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Abstract

This paper provides a class of examples of two-bidder common value second price auctions

in which bidders may be financially constrained and the seller has access to information about

the common value. We show that the seller’s expected revenue under a revelation policy may

be lower than that under a concealing policy. The intuition for the failure of the linkage

principle is as follows. In the presence of financial constraints, the bidders’ upward response in

their bids to the seller’s good signals is limited by their financial constraints, while their

downward response to bad signals is not.

r 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

One of the fundamental lessons from auction theory is the linkage principle which,
loosely, states that the seller’s expected revenue will be greater if she can undermine
the privacy of the winning bidder’s information.1 This principle underlies the well-
known results that a seller will prefer to conduct an ascending-bid auction rather
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than a sealed-bid auction, and for a given auction format she will prefer to publicly
reveal her information to the bidders. Some assumptions are recognized to be crucial
for the linkage principle to hold, such as risk neutrality, symmetric uncertainty about
the bidders’ valuations, and affiliation among the bidders’ and the seller’s signals.2 In
this paper, we show that for the linkage principle to hold it is also important that the
bidders are not financially constrained. The importance of buyers’ financial
constraints in auctions has been demonstrated by a large body of empirical and
anecdotal evidence.3 For example, financial constraints are used by Cramton [4] to
explain some bidders’ exit decisions in the PCS auctions, and by Genesove [6] to
explain the end-of-day drop in prices at used car auctions. Recently, governments in
many parts of the world have aggressively sought to privatize once socially held
assets. Given the magnitude of these privatization sales, it is often realistic to assume
that buyers may run up against financial constraints. However, in practice, when
called upon to choose an auction mechanism, one is often led by the faith placed in
the linkage principle to employ an open auction format, even in scenarios where the
bidders are most likely financially constrained.
The idea behind the failure of the linkage principle in common value auctions with

financially constrained bidders can be conveyed by a simple example. Suppose that
two bidders compete for an object in a first or a second price auction. Each bidder

has a bidding budget of 3
4
: The common valuation is either 0 or 1. The common prior

of the bidders and the seller is that 0 and 1 occur with equal probability. Bidders do
not receive any private signal before they bid, while the seller will receive a signal that
tells her the true value of the object. If the seller commits to a concealing policy, the

bidders will both bid 1
2
for the object. If the seller commits to a revealing policy, then

the bidders will both bid 0 if the true value is 0 and 3
4
if the true value is 1. Hence,

the seller’s expected revenue under the concealing policy is 1
2; while that under the

revealing policy is 3
4
� 1

2
¼ 3

8
; which is smaller. The reason is as follows: when the low

value 0 is revealed, the bidders both drop their bids unfettered by the budget; but
when the high value 1 is revealed, the bidders can only increase their bids up to the
bidding budget.
While this example demonstrates the intuition for the possible failure of the

linkage principle, it is not rich enough to address some interesting questions. First,
will the linkage principle uncovered by Milgrom and Weber [9] in the classical
auction environment with no financial constraints still hold if the bidders’ financial
constraints are not very severe? Second, when bidders are financially constrained,
how is the seller’s expected revenue under a revealing policy affected by the accuracy
of her signal? Will a seller be better off by revealing garbled signals (i.e., signals with
less precision)? To this end, we consider a class of examples where budget constraints
are determined by a family of Pareto distributions, and the seller receives signals

2Ottaviani and Prat [10] extend the logic of the linkage principle to monopolistic price discrimination.
3 In a seminal paper, Che and Gale [2] show that first-price auctions yield higher expected revenue and

social surplus than second-price auctions when bidders are financially constrained. Also see Che and Gale

[3] for more evidence of financial constraints in auctions.
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about the value of the object with different accuracy. Importantly, when the
parameter of the Pareto distribution converges to zero, our example converges to the
classical auctions with no budget constraints; as we increase that parameter, the
probability that a bidder’s budget constraint binds increases. We compare the seller’s
expected revenue under a revealing and a concealing policy. We show that, indeed,
the linkage principle still holds when the probability of the bidders’ being financially
constrained is small, and it fails when the budget constraints are severe enough. The
intuition is quite simple. When the budget constraints are not severe, the increased
competition between the bidders due to the released information on average
outweighs the increase in the likelihood that the budget constraints bind, and hence
the linkage principle still holds. On the other hand, when the financial constraints are
severe, the extent to which a high signal revealed by the seller drives up the bids is
now limited by the bidders’ bidding constraints, but the extent to which a low signal
drives down the bids is not limited. It is this asymmetry in the bidders’ response
toward good and bad news in the presence of budget constraints that causes the
linkage principle to fail. We also show that the seller’s expected revenue is non-
monotonic in the accuracy of her signal.

2. The environment

Consider a common value auction with two bidders denoted by i ¼ 1; 2: The
common value of the object, S; is distributed according to an inverted Gamma
distribution with support ð0;þNÞ whose p.d.f. is4

fSðsÞ ¼
ba

saþ1
e�b=s

GðaÞ; 0osoþN; where a41 and b40:

The unconditional expected value of the object is ES ¼ b=ða� 1Þ:
Buyer i receives a signal Xi: We assume that conditional on the value of the object

S; signals X1 and X2 are independently drawn from the same exponential
distribution with parameter 1=S and have support ½0;þNÞ: That is, the p.d.f. of
Xi conditional on s; is

fXi jSðxijsÞ ¼
1

s
e�xi=s; 0pxioþN; for i ¼ 1; 2:

Note that the buyer’s signal is an unbiased estimate of the value of the object since
E½XijS
 ¼ S:
The seller receives a signal X0 which, conditional on S ¼ s; is independent of any

other signals and follows a Gamma distribution with parameters k40 and k=s: That
is, the support of signal X0 is ½0;þNÞ and its p.d.f. is

fX0jSðx0jsÞ ¼
k

s

� �k

xk�1
0

expð�kx0
s
Þ

GðkÞ ; 0px0oþN:

4A random variable S has an inverted Gamma distribution if 1=S has a Gamma distribution (see [1, p.

50]).
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Notice that the seller’s signal is also an unbiased estimate of the common value since
E½X0jS
 ¼ S:5 The parameter k can be interpreted as a measure of the precision of the

seller’s signal because Var½X0jS
 ¼ S2=k:6 It is important to note that as k-0; the
seller’s signal becomes completely uninformative. This allows us to interpret
the concealing policy by the seller as a special case of a revealing policy except that
the seller’s signal is completely uninformative.
Assume that each bidder gets a draw of her available bidding budget, W ; from a

Pareto distribution with parameters
%
w40 and y40: That is, the bidding budget W

has a support ð
%
w;þNÞ and its the c.d.f. is

GðwÞ ¼ 1� ð
%
w=wÞy if w4

%
w;

and we denote gðwÞ as its corresponding p.d.f. The parameter y measures the severity

of budget constraint: the smaller y is, the less likely that a bidder may be financially
constrained. As y-0; we will in the limit obtain the standard auction models
without financial constraints. It can be verified that the hazard function of the
budget distribution is gðwÞ ¼ gðwÞ=½1� GðwÞ
 ¼ y=w if w4

%
w; and 0 otherwise. For

reasons to be explained after Proposition 1, we assume:

Assumption 1. 0o
%
wob=ðaþ k þ 1Þ:

The auction format employed by the seller is the Vickery auction. Each bidder
submits a bid. The bidder who submits the higher bid wins the object and pays the
low bid. Following Che and Gale [2], we assume that if a bidder bids more than his
budget he will not win the object and will have to pay a small fine. Therefore, the
strategy of bidding above one’s budget is strictly dominated.

3. Equilibrium

Suppose that the seller commits to a policy of publicly revealing her signal to the
bidders. We will focus on symmetric equilibrium in the following form: when the
seller reveals a signal x0; bidder i of budget wi and signal xi bids

Bkðxi;wi; x0Þ ¼ minfwi; bkðxi; x0Þg; i ¼ 1; 2; ð1Þ

where the superscript k indexes the precision of the seller’s signal and bkð
; x0Þ is a
strictly increasing and piecewise differentiable function for all x0: The term bkðxi; x0Þ
can be interpreted as the bid, when the seller reveals a signal x0 with precision k; of a

5In pure common value auctions with conditionally independent signals, the assumption that the

bidders’ and the seller’s signals are unbiased estimates of the value of the object is without loss of

generality since we can always transform any signals to satisfy this feature. We thank an Associate Editor

for this observation.
6Alternatively, we can interpret the seller’s signal as the mean of a random sample of k signals that are

independently drawn from the same exponential distribution as that of the bidders. (It is easy to show that

the sample mean of k independent exponential distribution with parameter 1=s will have a Gamma

distribution with a ¼ k and b ¼ k=s:Þ Under this interpretation, k only takes positive integer values.
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bidder with signal xi; who is not herself financially constrained but understands that

her opponents may be constrained. We will refer to bkð
; x0Þ as the ‘‘unconstrained’’
bidding function.

In Appendix A, we show that whenever bkðx; x0ÞX
%
w (which we verify below), the

‘‘unconstrained’’ bidding function bkð
; x0Þ must satisfy the following differential
equation:

bkðx; x0Þ ¼
lðxjx; x0Þ
gðbðx; x0ÞÞ

½bkðx; x0Þ � nðx; x; x0Þ

½jðx; x; x0Þ � bkðx; x0Þ


; ð2Þ

where7

nðx; x; x0Þ ¼ E½SjX1 ¼ x;X2 ¼ x;X0 ¼ x0
 ¼
2x þ bþ kx0

aþ k þ 1
; ð3Þ

jðx; x; x0Þ ¼ E½SjX1 ¼ x;X2Xx;X0 ¼ x0
 ¼
2x þ bþ kx0

aþ k
; ð4Þ

lðxjx; x0Þ ¼
fXi jðXj ;X0ÞðxjXj ¼ x;X0 ¼ x0Þ

1� FXi jðXj ;X0ÞðxjXj ¼ x;X0 ¼ x0Þ
¼ aþ k þ 1

2x þ bþ kx0
;

where, as throughout the paper, we use F�j� to denote the conditional c.d.f. of the

signals. After substituting these expressions into Eq. (2) we obtain the following
differential equation:

bkðx; x0Þ ¼
aþ k þ 1

2x þ bþ kx0

bkðx; x0Þ
y

bkðx; x0Þ � ð2x þ bþ kx0Þ=ðaþ k þ 1Þ
ð2x þ bþ kx0Þ=ðaþ kÞ � bkðx; x0Þ

� �
:

ð5Þ

Under the condition that bkð
; x0Þ is positive for all x0; we establish in Appendix B
the following proposition:

Proposition 1. The unique increasing solution to Eq. (5) is given by

bkðx; x0Þ ¼
ð2yþ aþ kÞ

ð2yþ aþ k þ 1Þ
ð2x þ bþ kx0Þ

ðaþ kÞ : ð6Þ

Note that under Assumption 1, we have that

bkð0; 0Þ ¼ ð2yþ aþ kÞ
ð2yþ aþ k þ 1Þ

b
ðaþ kÞX

b
aþ k þ 1

4
%
w:

Since bkð
; 
Þ is increasing in both x and x0; we indeed have bkðx; x0ÞX
%
w for all x and

x0: Therefore, the equilibrium ‘‘unconstrained’’ bidding function bkð
; 
Þ is completely
characterized by the solution to the ODE (5). As proved in Fang and Parreiras [5], a

sufficient condition to guarantee that bkðx; x0Þ in (6) solves the maximization problem
in Appendix A is that lðzjx; x0Þnðx; z; x0Þ is non-decreasing in x for all z and x0;
which is satisfied here because lðzjx; x0Þnðx; z; x0Þ ¼ 1 is a constant.

7The verification of these formulae is available from the authors upon request.
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The equilibrium ‘‘unconstrained’’ bidding function (6) has the following intuitive
properties:

* The coefficient of x; 2ð2yþ aþ kÞ=½ð2yþ aþ k þ 1Þðaþ kÞ
; is decreasing in k:
That is, an unconstrained bidder becomes less sensitive to her own signal x as the
seller’s signal becomes more precise.

* The coefficient of x0; kð2yþ aþ kÞ=½ð2yþ aþ k þ 1Þðaþ kÞ
; is increasing in k:
That is, the ‘‘unconstrained’’ bidding function becomes more sensitive to the
seller’s signal as it becomes more precise.

* The coefficient of x0; kð2yþ aþ kÞ=½ð2yþ aþ k þ 1Þðaþ kÞ
; is increasing in y:
That is, an unconstrained bidder becomes more responsive to the seller’s signal as
the opponent becomes more likely to be financially constrained. This effect is
important because it implies that more severe budget constraints will entail more
dramatic asymmetric responses of the bidders’ bids to favorable and unfavorable
signals released by the seller. The asymmetric response effect, as we argue in
Section 5, is what drives the failure of the linkage principle as y gets large.

Now we analyze the equilibrium of the auction when the seller follows a
concealing policy. We focus on the symmetric equilibrium in which a bidder with
budget wi and signal xi bids

Bðwi; xiÞ ¼ minfwi; bðxiÞg; i ¼ 1; 2;

where bð
Þ is a strictly increasing and piecewise differentiable function. It can be
shown that in equilibrium,

bðxiÞ ¼ lim
k-0

bkðxi; x0Þ ¼
ð2yþ aÞ

ð2yþ aþ 1Þ
ð2x þ bÞ

a
: ð7Þ

This is intuitive because, as we pointed out earlier, a concealing policy by the seller is
equivalent to a revealing policy when her signal is completely uninformative, i.e., as
k-0: The ‘‘unconstrained’’ bidding function under the concealing policy, bð
Þ; above
has the following intuitive properties:

* The coefficient of x; 2ð2yþ aÞ=ð2yþ aþ 1Þa decreases in a and increases in y: It
decreases in a because the expected value of the object is decreasing in a; and it
increases in y because a higher y implies a higher probability that the opponent is
financially constrained, and hence a less severe winner’s curse.

* As y-0; bðxÞ-ð2x þ bÞ=ðaþ 1Þ ¼ E½SjX1 ¼ x;X2 ¼ x
; which is the equilibrium
bid obtained in Milgrom and Weber [9].

4. Seller’s expected revenues and the linkage principle

Under the revealing policy, the price obtained by the seller, denoted by Pk; is a
random variable given by

Pk ¼ minfbkðX1;X0Þ; bkðX2;X0Þ;W1;W2g:
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We write MN and Mk
I ; respectively, as the seller’s expected revenue under a

concealing and a revealing policy when the precision of her signal X0 is k; i.e.,

Mk
I ¼ E½Pk
; MN ¼ limk-0 E½Pk
; where the latter equality follows from Eq. (7). We

show in Lemma B.1 in Appendix C that

MN ¼ %
w

2y� 1
2y� a

2yþ a� 1

að2yþ aþ 1Þ
%
w

ð2yþ aÞb

� �2y�1( )
; ð8Þ

Mk
I ¼ %

w

2y� 1

(
2y� Gðaþ k þ 1Þ

GðaÞ
Gð2yþ a� 1Þ
Gð2yþ aþ kÞ:

� ðaþ kÞð2yþ aþ k þ 1Þ
%
w

ð2yþ aþ kÞb

� �2y�1)
: ð9Þ

Note that MN-ab=½ða� 1Þðaþ 1Þ
 and Mk
I -ðaþ kÞb=½ða� 1Þðaþ k þ 1Þ
; hence

MNoMk
I as y-0: This is of course the linkage principle in common value auctions

with no financial constraints. However, the following proposition shows that the
linkage principle may fail when y is sufficiently large.

Proposition 2. For any k40; there exist thresholds
%
y and %y with

%
yp%y such that

Mk
I 4MN if yo

%
y and Mk

I oMN if y4%y:

Fig. 1 depicts the relationship between MN � Mk
I and y in a numerical example in

which we set a ¼ 2; b ¼ 6; k ¼ 2;
%
w ¼ 0:2: As we increase y; MN � Mk

I changes

from negative to positive. Moreover, as y goes to infinity, the difference converges to
zero. This occurs because when y becomes large the budget constraints become so
severe that the seller’s expected revenue approaches

%
w under both the revelation and

concealing policies. While in this numerical example, MN � Mk
I as a function of y

crosses zero only once from below, we are unable to show in general that there exists

0.2 0.4 0.6 0.8 1

-0.04

-0.03

-0.02

-0.01

0.01
MN 

_ MI
K

�

Fig. 1. The relationship between MN � Mk
I and y: a ¼ 2; b ¼ 6; k ¼ 2;

%
w ¼ 0:2:
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a unique threshold value of y below which the linkage principle holds and above
which it fails.
Now suppose that the bidders have access to a public signal, and the seller can

choose the precision of the signal between k and k þ 1; when would the seller’s
expected revenue be higher with the more precise public signal?

Proposition 3. For any k40; there exists a unique threshold level y�k such that

Mk
I 4Mkþ1

I if and only if y4y�k:

In Appendix B, we also explicitly show how the threshold y�k is determined. The

main implication of Proposition 3 is that Mk
I may be non-monotonic in k for

intermediate values of y: For example, suppose the actual severity of budget

constraints y is such that y�1oyoy�2: By Proposition 3, y4y�1 implies that M1
I4M2

I ;

and yoy�2 implies that M2
I oM3

I : Fig. 2 depicts how Mk
I varies with k in a numerical

example in which we set a ¼ 2;b ¼ 6;
%
w ¼ 0:2; and y ¼ 0:54: Indeed, in this example,

it can be calculated that y�0E0:458; y�1E0:533; y�2E0:588; y�3E0:630; where y�0 is the
threshold above which MN4M1

I : Hence, when y ¼ 0:54; we have MN4M1
I4M2

I ;

but M2
IoM3

IoM4
I :

It is interesting to know the optimal precision level of the signal for the seller
for any fixed level of y: From Proposition 3, it is clear that if y is sufficiently low, that
is, when the budget constraint is not very severe, the seller will prefer the most
informative signal; and if y is sufficiently high, she will prefer the least informative
signal. What happens when y is in the intermediate range is less clear. The main

difficulty is that we are unable to analytically establish that y�k is increasing in k:
However, based on numerical examples we work with, we conjecture that this is

indeed the case. If so, then for intermediate values of y; Mk
I as a function of k will be

convex (as illustrated in Fig. 2), hence the seller will follow a ‘‘bang–bang’’ policy:
she will either prefer the least informative or the most informative signal.
The relationship between Propositions 2 and 3 is as follows. Proposition 2

compares the seller’s expected revenue between a concealing policy and a policy of
revealing a signal with a fixed level of precision k: This leaves open the question

2 4 6 8 10

0.718

0.7185

0.719

0.7195

0.7205

0.721

k

 MI
K

Fig. 2. The relationship between Mk
I and k: a ¼ 2; b ¼ 6;

%
w ¼ 0:2; y ¼ 0:54:
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of whether the seller will benefit from revealing a garbled signal (i.e., a signal with
less precision). Proposition 3 partially addresses this question. It implies that for
levels of y that are sufficiently low or high, the policy of revealing a garbled signal
will not be optimal for the seller, and if our conjecture that y�k increases with k holds,

then a garbling policy is not optimal for intermediate levels of y either. Moreover,
in the case when k is an integer, Proposition 3 provides one characterization of y
and %y in Proposition 2. Proposition 3 implies that MN4M1

I4?4Mk
I for all

yominfy�0;y; y�kg; and MNoM1
Io?oMk

I for all y4maxfy�0;y; y�kg: Hence, we
can choose y ¼ minfy�0;y; y�kg and %y ¼ maxfy�0;y; y�kg as the thresholds in

Proposition 2 though they may not be the tightest thresholds.

5. Conclusion

This paper provides a class of examples of two bidder common value second price
auctions in which bidders may be financially constrained and the seller has access to
information about the common value. We show that the seller’s expected revenue
under a revelation policy may be lower than that under a concealing policy.
Furthermore, the seller’s expected revenue under the revelation policy may not be
monotonic in the accuracy of her information.
While we derived our results in a specific example with two bidders in a common

value second price auction, we believe that the economic reasons underlying the
possible failure of the linkage principle in the presence of budget constraints are
general. A favorable signal revealed by the seller will raise, and an unfavorable signal
will lower, the bidders’ ‘‘unconstrained’’ bids. In the absence of budget constraints,
these two effects operate on the actual bids in a symmetric manner. The presence of
budget constraints, however, effectively imposes a limit on how much the bidders may
raise their actual bids after seeing a favorable signals revealed by the seller; but no
limit is imposed on how much the bidders can lower their actual bids after seeing an
unfavorable signal. That is, with budget constraints, the seller has to fully absorb the
negative impact of bad signals, while she can only partially reap the benefits of good
signals. Importantly, as we see from Proposition 1, the higher y is, the more responsive
the ‘‘unconstrained’’ bidding function is to the seller’s signal, which implies that the
asymmetry between the favorable and unfavorable signals becomes more dramatic as
the severity of the financial constraints gets higher. As y is high enough, the increase in
the likelihood that the budget constraints bind due to the asymmetric response effect
will eventually dominate increased competition between the bidders as a result of the
seller’s released information, and cause the linkage principle to fail.
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Appendix A. Derivation of ODE (2)

This derivation is adapted from that in Fang and Parreiras [5] which considers a

more general environment. Suppose bidder 2 follows the bidding rule Bkð
; 
; x0Þ as
specified in (1), and consider the best response for an unconstrained bidder 1: Define

ckð
; x0Þ as the inverse of bkð
; x0Þ; i.e., ckðz; x0Þ ¼ ½bk
�1ðz; x0Þ: Bidder 1’s
optimization problem is

maxPðb; x1; x0Þ

¼
Z ckðb;x0Þ

%
x

½1� Gðbkðx2; x0ÞÞ


� fE½SjX1 ¼ x1;X2 ¼ x2;X0 ¼ x0
 � bkðx2;x0Þg dFX2jðX1;X0Þðx2jx1;x0Þ

þ
Z b

%
w

fE½SjX1 ¼ x1;X2Xckðw2; x0Þ;X0 ¼ x0
 � w2g

� ½1� FX2jðX1;X0Þðc
kðw2; x0Þjx1; x0Þ
 dGðw2Þ:

In the above expression, the first term is bidder 1’s expected surplus when bidder 2’s

budget w24bkðx2; x0Þ; which occurs with probability 1� Gðbkðx2; x0ÞÞ; and his

signal x2 is below ckðb; x0Þ: In this event, bidder 1 wins the object and pays

bkðx2; x0Þ: The second term is bidder 1’s expected surplus when bidder 2’s budget w2

is less than b; and he has a signal x2 above c
kðw2; x0Þ; which conditional on x1 and x0

occurs with probability 1� FX2jðX1;X0Þðc
kðw2; x0Þjx1Þ: In this event, bidder 1 will win

the object and pay bidder 2’s bid w2:
Differentiating Pðb; x1; x0Þ with respect to b and applying Leibniz’s rule, we

obtain, after some simplification,

dPðb; x1; x0Þ
db

¼ ½1� GðbÞ
fE½SjX1 ¼ x1;X2 ¼ ckðb; x0Þ;X0 ¼ x0
 � bg

� fX2jðX1X0Þðc
kðb; x0Þjx1; x0Þckðb; x0Þ

þ fE½SjX1 ¼ x1;X2Xckðb; x0Þ;X0 ¼ x0
 � bg

� ð1� FX2jðX1;X0Þðc
kðbÞjx1; x0ÞÞgðbÞ: ðA:1Þ
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In a symmetric equilibrium, (A.1) can be simplified as

½1� Gðbkðx1; x0ÞÞ
½bkðx1; x0Þ � nðx1; x1; x0Þ
fX2jðX1;X0Þðx1jx1; x0Þ

þ ½1� FX2jðX1;X0Þðx1jx1;x0Þ
gðbkðx1; x0ÞÞ

� ½jðx1; x1; x0Þ � bkðx1; x0Þ
bkðx1; x0Þ ¼ 0; ðA:2Þ

where nð
; 
; x0Þ and jð
; 
; x0Þ are defined by (3) and (4), respectively. Note that

whenever bkðx1; x0Þ4
%
w we have gðbkðx1; x0ÞÞ40; and subsequently we can rewrite

(A.2) as (2). To verify the second-order condition, we need to show that Pðb; x1; x0Þ
is a single-peaked function of b for every x1 and x0: In Fang and Parreiras [5], we
show that a sufficient condition for this to hold is that lðzjx; x0Þnðx; z; x0Þ is non-
decreasing in x for all z:

Appendix B. Proofs of main results

Proof of Proposition 1. Suppose that bð
Þ is an increasing solution of the ODE (2), it

must be the case that nðx; x; x0Þobkðx; x0Þojðx; x; x0Þ: Hence, there must be some
weighting function zð
Þ; with zðxÞA½0; 1
 for all x; such that

bkðx; x0Þ ¼ ½1� zðxÞ
nðx; x; x0Þ þ zðxÞjðx; x; x0Þ

¼ 2x þ bþ kx0

ðaþ kÞðaþ k þ 1Þ ½aþ k þ zðxÞ
: ðB:1Þ

It suffices to prove the uniqueness of the weighting function zð
Þ to show the
uniqueness of increasing solution to ODE (5). Clearly the weighting function zð
Þ
implicitly defined by (B.1) is differentiable if bkðx; x0Þ is differentiable. Substituting
expression (B.1) into (5), we obtain

2½aþ k þ zðxÞ
 þ ð2x þ bþ kx0Þz0ðxÞ

¼ aþ k þ 1

y
½aþ k þ zðxÞ
 zðxÞ

1� zðxÞ: ðB:2Þ

We first consider the case that z0ð
Þ ¼ 0 everywhere. Then from Eq. (B.2) we obtain

zðxÞ ¼ 2y
2yþ aþ k þ 1

:

Clearly, the above weighting function satisfies the range condition that zðxÞA½0; 1
:
Plugging this weighting function into (B.1) immediately yields (6).
Now suppose that there is another solution zð
Þ to (B.2) such that z0ð
Þa0: Because

(B.2) is separable, we can show that they are implicitly given by the following
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equation:

1

2
þ y log½aþ k þ zðxÞ

ð2yþ aþ kÞ logð2x þ bþ kx0Þ

� y log½ð2yþ aþ k þ 1ÞzðxÞ � 2y

ð2yþ aþ kÞð2yþ aþ k þ 1Þ logð2x þ bþ kx0Þ

¼ C

logð2x þ bþ kx0Þ
; ðB:3Þ

where C is an integration constant. The limit of the right-hand side of (B.3) is zero,
and the limit of the second term in the left-hand side of (B.3) is 0 if zðxÞA½0; 1
;
therefore, we must have:

lim
x-þN

y log½ð2yþ aþ k þ 1ÞzðxÞ � 2y

ð2yþ aþ kÞð2yþ aþ k þ 1Þ logð2x þ bþ kx0Þ

¼ 1

2
:

This can be true only if ð2yþ aþ k þ 1ÞzðxÞ � 2y goes to infinity as x goes to
infinity, which violates the range condition that zðxÞA½0; 1
 for all x: &

Proof of Proposition 2. We will use Lemma B.1 below. In order to make transparent
the structure of the current proof, we relegate the proof of Lemma B.1, which is
more technical, to Appendix C.

Lemma B.1. The seller’s expected revenues under concealing and revealing policies are,
respectively, given by (8) and (9).

With a slight abuse of notation, we write MNðyÞ and Mk
I ðyÞ to denote,

respectively, the seller’s expected revenue under concealing and revealing policies
when the severity of the budget constraints is y: Using Lemma B.1, it is easy to see,

after some manipulation, that if y41
2
; then MNðyÞ4Mk

I ðyÞ if and only if

Gðaþ k þ 1ÞGð2yþ aÞ
Gð2yþ aþ kÞGðaþ 1Þ

bð0Þ
bkð0; 0Þ

� �2y�1
41: ðB:4Þ

Note that

bð0Þ
bkð0; 0Þ ¼

ð2yþ aÞðaþ kÞð2yþ aþ k þ 1Þ
ð2yþ aþ 1Það2yþ aþ kÞ ¼ aþ k

a
hðyÞ;

where hðyÞ is defined by

hðyÞ ¼ ð2yþ aÞð2yþ aþ k þ 1Þ
ð2yþ aþ 1Þð2yþ aþ kÞ:

It can be verified that h0ðyÞ40: Therefore,

aþ k

a
¼ aþ k

a
hðNÞ4 bð0Þ

bkð0; 0Þ4
aþ k

a
hð0Þ ¼ aþ k þ 1

aþ 1
41:
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Therefore, the term ½bð0Þ=bkð0; 0Þ
2y�1 is at least of order ½ðaþ k þ 1Þ=ðaþ 1Þ
2y�1:
On the other hand, the term Gð2yþ aÞ=Gð2yþ aþ kÞ is at the order of y�k since

Gð2yþ aÞ
Gð2yþ aþ kÞ ¼

1

ð2yþ aÞ?ð2yþ aþ k � 1Þ:

Therefore, there exists a %y; which may depend on k; such that if y4%y; then inequality
(B.4) holds, and hence MNðyÞ4Mk

I ðyÞ:
Analogously, one can show that if yo1

2
; then MNðyÞoMk

I ðyÞ if and if inequality

(B.4) holds. Note that as y-0; the left-hand side of inequality (B.4) is no less than 1.

Therefore, limy-0 MNðyÞolimy-0 Mk
I ðyÞ: By continuity, there exists some y such

that MNðyÞoMk
I ðyÞ for all yo

%
y: &

Proof of Proposition 3. After some simplification, one can show that Mkþ1
I oMk

I if

and only if

aþ k þ 1

2yþ aþ k

ðaþ k þ 1Þ
ðaþ kÞ

ð2yþ aþ kÞð2yþ aþ k þ 2Þ
ð2yþ aþ k þ 1Þ2

" #2y�1

41 when y41
2
;

o1 when yo1
2
:

(
ðB:5Þ

Define function mð
Þ by

mðyÞ ¼ ln
aþ k þ 1

2yþ aþ k þ 1

� �y
2yþ aþ k þ 1

2yþ aþ k

� �1�y aþ k

2yþ aþ k þ 2

� �1
2
�y

2
4

3
5:

We can then restate (B.5) as Mkþ1
I oMk

I if and only if mðyÞ40 when y41
2 and

mðyÞo0 when yo1
2
: It can be verified that mð
Þ is strictly convex, and satisfies

limy-0 mðyÞ40; limy-þN mðyÞ ¼ þN; and mð1
2
Þ ¼ 0: These imply that the equation

mðyÞ ¼ 0 will either have a unique solution at y ¼ 1
2
or have exactly one more

solution besides 1
2
: We consider three cases:

Case 1: y ¼ 1
2
is the unique solution to mðyÞ ¼ 0: Since mð
Þ is strictly convex, this

implies that mðyÞ40 for all ya1
2
: Then we know that Mkþ1

I oMk
I for all y4y�k ¼ 1

2
:

Case 2: Besides y ¼ 1
2
; there is another solution #yo1

2
to equation mðyÞ ¼ 0: In this

case, mðyÞo0 for all yAð#y; 1
2
Þ; and mðyÞ40 for all y41

2
; hence Mkþ1

I oMk
I holds if

yAð#y; 1
2
Þ or y41

2
: Then by continuity, Mkþ1

I oMk
I must also hold at y ¼ 1

2
: Hence, in

this case we can choose y�k ¼ #y:
Case 3: Besides y ¼ 1

2
; there is another solution #y41

2
to equation mðyÞ ¼ 0: In this

case, it is clear that Mkþ1
I oMk

I if y4#y; and Mkþ1
I 4Mk

I if yo1
2
or if yAð1

2
; #yÞ: By

continuity Mkþ1
I 4Mk

I must also be true at y ¼ 1
2
: Therefore, in this case the

threshold is given by y�k ¼ #y: &
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Appendix C. Proof of Lemma B.1

In this appendix, we provide the proof of Lemma B.1 contained in Appendix B. Its
proof uses the following intermediate results:

Lemma C.1. Let Hk denote the c.d.f. of the selling price Pk when the seller reveals a

signal with precision k. Hk is characterized by

1� HkðpÞ

¼
½1� GðpÞ
2 if ppbkð0; 0Þ;

½1� GðpÞ
2f1�
P

N

i¼1
GðaþkþiÞ

GðaÞGðkþiþ1Þ½
bkð0;0Þ

p

a½1� bkð0;0Þ

p

kþig otherwise:

8<
:

Proof. Let HkðpjsÞ denote c.d.f. of Pk conditional on S ¼ s: Since

Pk ¼ minfbkðX1;X0Þ; bkðX2;X0Þ;W1;W2g;

1� HkðpjsÞ is given by

1� HkðpjsÞ ¼ ð1� GðpÞÞ2 Pr½minfbðX1;X0Þ; bðX2;X0Þg4pjS ¼ s
:
For notational simplicity, define FðpjsÞ � Pr½minfbðX1;X0Þ; bðX2;X0Þg4pjS ¼ s
:
To calculate FðpjsÞ we let ckð
; x0Þ denote the inverse function of bkð
; x0Þ:

ckðp; x0Þ ¼
1

2
max

pð2yþ aþ k þ 1Þðaþ kÞ
2yþ aþ k

� ðbþ kx0Þ; 0
� �

:

Note that if ckðp; x0Þ40; then

ckðp; x0Þ ¼ ckðp; 0Þ � kx0

2
; ðC:1Þ

2ckðp; 0Þ ¼ b
p

bkð0; 0Þ � 1

� �
: ðC:2Þ

Using the inverse bidding function ckð
; x0Þ we get
FðpjsÞ ¼Pr½minfX1;X2g4ckðp;X0ÞjS ¼ s


¼
Z þN

0

Pr½minfX1;X2g4ckðp; x0Þjs
 dFX0jSðx0jsÞ

¼
Z þN

0

Pr½Xi4ckðp; suÞjs
2 dFUðuÞ; ðC:3Þ

where the third equality follows from the fact that conditional on S ¼ s; the seller’s
signal X0 can be interpreted as the random variable sU ; where UBGðk; kÞ; and
furthermore X1 and X2 are independent conditional on S:
To compute the integral in (C.3), we divide the range of integration in two disjoint

regions, namely, Oþðp; sÞ ¼ fu: ckðp; suÞ40g and O0ðp; sÞ ¼ fu: ckðp; suÞ ¼ 0g: In
words, Oþðp; sÞ denotes the set of the noise u in the seller’s signal in which there is a
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positive probability that an unconstrained bidder bids below p; while O0ðp; sÞ is the
set of the noise u such that an unconstrained bidder will never find it optimal to bid
less than p: It is easy to show that

Oþðp; sÞ ¼ u: 0puo
2ckðp; 0Þ

ks

( )
; O0ðp; sÞ ¼ u: uX

2ckðp; 0Þ
ks

( )
:

Therefore, we have

FðpjsÞ ¼
Z 2ckðp;0Þ

ks

0

Pr½Xi4ckðp; suÞjs
2 dFUðuÞ

þ
Z þN

2ckðp;0Þ
ks

Pr½Xi4ckðp; suÞjs
2 dFUðuÞ:

We denote the first integral in the above expression by I1 and the second by I2:

I1 ¼
Z 2ckðp;0Þ

ks

0

½1� FXi jSðc
kðp; suÞjsÞ
2 dFUðuÞ

¼
Z 2ckðp;0Þ

ks

0

exp �2c
kðp; suÞ

s

 !
dFUðuÞ

¼
Z 2ckðp;0Þ

ks

0

exp �2c
kðp; 0Þ � ksu

s

 !
dFUðuÞ

¼ exp �2c
kðp; 0Þ

s

 ! Z 2ckðp;0Þ
ks

0

expðkuÞ dFUðuÞ

¼
expð�2ckðp;0Þ

s
Þ

Gðk þ 1Þ
2ckðp; 0Þ

s

" #k

:

Now we compute I2: Noting that ckðp; suÞ ¼ 0 if uAO0ðp; sÞ; we obtain

I2 ¼
Z þN

2ckðp;0Þ
ks

1 dFUðuÞ ¼ 1� Pr Up
2ckðp; 0Þ

ks

" #

¼ 1� exp �2c
kðp; 0Þ

s

 !XþN

i¼0

½2c
kðp;0Þ
s


kþi

Gðk þ i þ 1Þ;

where the last equality follows from the formula for the c.d.f. of a Gamma random
variable since UBGðk; kÞ (see [7, p. 173]). Thus,

FðpjsÞ ¼ I1 þ I2 ¼ 1� exp �2c
kðp; 0Þ
S

 !XN
i¼1

½2c
kðp;0Þ
S


kþi

Gðk þ i þ 1Þ: ðC:4Þ
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Finally, to obtain the unconditional distribution of the seller’s revenue we take
expectations with respect to S: We will first provide a useful lemma which is proved
by simple algebra:

Lemma C.2. Suppose S is distributed according an inverted Gamma with parameters a
and b; and let z40; t40 be constants. Then

E S�z exp � t

S

� �h i
¼ ba

ðbþ tÞaþz

Gðaþ zÞ
GðaÞ :

If ppbkð0; 0Þ; then we know that FðpjsÞ ¼ 1 for all s: Hence,

1� HkðpÞ ¼ ½1� GðpÞ
2:

If p4bkð0; 0Þ; then

1� HkðpÞ ¼ ½1� GðpÞ
2EFðpjSÞ

¼ 1� E exp �2c
kðp; 0Þ
S

 !XN
i¼1

1

Gðk þ i þ 1Þ
2ckðp; 0Þ

S

" #kþi
8<
:

9=
;

¼ 1�
XN
i¼1

½2ckðp; 0Þ
kþi

Gðk þ i þ 1Þ E exp �2c
kðp; 0Þ
S

 !
S�ðkþiÞ

" #

¼ 1�
XN
i¼1

Gðaþ k þ iÞ
GðaÞGðk þ i þ 1Þ

ba½2ckðp; 0Þ
kþi

½2ckðp; 0Þ þ b
aþkþi

¼ 1�
XN
i¼1

Gðaþ k þ iÞ
GðaÞGðk þ i þ 1Þ

bkð0; 0Þ
p

� �a
1� bkð0; 0Þ

p

� �kþi

;

where in the first equality we use Lemma C.2; in the third equality we exchange the
expectation with the summation since the series is absolutely convergent; and in the
fourth equality we use (C.2). &

Proof of Lemma B.1 continued. By Lemma C.1, we have

Mk
I ¼E½Pk
 ¼

Z þN

0

½1� HkðpÞ
 dp

¼
%
w þ

Z bkð0;0Þ

%
w

%
w

p

� �2y
dp þ

Z þN

bkð0;0Þ
%
w

p

� �2y

� 1�
XN
i¼1

Gðaþ k þ iÞ
GðaÞGðk þ i þ 1Þ

bkð0; 0Þ
p

� �a
1� bkð0; 0Þ

p

� �kþi
( )

dp:
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For notational simplicity, we write the sum of the first two terms as T1 and the last
term as T2: One can show that

T1 ¼
%
w þ %

w

2y� 1
1� %

w

bkð0; 0Þ

� �2y�1( )
:

To calculate T2 we need to proceed with some caution. First we note that E½Pk
oN

for all y: Therefore, we know that T2oN for all y: However, when yo1
2
;Z þN

bkð0;0Þ
%
w

p

� �2y
dp ¼ þN;

therefore when yo1
2
;Z þN

bkð0;0Þ
%
w

p

� �2y XN
i¼1

Gðaþ k þ iÞ
GðaÞGðk þ i þ 1Þ

bkð0; 0Þ
p

� �a
1� bkð0; 0Þ

p

� �kþi

dp ¼ þN:

To deal with this problem, we use the following expansion of 1:

1 �
XN
i¼0

Gðaþ iÞ
GðaÞGði þ 1Þ

bkð0; 0Þ
p

� �a
1� bkð0; 0Þ

p

� �i

:

This result can be found in Rudin [11, Exercise 22, p. 201]. Substitute this expansion

and make the change of variable by defining z ¼ bkð0; 0Þ=p (which implies that

dp ¼ �½bkð0; 0Þ=z2
 dzÞ; we after some manipulation can re-write T2 as:

T2 ¼ %
w2y

bkð0; 0Þ2y�1
Z 1

0

XN
i¼0

Gðaþ iÞ
GðaÞGði þ 1Þ z2yþa�2ð1� zÞi

(

�
XN
i¼1

Gðaþ k þ iÞ
GðaÞGðk þ i þ 1Þ z2yþa�2ð1� zÞkþi

)
dz: ðC:5Þ

Since we know that T2 has to be finite, we can then commute summation and
integration, and get

T2 ¼
XN
i¼0

Gðaþ iÞ
GðaÞGði þ 1Þ

Z 1

0

z2yþa�2ð1� zÞi
dz

�
XN
i¼1

Gðaþ k þ iÞ
GðaÞGðk þ i þ 1Þ

Z 1

0

z2yþa�2ð1� zÞkþi
dz

¼ %
w2y

bkð0; 0Þ2y�1

P
N

i¼0
Gðaþ iÞ

GðaÞGði þ 1Þ
Gð2yþ a� 1ÞGði þ 1Þ

Gð2yþ aþ iÞ

�
P

N

i¼1
Gðaþ k þ iÞ

GðaÞGðk þ i þ 1Þ
Gð2yþ a� 1ÞGðk þ i þ 1Þ

Gð2yþ aþ k þ iÞ

8>><
>>:

9>>=
>>;

¼ %
w2y

bkð0; 0Þ2y�1
Gð2yþ a� 1Þ

GðaÞ
GðaÞ

Gð2yþ aÞ

(

þ
XN
i¼1

Gðaþ iÞ
Gð2yþ aþ iÞ �

Gðaþ k þ iÞ
Gð2yþ aþ k þ iÞ

� �)
;

H. Fang, S.O. Parreiras / Journal of Economic Theory 110 (2003) 374–392390



where the second equality follows from the definition of the Beta function (see, for
example, [11, Theorem 8.20, p. 193]:Z 1

0

xað1� xÞb
dx ¼ Gða þ 1ÞGðb þ 1Þ

Gða þ b þ 2Þ :

Using the following identity (which can be verified in Mapler),

1

ð2y� 1Þ
Gð1þ aÞ
Gð2yþ aÞ �

Gð1þ aþ kÞ
Gð2yþ aþ kÞ

� �

¼
XN
i¼1

Gðaþ iÞ
Gð2yþ aþ iÞ �

Gðaþ k þ iÞ
Gð2yþ aþ k þ iÞ

� �

we obtain

T2 ¼ %
w2y

bkð0; 0Þ2y�1
Gð2yþ a� 1Þ

GðaÞ

� GðaÞ
Gð2yþ aÞ þ

1

2y� 1

Gð1þ aÞ
Gð2yþ aÞ �

Gð1þ aþ kÞ
Gð2yþ aþ kÞ

� �� �

¼ %
w2y

bkð0; 0Þ2y�1
1

2yþ a� 1

�

þ 1

2y� 1

a
2yþ a� 1

� Gð2yþ a� 1Þ
GðaÞ

Gð1þ aþ kÞ
Gð2yþ aþ kÞ

� ��

¼ %
w

2y� 1
1� Gð2y� 1þ aÞ

GðaÞ
Gð1þ aþ kÞ
Gð2yþ aþ kÞ

� �
%
w

bkð0; 0Þ

� �2y�1
:

Therefore, after substituting bkð0; 0Þ given by (6) into the expressions of T1 and T2;
we get after simplification

Mk
I ¼ %

w

2y� 1
2y� Gðaþ k þ 1Þ

GðaÞ
Gð2yþ a� 1Þ
Gð2yþ aþ kÞ

(

� ðaþ kÞð2yþ aþ k þ 1Þ
%
w

ð2yþ aþ kÞb

� �2y�1)
:

Since MN ¼ limk-0 E½Pk
 ¼ limk-0 Mk
I due to Eq. (7), formula (8) immediately

follows. &
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