B Appendix B: Calculations For Example 5.1

We want to show that if the monopolist sets a price $p_{B}<2$, then, if α is sufficiently small, the profit is lower than the maximized profit under separate sales, $\Pi_{1}+\Pi_{2}=2-\alpha$. We begin with a simple observation:

Claim B1 It must be the case that $p_{B}>2-\alpha$ in order for the profit under bundling to exceed $2-\alpha$.

This is obvious, since p_{B} would be the profit if the consumer would buy for sure.
Next, observe that for $p<1$ we have that

$$
\begin{aligned}
1-G_{B}(p) & =\operatorname{Pr}\left[\frac{\theta_{1}+\theta_{2}}{2} \geq p\right] \\
& =\underbrace{(1-\alpha)^{2}}_{\operatorname{Pr}\left[\left(\theta_{1}, \theta_{2}\right)=(1,1)\right]}+\underbrace{2(1-\alpha) \alpha}_{\substack{\operatorname{Pr}\left[\theta_{1}=1 \cap \theta_{2} \neq 1\right] \\
+\operatorname{Pr}\left[\theta_{1} \neq 1 \cap \theta_{2}=1\right]}}[1-\tilde{F}(2 p-1)]+\underbrace{\alpha^{2}}_{\operatorname{Pr}\left[\theta_{1} \neq 1 \cap \theta_{2} \neq 1\right]}[1-G(p)]
\end{aligned}
$$

where \tilde{F} is the CDF of the underlying uniform distribution over $[0,2]$ and

$$
G(p)=\left\{\begin{array}{cc}
\frac{p^{2}}{2} & \text { on }[0,1] \\
1-\frac{(2-p)^{2}}{2} & \text { on }[1,2] .
\end{array}\right.
$$

By Claim B1, we can restrict our attention to values of $p_{B} \in(2-\alpha, 2)$, which is equivalent to restricting to per-good average price $p \in\left(1-\frac{\alpha}{2}, 1\right)$. Since $\alpha \in[0,1],\left(1-\frac{\alpha}{2}, 1\right)$ is a subset of $\left(\frac{1}{2}, 1\right)$. For any $\frac{1}{2}<p<1$, the monopolist's profit from selling bundle at a bundle-price of $2 p$ receives profit:

$$
2 p\left[1-G_{B}(p)\right]=2 p\left[(1-\alpha)^{2}+2(1-\alpha) \alpha\left(\frac{3-2 p}{2}\right)+\alpha^{2}\left(1-\frac{p^{2}}{2}\right)\right]
$$

On the other hand, the monopolist's profit from selling the two goods at price p for each receives profit

$$
2 p[1-F(p)]=2 p\left(1-\frac{\alpha}{2} p\right)
$$

Define

$$
\begin{aligned}
\Delta(p) & =G_{B}(p)-F(p) \\
& =1-\left[(1-\alpha)^{2}+2(1-\alpha) \alpha\left(\frac{3-2 p}{2}\right)+\alpha^{2}\left(1-\frac{p^{2}}{2}\right)\right]-\frac{\alpha}{2} p \\
& =(1-\alpha)^{2}+2 \alpha(1-\alpha)+\alpha^{2}-\left[(1-\alpha)^{2}+2(1-\alpha) \alpha\left(\frac{3-2 p}{2}\right)+\alpha^{2}\left(1-\frac{p^{2}}{2}\right)\right]-\frac{\alpha}{2} p \\
& =\alpha\left[(1-\alpha)(2 p-1)+\alpha \frac{p^{2}}{2}-\frac{1}{2} p\right] .
\end{aligned}
$$

Note that $2 p \Delta(p)$ measures the difference in the monopolist's profit between selling each good separately at a price of p for each good and selling the bundle at a price of $2 p$. Thus if $\Delta(p)$ is positive, then the monopolist increases its profit by selling the goods separately at half the price of the bundled good; and if $\Delta(p)$ is negative, then the profit under bundling is higher.

Next, we show that $\Delta(p)$ is monotonic on $\left(\frac{1}{2}, 1\right)$. Differentiating $\Delta(p)$ we have that

$$
\begin{aligned}
\frac{d \Delta(p)}{d p} & =\alpha\left[2(1-\alpha)+\alpha p-\frac{1}{2}\right]=\alpha\left[\frac{3}{2}+\alpha(p-2)\right] \\
& >\alpha\left[\frac{3}{2}+\alpha\left(\frac{1}{2}-2\right)\right]=\alpha \frac{3}{2}(1-\alpha)>0 .
\end{aligned}
$$

Hence;

Claim B2 $\Delta(p)$ is strictly increasing on $\left(\frac{1}{2}, 1\right)$.
We know from Claim B1 that we only need to consider $p_{B}>2-\alpha$, which corresponds to an average price $p>1-\frac{\alpha}{2}$. Evaluating $\Delta(p)$ at $p=1-\frac{\alpha}{2}$ we have that

$$
\begin{aligned}
\Delta\left(1-\frac{\alpha}{2}\right) & =\alpha\left\{(1-\alpha)\left[2\left(1-\frac{\alpha}{2}\right)-1\right]+\alpha\left[1-\frac{\left(2-\left(1-\frac{\alpha}{2}\right)\right)^{2}}{2}\right]-\frac{1}{2}\left(1-\frac{\alpha}{2}\right)\right\} \\
& =\alpha\left\{(1-\alpha)^{2}+\alpha\left[1-\frac{\left(1+\frac{\alpha}{2}\right)^{2}}{2}\right]-\frac{1}{2}\left(1-\frac{\alpha}{2}\right)\right\}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\Delta\left(1-\frac{\alpha}{2}\right) & \geq 0 \Leftrightarrow \\
(1-\alpha)^{2}+\alpha\left[1-\frac{\left(1+\frac{\alpha}{2}\right)^{2}}{2}\right]-\frac{1}{2}\left(1-\frac{\alpha}{2}\right) & \geq 0 \Leftrightarrow \\
(1-\alpha)-\alpha(1-\alpha)+\alpha-\alpha \frac{\left(1+\frac{\alpha}{2}\right)^{2}}{2}-\frac{1}{2}\left(1-\frac{\alpha}{2}\right) & \geq 0 \Leftrightarrow \\
\frac{1}{2}-\alpha(1-\alpha)-\alpha \frac{\left(1+\frac{\alpha}{2}\right)^{2}}{2}+\frac{\alpha}{4} & \geq 0 \Leftrightarrow
\end{aligned}
$$

We conclude:

Claim B3 $\Delta\left(1-\frac{\alpha}{2}\right)>0$ for α sufficiently small.
To sum up:

1. Claim B1 shows that bundling at $p_{B}<2-\alpha$ is dominated by separate sales;
2. Claim B2 shows that bundling at any price on the interval $(2-\alpha, 2)$ leads to lower sales than separate sales, provided that α is small enough.
3. Claim B3 shows that bundling at $p_{B}=2-\alpha$ also leads to lower sales than separate sales if α is small enough.

Together, this implies that for α is sufficiently small, there exists no price $p_{B}<2$ for the bundled good that gives a higher payoff than $\Pi_{1}+\Pi_{2}$.

