotes the set of positive, bounded and integrable Cadlag functions over [r; �v).
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Equipped with a sup-norm, B[r;�v) is normed linear spaces with a non-degenerate interior. It follows
from Lemma 20.10 in van der Vaart (1998) that the mapping � as de�ned in the text is Hadamard

di¤erentiable at F ~V tangentially to B[r;�v), with the derivative D�;F ~V
: B[r;�v) ! RN+ being

D�;F ~V
(h)(a) �

Z �v

r

�
a[F ~V (s)]

a�1h(s)� (a+ 1)[F ~V (s)]
ah(s)

	
ds (10)

for any h 2 B[r;�v) and 0 � a � N�1. It is important to note that the integral in (9) and (10) are improper
under Assumption M1. That is, the integrals

R v are de�ned as lim~v!v

R ~v. Hence the right-hand sides of
(9) and (10) are both operators de�ned over B[r;v).
The Jacobian of � with respect to its components (�; �; �K) at the their true DGP values is:�

�0; :; �N�1; �0; :; �N�1;�1
�
� (�; �;�1).

Since � is Hadamard di¤erentiable at F ~V tangentially to B[r;v),1 it follows from the Functional Delta

Method (Theorem 2.8 in Kosorok (2008)) that

p
T

0B@ �̂T � �
�̂T � �

1
T

P
t
~Kt � �K

1CA 
0B@ D�;F ~V

(GV )
N�
N�

1CA .
An application of the multivariate delta method shows under Assumptions M1 and M2,

p
T (�̂T � �0) 

N� � �0D�;F ~V
(GV ) + � 0N� � N�. To see that the limiting distribution N� is univariate normal with

zero-mean, note the Gaussian process GV is Borel-measurable and tight (see Example 1.7.3. in van der
Vaart and Wellner (1996)) and that by construction the Hadamard derivative D�;F ~V

is a linear mapping

de�ned over B[r;�v). It follows from Lemma 3.9.8. of van der Vaart and Wellner (1996) thatN� is univariate
normal with zero mean.

1.3 Monte Carlo Simulation

In this section we present Monte Carlo evidence for the performance of our test in �nite samples. We

consider the following data-generating process (DGP). Each auction involves N potential bidders who

face a common entry cost K. Upon entry, bidders draw private values from the support [v; v] = [0; 10].

There is a probability mass of 2% at �v and the rest of the probability mass is uniformly spread over

the half-open interval [v; �v). The reserve price is set at r = 3. The data contains prices paid by the

winners and the number of entrants in each auction. In the rare case where the reserve price screens

out all entrants (i.e. privates values for all entrants are lower than r), transaction prices are de�ned to

be an arbitrary number smaller than r. The entry cost in each auction is drawn from a multinomial

distribution over the support f0:7; 0:8; 0:9g with identical probability masses. The data reports noisy
measures of entry costs ~K = K + � but not K, where � is drawn from a uniform distribution [�0:5; 0:5].
Bidders�von-Neumann-Morgenstern utility is speci�ed as u(c) �

�
c+5
10

�
, so that they are risk-neutral

(or respectively, risk-averse or risk-loving) if  = 1 (or  < 1 or  > 1).2 We experiment with the number

1 It is crucial that the domain of the space of functions here is [r; v) as opposed to [r; v].
2The speci�cation in this section di¤ers slightly from that used in Section 5 of Fang and Tang (2014). This is mostly

due to the fact that the speci�ed supports of private values are di¤erent between these two sections. We adopt these utility
speci�cations so that for any given  the curvature of the utility function over the respective supports of V are comparable
across these two sections.
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of potential bidders N = 4 or N = 5, and sample sizes T = 1; 500 or T = 3; 000.3

To improve the test performance in small samples, we modify our estimator for risk-premium �̂T

slightly by replacing the average of estimators for the value distribution FV in Section 4.2 of Fang and

Tang (2014) with inverse-variance-weighted average estimators. That is, while constructing �̂T , we replace

F̂V;T (s) in Section 4.2 of Fang and Tang (2014) by ~FV;T (s) � 1
N�1

PN
m=2 �̂m(s)�

�1
m (F̂W jA=m;T (s)) for

s � r, with �̂m(s) �
�
�̂2m;T (s)

��1
=
PN

m0=2

�
�̂2m0;T (s)

��1
and �̂2m;T being the standard errors for the

estimator of FV using observations with m entrants. The test statistic then uses the weighted version
~FV;T in subsequent steps. As the test statistic remains a smooth function of sample averages, we use

bootstrap estimates for critical values in its sampling distribution.

[Insert Figure 1 (a), (b), (c), (d) here.]

Panels in Figure 1 report test performance under various DGP and sample sizes T . For each grid point

of  between 0:75 and 1:25 (with a grid-width of 0:05), we calculate an integrated measure of relative

risk-aversion �(), de�ned as integral of �cu00(c)=u0(c) over the support of c = (Vi � Pi)+ �K. (Thus
positive values for �() correspond to risk-averse and negative values to risk-loving bidders.) For each 

and sample size T = 1; 500 or 3; 000, we simulate S = 250 samples.

For each simulated sample, we calculate the statistic �̂T , and then perform the test using critical

values estimated from B = 300 bootstrap samples drawn from this simulated sample. We reports test

results for signi�cance levels � = 5%, 10% and 15%. Solid curves in each panel show the proportions of

S samples in which our test fails to reject the null of risk-neutrality (H0 : �() = 0). The dashed curves

(and dotted curves respectively) plot the proportions of S samples in which the test rejects the null in

favor of alternatives HA : �() > 0 (and HL : �() < 0 respectively). Each panel of Figure 1 reports

the result for a given pair of T and N , with the integrated measure of risk-aversion �() plotted on the

horizontal axis.

In all panels of Figure 1, the test approximately attains targeted levels under the null. Also, in all

panels, the power of our test approaches 1 as the absolute value of the integrated measure of risk-aversion

�() increases.4 The comparison of panel (a) with (b) and the comparison of panel (c) with (d) suggest,

as sample sizes increase, errors in rejection probabilities under the null decrease while the power under

any �xed alternatives increases.

Table 1 further quanti�es these changes in test performance for  2 f0:8; 0:9; 1:0; 1:1; 1:2g and
N 2 f4; 5g by reporting numerical results. Each row corresponds to some pair of (N; ) and some sample
size T , while the column headings are targeted signi�cance levels. For each cell in Table 1 we report,

from the left to the right, the proportions of S simulated samples, where the test rejects H0 in favor of

HL, where the test does not reject H0, and where H0 is rejected in favor of HA respectively.

Table 1(a) shows results for auctions with four potential bidders. Even with a moderate sample size

T = 1; 500, the test attains rejection probabilities that are reasonably close to the targeted level � under

the null, and reasonably high probabilities for rejecting the null in favor of the correct alternative when

3We use a smaller sample size T compared to those in Section 5 of Fang and Tang (2014). This is because in the latter
case we need su¢ cient observations given each pair (z; n) in the estimation of entry probabilities.

4 In the presence of directional alternatives (i.e. HA and HL), we de�ne the power of the test as the probability of
rejecting the null in favor of the true alternative in the DGP.
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 6= 1. When  6= 1, the probability for �Type-III� error (i.e. rejecting the null in favor of a wrong

alternative) is practically zero across all speci�cations and sample sizes.

Table 1(a): Probabilities for Accepting [HL;H0;HA]: (N = 4)
� = 5% � = 10% � = 15%

T = 1; 500

 = 0:8 [0.004, 0.264, 0.732] [0.004, 0.192, 0.804] [0.004, 0.152, 0.844]

 = 0:9 [0.008, 0.768, 0.224] [0.008, 0.676, 0.316] [0.028, 0.584, 0.388]

 = 1 [0.052, 0.932, 0.016] [0.092, 0.872, 0.036] [0.132, 0.808, 0.060]

 = 1:1 [0.272, 0.724, 0.004] [0.420, 0.572, 0.008] [0.512, 0.480, 0.008]

 = 1:2 [0.672, 0.328, 0.000] [0.800, 0.200, 0.000] [0.880, 0.120, 0.000]

T = 3; 000

 = 0:8 [0.000, 0.048, 0.952] [0.000, 0.036, 0.964] [0.000, 0.020, 0.980]

 = 0:9 [0.000, 0.540, 0.460] [0.004, 0.456, 0.540] [0.004, 0.388, 0.608]

 = 1 [0.044, 0.936, 0.020] [0.076, 0.888, 0.036] [0.132, 0.820, 0.048]

 = 1:1 [0.548, 0.452, 0.000] [0.688, 0.312, 0.000] [0.776, 0.224, 0.000]

 = 1:2 [0.972, 0.028, 0.000] [0.992, 0.008, 0.000] [1.000, 0.000, 0.000]

Table 1(b): Probabilities for Accepting [HL;H0;HA]: (N = 5)
� = 5% � = 10% � = 15%

T = 1; 500

 = 0:8 [0.004, 0.480, 0.516] [0.008, 0.384, 0.608] [0.008, 0.324, 0.668]

 = 0:9 [0.008, 0.896, 0.096] [0.016, 0.812, 0.172] [0.032, 0.732, 0.236]

 = 1 [0.064, 0.924, 0.012] [0.068, 0.916, 0.016] [0.104, 0.876, 0.020]

 = 1:1 [0.192, 0.808, 0.000] [0.300, 0.700, 0.000] [0.400, 0.600, 0.000]

 = 1:2 [0.620, 0.380, 0.000] [0.760, 0.240, 0.000] [0.840, 0.160, 0.000]

T = 3; 000

 = 0:8 [0.000, 0.096, 0.904] [0.000, 0.064, 0.936] [0.000, 0.056, 0.944]

 = 0:9 [0.008, 0.588, 0.404] [0.016, 0.468, 0.516] [0.016, 0.412, 0.572]

 = 1 [0.040, 0.952, 0.008] [0.076, 0.888, 0.036] [0.124, 0.828, 0.048]

 = 1:1 [0.456, 0.544, 0.000] [0.588, 0.412, 0.000] [0.668, 0.332, 0.000]

 = 1:2 [0.920, 0.080, 0.000] [0.992, 0.008, 0.000] [0.992, 0.008, 0.000]

With the sample size as small as T = 1; 500 or 3; 000, the power of the tests appears low at  = 0:9

or  = 1:1. We argue that this should not be interpreted as evidence of unsatisfactory �nite sample

performance of our test. Rather it is mostly due to the fact that the curvature of utility functions are

close to being linear for  = 0:9 or  = 1:1. The power does improve substantially either as the sample

size increases, or as  moves further away from 1.

Table 1(a) also quanti�es the improvement of test performance as the sample size T increases. For a

�xed level of �, increasing sample sizes from T = 1; 500 to T = 3; 000 reduces the error in the rejection

probability by a small amount under the null with  = 1. On the other hand, such an increase yields

more substantial improvements in the power under each �xed alternatives. Table 1(b) reports results for

auctions involving �ve potential bidders. Overall, it registers the same pattern as in Table 1(a).
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Comparisons between Table 1(a) and 1(b) suggest the impact of a larger number of potential bidders

on the errors in rejection probabilities under the null is ambiguous. On the other hand, the impact of

a large N on the power of the test under any �xed alterative seems unambiguous: For all  6= 1 and

given any sample size, the power appears to be higher for all � when N = 4. Such a di¤erence in

comparison is related to the following fact: Under any alternative, the magnitude of the risk-premium

is partly determined by the shape of the distribution of (Vi � Pi)+ given N ; on the other hand this

magnitude remains �xed at 0 as the distribution of (Vi � Pi)+ changes with N under the null. Since the

size of risk premia, subject to estimation errors in data, essentially determines how likely it is to detect

non-risk-neutrality, we conjecture this di¤erence in comparative statics might explain the pattern above.

1.4 Mismeasurement of Entry Costs

This subsection provides further simulation evidence about the test performance when entry costs K

are mismeasured. We report results in a DGP where the noisy measures of entry costs systematically

understate the true entry costs known to potential bidders. The speci�cation of the DGP is the same

as that used above, except that the noisy measures ~K now has a downward bias equal to ~�-percent of

the true entry cost K. We experiment with ~� = 5 or 10 in simulations. Table 2 reports results with

S = B = 200 (where S is the number of simulate data sets and B is the number of bootstrap samples

used for estimating critical values in each simulated sample).

Table 2(a): Probabilities for Accepting [HL;H0;HA]: (~� = 5; N = 4)
� = 5% � = 10% � = 15%

T = 1; 500

 = 0:9 [0.000, 0.530, 0.470] [0.000, 0.425, 0.575] [0.000, 0.380, 0.620]

 = 1:0 [0.025, 0.830, 0.145] [0.040, 0.750, 0.210] [0.040, 0.680, 0.280]

 = 1:1 [0.145, 0.855, 0.000] [0.225, 0.775, 0.000] [0.315, 0.685, 0.000]

 = 1:2 [0.460, 0.540, 0.000] [0.600, 0.400, 0.000] [0.710, 0.290, 0.000]

T = 3; 000

 = 0:9 [0.000, 0.205, 0.795] [0.000, 0.125, 0.875] [0.000, 0.075, 0.925]

 = 1:0 [0.015, 0.915, 0.070] [0.050, 0.820, 0.130] [0.065, 0.770, 0.165]

 = 1:1 [0.180, 0.820, 0.000] [0.255, 0.745, 0.000] [0.350, 0.650, 0.000]

 = 1:2 [0.850, 0.150, 0.000] [0.945, 0.055, 0.000] [0.955, 0.045, 0.000]
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Table 2(b): Probabilities for Accepting [HL;H0;HA]: (~� = 10; N = 4)
� = 5% � = 10% � = 15%

T = 1; 500

 = 0:9 [0.000, 0.285, 0.715] [0.000, 0.205, 0.795] [0.000, 0.175, 0.825]

 = 1:0 [0.005, 0.615, 0.380] [0.005, 0.530, 0.465] [0.005, 0.460, 0.535]

 = 1:1 [0.090, 0.905, 0.005] [0.145, 0.845, 0.010] [0.175, 0.790, 0.035]

 = 1:2 [0.355, 0.645, 0.000] [0.450, 0.550, 0.000] [0.525, 0.475, 0.000]

T = 3; 000

 = 0:9 [0.000, 0.040, 0.960] [0.000, 0.025, 0.975] [0.000, 0.020, 0.980]

 = 1:0 [0.015, 0.815, 0.170] [0.020, 0.700, 0.280] [0.025, 0.605, 0.370]

 = 1:1 [0.055, 0.940, 0.005] [0.085, 0.895, 0.020] [0.110, 0.860, 0.030]

 = 1:2 [0.590, 0.410, 0.000] [0.735, 0.265, 0.000] [0.835, 0.165, 0.000]

As expected, the two panels in Table 2 show that, compared with Table 1, underestimating the mean

of entry costs results in larger errors in rejection probabilities under the null. For instance, for ~� = 5 and

� = 5%, the probability for rejecting the null is 17% (of which 14:5% leads to conclusions in favor of the

risk-averse alternative HA) when T = 1500; and is 8:5% (of which 7% is in favor of HA) when T = 3000.

Also the power against risk-loving alternatives is lower than in Table 1 due to the underestimation of

entry costs, while that against the risk-averse alternative becomes higher than in Table 1. Similar patterns

persist for tests with higher signi�cance levels � = 10% and � = 15%.

A comparison between the two panels of Table 2 suggests that, as the magnitude of bias increases,

the performance of the test worsens both in the sense of larger errors in rejection probabilities and lower

power against the risk-loving alternatives. Besides, the probability for Type III error could be positive

for tests with higher signi�cance levels and larger bias. With a large bias ~� = 10 and  = 1:1, the power

actually decreases with sample sizes. This can be explained by the fact that the bias in estimating entry

costs is large relative to the di¤erence in risk premia under the null and the risk-loving alternative  = 1:1.

By construction, the errors in projection probabilities underH0 due to the underestimation of expected

entry costs will not diminish to zero as the sample size approaches in�nity. Also, for a range of risk-

loving alternatives that are su¢ ciently close to the null, the test may be inconsistent (the probabilities for

rejecting the null given those alternatives do not approach 1 as the sample size increases). However, on a

more positive note, for risk-loving alternatives farther away from the null (e.g.  � 1:2), the test appears
to be consistent, with the power against any such alternative approaching 1 as the sample size increases.

In sum, the impact on test performance under mismeasurement of entry costs depends on the size of the

bias in the estimation of entry costs as well as the distance between the null and the alternatives (as

measured by the di¤erence between the risk premia under the null and the alternative).

2 Proof of Lemma B4

As in Appendix B of Fang and Tang (2014), let B[v;v] denote the space of bounded functions with domain
[v; v]; and D[v;v] � B[v;v] denote the space of bounded, non-decreasing functions that are right-continuous
with left limits and map from [v; v] into [0; 1]. Throughout this section, convergence of sequences over B[v;v]
is de�ned in terms of the sup-norm. For any 1 � a � N � 1 and 2 � m � N , de�ne �a;m(t) � [��1m (t)]a

for t 2 [0; 1] and ��1m is the mapping from the distribution of a second-largest order statistic from m
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independent draws to the parent distribution from which the draws are made. The following lemma

summarizes some useful properties of �a;m.

Lemma W1. For all 1 � a � N � 1 and 2 � m � N , (i) �a;m is continuous and increasing over [0; 1]

with �a;m(0) = 0 and �a;m(1) = 1; (ii) there exists ta;m 2 [0; 1) such that �a;m is convex over [ta;m; 1];

and (iii)

lim
t0!1�

�
�a;m(1)� �a;m(t0)p

1� t0

�
= aCm

where Cm is a �nite, positive constant that depends on m.

Proof of Lemma W1. By construction, ��1m (t) is strictly increasing over [0; 1] with ��1m (0) = 0 and

��1m (1) = 1 for all 2 � m � N . This implies (i) for all a � 1 and m � 2. Next, note the inverse of �a;m,
denoted ��1a;m, is

��1a;m(s) � �m(s
1
a ) = (s

1
a )m +m(s

1
a )m�1(1� s 1a ) = (1�m)sma +ms

m�1
a

for any s 2 [0; 1]. The second-order derivative of ��1a;m at s 2 (0; 1) is negative if and only if (m� a)s 1a >
m� a� 1. If m > a+ 1, ��1a;m is concave over s >

�
m�a�1
m�a

�a
. Or equivalently, �a;m is convex over the

interval ( ��1a;m(
�
m�a�1
m�a

�a
); 1 ]. If m � a+ 1, ��1a;m is concave over [0; 1] (or equivalently �a;m is convex

over [0; 1]. Thus (ii) holds for all a � 1 and m � 2. As for part (iii), it follows from Menzel and Morganti

(2013) that

lim
t!1�

�a;m(1)� �a;m(t)p
1� t

= lim
t!1�

�a;m(1)� �a;m(t)
��1m (1)� ��1m (t)

� lim
t!1�

��1m (1)� ��1m (t)p
1� t

= a� Cm

with Cm being a positive �nite constant that depends on m. (See Proposition 3.1 in Menzel and Morganti
(2013) with K � m, k � m� 1.) Thus (iii) holds for all a � 1 and m � 2. �

Lemma W2. Suppose Assumptions 1 and 2 in Fang and Tang (2014) hold. Then for all 2 � m �
N , FW jA=m is continuous and increasing over [r; v] and has bounded positive density over [r; v) withR v
r
[1� FW jA=m(v)]

� 1
2 dv <1.

Proof of Lemma W2. The continuity and monotonicity of FW jA=m holds because FW jA=m = �m(FV )

for allm � 2 where �m(:) is continuous and increasing over [0; 1]. That its density is positive and bounded
above over [r; v) follows from the restrictions on the distribution of V in Assumptions 1 and 2 in Fang

and Tang (2014) and the fact that F 0W jA=m(v) = m(m � 1)FV (v)m�2F 0V (v)[1 � FV (v)] and FV (r) > 0.
By construction, FW jA=m is stochastically ordered in m with FW jA=m (v) � FW jA=2(v) for all v 2 [v; v]
and m � 2.5 Hence

R v
r
[1�FW jA=m(v)]

� 1
2 dv is bounded above by

R v
r
[1�FW jA=2(v)]

� 1
2 dv for all m � 2.

By construction, [1� FW jA=2(v)]
� 1
2 = [1� 2FV (v) + (FV (v))2]�

1
2 = [1� FV (v)]�1. It then follows from

(ii) in Assumption 2 in Fang and Tang (2014) thatZ v

r

[1� FW jA=m(v)]
� 1
2 dv �

Z v

r

[1� FW jA=2(v)]
� 1
2 dv =

Z v

r

[1� FV (v)]�1 dv <1.

This proves the claim in Lemma W2. �

5To see this, note �m+1(t)� �m(t) = �mtm�1(1� t)2 � 0 for all m � 2 and t 2 [0; 1].
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Let �0a;m(c) � a
�
��1m (c)

�a�1 �
d��1m (t)=dt

��
t=c

�
; and let D̂[v;v] � D[v;v] denote the subset of D[v;v] which

consists of step functions only. Assumptions 1 and 2 in Fang and Tang (2014) imply that for any sequence

FW jA=m;T 2 D̂[v;v] and for all T , the set fv : r � v � v and FW jA=m;T (v) = FW jA=m(v)g, which has
no contribution to the integral

R �v
r

p
T [�a;m(FW jA=m;T (v)) � �a;m(FW jA=m(v))]dv, must have has zero

Lebesgue measure.

Lemma W3. Suppose Assumptions 1 and 2 in Fang and Tang (2014) hold. For any a � 1, m � 2 and
any " > 0, there exists � > 0 so that the following statement holds: �For any sequence FW jA=m;T 2 D̂[v;v]
such that FW jA=m;T ! FW jA=m uniformly over [v; v],Z v

v��

�
�a;m(FW jA=m;T (v))� �a;m(FW jA=m(v))

FW jA=m;T (v)� FW jA=m(v)

�
dv < " (11)

when T is su¢ ciently large�.

Proof of Lemma W3. Lemma W1 implies that, for a positive constant � su¢ ciently small and for all
v 2 [v � �; v], both FW jA=m(v) and FW jA=m;T (v) lie in an interval over which �a;m is convex, provided

T is su¢ ciently large. In other words, there exists �1 > 0 such that minfFW jA=m(v); FW jA=m;T (v)g >
ta;m for all v 2 [v � �1; v] when T is su¢ ciently large (where ta;m is de�ned in part (ii) of Lemma W1).

This implies for all v 2 [v � �1; v] such that FW jA=m;T (v) 6= FW jA=m(v),

�a;m(FW jA=m;T (v))� �a;m(FW jA=m(v))

FW jA=m;T (v)� FW jA=m(v)

�
�a;m(1)� �a;m(FW jA=m(v))

1� FW jA=m(v)

=

 
�a;m(1)� �a;m(FW jA=m(v))p

1� FW jA=m(v)

! 
1p

1� FW jA=m(v)

!

when T is su¢ ciently large. Monotonicity of �a;m over [r; v] implies
�a;m(FW jA=m;T (v))��a;m(FW jA=m(v))

FW jA=m;T (v)�FW jA=m(v)

must be positive. Besides, the property in (iii) of Lemma W1 implies for all "0 > 0, there exists �2 > 0

such that

maxf0; aCm � "0g �
�a;m(1)� �a;m(FW jA=m(v))p

1� FW jA=m(v)
� aCm + "0

for all v 2 [v � �2; v]. For any � � minf�1; �2g,

0 �
Z �v

�v��

�
�a;m(FW jA=m;T (v))� �a;m(FW jA=m(v))

FW jA=m;T (v)� FW jA=m(v)

�
dv � (aCm + "0)

�Z �v

�v��

�
1� FW jA=m(v)

�� 1
2 dv

�
for T su¢ ciently large. With aCm + "0 being positive and �nite, the claim in this lemma follows from

Lemma W2 for � su¢ ciently small. �

Lemma W4. Suppose Assumptions 1 and 2 in Fang and Tang (2014) hold. For any a � 1, m � 2 and
any FW jA=m;T 2 D̂[v;v] such that

p
T (FW jA=m;T � FW jA=m)! F � for some F � 2 B[v;v],

lim
T!1

Z v

r

�
�a;m(FW jA=m;T (v))� �a;m(FW jA=m(v))

FW jA=m;T (v)� FW jA=m(v)

�
dv =

Z v

r

�0a;m(FW jA=m(v))dv. (12)
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Proof of Lemma W4. We need to show that for any " > 0 and any sequence FW jA=m;T 2 D̂[v;v] such
that

p
T (FW jA=m;T � FW jA=m)! F � for some F � 2 B[v;�v],�����

Z v

r

�
�a;m(FW jA=m;T (v))� �a;m(FW jA=m(v))

FW jA=m;T (v)� FW jA=m(v)
� �0a;m(FW jA=m(v))

�
dv

����� < "
when T is su¢ ciently large.

We �rst show there exists a constant �(") > 0 such that for any such sequence FW jA=m;T 2 D̂[v;v],�����
Z v

v��(")

�
�a;m(FW jA=m;T (v))� �a;m(FW jA=m(v))

FW jA=m;T (v)� FW jA=m(v)
� �0a;m(FW jA=m(v))dv

�
dv

����� < "

2
(13)

when T is large enough. Because of the properties of �a;m in (ii) and (iii) in Lemma W1 and the assump-

tion that the distribution FW jA=m is strictly increasing, we can pick a constant �� small enough so that

(a) �a;m is convex over the interval between FW jA=m(v� ��) and 1; and (b) the ratio
1��a;m(FW jA=m(v))p

1�FW jA=m(v)

is bounded above by a �nite constant uniformly over v 2 [v � ��; v]. This implies

0 <

Z v

v���
�0a;m(FW jA=m(v))dv <

Z v

v���

�a;m(FW jA=m(v))� �a;m(FW jA=m(v))

FW jA=m(v)� FW jA=m(v)
dv

=

Z v

v���

1� �a;m(FW jA=m(v))p
1� FW jA=m(v)

1p
1� FW jA=m(v)

dv � Ca;m;��
 Z v

v���

1p
1� FW jA=m(v)

dv

!

where the second (strict) inequality is due to the convexity of �a;m over [FW jA=m(v � ��); 1]; the third
(weak) inequality is due to the consequence (b) of the choice of �� above. The constant Ca;m;�� depends
on a;m and is decreasing in the choice of ��. Thus it follows from Lemma W2 that, for any " > 0,

we can pick �1(") small enough so that
R v
v��1(")

�0a;m(FW jA=m(v))dv 2 (0; "=2). Lemma W3 implies we
can choose �2(") so that for any FW jA=m;T 2 D̂[v;v] with

p
T
�
FW jA=m;T � FW jA=m

�
! F � for some

F � 2 B[v;v],
R v
v��2(")

�
�a;m(FW jA=m;T (v))��a;m(FW jA=m(v))

FW jA=m;T (v)�FW jA=m(v)

�
dv 2 (0; "=2) when T is su¢ ciently large. Let

�(") � minf�1("); �2(")g. Then (13) holds for any such FW jA=m;T 2 D̂[r;�v] when T is su¢ ciently large.
Next, note the ratio between �a;m(FW jA=m;T (v))��a;m(FW jA=m(v)) and FW jA=m;T (v)�FW jA=m(v)

converges to �0a;m(FW jA=m(v)) pointwise at any v 2 [r; v � �(")]. Since v � �(") < v and FW jA=m

is increasing, F (v � �(")) is strictly less than 1. Hence for any sequence FW jA=m;T 2 D̂[v;v] such
that

p
T (FW jA=m;T � FW jA=m) ! F � for some F � 2 B[v;v], the ratio between �a;m(FW jA=m;T (v)) �

�a;m(FW jA=m(v)) and FW jA=m;T (v) � FW jA=m(v) is bounded above by a �nite positive constant uni-

formly over [r; v��(")] when T is large enough. It then follows from the Dominated Convergence theorem
that

lim
T!1

Z v��(")

r

�
�a;m(FW jA=m;T (v))� �a;m(FW jA=m(v))

FW jA=m;T (v)� FW jA=m(v)

�
dv =

Z v��(")

r

�0a;m(FW jA=m(v))dv

for any such sequence FW jA=m;T 2 D̂[v;v]. Or equivalently, for any such sequence FW jA=m;T 2 D̂[v;v],�����
Z v��(")

r

�
�a;m(FW jA=m;T (v))� �a;m(FW jA=m(v))

FW jA=m;T (v)� FW jA=m(v)
� �0a;m(FW jA=m(v))dv

�
dv

����� < "

2
(14)

when T is large enough. Combining the two inequalities from (13) and (14) then proves the lemma. �
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Proof of Lemma B4. The smoothness of FW jA=m due to Lemma W2 implies that for any sequence

FW jA=m;T 2 D̂[v;v], the set fv 2 [v; v] : FW jA=m;T (v) = FW jA=m(v)g has zero Lebesgue measure. Thus
for all T , Z v

r

p
T
�
�a;m(FW jA=m;T (v))� �a;m(FW jA=m(v))

�
dv (15)

=

Z v

r

p
T [FW jA=m;T (v)� FW jA=m(v)]

�
�a;m(FW jA=m;T (v))� �a;m(FW jA=m(v))

FW jA=m;T (v)� FW jA=m(v)

�
dv.

For any sequence FW jA=m;T 2 D̂[v;v] such that
p
T (FW jA=m;T � FW jA=m) ! F � for some F � 2 B[v;v]

and for any constant "� > 0,
p
T (FW jA=m;T � FW jA=m) must be bounded between F � � "� and F � + "�

uniformly over [r; v] when T is su¢ ciently large. This means for T large enough, the absolute value of the

integrand on the right-hand side of (15) is bounded above by the product of a �nite, positive constant

and the integral
R v
r

�
�a;m(FW jA=m;T (v))��a;m(FW jA=m(v))

FW jA=m;T (v)�FW jA=m(v)

�
dv, which is positive due to the monotonicity of

�a;m. By the Dominated Convergence Theorem in its general form (see, for example, Theorem 2.2.2-(iii)

in Lehmann and Romano (2005)), Lemma B4 would hold if we can show

lim
T!1

Z v

r

�
�a;m(FW jA=m;T (v))� �a;m(FW jA=m(v))

FW jA=m;T (v)� FW jA=m(v)

�
dv =

Z v

r

�0a;m(FW jA=m(v))dv

for all sequences FW jA=m;T 2 D̂[v;v] such that
p
T
�
FW jA=m;T � FW jA=m

�
! F � for some F � 2 B[v;v].

This is shown above in Lemma W4. �

3 The Covariance Formula for Lemma B5

Let s < v on [v; v]. To simplify notation, we suppress dependence on the sample size T throughout the

note. By Assumptions 1 and 2 and the multivariate version of Lindeberg-Levy Central Limit Theorem

(CLT),

p
T

0BBB@
1
T

P
t�T 1fWt � s;At = mg � psm

1
T

P
t�T 1fWt � v;At = mg � pvm

1
T

P
t�T 1fAt = mg � pm

1
T

P
t�T

~Kt � �K

1CCCA d�! N (0;�0) (16)

where

�0 �

26664
psm(1� psm) psm(1� pvm) psm(1� pm) �sm � psm�K
psm(1� pvm) pvm(1� pvm) pvm(1� pm) �vm � pvm�K
psm(1� pm) pvm(1� pm) pm(1� pm) �m � pm�K
�sm � psm�K �vm � pvm�K �m � pm�K �2K + �

2
�

37775
with psm � Pr(W � s;A = m), pm � Pr(A = m), �m � E[1fA = mgK] and �sm � E[1fW � s;A =
mgK]. Note we have used the independence between � and K and that E(�) = 0. We use (16) as a

building block for deriving the covariance kernel between FW jm; N� and N�.
First, by the Delta Method,

p
T

 
F̂W jA=m(s)� FW jA=m(s)

F̂W jA=m(v)� FW jA=m(v)

!
d�! N (0;�1)
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where

�1 =

 
1
pm

0 �psm
p2m

0 1
pm

�pvm
p2m

!0B@ psm(1� psm) psm(1� pvm) psm(1� pm)
psm(1� pvm) pvm(1� pvm) pvm(1� pm)
psm(1� pm) pvm(1� pm) pm(1� pm)

1CA
0B@

1
pm

0

0 1
pm

�psm
p2m

�pvm
p2m

1CA
=

 
1
p3m
psm (pm � psm) 1

p3m
psm (pm � pvm)

1
p3m
psm (pm � pvm) 1

p3m
pvm (pm � pvm)

!
.

Second, by construction, for any a < b,

p
T

 
�̂b;T � �b
�̂a;T � �a

!
=
p
T

 
1
T

P
t�T

�
N�b
N 1fAt = bg+ b+1

N 1fAt = b+ 1g
�
�
�
N�b
N pb +

b+1
N pb+1

�
1
T

P
t�T

�
N�a
N 1fAt = ag+ a+1

N 1fAt = a+ 1g
�
�
�
N�a
N pa +

a+1
N pa+1

� ! .
It is straightforward to show by the multivariate CLT that

p
T

 
�̂b;T � �b
�̂a;T � �a

!
d�! N (0;�2)

where

�2 =

 
(N�bN )2pb + (

b+1
N )2pb+1 � �2b ��a;b � �a�b

��a;b � �a�b (N�aN )2pa + (
a+1
N )2pa+1 � �2a

!
with ��a;b �

(N�b)b
N2 pb if b = a+ 1; and ��a;b � 0 otherwise. Also by the multivariate CLT,

p
T

 
�̂a;T � �a

1
T

P
t
~Kt � �K

!
d�! N (0;�3)

where

�3 =

 
(N�aN )2pa + (

a+1
N )2pa+1 � �2a N�a

N �a +
a+1
N �a+1 � �a�K

N�a
N �a +

a+1
N �a+1 � �a�K �2K + �

2
�

!
.

Note we have used the independence between � and K and the zero mean of � here.

Third,
p
T

 
F̂W jm(s)� FW jm(s)

1
T

P
t
~Kt � �K

!
d�! N (0;�4)

where

�4 =

 
1
pm

�psm
p2m

0

0 0 1

!0B@ psm(1� psm) psm(1� pm) �sm � psm�K
psm(1� pm) pm(1� pm) �m � pm�K
�sm � psm�K �m � pm�K �2K + �

2
�

1CA
0B@

1
pm

0

�psm
p2m

0

0 1

1CA
=

 
1
p3m
psm (pm � psm) 1

p2m
(pm�sm � �mpsm)

1
p2m
(pm�sm � �mpsm) �2K + �

2
�

!
.

Fourth,
p
T

 
F̂W jm(s)� FW jm(s)

�̂a � �a

!
d�! N (0;�5)

where �5 = ~D~�
�
~D
�0
, and ~� is the covariance matrix of [1fW � s;A = mg; 1fA = mg; 1fA = ag;

1fA = a + 1g]0 if m > a + 1 or m < a; and is the covariance matrix of [1fW � s;A = mg; 1fA = ag;
1fA = a+1g]0 otherwise; and ~D is the 2-by-4 (or 2-by-3) Jacobian matrix needed to apply the multivariate

Delta Method. Under Assumptions 1 and 2, both ~D and ~� have full rank.
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Appendix : Figures
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Figure 1 (a): Test Performance (N = 4; T = 1500)

Notes: Horizontal axis: Integrated Measure of Risk Aversion. Solid line: proportion of S = 250

simulated samples in which our test fails to reject the null (risk-neutrality). Dashed line: proportion that

the null is rejected in favor of HA (risk-aversion). Dotted line: proportion that the null is rejected in

favor of HL (risk-loving).
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Figure 1 (b): Test Performance (N = 4; T = 3000)
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Figure 1 (c): Test Performance (N = 5; T = 1500)
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Figure 1 (d): Test Performance (N = 5; T = 3000)
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