
B Appendix B: Calculations For Example 5.1

We want to show that if the monopolist sets a price �� � 2� then, if � is sufficiently small, the

proÞt is lower than the maximized proÞt under separate sales, Π1 +Π2 = 2− �� We begin with a

simple observation:

Claim B1 It must be the case that �� � 2 − � in order for the proÞt under bundling to exceed
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This is obvious, since �� would be the proÞt if the consumer would buy for sure.
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On the other hand, the monopolist�s proÞt from selling the two goods at price � for each receives
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Note that 2�∆ (�) measures the difference in the monopolist�s proÞt between selling each good

separately at a price of � for each good and selling the bundle at a price of 2�. Thus if ∆ (�) is

positive, then the monopolist increases its proÞt by selling the goods separately at half the price of

the bundled good; and if ∆ (�) is negative, then the proÞt under bundling is higher.

Next, we show that ∆ (�) is monotonic on
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Hence;
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We conclude:

Claim B3 ∆
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To sum up:

1. Claim B1 shows that bundling at �� � 2− � is dominated by separate sales;
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2. Claim B2 shows that bundling at any price on the interval (2− �� 2) leads to lower sales than

separate sales, provided that � is small enough.

3. Claim B3 shows that bundling at �� = 2− � also leads to lower sales than separate sales if

� is small enough.

Together, this implies that for � is sufficiently small, there exists no price �� � 2 for the bundled

good that gives a higher payoff than Π1 +Π2.
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