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In this online appendix, we collect the materials omitted from the main text of the paper. The

appendices are ordered according to where they are first referenced in the main text. In Appendix

A we show that Assumptions 1-5 are satisfied in Examples 1 and 2; in Appendix B, we study

imperfect competition and show that our results derived in Section 5 are robust; in Appendix C,

we present a continuous-type example based on Example 4; in Appendix D we provide the details

of the derivations of the profit function, the demand curve, and the cost curves in Proposition 6;

in Appendix E we derive the profit function used in the numerical analysis in Section 7 for k < 1.

A Assumptions 1-5 are Satisfied in Examples 1 and 2

As mentioned in the main text, Assumption 3 can be inferred from Assumptions 2 and 4.

Therefore, it suffices to show that Assumptions 1, 2, 4 and 5 are satisfied.

Example 1 First, it is clear that

∂U

∂p
= −

[
m

ω
u′
(
y − p− (1− x)ω;λ

)
+

(
1− m

ω

)
u′ (y − p;λ)

]
< 0.

Moreover, U(θ;x, xω) < 0 < U(θ;x, 0) for x ∈ (0, 1]. Therefore, Assumption 1 is satisfied.

Second, we show that Assumption 2 is satisfied. Notice that v(θ;x) solves U(θ;x, v) = 0. It

follows from the implicit function theorem that

∂v

∂x
= −∂U/∂x

∂U/∂v
=

m · u′
(
y − v − (1− x)ω

)
m
ω u
′
(
y − v − (1− x)ω

)
+
(
1− m

ω

)
u′(y − v)

> 0.

Similarly, we have that

∂v

∂m
= −∂U/∂m

∂U/∂v
=

1

ω
×
u
(
y − v − (1− x)ω

)
− u(y − v)− u(y − ω) + u(y)

m
ω u
′
(
y − v − (1− x)ω

)
+
(
1− m

ω

)
· u′(y − v)

=
1

m
× u(y)− u(y − v)

m
ω u
′
(
y − v − (1− x)ω

)
+
(
1− m

ω

)
· u′(y − v)

> 0,

where the last equality follows from the rearrangement of consumers’ indifference condition. To

show that ∂v/∂λ > 0, suppose to the contrary that λ1 > λ0 and v1 ≡ v(m,λ1;x) ≤ v(m,λ0;x) ≡ v0.
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By the definition of v(·), we have that:

m

ω
u(y − v1 − (1− x)ω;λ1) +

(
1− m

ω

)
· u(y − v1;λ1) =

m

ω
u(y − ω;λ1) +

(
1− m

ω

)
· u(y;λ1),

which is equivalent to,

u(y;λ1)− u(y − v1;λ1)

u(y − v1 − (1− x)ω;λ1)− u(y − ω;λ1)
=

m
ω

1− m
ω

> 0.

It is straightforward to see that u(y − v1 − (1 − x)ω;λ1) − u(y − ω;λ1) > 0, or equivalently,

y − v1 − (1− x)ω > y − ω. Similarly, we have that

u(y;λ0)− u(y − v0;λ0)

u(y − v0 − (1− x)ω;λ0)− u(y − ω;λ0)
=

m
ω

1− m
ω

> 0.

Therefore, we must have that

u(y;λ1)− u(y − v1;λ1)

u(y − v1 − (1− x)ω;λ1)− u(y − ω;λ1)
=

u(y;λ0)− u(y − v0;λ0)

u(y − v0 − (1− x)ω;λ0)− u(y − ω;λ0)
.

However, the above equality cannot hold because

u(y;λ1)− u(y − v1;λ1)

u(y − v1 − (1− x)ω;λ1)− u(y − ω;λ1)
<

u(y;λ0)− u(y − v1;λ0)

u(y − v1 − (1− x)ω;λ0)− u(y − ω;λ0)

≤ u(y;λ0)− u(y − v0;λ0)

u(y − v0 − (1− x)ω;λ0)− u(y − ω;λ0)
,

where the first inequality follows from the fact that y > y − v1 ≥ y − v1 − (1 − x)ω > y − ω and

Theorem 1 in Pratt (1964); and the second inequality follows from the postulated v1 ≤ v0 and the

fact that u(·) is a strictly increasing function. Therefore, Assumption 2 is satisfied.

Next, we show that Assumption 4 is satisfied. Fixing xi > xj , U
(
θ;xi, pj + (xi − xj)m

)
≥

U
(
θ;xj , pj

)
is equivalent to

m

ω
u
(
y − pj − (xi − xj)m− (1− xi)ω;λ

)
+

(
1− m

ω

)
u(y − pj − (xi − xj)m;λ)

≥ m

ω
u
(
y − pj − (1− xj)ω;λ

)
+

(
1− m

ω

)
u(y − pj ;λ).

The above inequality holds due to the observation that the lottery m ◦ [y − pj − (1− xj)ω] + (1−
m) ◦ [y− pj ] is a mean-preserving spread of the lottery m ◦ [y− pj − (xi− xj)m− (1− xi)ω] + (1−
m) ◦ [y − pj − (xi − xj)m]. Therefore, Assumption 4 is satisfied.

It remains to show that Parts (i) and (ii) of Assumption 5 are satisfied. For Part (i), notice
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that U(θ;xi, pi) = U(θ;xj , pj) is equivalent to

u
(
y − pj ;λ

)
− u (y − pi;λ)

u
(
y − pi − (1− xi)ω;λ

)
− u

(
y − pj − (1− xj)ω;λ

) =
m
ω

1− m
ω

. (A1)

Notice that we must have pi > pj . Otherwise, contract (xi, pi) dominates (xj , pj) in terms of both

premium and coverage, and consumers strictly prefer contract (xi, pi) over (xj , pj). Therefore, we

have that u
(
y − pj ;λ

)
−u (y − pi;λ) > 0 and u

(
y − pi − (1− xi)ω;λ

)
−u

(
y − pj − (1− xj)ω;λ

)
>

0. This implies instantly that

y − pj > y − pi ≥ y − pi − (1− xi)ω > y − pj − (1− xj)ω.

It follows from Theorem 1 in Pratt (1964) that the left hand side of (A1) is strictly decreasing in λ.

Moreover, the right hand side of (A1) is strictly increasing in m. Therefore, the indifference curve

λ = Iij(m) is strictly decreasing in m.

For Part (ii), suppose that type-(m,λ) is indifferent between contract (xi, pi) and (xj , pj) and

λ > λ̇ and ṁ > m. It follows from (A1) that

u
(
y − pj ; λ̇

)
− u

(
y − pi; λ̇

)
u
(
y − pi − (1− xi)ω; λ̇

)
− u

(
y − pj − (1− xj)ω; λ̇

)
<

u
(
y − pj ;λ

)
− u (y − pi;λ)

u
(
y − pi − (1− xi)ω;λ

)
− u

(
y − pj − (1− xj)ω;λ

) =
m
ω

1− m
ω

<
ṁ
ω

1− ṁ
ω

,

which is equivalent to U(ṁ, λ̇;xi, pi) > U(ṁ, λ̇;xj , pj). This completes the proof.

Example 2 Recall that

U(θ;x, p) = xm+
x (2− x)

2
σ2λ− p,

and

v(θ;x) = xm+
x (2− x)

2
σ2λ.

It follows immediately that

∂U

∂p
= −1 < 0,

∂v

∂x
= m > 0,

∂v

∂m
= x > 0, and

∂v

∂λ
=
x (2− x)

2
σ2 > 0.

Therefore, Assumptions 1 and 2 are satisfied.
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Fix 0 ≤ xj < xi ≤ 1. We have that

U
(
θ;xi, pj + (xi − xj)m

)
− U

(
θ;xj , pj

)
=

{
xim+

xi (2− xi)
2

σ2λ−
[
pj + (xi − xj)m

]}
−

{
xjm+

xj
(
2− xj

)
2

σ2λ− pj

}

=

[
xi (2− xi)

2
−
xj
(
2− xj

)
2

]
σ2λ > 0,

where the inequality follows from the fact that x(2−x)
2 is strictly increasing in x for x ∈ [0, 1].

Therefore, Assumption 4 is satisfied and it remains to show that Assumptions 5 is satisfied. By

definition, the indifference curve Iij(m) solves U(θ;xi, pi) = U(θ;xj , pj), or equivalently,

xim+
xi (2− xi)

2
σ2λ− pi = xjm+

xj
(
2− xj

)
2

σ2λ− pj .

Solving for Iij(m) yields,

λ = Iij(m) =
1

σ2

[
− 2

2− xi − xj
m+

2(pi − pj)
(xi − xj)(2− xi − xj)

]
. (A2)

It is clear that Iij(m) is strictly decreasing in m. For
(
ṁ, λ̇

)
>
(
m, Iij(m)

)
, we have that

U(ṁ, λ̇;xi, pi)− U(ṁ, λ̇;xj , pj) =

(
xiṁ+

xi (2− xi)
2

σ2λ̇− pi
)
−

(
xjṁ+

xj
(
2− xj

)
2

σ2λ̇− pj

)

=
(
xi − xj

)
ṁ+

[
xi (2− xi)

2
−
xj
(
2− xj

)
2

]
σ2λ̇−

(
pi − pj

)
>
(
xi − xj

)
m+

[
xi (2− xi)

2
−
xj
(
2− xj

)
2

]
σ2Iij(m)−

(
pi − pj

)
= U(m, Iij(m);xi, pi)− U(m, Iij(m);xj , pj) = 0,

where the inequality follows instantly from xi > xj and xi(2−xi)
2 >

xj(2−xj)
2 . This indicates that

type-
(
ṁ, λ̇

)
consumer strictly prefers contract (xi, pi) over (xj , pj). Next, it follows from (A2) that

−I ′i0(m) =
1

σ2
× 2

2− xi
>

1

σ2
× 2

2− xi
= −I ′j0(m).

Therefore, the single crossing condition holds and Assumption 5 is satisfied. This completes the

proof.
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B Imperfectly Competitive Insurance Market

In this section, we generalize the market structure and study imperfect competition. We model

imperfectly competitive insurance market as follows.1 Suppose that there are two insurance firms

on the market where they engage in a modified “Bertrand competition” by setting a price for

insurance of quality x. Different from the standard Bertrand model, we assume that consumers

cannot compare prices perfectly; instead, a consumer receives a noisy signal regarding which of

the two firms has a lower price, and then he/she inspects the actual price of the firm indicated by

the noisy signal, and finally he/she decides whether to buy the product accordingly.2, 3 The noisy

signal regarding which firm has the lower price creates spurious product differentiation and gives

rise to market power to firms and thus induces imperfect competition.

Specifically, after firm i ∈ {1, 2} posts price pi, each consumer receives a signal s ∈ {1, 2} about

which firm has the lower price as follows: given (p1, p2) ,

s =

{
1 if p1 − p2 + ε ≤ 0

2 otherwise,

where ε ∼ N (0, σ2
s).

4 It is clear that a consumer always follows the signal: if s = i, she will find

out the actual price pi and decide between purchasing insurance at price pi and staying uninsured.

Hence, conditional on the price vector (p1, p2), the probability that a consumer considers purchasing

from firm i is Φ
(
pj−pi
σs

)
.5 Conditional on observing firm i′s price pi, the purchase decision of type-

θ consumer remains the same as before: she will purchase insurance at price pi if and only if

v (θ;x) ≥ pi, i.e., if and only if θ ∈ B (pi) where B (·) is defined in (2). Note that σ2
s represents a

measure of the market competitiveness. When σ2
s = 0, consumers always buy from the firm with

the lower price, which indicates fierce price competition. When σ2
s = ∞, the signal is completely

uninformative and the consumer randomly chooses between the two offers and each firm behaves

as if they were a monopoly.

Now we can set up the strategic pricing game between the two firms. Fixing pj , firm i chooses

pi to maximize the expected profit:

Πi
(
pi, pj

)
= Φ

(
pj − pi
σs

)∫
θ∈B(pi)

(p− xm) dH(m,λ) ≡ Φ

(
pj − pi
σs

)
π (pi) , (A3)

1Our approach of modeling imperfect competition is in the same spirit as Fisher and Plan (2015).
2It is assumed that the consumer cannot switch to the other firm once the price of the chosen firm fully reveals.

This specification of the consumer behavior can be rationalized by a sufficiently high switching cost.
3Note that our approach to parameterize the imperfect competition is related to but distinct from Lester et al.

(2016). In their paper they assume that a buyer samples one offer with probability p1 ∈ (0, 1) and two offers with
probability p2 = 1− p1. The higher p2 is, the more fierce the competition is.

4The assumption of Gaussian noise can be easily relaxed. All the results obtained in this section can be generalized
to a noise Z parameterized by α ∈ [α, α] with support −∞ ≤ z ≤ z ≤ ∞, whose CDF Ψ(z;α) and PDF ψ(z;α) satisfy:

(i) ψ(z;α) = ψ(−z;α); (ii) ∂ ψ(z;α)
Ψ(z;α)

/
∂z < 0; (iii)∂ψ(0;α)

/
∂α > 0; (iv) limα→α ψ(0;α) = 0 and limα→α ψ(0;α) =∞.

5An alternative way of modeling is to assume that each potential consumer receives two signals si = pi + εi and
examines the price of the firm with the lower signal, where εi is assumed to be independently identically distributed
according to a normal distribution with mean 0 and variance σ2

s/2.
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where π (·) is defined in (5) in the paper. Notice that a nice feature of our formulation of the

imperfect competition is that the price competition between the two firms only affects which firm

is in the consideration set of the consumer, not the subsequent decision of whether to purchase the

insurance.

Assumption A1 (i) π(p) is strictly single-peaked in p for p ∈
(
v(m,λ;x), v(m,λ;x)

)
;

(ii) maxp≥0{π(p)} > 0; (iii) π(p) is differentiable and log-concave in p ∈ (p∗, pm] and π′(pm) = 0,

where p∗ is the competitive equilibrium price and pm is the monopolist’s profit-maximizing price.

It is straightforward to verify that the profit function of the example in Proposition 6 for

k > 1 satisfies Assumption A1. The differentiability and single-peakedness of the profit function

guarantees that the profit function under monopoly is well-behaved and the first-order condition is

sufficient to pin down the optimal price; and maxp≥0{π(p)} > 0 ensures that a monopolistic insurer

will not exit the market. Finally, as it will be clear later, log-concavity ensures the symmetry and

uniqueness of the equilibrium.

Lemma A1 (Equilibrium Prices under Imperfect Competition) Suppose Assumption A1 is

satisfied. For any σ2
s > 0, there exists a unique equilibrium

(
p̂∗1, p̂

∗
2

)
where p̂∗1 = p̂∗2 = pe ∈ (p∗, pm)

and pe is the solution to

π′ (pe)

π(pe)
=

1

σs

√
2

π
. (A4)

Proof. First, notice that fixing pj , we must have pi ∈ [p∗, pm]. For a price below p∗, the corre-

sponding profit is negative, which is strictly dominated by pi = p∗. For a price above pm, firm

i′s profit is less than Πi
(
pm, pj

)
due to the fact that Φ

(
pj−pi
σs

)
is strictly decreasing in pi and

π(pi) ≤ π(pm). The first order condition with respect to pi yields,

1

σs

φ
(
pj−pi
σs

)
Φ
(
pj−pi
σs

) =
π′(pi)

π(pi)
. (A5)

Next, we show that if an equilibrium exists, it must be symmetric. Suppose to the contrary that

p̂∗1 > p̂∗2 without loss of generality. It follows directly that (p̂∗1 − p̂∗2)/σs > 0; together with the first

order condition (A5), we must have

π′(p̂∗1)

π(p̂∗1)
=

1

σs

φ
(
p̂∗2−p̂∗1
σs

)
Φ
(
p̂∗2−p̂∗1
σs

) =
1

σs

φ
(
p̂∗1−p̂∗2
σs

)
1− Φ

(
p̂∗1−p̂∗2
σs

) > 1

σs

φ
(
p̂∗1−p̂∗2
σs

)
Φ
(
p̂∗1−p̂∗2
σs

) =
π′(p̂∗2)

π(p̂∗2)
.

Therefore, p̂∗1 < p̂∗2 from Assumption A1, a contradiction. Imposing the symmetry condition p̂∗1 =

p̂∗2 = pe to the above first order condition yields Equation (A4).

Lastly, we prove the existence and uniqueness of the equilibrium. From the definition of p∗ and

Assumption A1, π′(pm) = 0 and π(p∗) = 0, which implies directly that limpe→p∗ π
′(pe)/π(pe) =∞
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and limpe→pm π
′(pe)/π(pe) = 0. Therefore, for any σ2

s > 0, there exists a unique solution to equation

(A4). This completes the proof.

The following lemma derives the comparative statics of the equilibrium price with respect to

the market competitiveness.

Lemma A2 Suppose Assumption A1 is satisfied. The equilibrium price pe is strictly increasing in

σ2
s . Moreover, limσ2

s→∞ p
e = pm and limσ2

s→0 p
e = p∗.

The proof follows immediately from Assumption A1 that π (p) is log-concave. This result is

intuitive. When the market is imperfectly competitive, the equilibrium price lies between the

competitive equilibrium price and the monopoly price. The equilibrium price becomes lower as the

insurance market becomes more competitive.

Proposition A1 Suppose Assumption A1 is satisfied and suppose E
[
M |B (pm)

]
< E [M ]. Then

there exist σs and σs, with σs ≤ σs, such that the positive (respectively, negative) correlation

property emerges in equilibrium for σ2
s < σ2

s (respectively, σ2
s > σ2

s). Furthermore, if there exists a

unique solution to AC(p) = E [M ] for p ∈ [p∗, pm], then σs = σs.

Proof. From Proposition 1, we must have E
[
M |B (p∗)

]
> E [M ]. In addition, E

[
M |B (pm)

]
<

E [M ] holds by assumption. From Lemma A2 and the continuity of E
[
M |B (p)

]
, we have

lim
σ2
s→0

E
[
M |B (pe)

]
= E

[
M |B

(
p∗
)]
> E [M ] ;

lim
σ2
s→∞

E
[
M |B (pe)

]
= E

[
M |B (pm)

]
< E [M ] .

Therefore, the positive (respectively, negative) correlation property emerges in equilibrium when

σ2
s is sufficiently low (respectively, high).

Denote the unique solution (if it exists) to AC(p) = E [M ] for p ∈ [p∗, pm] as p̃. Because

E
[
M |B (p∗)

]
> E [M ], we must have E

[
M |B (p)

]
> E [M ] for p ∈ [p∗, p̃) and E

[
M |B (p)

]
< E [M ]

for p ∈ (p̃, pm]. Define σ̃2
s as the solution to pe(σ2

s) = p̃. From Lemma A2, σ̃2
s exists and is unique.

Moreover, pe(σ2
s) ≶ p̃ for σ2

s ≶ σ̃2
s. Therefore, the positive (respectively, negative) correlation

property emerges in equilibrium for σ2
s < σ̃2

s (respectively, σ2
s > σ̃2

s). This completes the proof.

C Continuous-Type Version of Example 4

In this section, we present a continuous-type example based on Example 4. When consumers’

type is drawn from a continuous joint CDF, the MC curve is well-defined. Different from Example 4

where there are two competitive equilibrium premiums, there exists a unique equilibrium premium

in the following example.
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Figure 7: The Joint Density Function h(m,λ) in Example A1

Example A1 Suppose M and λ are independent and are both drawn from a mixture of left-right

truncated normal distributions between 0 and 1 with the following marginal density functions,

f(m) =
1

3σm

φ
(
m−m1
σm

)
Φ
(

1−m1
σm

)
− Φ

(
0−m1
σm

) +
1

3σm

φ
(
m−m2
σm

)
Φ
(

1−m2
σm

)
− Φ

(
0−m2
σm

) +
1

3σm

φ
(
m−m3
σm

)
Φ
(

1−m3
σm

)
− Φ

(
0−m3
σm

) ,
and

g(λ) =
1

2σλ

φ
(
λ−λ1
σλ

)
Φ
(

1−λ1
σλ

)
− Φ

(
0−λ1
σλ

) +
1

2σλ

φ
(
λ−λ2
σλ

)
Φ
(

1−λ2
σλ

)
− Φ

(
0−λ2
σλ

) .
The joint density function is h(m,λ) = f(m)g(λ). Suppose that v

(
(m,λ) ;x

)
= m+2λ, (m1,m2,m3) =

(0.1, 0.2, 0.9), (λ1, λ2) = (0.1, 0.3), and σm = σλ = 0.05. The joint density function is illustrated

in Figure 7. The profit curve and the marginal cost curve are illustrated in Figure 8 and Figure 9

respectively. Figure 8 indicates that the equilibrium premium is unique and lies between 0.5 and 0.6.

While Figure 9 indicates that the market is subject to local advantageous selection for p ∈ [0.5, 0.6].

From Proposition 1, the market always exhibits positive correlation property in competitive equilib-

rium. Therefore, from this example we know the market can still be subject to local advantageous

selection at the equilibrium premium even though the positive correlation property holds.
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Figure 8: The Profit Curve π(p) in Example A1

Figure 9: The Marginal Cost Curve MC(p) in Example A1
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D Derivation of the Profit Function, the Demand Curve and the

Cost Curves in Proposition 6

Profit Function. For p ≤ 0, all consumers purchase insurance and the firm’s expected profit

is π(p) = p− E [M ] = p− 1
2 . For p ≥ k + 1 ≡ m+ kλ, the price exceeds the highest WTP and no

consumers purchase insurance. Therefore, π(p) = 0.

For p ∈ [0, 1], the expected profit is,

π(p;µ) =

∫
θ∈B(p)≡{θ:v(θ;x)≥p}

(p− xm) dH(m,λ)

= p− E [M ]−

[
µ

∫
θ∈NB(p)

(p−m) dW(m,λ) + (1− µ)

∫
θ∈NB(p)

(p−m) dΠ(m,λ)

]

= (p− 1

2
)− (1− µ)

∫ p

0

∫ p−m
k

0
(p−m)dλdm

= (p− 1

2
)− (1− µ)

1

k

∫ p

0
(p−m)2dm = (p− 1

2
)− (1− µ)

1

3k
p3.

For p ∈ [1, k], the expected profit is,

π(p;µ) = µ

∫
θ∈B(p)

(p−m) dW(m,λ) + (1− µ)

∫
θ∈B(p)

(p−m) dΠ(m,λ)

= (1− µ)

∫ 1

0

∫ 1

p−m
k

(p−m) dλdm+ µ

∫ k−p
k−1

0
(p−m) dm

= (1− µ)

[
(p− 1

2
) +
−3p2 + 3p− 1

3k

]
+

1

2
µ
k − p
k − 1

[
2p− k − p

k − 1

]
.

For p ∈ [k, k + 1], the expected profit is,

π(p;µ) = µ

∫
θ∈B(p)

(p−m) dW(m,λ) + (1− µ)

∫
θ∈B(p)

(p−m) dΠ(m,λ)

= (1− µ)

∫ 1

p−k

∫ 1

p−m
k

(p−m) dλdm

= (1− µ)

[
(p− 1)3

3k
− (p− 1)2

2
+
k2

6

]
.

A10



To summarize,

π(p;µ) =



p− 1
2 for p ∈ (−∞, 0]

(p− 1
2)− (1− µ) 1

3kp
3 for p ∈ [0, 1]

(1− µ)
[
(p− 1

2) + −3p2+3p−1
3k

]
+ 1

2µ
k−p
k−1

[
2p− k−p

k−1

]
for p ∈ [1, k]

(1− µ)
[

(p−1)3

3k − (p−1)2

2 + k2

6

]
for p ∈ [k, k + 1]

0 for p ∈ [k + 1,∞).

Demand curve, total cost curve, and average cost curve. The derivation of the demand

curve and the total cost curve is similar to the derivation of the profit function and is omitted. The

total cost curve is given by,

TC(p;µ) =



1
2 for p ∈ (−∞, 0]

(1− µ)(1
2 −

1
6kp

3) + 1
2µ for p ∈ [0, 1]

1
2µ(k−pk−1)2 + (1− µ)[1

2 + 1
k (1

3 −
1
2p)] for p ∈ [1, k]

(1− µ)
{

1
2(1− p

k )[1− (p− k)2] + 1
3k [1− (p− k)3]

}
for p ∈ [k, k + 1]

0 for p ∈ [k + 1,∞),

and the demand curve is given by,

D(p;µ) =



1 for p ∈ (−∞, 0]

µ+ (1− µ)(1− 1
2kp

2) for p ∈ [0, 1]

µ(k−pk−1) + (1− µ)[1 + 1
k (1

2 − p)] for p ∈ [1, k]

(1− µ) 1
2k (1 + k − p)2 for p ∈ [k, k + 1]

0 for p ∈ [k + 1,∞).

Finally, the average cost is given by,

AC(p;µ) = E
[
M |B (p)

]
=
TC(p;µ)

D(p;µ)
.

Marginal Cost Curve. The marginal cost is defined as,

MC(p;µ) = E
[
M |v(θ) = p

]
=

∫
θ∈{θ:v(θ;1)=p}mdH(m,λ)∫
θ∈{θ:v(θ;1)=p} dH(m,λ)

≡ dTC(p)

dp

/
dD(p)

dp
.

Notice that, MC(p) is well-defined only when there exists positive demand for insurance at a price.

For µ = 1, the price that induces positive demand lies between 1 to k. Therefore, MC(p;µ) is

given by,

MC(p) =
k − p
k − 1

for p ∈ [1, k].

For µ ∈ [0, 1), the price range associated with positive demand is [0, k+ 1]. Therefore, MC(p;µ) is
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given by,

MC(p;µ) =


1
2p for p ∈ [0, 1][

µ
k−1

k−p
k−1 + 1−µ

2k

]/[
µ
k−1 + 1−µ

k

]
for p ∈ [1, k]

1
2 [(p− k) + 1] for p ∈ [k, k + 1].

E Derivation of the Profit Function in the Numerical Analysis in

Section 7 for k < 1

For p ≤ 0, all consumers purchase the insurance and firm’s expected profit is π(p) = p−E [M ] =

p − 1
2 . For p ≥ k + 1 ≡ m + kλ, the price exceeds the highest WTP and no consumers purchase

insurance. Therefore, π(p) = 0.

For p ∈ [0, k], the expected profit is,

π(p, 1; k) =

∫
θ∈B(p)≡{θ:v(θ;x)≥p}

(p− xm) dH(m,λ)

= p− E [M ]−

[
µ

∫
θ∈NB(p)

(p−m) dW(m,λ) + (1− µ)

∫
θ∈NB(p)

(p−m) dΠ(m,λ)

]

=

(
p− 1

2

)
− (1− µ)

∫ p

0

∫ p−m
k

0
(p−m)dλdm

=

(
p− 1

2

)
− (1− µ)

1

k

∫ p

0
(p−m)2dm =

(
p− 1

2

)
− (1− µ)

1

3k
p3.

For p ∈ [k, 1], the expected profit is,

π(p, 1; k) = µ

∫
θ∈B(p)

(p−m) dW(m,λ) + (1− µ)

∫
θ∈B(p)

(p−m) dΠ(m,λ)

= (1− µ)

∫ 1

0

∫ 1

p−kλ
(p−m) dmdλ+ µ

∫ 1

k−p
k−1

(p−m) dm

= (1− µ)

[
1

6
k2 − 1

2
(p− 1)2

]
+

1

2
µ

(
1− k − p

k − 1

)(
2p− 1− k − p

k − 1

)
= (1− µ)

[
1

6
k2 − 1

2
(p− 1)2

]
+ µ

(
k − 1

2

)
(p− 1)2

(k − 1)2
.

For p ∈ [1, k + 1], the expected profit is,

π(p, 1; k) = µ

∫
θ∈B(p)

(p−m) dW(m,λ) + (1− µ)

∫
θ∈B(p)

(p−m) dΠ(m,λ)

= (1− µ)

∫ 1

p−k

∫ 1

p−m
k

(p−m) dλdm

= (1− µ)

[
(p− 1)3

3k
− (p− 1)2

2
+
k2

6

]
.
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