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1 Primitives

The reader may note that there are many sets of primitives that generate the same maximized surplus

function. The primitives below are picked mainly to make the calculations convenient. The reader may

also take note that once the maximized surplus function has been derived, there is no need to return to

the primitives, since interim expected payo�s from participation in the mechanisms depend only on the

maximized surplus function. However, it is still important to specify some underlying primitives: not every

surplus function sk : �k ! R and reservation payo� rk : �k ! Rn are consistent with surplus maximization,

so we need to demonstrate existence of primitives generating the surplus function and reservation payo�

function in the example.

1.1 Costs and Utility Functions

Let n = 2 and assume that, for each k and i = 1; 2; the single issue k type space is given by �i = fl;m; hg.
Assume that the set of alternative resolutions of issue k are Dk =

�
d0k; d

l
k; d

m
k ; d

h
k

	
: In terms of interpretation

it is useful to think of d0k as the \status quo" outcome, whereas d
l
k; d

m
k and dhk are surplus maximizing

alternatives for type pro�les ll;mm and hh respectively.

The cost function is given by

Ck (dk) =

8>>>>><>>>>>:
0 if dk = d

0
k

(k+1)2

k if dk = d
l
k

k(k+1)2

2 if dk = d
m
k

2 (k + 1)
3

if dk = d
h
k

;

Assume that the valuation functions for the three types are given by;

vik (dk; l) =

8>>>>><>>>>>:
0 if dk = d

0
k

1
2
(k+1)2

k if dk = d
l
k

0 if dk = d
m
k

(k+1)2

4

�
k � 1

k

�
if dk = d

h
k

for �ik = l;

vik (dk;m) =

8>>>>><>>>>>:
0 if dk = d

0
k

3
4
(k+1)2

k + " (k + 1) if dk = d
l
k

k(k+1)2

2 � 2"k (k + 1) (k + 2) if dk = d
m
k

k(k+1)2

4 � 3 (k + 1)3 if dk = d
h
k

for �ik = m; and

vik (dk; h) =

8>>>>><>>>>>:
0 if dk = d

0
k

�" (k + 1) if dk = d
l
k

�k(k+1)2

2 if dk = d
m
k

3 (k + 1)
3 � k(k+1)2

4 if dk = d
h
k

2



for �ik = h; where " > 0: Further restrictions on " will be derived below.

1.2 Reservation Payo�s

Since Ck
�
d0k
�
= 0 we take d0k as the status quo outcome. Hence, r

i
k

�
�ik
�
= vik

�
d0k; �

i
k

�
= 0 for all �ik:

2 The Surplus Maximizing Rule

The primitives in the example have been constructed to make sure that: i) dlk is optimal given type pro�les

lm and ml (which generates surplus of order k); and; ii) dmk is optimal given type pro�le mm (surplus of

order k3), and; iii) that dhk is optimal for pro�les lh; hl and hh (surplus of order k
3; and, which is of some

importance, that the surplus from hh is substantially larger than that from mm). As will be seen below,

this will make it possible for us to construct sequences where there is a signi�cant e�ect on interim expected

payo�s when types that are realized with an arbitrarily small probability opt out from the mechanism.

Below, we provide the details of the derivation of the maximized surplus function.

2.1 Type Pro�le ll

It is immediate that v1k
�
d0k; l

�
+ v2k

�
d0k; l

�
� Ck

�
d0k
�
= 0: If instead dk = d

l
k we have that

v1k
�
dlk; l

�
+ v2k

�
dlk; l

�
� Ck

�
dlk
�
= 2

"
1

2

(k + 1)
2

k

#
� (k + 1)

2

k
= 0;

whereas, if dk = d
m
k ;

v1k (d
m
k ; l) + v

2
k (d

m
k ; l)� Ck (dmk ) = �

k (k + 1)
2

2
< 0

and, �nally, if dk = d
h
k

v1k
�
dhk ; l

�
+ v2k

�
dhk ; l

�
� Ck

�
dhk
�
= 2

(k + 1)
2

4

�
k � 1

k

�
� 2 (k + 1)3 = (k + 1)2

�
k

2
� 1

2k
� k � 2

�
< 0

We conclude that an e�cient decision is x�k (ll) = dlk (or d
0
k); which generates a maximized surplus of

sk (ll) = 0:

2.2 Type Pro�les lm and ml

Again it follows trivially that v1k
�
d0k; l

�
+v2k

�
d0k;m

�
�Ck

�
d0k
�
= 0; whereas the surplus generated by dk = d

l
k

is

v1k
�
dlk; l

�
+ v2k

�
dlk;m

�
� Ck

�
dlk
�
=
1

2

(k + 1)
2

k
+
3

4

(k + 1)
2

k
+ " (k + 1)� (k + 1)

2

k
=
1

4

(k + 1)
2

k
+ " (k + 1) :
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If dk = d
m
k is chosen

v1k (d
m
k ; l) + v

2
k (d

m
k ;m)� Ck (dmk ) = 0 +

k (k + 1)
2

2
� 2"k (k + 1) (k + 2)� k (k + 1)

2

2

= �2"k (k + 1) (k + 2) < 0;

and, for dk = d
h
k

v1k
�
dhk ; l

�
+ v2k

�
dhk ;m

�
� Ck

�
dhk
�
=

(k + 1)
2

4

�
k � 1

k

�
+
k (k + 1)

2

4
� 3 (k + 1)3 � 2 (k + 1)3

= (k + 1)
2

�
k

2
� 1

4k
� 5k � 5

�
< 0

Using symmetry, we conclude that the e�cient decision is x�k (lm) = x
� (ml) = dlk and that the associated

maximized surplus is

sk (lm) = sk (ml) =
1

4

(k + 1)
2

k
+ " (k + 1)

2.3 Type Pro�le mm

Trivially, v1k
�
d0k;m

�
+ v2k

�
d0k;m

�
� Ck

�
d0k
�
= 0: If instead dk = d

l
k we have that

v1k
�
dlk;m

�
+ v2k

�
dlk;m

�
� Ck

�
dlk
�
= 2

"
3

4

(k + 1)
2

k
+ " (k + 1)

#
� (k + 1)

2

k
=
1

2

(k + 1)
2

k
+ 2" (k + 1) > 0

and if dk = d
m
k

v1k (d
m
k ;m) + v

2
k (d

m
k ;m)� Ck (dmk ) = 2

"
k (k + 1)

2

2
� 2"k (k + 1) (k + 2)

#
� k (k + 1)

2

2

=
k (k + 1)

2

2
� 4"k (k + 1) (k + 2) ;

while if dk = d
h
k we have that

v1k
�
dhk ;m

�
+ v2k

�
dhk ;m

�
� Ck

�
dhk
�
= 2

"
k (k + 1)

2

4
� 3 (k + 1)3

#
� 2 (k + 1)3 = (k + 1)2

�
k

2
� 8k � 8

�
< 0

We conclude that dlk and d
m
k are the only remaining candidates that could maximize the social surplus.

De�ne

� (k) =
k (k + 1)

2

2
� 4"k (k + 1) (k + 2)� 1

2

(k + 1)
2

k
� 2" (k + 1) :

If � (k) is strictly positive dmk is the surplus maximizing decision, whereas if � (k) is strictly negative, then

dlk is the unique maximizer.

Claim 1 Suppose that " � 1
24 ; then �(�) is strictly increasing in k on the interval [1;1)
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Proof. Rearrange to get

� (k) =
k (k + 1)

2

2
� 4"k (k + 1) (k + 2)� 1

2

(k + 1)
2

k
� 2" (k + 1)

=
1

2
(k + 1)

2

�
k � 1

k

�
� 4"k (k + 1) (k + 2)� 2" (k + 1) :

Di�erentiation yields,

�0 (k) = (k + 1)

�
k � 1

k

�
+
1

2
(k + 1)

2

�
1 +

1

k2

�
� 4" [(k + 1) (k + 2) + k (k + 2) + k (k + 1)]� 2":

Simplify the bracketed expression to get

(k + 1) (k + 2) + k (k + 2) + k (k + 1) = (k + 1)
2
+ (k + 1)| {z }

=(k+1)(k+2)

+ k (k + 1) + k| {z }
=k(k+2)

+ k (k + 1)

= (k + 1)
2
+ (k + 1) + k (k + 1) + (k + 1)� 1 + k (k + 1) = (k + 1)2 + 2 (k + 1) + 2k (k + 1)� 1

= 3 (k + 1)
2 � 1:

Hence

�0 (k) = (k + 1)

�
k � 1

k

�
+
1

2
(k + 1)

2

�
1 +

1

k2

�
� 4"

h
3 (k + 1)

2 � 1
i
� 2"

= (k + 1)

�
k � 1

k

�
+
1

2
(k + 1)

2

�
1 +

1

k2
� 24"

�
+ 2":

The claim follows since all terms are strictly positive given that k � 1 and " � 1
24 :

Evaluating we have that

� (1) = 2� 24"� 2� 4" = �28" < 0

for any " > 0: We conclude that (somewhat unfortunately since it is an additional complication for the

example) dl1 is the surplus maximizing decision for k = 1: However

� (2) = 9� 96"� 9
4
� 6"

Clearly, for " small enough (the exact bound is " < 27
408 ; where it may be noted that

1
24 =

27
648 <

27
408 ) we have

that � (2) is strictly positive. Combining with the fact that � (k) is monotonically increasing in k under the

condition that " � 1
24 we conclude;

Claim 2 Suppose that " � 1
24 : Then x

�
1 (mm) = dl1 and x

�
k (mm) = dmk for every k � 2: The associated

social surplus is

s1 (mm) =
1

2

(k + 1)
2

k
+ 2" (k + 1)

sk (mm) =
k (k + 1)

2

2
� 4"k (k + 1) (k + 2) for k � 2

5



2.4 Type Pro�les lh and hl

As for any other type pro�le v1k
�
d0k; l

�
+ v2k

�
d0k; h

�
� Ck

�
d0k
�
= 0: For the non-trivial alternatives we have

that

v1k
�
dlk; l

�
+ v2k

�
dlk; h

�
� Ck

�
dlk
�
=
1

2

(k + 1)
2

k
� " (k + 1)� (k + 1)

2

k
= �1

2

(k + 1)
2

k
� " (k + 1) < 0;

and

v1k (d
m
k ; l) + v

2
k (d

m
k ; h)� Ck (dmk ) = 0�

k (k + 1)
2

2
� k (k + 1)

2

2
= �k (k + 1)2 < 0;

and

v1k
�
dhk ; l

�
+ v2k

�
dhk ; h

�
� Ck (dmk ) =

(k + 1)
2

4

�
k � 1

k

�
+ 3 (k + 1)

3 � k (k + 1)
2

4
� 2 (k + 1)3

=
(k + 1)

2

4k
+ (k + 1)

3
= (k + 1)

2

�
4k (k + 1)� 1

4k

�
Hence, again using symmetry, x�k (lh) = x

�
k (hl) = d

h
k and the resulting maximized surplus is

sk (lh) = sk (hl) = (k + 1)
2

�
4k (k + 1)� 1

4k

�

2.5 Type Pro�les mh and hm

Obviously, v1k
�
d0k;m

�
+ v2k

�
d0k; h

�
� Ck

�
d0k
�
= 0: If instead dk = d

l
k

v1k
�
dlk;m

�
+ v2k

�
dlk; h

�
� Ck

�
dlk
�
=
3

4

(k + 1)
2

k
+ " (k + 1)� " (k + 1)� (k + 1)

2

k
= �1

4

(k + 1)
2

k
< 0;

and if dk = d
m
k ;

v1k (d
m
k ;m) + v

2
k (d

m
k ; h)� Ck (dmk ) =

k (k + 1)
2

2
� 2"k (k + 1) (k + 2)� k (k + 1)

2

2
� k (k + 1)

2

2

= �2"k (k + 1) (k + 2)� k (k + 1)
2

2
< 0;

whereas if dk = d
h
k ; we get that

v1k
�
dhk ;m

�
+ v2k

�
dhk ; h

�
� Ck

�
dhk
�
=

k (k + 1)
2

4
� 3 (k + 1)3 + 3 (k + 1)3 � k (k + 1)

2

4
� 2 (k + 1)3

= �2 (k + 1)2 < 0

Hence, x�k (mh) = x
�
k (hm) = d

0
k, and the maximized surplus is sk (mh) = sk (hm) = 0

2.6 Type Pro�le hh

Again, v1k
�
d0k; h

�
+ v2k

�
d0k; h

�
� Ck

�
d0k
�
= 0, and

v1k
�
dlk; h

�
+ v2k

�
dlk; h

�
� Ck

�
dlk
�
= �2" (k + 1)� (k + 1)

2

k
< 0
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and

v1k (d
m
k ; h) + v

2
k (d

m
k ; h)� Ck (dmk ) = �2

"
k (k + 1)

2

2

#
� k (k + 1)

2

2
= �3k (k + 1)

2

2
< 0

and

v1k
�
dhk ; h

�
+ v2k

�
dhk ; h

�
� Ck

�
dhk
�
= 2

"
3 (k + 1)

3 � k (k + 1)
2

4

#
� 2 (k + 1)3 = 4 (k + 1)3 � k (k + 1)

2

2
> 0

Hence, x�k (hh) = d
h
k and

sk (hh) = 4 (k + 1)
3 � (k + 1)

2

2k
=

�
4 (k + 1)� k

2

�
(k + 1)

2

2.7 Summary: An Optimal Decision Rule and the Maximized Surplus

Combining all the cases above and ignoring k = 1 we have that an optimal social decision rule is12

x�k (�k) =

8>>>>><>>>>>:
d0k if �k 2 fll;mh; hmg
dlk if �k 2 flm;mlg
dmk if �k = mm

dhk if �k 2 flh; hl; hhg

; (1)

and the maximized surplus (given k � 2) is

sk (�k) =

8>>>>>>>><>>>>>>>>:

0 if �k 2 fll;mh; hmg
1
4
(k+1)2

k + " (k + 1) �k 2 flm;mlg
k(k+1)2

2 � 4"k (k + 1) (k + 2) if �k = mm

(k + 1)
2
h
4k(k+1)�1

4k

i
if �k 2 flh; hlg�

4 (k + 1)� k
2

�
(k + 1)

2
if �k = hh

: (2)

2.8 Interim Expected Payo�s from Participation in the Groves Mechanism

For k = 2; 3::: we assume that the probability distribution over �ik be given by

�
Pr
�
�i = l

�
;Pr

�
�i = m

�
;Pr

�
�i = h

��
=

 
k (k + 2)

(k + 1)
2 ;

1

2 (k + 1)
2 ;

1

2 (k + 1)
2

!
: (3)

1There is multiplicity for type pro�le ll: We could easily get rid of this without a�ecting the maximized social surplus by

adjusting the costs and preferences slightly. This would add some extra terms for the calculations, and, ultimately, only the

maximized surplus is relevant, so we have opted to go with the simpler primitives.

2Hence, we will start our sequence at k = 2: Obviously, we could replace every k with k+1 and start the sequence at k = 1;

but the formulas get somewhat less transparent, which is why we stick with the current formulation.
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With probability distribution (3), the interim expected value of the maximized issue k surplus is

E [sk (�k) jl] = Pr
�
�i = l

�
sk (ll) + Pr

�
�i = m

�
sk (lm) + Pr

�
�i = h

�
sk (lh) (4)

=
1

2 (k + 1)
2

"
1

4

(k + 1)
2

k
+ " (k + 1)

#
+

1

2 (k + 1)
2

�
(k + 1)

2

�
4k (k + 1)� 1

4k

��

=
1

2 (k + 1)
2

"
1

4

(k + 1)
2

k
+ " (k + 1) + (k + 1)

2

�
4k (k + 1)� 1

4k

�#

=
1

2

�
1

4k
+

"

(k + 1)
+
4k (k + 1)� 1

4k

�
=

1

2

�
1

4k
+

"

(k + 1)
+ (k + 1)� 1

4k

�
=
1

2

�
"

(k + 1)
+ (k + 1)

�
=
k + 1

2
+

"

2 (k + 1)

for �i = l: For �i = m we have that

E [sk (�k) jm] = Pr
�
�i = l

�
sk (ml) + Pr

�
�i = m

�
sk (mm) + Pr

�
�i = h

�
sk (mh) (5)

=
k (k + 2)

(k + 1)
2

"
1

4

(k + 1)
2

k
+ " (k + 1)

#
+

1

2 (k + 1)
2

"
k (k + 1)

2

2
� 4"k (k + 1) (k + 2)

#

=
k + 2

4
+
"k (k + 2)

(k + 1)
+
k

4
� 2"k (k + 2)

k + 1
=
k + 1

2
� "k (k + 2)

(k + 1)

=
k + 1

2
� " [k (k + 1) + k]

(k + 1)
=
k + 1

2
� "k � "k

k + 1

Finally, for �i = h; we have that

E [sk (�k) jh] = Pr
�
�i = l

�
sk (hl) + Pr

�
�i = m

�
sk (hm) + Pr

�
�i = h

�
sk (hh) (6)

=
k (k + 2)

(k + 1)
2

�
(k + 1)

2

�
4k (k + 1)� 1

4k

��
+

1

2 (k + 1)
2

�
4 (k + 1)� k

2

�
(k + 1)

2

= k (k + 2)

�
4k (k + 1)� 1

4k

�
+

�
2 (k + 1)� k

4

�
= k (k + 1) (k + 2) + 2 (k + 1)� k + 2

4
� k
4
= k (k + 1) (k + 2) + 2 (k + 1)� k + 1

2

= (k + 1)
�
k2 + 2k + 1 + 1

�
� k + 1

2
= (k + 1)

3
+ (k + 1)� k + 1

2
= (k + 1)

3
+
(k + 1)

2

The ex ante expected surplus is thus

E [sk (�k)] =
k (k + 2)

(k + 1)
2

�
k + 1

2
+

"

2 (k + 1)

�
+

1

2 (k + 1)
2

�
k + 1

2
� "k (k + 2)

(k + 1)

�
(7)

+
1

2 (k + 1)
2

�
(k + 1)

3
+
(k + 1)

2

�
=

k (k + 2)

2 (k + 1)
+ "

"
k (k + 2)

2 (k + 1)
3

#
+

1

4 (k + 1)
� "

"
"k (k + 2)

2 (k + 1)
3

#
+
k + 1

2
+

1

4 (k + 1)

=
k (k + 2)

2 (k + 1)
+

1

2 (k + 1)
+
k + 1

2
=
k2 + 2k + 1

2 (k + 1)
+
k + 1

2
=
(k + 1)

2

2 (k + 1)
+
k + 1

2
= k + 1

8



2.9 Summary of the Expected Surplus Calculations

We have shown that

E [sk (�k)j l] =
k + 1

2
+

"

2 (k + 1)
(8)

E [sk (�k)jm] =
k + 1

2
� "k � "k

(k + 1)
(9)

E [sk (�k)jh] = (k + 1)
3
+
(k + 1)

2
(10)

E [sk (�k)] = k + 1 (11)

3 The Probability that a Participation Constraint is Violated Con-

verges to zero as K !1:

Since RiK
�
�i
�
= 0 for all �i; the interim expected payo� from participation in the Groves mechanism under

consideration simpli�es to

U iK
�
�i
�
= E�i [SK (�)]�

1

2
E [SK (�)] =

KX
k=2

E�i [sk (�k)]�
1

2

KX
k=2

E [sk (�k)] (12)

Consider a type on the form (m; ::::;m; l; ::::; l): Speci�cally, assume that �ik = m for k = 2; :::;K� and

�ik = l for k = K
� +1; :::;K and denote this type by (mK� ; lK��K) : Substituting (8), (9) and (11) into (12)

we have that type (mK� ; lK��K) earns an interim expected payo� of

U iK (mK� ; lK��K) =
K�X
k=2

E [sk (�k)jm] +
KX

k=K�+1

E [sk (�k)j l]�
1

2

KX
k=2

E [sk (�k)] (13)

=
K�X
k=2

�
k + 1

2
� "k � "k

(k + 1)

�
+

KX
k=K�+1

k + 1

2
+

"

2 (k + 1)
� 1
2

KX
k=2

(k + 1)

= "

"
K�X
k=2

�
�k � k

k + 1

�
+
1

2

KX
k=K�+1

�
1

k + 1

�#

De�ne

H (K�;K) =

K�X
k=2

�
�k � k

k + 1

�
+
1

2

KX
k=K�+1

1

k + 1
(14)

We note that;

1. H (K�;K) is strictly decreasing in K�

2. H (1;K) = "
2

PK
k=2

1
(k+1) > 0

3. H (K;K) = �"
PK

k=2

h
k + k

(k+1)

i
< 0

9



These three properties imply that for every K � 2 there exists a unique integer K� (K) 2 f1; :::;Kg such
that

H (K� (K) ;K) > 0 (15)

H (K� (K) + 1;K) < 0

Moreover, K� (K) is monotonically increasing and goes (slowly) to in�nity as K goes to in�nity. To see this,

we �rst observe that, for K� �xed, the positive term in (14) is divergent. That is,

KX
k=K�+1

1

k + 1
=

KX
k=K�+1

"Z k+2

k+1

1

k + 1
dz

#
>

KX
k=K�+1

"Z k+2

k+1

1

z
dz

#
(16)

=

Z K+2

K�+2

1

z
dz = ln (K + 2)� ln (K� + 2) :

For contradiction, assume that there exists some K such that K� (K) < K � 1 for all K: Then, for any K
we have that

H (K� (K) + 1;K) > H
�
K;K

�
= �

KX
k=2

�
k +

k

k + 1

�
+
1

2

KX
k=K+1

�
1

k + 1

�
(17)

/ using (16)/ >

KX
k=2

�
�k � k

k + 1

�
+
ln (K + 2)� ln

�
K + 2

�
2

:

Since ln (K + 2)!1 as K !1 and the other two terms are �nite we conclude that H (K� (K) + 1;K) > 0

for K su�ciently large, which contradicts the de�nition of K� (K) :

Next, consider a type on form
�
�i2; :::; �

i
K�(K); l; ::::; l

�
; where the signals for problems 2; :::;K� (K)

are arbitrary, and �ik = l for k = K� (K) + 1; ::;K: We denote such a type
�
�iK�(K); lK��K(K)

�
. Since

E [sk (�k)jm] � E
�
sk (�k)j �ik

�
for all �ik 2 fl;m; hg and every k it follows that

U iK

�
�iK�(K); lK��K(K)

�
=

K�(K)X
k=2

E
�
sk (�k)j �ik

�
�

KX
k=K(K)�+1

E [sk (�k)j l]�
1

2

KX
k=2

E [sk (�k)] (18)

�
K�(K)X
k=2

E [sk (�k)jm]�
KX

k=K(K)�+1

E [sk (�k)j l]�
1

2

KX
k=2

E [sk (�k)]

= "H (K� (K) ;K) > 0:

We conclude that the participation constraint holds for any such type. Since,

Pr
h�
�iK�(K)+1; :::; �

i
K

�
= (l; ::::; l)

i
=

KY
k=K�(K)+1

k (k + 2)

(k + 1)
2 =

(K� (K) + 1) (K + 2)

(K� (K) + 2) (K + 1)
! 1 (19)

as K ! 1 it follows that the probability that �i is on the form
�
�iK�(K); lK��K(K)

�
tends to unity as K

goes out of bounds. We conclude;

Claim 3 The probability that all participation constraints hold converges to 1 as K tends to in�nity.

Hence, the Groves mechanism is almost incentive feasible in this example.

10



4 Unraveling when the Veto Game is Introduced

Note that for type l = (l; ::::; l)

U iK (l) =
KX
k=2

E [sk (�k)j l]�
1

2

KX
k=2

E [sk (�k)] =
KX
k=2

�
k + 1

2
+

"

2 (k + 1)
� k + 1

2

�
=
"

2

KX
k=2

1

(k + 1)
(20)

where
KX
k=2

1

k + 1
=

KX
k=2

"Z k+1

k

1

k + 1
dz

#
<

KX
k=2

"Z k+1

k

1

z
dz

#
=

Z K+1

2

1

z
dz = ln

�
K + 1

2

�
: (21)

Hence,

U iK (l) <
"

2
ln

�
K + 1

2

�
: (22)

However, consider type �i where all coordinates are l except for �ik� = m: Denote this type �
i = lj�ik� = m

and note that

U
�
lj�ik� = m

�
=

KX
k 6=k�

E [sk (�k)j l] + E [sk� (�k�)jm]�
1

2

KX
k=2

E [sk (�k)] (23)

=

KX
k=2

E [sk (�k)j l]�
1

2

KX
k=2

E [sk (�k)]| {z }
=Ui(l)

+ E [sk� (�k�)jm]� E [sk� (�k�)j l]

/using (22)/ � "

2
ln

�
K + 1

2

�
+
k� + 1

2
� "k� � "k�

(k� + 1)
�
�
k� + 1

2
+

"

2 (k� + 1)

�
= "

�
1

2
ln

�
K + 1

2

�
� k� � k�

(k� + 1)
� 1

2 (k� + 1)

�
< "

�
1

2
ln

�
K + 1

2

�
� k�

�
De�ne ek (K) as the integer part of 12 ln �K+12 �

+ 1: Since 1
2 ln

�
K+1
2

�
� k� is negative for k� � ek (K) this

implies that type lj�ik� = m is worse o� from participating in the Groves mechanism than from the status

quo outcome d0 =
�
d02; ::::; d

K
K

�
for every k� � ek (K) : For brevity, denote this subset of types with a strict

incentive to veto the Groves mechanism by �iV : That is

�iV =
�
�ij�ik� = m for some k� � k� (K) and �ik = l for all k 6= k�

	
(24)

We note that, for any k� � k� (K)

Pr
�
�i 2 �iV j�ik� = m

�
=

Y
k 6=k�

Pr
�
�ik = l

�
> Pr

�
�i = l

�
=

KY
k=2

Pr
�
�ik = l

�
=

KY
k=2

k (k + 2)

(k + 1)
2 (25)

=

�
2� 4
32

�
�
�
3� 5
42

�
� :::� (K � 1) (K + 1)

K2
� K (K + 2)

(K + 1)
2

=
2

3

�
K + 2

K + 1

�
>
2

3

In words, conditional on �ik� = m, the probability that all other coordinates are ls is obviously (slightly)

larger than the unconditional probability that the type l is realized. For k � ek (K) we can therefore calculate
11



an upper bound on the expected surplus conditional on �ik = l and conditional on that agent i is aware that

any agent �i 2 �iV will veto the mechanism.

E
�
sk (�k) jl; veto by �i 2 �iV

�
= Pr

�
�ik = m

� �
1� Pr

�
�i 2 �iV j�ik = m

��
sk (lm) + Pr

�
�ik = h

�
sk (lh) (26)

= E [sk (�k) jl]� Pr
�
�ik = m

�
Pr
�
�i 2 �iV j�ik = m

�
sk (lm)

=
k + 1

2
+

"

2 (k + 1)| {z }
=E[sk(�k)jl] by (8)

� 1

2 (k + 1)
2| {z }

=Pr[�ik=m]

Pr
�
�i 2 �iV j�ik = m

� "1
4

(k + 1)
2

k
+ " (k + 1)

#
| {z }

=sk(lm) by (2)

/(25)/ <
k + 1

2
+

"

2 (k + 1)
� 1

2 (k + 1)
2

2

3

"
1

4

(k + 1)
2

k
+ " (k + 1)

#

=
k + 1

2
+

"

2 (k + 1)
� 1

12k
� "

3 (k + 1)
=
k + 1

2
+

"

6 (k + 1)
� 1

12k

The interim expected payo� of type l =(l; :::; l) conditional on vetoes from types in �iV is thus

U iK
�
ljveto by �i 2 �iV

�
=

Iek(K)�1X
k=2

E [sk (�k)j l] +
KX

k=ek(K)
E
�
sk (�k) jl; veto by �i 2 �iV

�
� 1
2

KX
k=2

E [sk (�k)](27)

=
"

2

Iek(K)�1X
k=2

1

k + 1
+
"

6

KX
k=ek(K)

1

k + 1
� 1

12

KX
k=ek(K)

1

k

where,

Iek(K)�1X
k=2

1

k + 1
=

Iek(K)�1X
k=2

"Z k+1

k

1

k + 1
dz

#
<

Iek(K)�1X
k=2

"Z k+1

k

1

z
dz

#
=

Z Iek(K)
2

1

z
dz = ln

 
Iek (K)
2

!

I
KX

k=ek(K)
1

k + 1
=

KX
k=ek(K)

"Z k+1

k

1

k + 1
dz

#
<

KX
k=ek(K)

"Z k+1

k

1

z
dz

#
=

Z IK+1

ek(K)
1

z
dz = ln

 
IK + 1ek (K)

!
KX

k=ek(K)
1

k
=

KX
k=ek(K)

"Z k+1

k

1

k
dz

#
>

KX
k=ek(K)

"Z k+1

k

1

z
dz

#
= ln

 
IK + 1ek (K)

!
(28)

Hence,

U iK
�
ljveto by �i 2 �iV

�
=

"

2

Iek(K)�1X
k=2

1

k + 1
+
"

6

KX
k=ek(K)

1

k + 1
� 1

12

KX
k=ek(K)

1

k
(29)

<
"

2
ln

 
Iek (K)
2

!
� 1� 2"

6
ln

 
IK + 1ek (K)

!

= lnek (K) �1 + "
6

�
� "

2
ln 2� ln (K + 1)

�
1� 2"
6

�
(30)

But, ek (K) � 1
2 ln

�
K+1
2

�
+ 1, so

ln (K + 1) � 2ek (K) + ln 2� 2
12



Since limx!1
ln x
x = 0 and since limK!1 ek (K) =1 it follows that the term with ln (K + 1) eventually dom-

inates in expression (29). Consequently, whenever " < 1
2 there exists K such that U i

�
ljveto by �i 2 �iV

�
< 0

for any K � K:3 In (25) we calculated the probability that �i = l to be

Pr
�
�i = l

�
=
2

3

�
K + 2

K + 1

�
:

We conclude that;

Claim 4 Suppose that type l =(l; ::::l) expects that all types in �iV will veto play of the Groves mechanism.

Then, there exists some K such that type l =(l; ::::l) will have a strict incentive to veto the Groves mechanism

given any economy K � K: Hence, the mechanism is vetoed by each agent with a probability of at least 23 for

every K � K:

The only di�erence between the Groves mechanism amended with a veto game and the mechanism

actually considered in the proof of Proposition 2 is that the latter mechanism has a slightly (on a per

problem basis) larger lump sum payment than the underlying budget balancing Groves mechanism. It

follows that the conclusion immediately extends to the mechanism under consideration.

The reader may note that any type such that �ik 2 fl;mg for all k will have an incentive to cast a veto.
The probability that there is one k such that �ik 2 fm;hg is less than 1

3 ; and, conditional on this event

occuring, the probability that the �rst such draw is m is 12 : Moreover, conditional on the �rst draw di�erent

from l being m; the probability that the rest of the sequence is all l is 23 ; so we can immediately add
1
3
1
2
2
3 =

1
9

to the lower bound on the probability for a veto.

Obviously we can do even better by taking into consideration that the larger k is for the �rst draw of

m; the larger is the probability that the remaining sequence contain only ls. However, qualitatiely, the

point with the example is that an outcome that is highly ine�cient occurs when the possibility of a veto is

introduced, and for that it is su�cient to observe that the (high probability) type l will cast a veto.

3We already have the restriction " � 1
24
in order for the surplus in (2) to be valid for every k � 2:
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