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1 Introduction

Campaign finance is an integral part of the U.S. politics, and political committees are major

participants in campaign finance related activities. We use the term Political Committees (hence-

forth, PCs) to refer to federal political action committees (PACs), party committees, campaign

committees for presidential, house and senate candidates, as well as issue-based groups or organi-

zations, including lobbyists or fundraisers. They collect contributions from individual donors, make

contributions to other committees and candidates, and spend money for or against candidates.

U.S. campaign finance laws mandate that political committees disclose all financial transactions

including the contributions they receive and their expenditures, thus rendering numerous data

for analyzing their campaign related activities. However, the PCs are not mandated to file their

party (or ideological) affiliations. Indeed, as we will detail in Section 3, nearly 60% of PCs’ party

affiliations are unreported. This missing data problem may generate obstacles in the study of

important issues related to campaign finance. For example, for researchers who want to study the

patterns of individual contributions using the individual contributions data provided by the Federal

Election Commission (FEC), it is important to know the ideological affiliations of the PCs to which

individual donors contribute. Nevertheless, in the Contributions by Individuals (Year 2003-2004)

data released by the Federal Election Commission (FEC), about 24%, both in terms of the instance

and the amount, of individual contributions go to PCs with unknown party affiliations.

In this paper, we contribute to the methodologies that aim to address the missing ideological

affiliations of the PCs. We propose a method of inferring PCs’ ideological affiliations from the

financial transactions network among the PCs. The Contributions to Committees from Committees

data, also administered by the FEC, contains the universe of all records of financial contributions

among all registered PCs. We use this data set of the contribution activities to construct a financial

transactions network of the PCs, where each PC is a vertex of the network, and the money flows

between the PCs form the (weighted) edges. The basic idea of our method of inferring ideological

affiliations of the PCs is simple. If the PCs tend to contribute more frequently to other PCs with

similar ideology, then the PCs that actually filed their party affiliations, together with the structure

of the observed financial transactions network, should provide information about the ideologies of

the PCs with unknown ideological affiliations. Specifically, we build an economic model of link

formation and transfer amount, and use the ideas of “community detection” first developed in the

stochastic block model literature where contribution decisions (both the link formation and the

weights) depend on both the observed characteristics and the potentially latent (for the PCs that

do not file their party affiliations) ideologies of the potential contributing and receiving PCs.

Our model incorporates several new features that are absent in the existing stochastic block
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model literature. First, we introduce weights and rich heterogeneity in the edge formation process:

the decision to make a contribution and its contribution amount is not only governed by the latent

political ideologies of the PCs, but also depends on the vertex-level contextual information such as

financial and institutional characteristics. Second, we model the reported party affiliations of those

PCs that do self report their party affiliations as noisy measurements of their true latent ideologies.

Thus, our methodology allows us to estimate the latent ideologies of all PCs, including those that

self reported party affiliations.

We use three publicly available data sets in our analysis. Two are from the campaign finance

record in 2003-2004 election cycle, namely the Contributions to Committees from Committees, and

the Committee Master File, both maintained by the FEC. We use the first data set to construct

the financial transactions network of the PCs, and we use the second data set to obtain the party

affiliations of some PCs (if they self report), as well as the designations and types of all PCs. The

third data set is additional industrial breakdown information of the PCs which we collected from

OpenSecret.org.1 Our data sets cover the universe of all PCs engaging in transactions with other

PCs in 2003-2004. This feature of our network data has both advantages and disadvantages. An

advantage is that it avoids potential bias arising from analyzing a partially sampled network, but

a major disadvantage is the computational burden associated with the large network.2 There are

5,858 vertices (i.e., PCs) in the financial transactions network, 3,727 of which did not report their

party affiliations. Thus the number of potential ideological configurations is enormous, specifically,

23727 even if we just allow for the binary ideology of Democrat or Republican. For similar reasons, in

a Bayesian approach that delivers a probability distribution over different ideologies for each vertex

(see Section 4 for details), exact estimation of the posterior mode is infeasible. We instead propose a

Gibbs sampler algorithm to approximate the solution. In Monte Carlo Simulations, we demonstrate

that our estimation algorithm achieves very high accuracy in recovering the latent party affiliations

provided that the pairwise difference in ideology groups’ connection patterns satisfy what is known

as the Chernoff-Hellinger divergence criterion. We illustrate our approach using the campaign

finance record in the 2003-2004 election cycle. Using the posterior mode to categorize the party

affiliations of the PCs, our estimated ideological affiliations match the self reported ideology for

94.36% of those committees who self reported to be Democratic and 89.49% of those committees

who self reported to be Republican.

1https://www.opensecrets.org/pacs/list.php

2Chandrasekhar and Lewis (2011) shows that bias arises when one works with partially sampled network.
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Related Literature. This paper is closely related to two strands of existing literature. In terms

of the research question, our paper is related to the political economy literature on the measurement

of political ideologies. In terms of methodology, it is related to the statistics literature on community

detection.

We first discuss the literature on the measurement of political ideology. In a seminal paper,

Poole and Rosenthal (1985) proposed a measure of the ideology points (NOMINATE score) of

federal legislators using the roll call data. In their paper, legislators’ ideology points can differ

by election cycle, and bridge legislators and bridge bills are used to ensure that the measures are

comparable across time.3 Note that Poole and Rosenthal’s NOMINATE score is only available

for members of Congress, which is a very small sample (around 500 legislators in each election

cycle); and it is tied to voting behavior. Subsequently, ideology measurement for other political

actors are proposed based on the NOMINATE score. For example, McCarty, Poole and Rosenthal

(2006) combined NOMINATE score and the amount of contribution from PACs to the legislators to

estimate PACs’ ideology. Their proposed measure is money-weighted average of the NOMINATE

scores of the legislators to whom the PAC has contributed. These measures could be biased because

they do not account for PACs’ contribution to losing candidates and other political actors. McKay

(2008) and McKay (2010) combined NOMINATE score and the preferred votes on key roll calls

published by interest groups to estimate interest groups’ ideologies. Her proposed measure is the

average of the NOMINATE scores of “perfectly scoring” legislators whose votes are exactly the

same as the preferred votes of the particular interest group. These measures are only available

for interest groups which publish their preferred votes. Additionally, they could be biased: if an

interest group publishes many key votes, the number of “perfectly scoring” legislators could be

too small and leads to inaccuracy; if an interest group publishes only a few key votes, the number

of “perfectly scoring” legislators could be too large and artificially draws the measure toward the

center.

There are other proposed methods which do not rely on the NOMINATE score. Some studies

use the campaign finance data to jointly estimate candidates and PACs’ ideologies. For example,

McCarty and Poole (1998) proposed a measure based on PAC’s contribution decision between

incumbent-challenger pairs, excluding unchallenged and open seat elections which account for a

significant fraction in the federal elections. Their measures are not available for candidates in

these elections; and are potentially biased for PACs which contributed in these elections. More

recently, Bonica (2013) proposed a method using the contributions from PACs to candidates. This

3“Bridge legislators” are legislators who serve multiple terms; and “bridge bills” are bills that are considered at
different legislative cycles but with similar contents.
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approach, from the perspective of network study, restricted the sample to a directed bipartite graph,

excluding connections among PACs or candidates, as well as connections from candidates to PACs.

In our paper, in contrast, we use an unrestricted network incorporating all financial connections.

Moreover, he uses maximum likelihood estimation method which requires multiple observations, so

he pooled observations over a period of 30 years (1980-2010) and further restricted the sample to

PACs that have given to 30 or more unique candidates, and candidates who have received from 30

or more unique PACs. Pooling data over time is potentially problematic. It requires the assumption

that the actor’s ideology is fixed in a span of 30 years. Differently, in our paper, we make inference

about a PC’s ideology out of a single observation of financial transactions network: for any PC,

separate ideology measures can be calculated for each election cycles. As a result, our measures

are well suited for the study of the time trend of political activities. Moreover, his sample selection

excludes candidates and PACs with small numbers of financial transactions. However, in our paper,

we cover a more extensive scope of political actors: a PC is included as long as it has at least one

financial transaction with another PC.

Other studies use data from the social media platforms. For example, Barberá (2015) used the

Twitter “following” links to estimate the ideology of the political elites (accounts of candidates,

parties, media, and journalists) and the mass (other individual accounts) in multiple countries on

the same scale. Similar to Bonica (2013), he restricted the sample to a directed bipartite graph

focusing on the mass following the elites. He used a Bayesian method and a two-stage estimation

strategy that exploits the bipartite structure. In the first stage, he used a sub-network induced by

a random subsample of the mass accounts and all the elite accounts, and jointly estimated their

ideologies. In the second stage, holding the first stage ideology measures of the elite accounts fixed,

he estimated the ideology for all the mass accounts using the full network. This two stage procedure

reduces the computational intensity; but using a partially sampled network may lead to bias in the

first stage, which may be further propagated in the second stage. Our approach is different in

that we simultaneously estimate the ideologies of all PCs using the full network. Finally, one key

difference between Bonica (2013) and Barberá (2015) and our paper is that both of these papers

use spatial models. Spatial models assume a priori homophily: political actors with closer ideology

points have higher propensity to connect. This has an especially strong implication on the centrists’

behavior. It rules out the possibility for the centrists to have low propensity to connect with other

centrists, and high propensity to connect with the center-left and the center-right. In contrast,

our model can accommodate non-homophilic patterns. In fact, according to our estimates, the

Independent PCs do have higher propensity to form financial connections with Democratic and

Republican PCs than other Independent PCs.
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We now discuss the literature of community detection. The main task in this literature is to

classify vertices in a network into different groups based on observed connections. When repeated

observations of the network are available, canonical statistical tools can be directly applied. For

example, Trebbi and Weese (2015) used generalized method of moments to estimate, for each

district (vertex), the fraction of insurgents in different groups. The number of parameters is of

order n, the number of vertices. Though large, it is fixed when the number of network observations

T grows. Therefore, standard asymptotic results and inference tools are valid.

When only one observation of the network is available, which is the case for our application, the

nature of the problem is changed. In this case, the only hope for asymptotic result is to have network

size n → ∞; however, when the network size grows, the number of parameters (of order n) also

grows, which renders canonical statistical tools invalid. Some popular approaches circumvent this

issue by using model-free heuristics: minimum-cut method in Stoer and Wagner (1997) minimizes

the number of edges between communities; modularity maximization method in Newman (2006)

maximizes the difference between the fraction of the edges within groups and its expected value if

edges were formed at random; convergence of iterated correlations (CONCOR) method in Breiger,

Boorman and Arabie (1975) bisects the adjacency matrix by iteratively calculating correlation

coefficients among rows (or columns); and spectral method in Newman (2013) extracts information

of graph partition from the top few eigenvectors of the adjacency matrix. Though widely used in

practice, these approaches have the following limitations. First of all, the first three methods all

assume a priori assortative communities, i.e., denser within-community connection than between-

community connection. They are not appropriate for problems where some group may have higher

external connectivity. For example, in our application, the Independent PCs may engage in more

transactions with Democratic and Republican PCs than with other Independent PCs. We need a

model which does not assume away this possibility. Second, in the absence of a statistical model,

none of these methods allows for statistical inference: we cannot state how confident we are in the

obtained classification. Third, these methods cannot incorporate vertex level or vertex pair level

heterogeneity beyond the latent community.

Therefore, we took a model-based approach instead - we build on the stochastic block model

(SBM) initiated by Snijders and Nowicki (1997) and Nowicki and Snijders (2001). In the SBM, a

network is randomly formed conditional on the underlying community structure, and the community

structure itself is also stochastically generated. This model is widely accepted as a canonical model

for community detection and its estimators have desirable properties. Recent studies characterized

the information-theoretic threshold for exact recovery, i.e. conditions on the data generating process

such that one observation of the network embodies enough information to exactly recover the
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community structure. Mossel, Neeman and Sly (2014), Abbe, Bandeira and Hall (2014), and Abbe

and Sandon (2015) studied this problem in unweighted networks. Jog and Loh (2015) and Yun and

Proutiere (2016) extended previous results to weighted networks. In particular, they show that if

the Chernoff-Hellinger divergence of community pair’s connection patterns is above a particular

threshold, the probability of correctly recovering the entire community structure converges to 1

as n → ∞. Kanade, Mossel and Schramm (2016) and Cai, Liang and Rakhlin (2017) studied

this problem when a fraction of the vertices’s community affiliations are revealed. Finally, Abbe

(2017) provided a detailed review of the recent development in the research of exact recovery in

stochastic block models. As explained earlier, exact solution to the Bayesian posterior mode is

infeasible for large network, and various algorithms are proposed to approximate the solution.

For example, the spectral algorithm can be viewed as an approximation to posterior mode.4 The

Gibbs sampler algorithm we use in this paper is an approximation to first obtain the posterior

distribution and then the posterior mode. From the perspective of empirical implementation, a

weakness of the generic SBM is the lack of heterogeneity beyond community affiliations, so we

introduce pair-wise heterogeneity in a similar way as Peng and Carvalho (2015a) and Peng and

Carvalho (2015b). These papers proposed a degree correction strategy to capture vertex-level

heterogeneity: they use additional latent variable or observed degree to capture the popularity of

a vertex, and a “popular” vertex has higher propensities to connect to all other vertices. In this

paper, we allow heterogeneity at vertex pair level, by incorporating interactions of the observable

vertex level characteristics, such as location, industry, and budget. Apart from richer specification,

the use of observable characteristics has additional benefits: it entails less computational intensity

than the use of latent variable, and it avoids the endogeneity problem from the use of observed

degrees.

The remainder of the paper is structured as follows. In Section 2, we introduce the basic

framework for the financial network among political committees, and describe the statistical model

of random network formation that we will empirically implement; in Section 3, we describe the

data sets used in our analysis, as well as several “naive” methods that we attempted; in Section

4, we provide the details of the Bayesian estimation procedure and arguments for identification;

in Section 5, we present the Monte Carlo results; in Section 6, we describe the specifications used

in our empirical implementation, and present the main empirical results; finally, in Section 7, we

conclude and discuss directions for future research.

4The original discrete parameter space is relaxed to a sphere, and the spectral method is a solution to the relaxed
problem, and is derived through derivatives. A detailed description can be found in Newman (2013).
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2 Financial Network of Political Committees

We represent the money-flow network among political committees as a static, weighted and

undirected graph.5 A graph G consists of vertices V and edges E . In our model, each vertex

i ∈ V = {1, ..., n} represents a PC. In our application, n will represent the total number of PCs

registered with the FEC, and is 5,858 for the 2003-2004 election cycle. Each edge (i, j) ∈ E is an

unordered pair in V × V. In our application, (i, j) ∈ E if there exists money flow, either unilateral

or bilateral, between committees i and j. A weighted graph also includes, for each edge (i, j) ∈ E ,

a corresponding weight wij , which in our application will correspond to the sum of money flows

between the two PCs. Equivalently, a weighted graph G can be represented by a weighted adjacency

matrix y where

yij =

 wij if (i, j) ∈ E

0 otherwise.
(1)

In addition to the network structure described above, each committee i ∈ {1, ..., n} is characterized

by the following attributes: a unidimensional latent ideology xi, and a multi-dimensional observable

characteristics zi, which captures the financial and institutional characteristics of the PC. The

details of the variables contained in the vector zi will be described in Section 6 when we present

our empirical specification.

Ideologies of Vertices. We assume that there are m discrete categories of ideologies where

m ≥ 2. In our application, m will be equal to 3, corresponding to Democratic, Republican and

Independent respectively. We denote the true ideology of vertex i ∈ V by xi ∈ {1, ...,m}. We

assume that, for all vertices, their xi’s are latent and unobserved to us. However, For a subset of

vertices Vo ⊂ V, there exists a noisy measure, denoted by x̂i ∈ {1, ...,m}, of the latent ideology xi;

but for vertices in V\Vo, we do not have this noisy measure. In our application, the size of Vo is

typically about 1/3 of the size of V.6

To summarize, the framework for the financial network of PCs can be represented by:

〈y,x, x̂, z〉 = 〈{yij}1≤i,j≤n, {xi}1≤i≤n, {x̂i}i∈Vo , {zi}1≤i≤n〉 . (2)

Note, however, since we do not observe x, the data consists of

DATA : 〈y, x̂, z〉 = 〈{yij}1≤i,j≤n, {x̂i}i∈Vo , {zi}1≤i≤n〉 . (3)

5While both the model and the estimation strategy can be straightforwardly extended to a directed graph, an
undirected graph is adopted for computational tractability.

6In Appendix H, we also implement a version of the model in which we assume that x̂i = xi for all i ∈ Vo.
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The goal of our empirical exercise is to make inference about the latent ideology x based on data

〈y, x̂, z〉 .

2.1 A Statistical Model

As we explained in the introduction, the vector of latent ideologies x = (x1, ..., xn) can be high-

dimensional. To circumvent the high-dimensionality problem, we adopt a Bayesian approach by

assuming that each vertex can, a priori, be of ideology k ∈ {1, ...,m} with probability θk where

θ = (θ1, ..., θm) ∈ ∆m−1; and then we use its observed links with other vertices and the weights

of the links to render a posterior probability distribution pi ∈ ∆m−1 over these categories. We

will use the mode of the posterior distribution pi as our best guess for i′s political or ideological

affiliation.7

Formally, our model of the financial network formation among PCs is based on the stochastic

block models of random network formation. In the model, the number of vertices n, the number of

blocks m, and vertices’ observable characteristics z are assumed to be exogenous and fixed. The

adjacency matrix Y, the ideology vector X, and the noisy measure X̂ are assumed to be random.8

Prior. For any PC i ∈ V, its latent ideology Xi has the following marginal prior distribution:

P(Xi = k) = θk for k = 1, ...,m (4)

where θ = (θ1, ..., θm) ∈ ∆m−1.

Measurement Error. For a PC i ∈ Vo ⊂ V, we observed i′s reported political affiliation X̂i,

which we interpret as a noisy measure of its true ideology Xi. Specifically,

P(X̂i = k|Xi = xi) =

 1− ε for k = xi
ε

m−1 for k ∈ {1, ...,m}\{xi},
(5)

where ε ∈ [0, 1) captures the rate of measurement error.9

7Of course, the whole posterior distribution pi itself is of interest beyond its mode: pi will allow us to provide a
more continuous measure of i′s ideology spectrum. For example, two vertices may end up with the same ideological
categorization based on their posterior mode, while one vertex could be more central than the other.

8Throughout the paper, generic random variables are denoted by capital letters Y, X, and X̂, whereas their
realizations and specific configurations are denoted by small letters y, x, and x̂.

9ε can be pre-specified as 0 if there is good reason to believe that there is no error in report (perhaps by the nature
of the data set). Otherwise, a positive ε is more flexible because it allows for measurement error, which makes it
possible for the report x̂i to differ from the true ideology xi. We will implement a version of the model restricting
ε to be zero in Appendix H, where we instead hold out a subset of the vertices with self-reported ideologies in our
estimation, and use the holdout sample to validate our estimation results.
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Edge Formation. Conditional on the true ideologies, Xi, Xj , and observable characteristics

zi, zj , entries Yij ’s in the weighted adjacency matrix are assumed to be independently generated

across (i, j) pairs:

Assumption 1 (Conditional Independence). For any pairs of PCs, (i, j) and (i′, j′) , with ei-

ther i 6= i′ or j 6= j′,

Yij ⊥ Yi′j′
∣∣ (Xi, Xj , zi, zj , Xi′ , Xj′ , zi′ , zj′

)
.

An economic interpretation of this assumption is as follows. A PC designs its general principle

in contributions according to its political ideology as well as its financial and institutional char-

acteristic. Following the principle, its staffs make decisions on whether to contribute to a specific

committee, and the idiosyncratic factors in each of these decisions are unobserved by the researcher

and are assumed to be independent. This conditional independence assumption is a potentially

strong assumption, because it abstracts away from various possible strategic considerations that

a political committee may have in its contribution decisions; of course, the restrictiveness of this

assumption in practice depends on how complete the vector of characteristics z is. It is impor-

tant to note that Assumption 1 is stated conditional on the latent ideologies of the relevant PCs.

Thus, it allows for what we believe to be the first-order role of ideologies in political contributions.

Other characteristics of the PC, for example, its previous connections, are also allowed to affect its

contribution decisions, to the extent that such information is contained in its characteristics z. In

addition, it is well acknowledged that it is difficult to establish asymptotic results in a network mo-

del in the presence of widespread correlation (see, e.g., Leung (2016)); as a result, valid statistical

inference using data from a single network (or a small number of networks) necessitates restrictions

on the degree of correlation. Finally, conditional independence is a maintained assumption in the

literature of stochastic block model (Snijders and Nowicki (1997) and Nowicki and Snijders (2001)),

and the literature of classification in general (see, e.g., Koller and Friedman (2009)).10

Specifically, we assume that the edge formation process is as follows. For any pair of vertices

(i, j) ∈ V2 with i 6= j, conditional on (Xi, Xj) = (k, l) ∈ {1, ...,m}2 , and zi, zj ,

Yij > 0 if β0,kl + β1,kl(zi+zj) + β2,klzizj + eij > 0;

Yij = 0, otherwise, (6)

where
(
βkl,0, β1,kl,β2,kl

)
are the parameters governing the edge formation probability, and zizj

is a shorthand (with some abuse of notation) for interaction terms of zi and zj . Because we deal

10For example, the naive Bayes model is widely used as a spam filter to classify emails into normal vs. spam emails,
and it assumes that conditional on text class, the presence of words are independent.
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with an undirected graph, we further assume that the process (6) satisfies parameter symmetry

over (k, l) , i.e.,

β0,kl = β0,lk,

β1,kl = β1,lk, (7)

β2,kl = β2,lk,

and that eij ∼ i.i.d. N (0, 1).

To simplify notation in the likelihood function in Section 4, we will denote the conditional

probability of two vertices i and j forming an edge as ηij and express it in a compact form as:11

ηij(Xi, Xj) = P(Yij > 0|Xi, Xj , zi, zj)

= Φ
(
γ(Xi, Xj , zi, zj)

′β
)
, (8)

where

γ(Xi, Xj , zi, zj) = D(Xi, Xj)
⊗

[1, zi+zj , zizj ]
′ ,

D(Xi, Xj) =
[
1(Xi=k,Xj=l)∨(Xi=l,Xj=k)

]
1≤k≤l≤m

,

β =
[
β0,kl, β1,kl, β2,kl

]′
1≤k≤l≤m .

Weights of the Edge. Once two vertices form an edge, we assume that the weight of their edge,

which in our application will correspond to the total amount of financial transactions between

the two vertices, is drawn from a Q-valued discrete distribution with probabilities that depend on

ideological proximity. Specifically, conditional on Yij > 0, if Xi = k,Xj = l, the Yij takes values

(w1, ..., wQ) with probabilities

hkl ≡ (hkl,1, ..., hkl,Q) ∈ ∆Q−1. (9)

In our estimation we will pre-fix Q and the values (w1, ..., wQ). Again because we deal with an

undirected graph, we impose the natural symmetry assumption that

hkl = hlk. (10)

11Note that we omit the covariates zi and zj in the arguments of expression (8) for ηij for notational convenience.
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2.2 Discussions

First, we would like to note that the edge formation process as specified by (6) can be interpreted

as resulting from a model of matching. Two committees decide whether to establish a financial

connection based on their joint surplus from forming a match. The surplus has a deterministic

component β0,kl+β1,kl(zi+zj)+β2,klzizj as well as a stochastic component eij . Parameters differ

by ideology pair (k, l). βkl,0 captures the direct effect of ideology proximity, and β1,kl and β2,kl

capture the effect of committee specific characteristics interacting with ideology proximity. In other

words, ideology influences the edge formation probability through both the constant term and the

coefficients.12

Second, financial and institutional characteristics zi and zj are included in the specification

(6) not only because they may be important factors in the PCs’ contribution decisions, but also,

technically, it is our strategy for degree correction. Without these covariates, the model is essentially

the same as Snijders and Nowicki (1997), where edge formation probability is governed only by

ideology proximity. In their model, variations in degree are attributed only to random shock and

ideology proximity. Moreover, the implied degree distribution is a mixture of m(m+ 1)/2 binomial

distributions. However, when the number of ideology categories is small, the model-implied degree

distribution may not be able to capture the empirical degree distribution. Therefore, we include

vertex specific characteristics to introduce richer heterogeneity in the edge formation probability.

This is a variant of the degree correction strategy introduced in Peng and Carvalho (2015a) and

Peng and Carvalho (2015b). In addition to proximity of the latent ideology, Peng and Carvalho

(2015a) assume that the edge formation probability also depends on additional latent variables

ξi, ξj ∈ R, capturing vertex specific popularity. Peng and Carvalho (2015b) replace the latent

popularity variables with the quantile ranks of the vertices’ observed degrees qi, qj ∈ {1, 2, ..., Q}.

Our paper differs from Peng and Carvalho (2015b) in that the characteristics we use do not involve

any features of the network, rendering a much cleaner model with which to perform statistical

inference because the potential problem of endogeneity is avoided. Compared to Peng and Carvalho

(2015a), our paper has a faster convergence rate and lower computational intensity because it does

not require inferring about additional latent variable ξi.

Finally, note that conditional on the latent ideologies of the vertices, our model of network

formation is equivalent to a pair-wise matching model. However, since the vertices’ latent ideologies

are not known, our edge formation process as specified in (6) allows for correlation conditional on

12In an empirical application, additional constraints can be added: for example, restricting some coefficients in
β1,kl and β2,kl to be 0, or to be the same for different ideology pairs. We provide the details of the additional
restrictions in Section 6.
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observables
{
X̂i

}
i∈Vo

and z. Moreover, the correlation is spread all over the connected component

of the network via the latent ideologies. As a result, our network is not decomposable based on

observables.

3 Data and Descriptive Statistics

Three data sets are used in our study, two of which are administrative data sets from the Federal

Election Commission (FEC) in 2003-2004 election cycle: the “ Committee Master File”, and the

“Contributions to Committees from Committees” data; and the third data set is collected from

OpenSecrets.org.13

The “Committee Master File” contains basic information about all the PCs registered with

the FEC. The PCs in this data set include federal political action committees (PACs), party

committees, campaign committees for presidential, house and senate candidates, as well as groups

or organizations such as lobbyists or fund raisers. This data set also contains information on the

PC’s geographical location, institutional characteristics, and the self-reported party affiliation, if

available.

The “Contributions to Committees from Committees” data contains the universe of the con-

tribution records between PCs. We observe the universe of records because the campaign finance

laws mandate the disclosure of all transactions and expenditure related to federal election activi-

ties. In this data set, for each contribution, it lists the contributor, recipient, and the amount of

contribution. We will use this data set to construct the complete network of financial transactions

among the PCs.

Finally, the OpenSecrets.org data set contains the industry categorization for the PCs. The

data sources corresponding to each of the variables we use are summarized in Table 1.

Variable Data Source

y Contributions to Committees from Committees
x̂ Committee Master File
z Committee Master File (location and institutional characteristics),

Contributions to Committees from Committees (imputed financial budget),
OpenSecrets.org (industry categorization).

Table 1: Data Source

13The website is maintained by the Center for Responsive Politics.
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3.1 Vertex Characteristics

In the 2003-2004 election cycle, 5,858 PCs participated in contribution activities with other PCs

and formed a financial network, among a total of 7,559 active PCs (defined as PCs with either

positive total receipts or positive total disbursement).14 We do not include in our study the PCs

that do not participate in financial contributions with other PCs, though they could alternatively

be viewed as isolated vertices in the network. This is not particularly worrisome because the PCs

excluded from our study are financially insignificant. Among all PCs with positive receipts, the

PCs in the financial network accounted for 96.83% of total amount of receipts; and among all PCs

with positive disbursement, these PCs accounted for 96.87% of total amount of receipts.

Since the campaign finance laws do not mandate that political committees report their party

affiliations, the Committee Master File has incomplete information on the PCs’ political affiliation.

In Table 2, we summarize the distribution of reported party affiliations of the PCs in the Committee

Master File. Respectively 17.4% and 17.12% of the PCs reported to be Democratic and Republican,

while 1.01% of the PCs reported to be Independent, and 0.85% of the PCs reported other affiliations

such as Labor Party or Conservative Party. Importantly, 63.62% of the PCs did not report their

party affiliations. In terms of financial significance, contributions sent by the PCs without self

reported political affiliations accounted for 15.25% of the total amount of contributions among the

PCs, and contributions received by them accounted for 37.38% of the total contributions.

Reported Affiliation Frequency % of PC % of Contribution From % of Contribution To

Democratic 1,019 17.40 45.25 34.74
Republican 1,003 17.12 38.64 25.78
Independent 59 1.01 0.53 1.63
Other 50 0.85 0.33 0.46
Missing 3,727 63.62 15.25 37.38

Total 5,858 100 100 100

Table 2: Tabulation of Reported Party Affiliation

In Table 3 we describe the non-ideological characteristics included in our analysis. Information

on state and industry enables us to capture the effect of geographical and industrial proximity on

political contribution. Figure 1 shows that the District of Columbia has the highest number of

political committees (896), followed by California (575), Virginia (436), Texas (301), New York

14Information on total receipts and disbursement is obtained from data sets “Candidate Summary (All Candidates)”
and “PAC & Party Summary” released by the FEC. This information is missing for 89 PCs in the observed financial
network. We define them as active, and use their budget in the financial network as a proxy for their total receipts
and total disbursement.

13



Characteristics Type Range

State Categorical 55 distinct categories
Industry Categorical 46 distinct categories
Committee Type Categorical 6 distinct categories
Committee Designation Categorical 3 distinct categories
National Dummy {0,1}
Budget (in $1,000) Continuous [0, 104064.2]

Table 3: Non-ideological Characteristics
Note: States include unincorporated territories.

(284), Pennsylvania (273) and Illinois (226). In Table 4, we provide a coarse industrial breakdowns

of the political committees. Besides “Other” , which aggregates many small industrial categories,

Finance/Insurance/Real Estate is the most represented industry (9.12%), followed by Miscellaneous

Business (6.96%), Health (5.43%) and Labor (5.19%). In our empirical analysis, we drop the

ideological and party affiliated sectors, and use a finer breakdown for sectors such as Misc Business

and Other. We provide a detailed description of the construction of the industry variable in

Appendix A.
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Figure 1: Geographical Distribution of Political Committees

Committee type, committee designation, and national dummy are institutional characteristics

that are potentially related to contribution patterns. There are six distinct categories of committee

type in the Committee Master File: House campaign, Senate campaign, Presidential campaign,
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qualified PAC, qualified Party and others.15 Table 5 shows that 27.72% of the committees are cam-

paign committees of either House, Senate or Presidential elections, 45.43% are qualified PACs, and

4.52% are qualified Party committees, and the rest (“Other”) are mainly non-qualified committees.

In Table 6, we provide information about the committee designations. There are three distinct

categories of committee designation in the Committee Master File: authorized by a candidate,

joint fund-raiser, and others.16 Table 6 shows that 1.89% of the committees are authorized by a

candidate, 2.83% are joint fund-raisers, and the majority of the rest are either principal campaigns

or committees not authorized by a candidate. We do not list principal campaigns separately be-

cause it would be redundant given the more detailed categorization in committee type. Finally,

the national dummy listed in Table 3 takes value 1 if and only if the committee is one of the

following six committees: the Democratic National Committee (DNC), the Democratic Senatorial

Campaign Committee (DSCC), the Democratic Congressional Campaign Committee (DCCC), the

Republican National Committee (RNC), National Republican Senatorial Committee (NRSC), and

National Republican Congressional Committee (NRCC).

We compute a PC’s budget from its contribution record. It is constructed as the sum of its

contributions to all other PCs within this election cycle. Typically, this amount is lower than a

committee’s total receipts or total disbursements. We use this measure because it is most powerful

in explaining a PC’s probability of making political contribution, and thus its total number of

connections. In fact, the correlation between a PC’s total receipts or disbursements and its number

of contributions to other PCs is low. The distribution of budget is given in Table 7 and Figure 2.

It has a wide range and a fat tail: 25.7% of the PCs have budget less than or equal to $1,000, while

8% of the PCs have budget more than $500,000.

3.2 Descriptive Statistics of the Financial Transactions Network

The Contributions from Committees to Committees data set records 411,106 transactions among

5,858 political committees in the 2003-2004 election cycle. Figure 3 is a graphical representation

of the network using graphing software Gephi.17 Each vertex represents a PC, and the color

of the vertex represents reported affiliation: blue for Democratic, red for Republican, green for

15Qualified PACs need to have been in existence for six months and received contributions from 50 people and
made contributions to five federal candidates. Qualified party committees need to have been in existence for at least
six months and received contributions from 50 people or are affiliated with another party committee that meets these
requirements.

16A committee is designated as “authorized by a candidate” if it is authorized by a candidate in writing to receive
contributions or make expenditures on behalf of the candidate, but is not her principal campaign committee. A
committee is designated as “a joint fundraiser” if it is created by two or more candidates, PACs or party committees
to share the costs of fundraising, and split the proceeds.

17See https://gephi.org.
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Quantile All PCs Report Dem Report Rep Report Ind Missing/Report Other

Min 0.00 0.00 0.00 0.00 0.00
25% 1.00 2.98 4.00 5.00 0.70
50% 10.00 32.75 48.07 20.00 6.08
75% 75.90 353.30 456.15 88.87 30.00
Max 104,064.19 104,064.19 55,873.70 2,386.53 9,180.75

Obs. 5,858 1,019 1,003 59 3,777

Table 7: Quantiles of Budget in $1,000
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Figure 2: Distribution of Budget
Note: Observations with budget higher than $500,000 are plotted at $500,000.

Independent, and yellow for missing/other. For the purpose of this graph, we collapse multiple

contributions with the same direction between any pair of PCs into one edge: each edge represents

a directed financial connection; and we use the contributor’s color to represent the color of the

edge. Thus there are a total of 164,529 edges in Figure 3. This network has 20 disconnected

components.18 Nevertheless, the component in the center is disproportionately large with 5,806

vertices. The subsequent description focuses on this giant component.

Network Level Statistics. In the rest of the analysis we will consider the network as undirected,

thus we further collapse transactions with different directions between any pair of PCs. We derive

18A component is a maximum connected sub-network.
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Figure 3: Political Contribution Network
Note: Vertex color represents reported affiliation: blue for Democratic, red for Republican, green for Independent,

and yellow for missing. Edge color is the same as contributor’s color.
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a financial network with 5,806 vertices and 145,406 edges. Table 8 presents some of the key

statistics for the financial transaction network among the PCs. First, the network is sparse, yet

well-connected. On the one hand, the average degree is 50.09, i.e. on average, a PC is connected

to only 0.86% of other PCs.19 This indicates sparsity because the number of edges is only a small

fraction of all the vertex pairs. On the other hand, it has a diameter of 10, and an average distance

of 2.99.20 Both statistics indicate that the network is well-connected, which poses a challenge for our

study. Given the connectedness, there is no straightforward approach to structurally decompose this

giant component into separate sub-networks, despite the visual patterns of clustering. Moreover,

there is no other natural way of decomposition. A common practice in the network applications is

to partition the full network into geographically disjoint sub-networks and assume no interaction

across sub-networks. However, this practice is not suitable in our application because political

contributions are not concentrated at local levels.

Number of vertices 5,806
Number of edges 145,406
Average degree 50.09
Diameter 10
Average distance 2.99

Table 8: Network Statistics

Distributions of Degrees and Edge Weights. To explore beyond the network-level summary

statistics, we further investigate the distribution of degrees. Figure 4 shows that the degree dis-

tribution has a large spread and a fat tail: the highest degree is as large as 978. An important

feature is that the shape of this distribution is inconsistent with a mixture of a small number of

binomial distributions–an implication in the standard stochastic block model. To capture the ob-

served degree distribution, we introduce rich heterogeneity in our model. Specifically, we include

budget whose distribution has similar patterns to account for the variations in degree.

Additionally, we study the sub-networks induced by reported Democratic, Republican and Inde-

pendent PCs, and analyze connection patterns conditional on reported affiliations. In Figure 5, we

have three graphs for self-reported Democratic, Republican, and Independent PCs respectively. In

each graph, we present the distribution of the PCs’ numbers of connections with the three groups

19Degree is a vertex-level statistics. It is the number of direct connections a vertex has. Following the notation
introduced in the previous section, vertex i’s degree is given by di =

∑
j 6=i 1(yij > 0).

20The diameter of a network is calculated as the maximum length of the (finite) shortest paths among vertex pairs.
The average distance of a network is calculated as the average length of the (finite) shortest paths among vertex
pairs.
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Figure 4: Histogram of degree
Note: Observations with degree higher than 200 are plotted at 200.

of self identified PCs. Self-reported Democratic and Republican PCs show evidence of homophily.

On the one hand, many PCs are financially connected with PCs affiliated to same party, and a

sizable of them have more than 20 such connections; on the other hand, only a small number of

PCs are financially connected with PCs affiliated to the other party, and most of them have less

than 10 such connections. Self-reported Independent PCs show similar connection pattern with

the self-reported Democratic vs. Republican PCs. Many are financially connected with both par-

ties, and a sizable of them have more than 20 such connections. A small fraction are financially

connected with other self-reported Independent PCs, and most of them have less than 10 such

connections - partially due to the small number of self-reported Independent PCs. Note that we

cannot claim, based on the connection patterns between PCs with self reported affiliations, that

this is an evidence of heterophily. It is possible that they are connected with a large number of

Independent PCs without self-reported affiliations. Furthermore, even if Independent PCs exhibit

heterophily, this behavior does not invalidate either our model or estimation. Identification only

requires that PCs with different political ideologies have different contribution patterns. This is at

least true for the PCs with self-reported affiliation, which is reassuring.

Finally, in order to infer about the unknown ideologies from the PCs with self reported ideologies,

an implicit assumption in our model is that the PCs without self reported affiliations do not act

systematically differently from the PCs with self reported affiliations. Therefore, we reproduce the

degree distribution in Figure 6 with the composition of each bar marked by color. The degree

distribution of PCs without self reported affiliations is similar to that of the PCs with self reported

affiliations. This evidence is consistent with the assumption, though insufficient. In Section 6, we
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Figure 5: Distributions of Number of Connections with Different Committees
Note: These figures only include observations with positive number of connections. Observations with more than 200

connections are plotted at 200.
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will present more evidence on this after we have presented our estimation results.
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Figure 6: Decomposition of Degree Distribution
Note: The same as Figure 4, but the composition of each bar, i.e., the composition of PCs with a certain rage of

degrees, is presented with different colors.

The financial network also provides information on transfer amount (the sum of the contribution

amount) between pairs of connected PCs. Its distribution is given in Table 9 and Figure 7. Most of

them are small because of the regulations on contribution limits (detailed description in Appendix

B). In addition, we present the distribution of transfer amount conditional on reported ideology in

Table 9 and Figure 8. On average, the transfer amount is high between PCs with the same reported

affiliation, and low for the other cases. A caveat in interpreting these statistics is that we exclude

all the contributions involving PCs without self reported affiliations, so they do not necessarily give

the full picture of the contribution pattern.

3.3 Issues with Naive Alternative Methods

In this subsection, we briefly discuss the issues with some naive alternative methods that we

have attempted, and explain why they are invalid. We first define

x̂i =


−1 if committee i is reported to be Democratic

0 if committee i is reported to be Independent

1 if committee i is reported to be Republican.
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Figure 7: Empirical Distribution of Transfer Amount
Note: Bin size is 500. Observations with transfer amount higher than $50,000 are plotted at $50,000.
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Figure 8: Empirical Distribution of Transfer Amount Conditional on Reported Ideology
Note: Bin size is 500. Observations with transfer amount higher than $50,000 are plotted at $50,000.
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The naive method tries to find x∗ solving the following fixed point problem as a solution to the

ideology recovery problem:  x̂

x∗

 = sign

y

 x̂

x∗

 . (11)

In other words, a PC is Democratic (Republican) if it is connected with more Democratic (Repub-

lican) PCs than Republican (Democratic) ones, or Independent if it is connected with an equal

number of Democratic and Republican PCs. However, neither existence nor uniqueness of the

solution is guaranteed. We attempted to solve this problem by iteration method, but failed. The

following example in Figure 9 illustrates the reason. According to the categorization rule described

above, the two “unknown” vertices should be assigned Democratic. However, this assignment gener-

ates inconsistency in the “Republican” vertex’s behavior: as a Republican PC, it is connected with

two Democratic PCs. There does not exist a categorization which can reconcile such inconsistency,

so the naive method proposed in (11) does not guarantee a well-defined solution.

DEM

DEM

UNK

REP

UNK

DEM

DEM

Figure 9: Non-Existence of Solution with Naive Method

Since the solution concept above requires too strong a coherency in categorization, a less restric-
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tive method was also attempted:

xi =
∑
j∈Vo

yij x̂j . (12)

In this case, a PC’s ideology is defined by its connected PCs with self reported affiliation. There are

two major problems with this method. First, when a PC is only connected to PCs with unreported

affiliations, its ideology is not defined. If we try to address this problem by iteratively applying the

equation above, we go back to the previous method. Second, categorization has very low precision

for PCs connected with few PCs with self reported affiliations and mostly with PCs with unknown

affiliations. The poor performance of naive methods necessitate the use of a more sophisticated

method.

4 Estimation

Given the model description, the likelihood of y, x̂ conditional on x, z is given by

P (y, x̂|x, z; ε,β,h)

= P (x̂|x; ε) P (y|x, z;β,h)

= (1− ε)nt

(
ε

m− 1

)ne ∏
1≤i<j≤n

[
ηij(xi, xj)hxixj (yij)

]1(yij>0) [
1− ηij(xi, xj)

]1(yij=0)
, (13)

where nt =
∑

i∈Vo 1(xi = x̂i) is the number of vertices in Vo whose x̂i’s coincide with xi’s, ne =∑
i∈Vo 1(xi 6= x̂i) is the number of vertices in Vo whose x̂i’s differ from xi’s, and hxixj (yij) = hxixj ,q

if yij = wq where hxixj ,q is defined in (9).

We use the Maximum A Posteriori (MAP) estimator to recover the latent ideology. It is a

Bayesian estimator that equals the mode of the posterior probability. Specifically, it solves

max
x∈{1,...,m}n

P (y, x̂|x, z; ε,β,h) P (x;θ) . (14)

Note that the Maximum Likelihood Estimator (MLE) solves

max
x∈{1,...,m}n

P (y, x̂|x, z; ε,β,h) , (15)

and that MAP is equivalent to MLE under uniform prior θ = ( 1
m , ...,

1
m).

We now argue for the validity of the MAP estimator, and propose a Bayesian algorithm to obtain

an approximate solution. Theoretically, statistical inference is non-standard in our model. First of

all, we have only one observation of the network, i.e. one realization of y, x̂. Second, the number
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of parameters (the number of latent political ideologies) grows with the network size. Therefore,

canonical asymptotic theory is not applicable. For example, law of large numbers cannot be directly

applied. As a result, in the recent literature, new concepts and tools are introduced to study this

problem. The following subsection summarizes the key concepts and results mostly related to our

study.

4.1 Threshold for Exact Recovery

In this subsection we describe the theoretical results in Yun and Proutiere (2016) that justify

our estimation using one observation of the network. The standard stochastic block model was first

introduced in Snijders and Nowicki (1997) and Nowicki and Snijders (2001), and its exact recovery

problems were studied in Mossel, Neeman and Sly (2014), Abbe, Bandeira and Hall (2014), and

Abbe and Sandon (2015). The labeled stochastic block model introduced weights on edges, and its

exact recovery problems were studied in Jog and Loh (2015) and Yun and Proutiere (2016). First,

we provide a formal definition of the labeled stochastic block model.

Definition 1 (Labeled Stochastic Block Model LSBM (n,θ, log(n)
n W )). The LSBM gener-

ates an n-vertex random graph with community affiliation X and weighted adjacency ma-

trix Y according to the following process. Each vertex is assigned a community affiliation

Xi ∈ {1, 2, ...,m} independently under probability θ = (θ1, ..., θm) ∈ ∆m−1. Conditional

on community affiliations, the edges are drawn independently. The edges Yij ’s take discrete

values {0, w1, w2, ...wQ} where 0 represents no edge and wq represents an edge with the spec-

ified (non-zero) weight. The distribution of edges is governed by an m-by-m-by-Q matrix

W . Specifically, vector W (k, l; ·) characterizes edge distribution between a pair of vertices in

communities k and l:

P(Yi,j = wq|Xi = k,Xj = l) =
log(n)

n
W (k, l; q) for q = 1, .., Q;

P(Yi,j = 0|Xi = k,Xj = l) = 1− log(n)

n

Q∑
q=1

W (k, l; q).
(16)

Note that W is not indexed by the network size n, i.e. it does not change with n. This implies

that the distribution described above will change with n. More precisely, the probability of having

an edge scales as Θ( log(n)
n ) and the degree scales as Θ(log(n)). This logarithmic growth rate of

degree with respect to the network size is called the logarithmic degree regime. The literature on

exact recovery studies this regime because it is dense enough that the graph is connected with

high probability; yet it is still sparse enough that the conditional independence condition yields

29



asymptotic independence of the failures of the component-MAP for different vertices.

Next, we provide the definition of exact recovery. Exact recovery is an asymptotic requirement

in the context of the SBM - a counterpart of consistency in the classical statistical problems.21

Definition 2 (Exact Recovery). Exact recovery is solved if there exists an algorithm such that

P(Xest = X)→ 1 as n→∞ where Xest is the estimated community affiliation.22

In other words, exact recovery requires that for a large enough network, the probability of correctly

recovering the entire community structure (i.e. no misclassification) is almost 1. The most promis-

ing estimator to solve exact recovery is the MAP estimator because it minimizes P(Xest 6= X) - if

MAP fails in solving exact recovery, no other algorithm can succeed (see, e.g., Abbe (2017) ).

In order to describe the condition for exact recovery, we first define the Chernoff-Hellinger (CH)

divergence (Abbe and Sandon (2015)).

Definition 3 (Chernoff-Hellinger divergence D(θ,W )).

D(θ,W ) = min
k,l:k 6=l

DL+(θ,W (k),W (l)) (17)

where DL+(θ,W (k),W (l)) is given by

DL+(θ,W (k),W (l)) = max
λ∈[0,1]

Q∑
q=1

m∑
j=1

θj [(1−λ)W (k, j; q)+λW (l, j; q)−W (k, j; q)1−λW (l, j; q)λ]

(18)

Intuitively, DL+(θ,W (k),W (l)) measures the difference in connection patterns between a pair of

communities, k and l; and thus the CH-divergence D(θ,W ) is the minimum of such difference

between any pair of distinct communities. In the following, we explain more precisely the meaning

of difference in connection pattern. Note that mathematically θj [(1− λ)W (k, j; q) + λW (l, j; q)−

W (k, j; q)1−λW (l, j; q)λ] measures the difference between θjW (k, j; q) and θjW (l, j; q). Moreover,

θjW (k, j; q) log(n) gives, for a vertex in community k, the expected number of wq-weighted edges

with community j; and θjW (l, j; q) log(n) gives, for a vertex in community l, a similar number.

Therefore, θj [(1− λ)W (k, j; q) + λW (l, j; q)−W (k, j; q)1−λW (l, j; q)λ] measures the difference be-

tween communities k and l in terms of the number of wq-weighted edges with community j. Finally,

summing over different communities j and different edge weights wq delivers the expression in (18).

DL+(θ,W (k),W (l)) is non-negative. Larger value of DL+(θ,W (k),W (l)) represents larger differ-

21 Exact recovery is sometimes referred to as strong consistency, reflecting the resemblance to consistency.
22 The equivalence is up to group permutation of Xest with respect to community names.
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ence in connection patterns between communities k and l, and DL+(θ,W (k),W (l)) is zero if and

only if the two communities have identical connection patterns, i.e., W (k, j; q) = W (l, j; q),∀j, q.

We further illustrate the definition of CH divergence in a special case of a homogeneous model

(Jog and Loh (2015)), where its expression is significantly simplified. In a homogeneous model,

vertices are assigned to different communities with equal probabilities; and the distribution of an

edge only depends on whether the pair of vertices belong to the same communities:

θj =
1

m
, ∀j; (19)

W (k, l; ·) =

Wwithin(·) if k = l

Wbetween(·) if k 6= l.
(20)

Under homogeneity, the CH divergence reduces to the Hellinger divergence (corresponding to λ =

1
2), measuring the difference in within-community and between-community connection patterns:

D(θ,W )

=DL+(θ,W (k),W (l)) ∀k 6= l

= max
λ∈[0,1]

Q∑
q=1

m∑
j=1

θj [(1− λ)W (k, j; q) + λW (l, j; q)−W (k, j; q)1−λW (l, j; q)λ]

= max
λ∈[0,1]

1

m

Q∑
q=1

∑
j∈{k,l}

[(1− λ)W (k, j; q) + λW (l, j; q)−W (k, j; q)1−λW (l, j; q)λ]

= max
λ∈[0,1]

1

m

Q∑
q=1

Wwithin(q) +Wbetween(q)−Wwithin(q)1−λWbetween(q)λ −Wbetween(q)1−λWwithin(q)λ

=
1

m

Q∑
q=1

(
√
Wwithin(q)−

√
Wbetween(q))2.

(21)

The first equation follows symmetry, the second equation directly applies the definition in (18),

the third equation uses (19) and W (k, j; ·) = W (l, j; ·) = Wbetween(·) ∀j 6= k, l, the fourth equation

applies (20), and the last equation results from λ = 1
2 being the maximizer.

Now we can state the main theoretical results. Combining Theorem 3 and Claim 4 in Yun and

Proutiere (2016), we have:

Theorem 1 (Threshold for Exact Recovery). Exact recovery is solvable for LSBM (n,θ, log(n)
n W ))

if D(θ,W ) > 1.
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The theorem shows that: if the difference in connection patterns of any pair of communities is large

enough, we can correctly recover the entire community structure from one observed network with

high probability. This theorem provides theoretical foundation for the use of the MAP estimator

(because it is the “optimal” algorithm in terms of exact recovery), and it is very similar to the

consistency results in classical statistics.

Some comment on the case where D(θ,W ) < 1 is useful. In this case, the MAP estimator

fails exact recovery (i.e. has misclassification) with strictly positive probability. This result should

not be interpreted as discouraging: although the probability of having misclassification does not

vanish with the growth of the sample size, the misclassification rate defined as the proportion of

vertices misclassified could still be low. In our Monte Carlo simulations, we observe that even when

the CH divergence is below 1, we still have reasonably good classification. Therefore, even if our

application falls in the second case, the MAP estimator is still a sensible choice.

To apply this theorem to our model, note that W corresponds to a composition of the edge

formation probability Φ(γ′β), the conditional weight distribution h, and the scaling factor log(n)
n .

In the Monte Carlo exercises, and the real data application, we will calculate the CH divergence

according to Definition 3 and (22)

W (k, l; q) =
n

log(n)
Φ( γ(k, l)′β )hkl(q) (22)

where γ(k, l)′β is the median of (γ(k, l, zi, zj)′β) over (i, j) pairs such that xi = k, xj = l or

xi = l, xj = k. This accommodates our introduction of covariates in the edge formation process.

4.2 Estimation Algorithm

Apart from the theoretical challenge, the large size of the campaign finance network poses

additional computational challenges. The parameter space of x is mn. With 3 categories and 5,806

vertices, the parameter space is far larger than the number of atoms in the universe.23 Therefore,

exact solution to MAP in (14) is infeasible, and instead we need an efficient approximation method.

In light of these considerations, we propose a Bayesian algorithm to approximate the posterior

distribution of the latent ideology as well as other parameters.

In this Bayesian approach, the latent ideology vector X, and the parameters ε,θ, β are treated

as random variables with certain prior probability distributions. Adjacency matrix y and reported

affiliation x̂ are treated as one realization of the random variables Y and X̂. Observable charac-

teristics z are treated as fixed and exogenous.

23According to Jackson (2010), the estimated number of atoms in the universe is on the order of 2270.
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The prior distribution of the latent X is given by (4) in the network formation model. The prior

distribution of θ, the parameter governing the unconditional probability distribution of ideology, is

assumed to be a Dirichlet distribution:

θ ∼ Dir(αθ), (23)

where αθ ∈ Rm+ is a vector of pre-specified concentration parameters. The prior distribution of ε,

the parameter governing measurement error, is assumed to be a Beta distribution:

ε ∼ Beta(αε1, α
ε
2), (24)

where (αε1, α
ε
2) ∈ R2

+ is a vector of pre-specified concentration parameters. The prior distributions

of h = {hkl}1≤k≤l≤m, the conditional distribution of edge weight (transfer amount), is assumed to

be a Dirichlet distribution:

hkl ∼ Dir(αhkl), (25)

where αhkl ∈ RQ+ is a vector of pre-specified concentration parameters. The prior distribution of

β, the parameter governing edge formation probability, is assumed to be a multivariate normal

distribution:

β ∼ N (0, τ2I), (26)

where τ ∈ R+ is pre-specified standard deviation.

Given the prior probability distributions of X, θ, β, ε, and h, the goal of Bayesian estimation is to

update the belief on their joint distribution using data y, x̂ and z, i.e., to compute the posterior dis-

tribution P(θ, β, ε,h,X|y, x̂, z). Once the posterior distribution is computed, it is straightforward

to assess different objects of interest, especially the marginal distributions P(Xi|y, x̂, z). There is

neither an analytically nor a numerically convenient form to directly characterize of the joint poste-

rior distribution. Fortunately, calculations of conditional distributions P(Xi|x−i,y, x̂, z,θ, β, ε,h, ),

P(θ|y, x̂, z,β, ε,h,x), P(β|y, x̂, z,θ, ε,h,x), P(ε|y, x̂, z,θ,β,h,x), and P(h|y, x̂, z,θ,β, ε,x) are rel-

atively easy. Therefore, a Gibbs sampler algorithm is used to construct the joint posterior distribu-

tion. Gibbs sampler is a Markov Chain Monte Carlo (MCMC) algorithm, which repeatedly samples

a set of random variables conditional on the values of all other random variables. It is particularly

useful when sampling from conditional distributions is convenient.
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Computing the Posterior Distribution P(θ, β, ε,h,X|y, x̂, z). By Bayes’ rule, the posterior

distribution of Xi is given by:

P(Xi = k|x−i,y, x̂, z;θ, β, ε,h, ) =
P(y, x1, ..xi−1, xi = k, xi+1, ...xn, x̂|z,θ, β, ε,h)∑m
l=1 P(y, x1, ..xi−1, xi = l, xi+1, ...xn, x̂|z,θ, β, ε,h)

,

which can be reduced to:

P(Xi = k|x−i,y, x̂, z,θ, β, ε,h, ) ∝


θk(1− ε)

∏
j 6=i

[ηij(k, xj)hkxj
(yij)]

1(yij>0)[1− ηij(k, xj)]1(yij=0) if k = x̂i

θk
ε

m− 1

∏
j 6=i

[ηij(k, xj)hkxj
(yij)]

1(yij>0)[1− ηij(k, xj)]1(yij=0) if k 6= x̂i

∀i ∈ Vo,

(27)

where θk is the ideology prior, (1 − ε) and ε
m−1 are measurement accuracy of the report, and∏

j 6=i[ηij(k, xj)hkxj (yij)]
1(yij>0)[1 − ηij(k, xj)]1(yij=0) is information embedded in network connec-

tions. The posterior is an interaction of the three. When ε > 0, i.e. allowing for measurement error,

if the network data highly favors an ideology different from x̂i, it is possible for the posterior to

override the prior, i.e. a posterior mode at k 6= x̂i. This can be viewed as a data-oriented correction

of measurement error. Similarly,

P(Xi = k|x−i,y, x̂, z,θ, β, ε,h, ) ∝ θk
∏
j 6=i

[ηij(k, xj)hkxj (yij)]
1(yij>0)[1−ηij(k, xj)]1(yij=0) ∀i ∈ V\Vo,

(28)

where θk is the ideology prior, and
∏
j 6=i[ηij(k, xj)hkxj (yij)]

1(yij>0)[1 − ηij(k, xj)]1(yij=0) is infor-

mation embedded in network connections. The posterior is an interaction of the two. Summoning

conjugacy, the posterior distribution of θ is given by:

θ|y, x̂, z,β, ε,h,x ∼ Dir(αθ + [nk]1≤k≤m), (29)

where nk =
∑

1≤i≤n 1(xi = k) is the number of vertices with xi equal to k. The posterior distribu-

tion of ε is given by:

ε|y, x̂, z,θ,β,h,x ∼ Beta(αε1 + ne, α
ε
2 + nt), (30)

where ne =
∑

i∈Vo 1(x̂i 6= xi) is the number of vertices whose self report is different from its

ideology, and nt =
∑

i∈Vo 1(x̂i = xi) is the number of vertices whose self report is the same as its

ideology. The posterior distribution of h is given by:

hkl|y, x̂, z,θ,β, ε,x ∼ Dir(αhkl + [nkl,q]1≤q≤Q), (31)
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where nkl,q =
∑

1≤i<j≤n max{1(xi = k, xj = l),1(xi = l, xj = k)}1(yij = q) is the number of edges

with transfer amount wq between PCs of ideologies k and l. Constructing the posterior distribution

of β is more delicate. β is essentially the coefficient vector in a Probit regression model, whose

posterior distribution does not have an analytically convenient form. Therefore, instead of directly

sampling from a closed form distribution, a data augmentation strategy introduced in Albert and

Chib (1993) is used. First, sample auxiliary variable u = {uij}1≤i<j≤n from the following truncated

normal distributions:

uij ∼

N (γ(xi, xj , zi, zj)
′β, 1)|uij > 0 if yij > 0

N (γ(xi, xj , zi, zj)
′β, 1)|uij < 0 if yij = 0.

(32)

Conditional on the auxiliary variable u, the posterior distribution of β is given by:

β|y, x̂, z,θ, ε,h,x,u ∼ N
(
(τ−2I + Γ′Γ)−1Γ′u, (τ−2I + Γ′Γ)−1

)
, (33)

where Γ =
[
γ(xi, xj , zi, zj)

′]
1≤i<j≤n.

The Gibbs sampler algorithm is summarized below:

1. Initialize x0,θ0,β0, ε0, h0.

2. Iteratively sample from conditional posterior distribution. Specifically, in iteration t, we

sample one set of parameters (xt,θt, εt,ht,βt) with the following procedure:

(a) Sample {xi}t1≤i≤n sequentially from distribution

P(Xi|y, x̂, z,θt−1,βt−1, εt−1,ht−1, xt1, ..x
t
i−1, x

t−1
i+1, ...x

t−1
n ) using (27) and (28).

(b) Sample vector θt from distribution P(θ|y, x̂, z,βt−1, εt−1,ht−1,xt) using (29).

(c) Sample εt from distribution P(ε|y, x̂, z,βt−1,ht−1,xt,θt) using (30).

(d) Sample vectors ht from distribution P(h|y, x̂, z,βt−1,xt,θt, εt) using (31)

(e) Sample auxiliary vector ut from distribution P(u|y, z,βt−1,xt) using (32).

(f) Sample vector βt from distribution P(β|y, x̂, z,xt,θt, εt,ht,ut) using (33).

3. Burn in the first T1 iterations. Use samples from iterations T1 + 1 to T1 + T2 to construct

posterior distribution.

The first step initializes the Markov chain. The initial values should not affect the steady state and

can be determined either at random or by other algorithms. We use the former in our application.

The second step simulates the Markov chain by repeatedly sampling one parameter conditional
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on the values of all other parameters. The sampling order of the parameters is arbitrary, and a

different order can be used, e.g. one can sample θ before x. In order to speed up convergence,

we use the newly sampled parameter immediately in the following sampling procedures and do not

wait until the next iteration, e.g., xt sampled from (a) is used in the sampling of θt in (b). The

final step discards the initial portion of the Markov chain, namely the first T1 iterations, where

steady state is not reached. Pooling the remainder samples gives an approximate joint posterior

distribution P(θ, β, ε,h,X|y, x̂, z).

5 Monte Carlo Evidence

In this section, we present Monte Carlo evidence to evaluate the performance of the community

recovery algorithm proposed in Section 4. We conduct four sets of Monte Carlo simulations that

differ in the specifications of the edge formation process and the network size, both of which affect

the Chernoff-Hellinger divergence measure as defined in (18) because they enter the expression of

W (k, l; q) (see Eq. (22)).

The first three sets of Monte Carlo simulations share a framework that is similar to the homoge-

neous labeled stochastic block model as in Jog and Loh (2015), even though the edge distributions

are not exactly homogeneous due to the introduction of the covariates in the edge formation proba-

bility. Our Monte Carlo results show a strong confirmation of Theorem 1 that CH divergence of 1 is

a sharp threshold for exact recovery. In the first specification, the network edge formation patterns

and the network size imply a CH divergence of 1.0074, and we find that the misclassification rate

is on average 1.10%. The second specification differs from the first one only in the weight distribu-

tion, resulting in a smaller CH divergence of 0.4719 and we find a larger average misclassification

rate of 5.68%. The third specification differs from the second one only in the network size, which

results in a larger CH divergence of 1.7537 and we find a smaller average misclassification rate of

0. In the fourth set of Monte Carlo simulations, the network size is similar to the real data (about

6,000 vertices), and the edge distributions are heterogeneous in a flexible way, resulting in a CH

divergence of 6.0110. This is intended to assess the performance of the algorithm in a data set that

resembles the real data. The results show that the algorithm performs surprisingly well with an

average misclassification rate of 0.0002%, although it is slower due to the scale of the network. We

summarize our main simulation results in the text, but many of the less essential details are left in

Appendices C-F.

Common Specifications Across All Four Sets of Monte Carlo Simulations. The spec-

ifications that are common across all four sets of Monte Carlo studies are listed as follows. The
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aspects of the specifications that are unique to each set of Monte Carlo studies, as well as their

specific results, are presented separately in subsequent subsections.

• The number of ideologies: m = 3.

• Marginal distribution of ideology: θ = (1/3, 1/3, 1/3).

• Probability of measurement error: ε = 0.05.

• Fraction of vertices with reported affiliation: 40%.

• Edge formation probability is specified by yij > 0 iff

γ(xi, xj , zi, zj)
′β + eij > 0,

where γ(xi, xj , zi, zj) = (γx,γz) is a list of 19 variables and β = (βx,βz) ∈ R19. To make

the simulated data as close as possible to the real data we use for the empirical analysis, we

include in the vector zi the PC’s budget, state, industry, dummy for House campaign, dummy

for Senate campaign, dummy for Presidential campaign, dummy for qualified PAC, dummy

for qualified Party, dummy for national committee, dummy for authorized by a candidate,

and dummy for joint fund-raiser, and we construct γz ∈ R13 based on (zi, zj); specifically,

γz =



1statei=statej ,1industryi=industryj
,

1(housei=1)∨(housej=1), 1(senatei=1)∨(senatej=1), 1(presidenti=1)∨(presidentj=1),

1(qualified PACi=1)∨(qualified PACj=1), 1(qualified Partyi=1)∨(qualified Partyj=1),

1(nationali=1)∨(nationalj=1),1(authorizedi=1)∨(authorizedj=1), 1(fundraiseri=1)∨(fundraiserj=1),

[ln bi + ln bj ] ,
[
(ln bi)

2 + (ln bj)
2
]
, ln bi ln bj


.

(34)

We set

βz =

 0.3, 0.3, 0.1, 0.1, 0.1, 0.2, 0.2,

0.15, 0.15, 0.15, 0.01,−0.01, 0.001


in all four sets of Monte Carlo simulations.

γx ∈ R6 includes a constant term and interaction terms of xi and xj ; specifically,

γx =

 1,1xi=xj=Dem, 1xi=xj=Rep, 1xi=xj=Ind,

1(xi=Dem,xj=Ind)∨(xi=Ind,xj=Dem), 1(xi=Rep,xj=Ind)∨(xi=Ind,xj=Rep)

 . (35)
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• Transfer amount is discretized into four bins. Therefore, conditional on yij > 0, yij ∈

{1, 2, 3, 4}.

5.1 Monte Carlo I: 500 Networks with n = 100, CH Divergence Exceeding 1

In the first set of Monte Carlo simulations, 500 networks are simulated and estimated. They

have network size n = 100, the coefficients in the network formation probability are given by βx =

(−1.5, 0.5, 0.5, 0.5, 0, 0), and the edge’s weight distributions are given by hDem,Dem = hRep,Rep =

hInd,Ind = (0.05, 0.1, 0.4, 0.45), and hDem,Rep = hDem,Ind = hRep,Ind = (0.4, 0.3, 0.2, 0.1). Note that

the specification of βx = (−1.5, 0.5, 0.5, 0.5, 0, 0) implies that the link formation depends on whether

the two vertices are of the same ideology or are of differen ideologies, and fits into the homogeneity

special case we described in Eq. (20). The implied CH divergence according to (21) and (22) is

1.0074 > 1.

For these simulations, the total execution time is 235,405 seconds (about 65 hours). The speed of

convergence in terms of the number of iterations varies, which is shown in Figure C1 where we plot

the histogram of the number of iterations (including burn-in and posterior) across the 500 networks

we simulated. The distribution of misclassification rates is summarized in Figure C2 and Table C1.24

They are small in general, and in 37.4% of the simulations, there is no misclassification.25 Moreover,

98.8% of the simulations have misclassification rates lower than the measurement error rate 0.05,

which implies that in most cases our algorithm successfully corrects some of the misreports. Table

C2 provides a detailed tabulation of the estimated vs. true ideologies.

The results above focus only on the posterior mode, and the following analysis further investi-

gates the patterns of the posterior distributions. For the correctly classified vertices, our categorical

classification based on posterior mode is rather precise. Figure C3 shows that the differences in

posterior probability between the highest posterior probability (i.e., the posterior of the true ideol-

ogy) and the second highest posterior probability are highly concentrated around 1. This indicates

that for most of these vertices, the posterior distribution is strongly informative of the true ideol-

ogy. For the misclassified vertices, however, the scales of misclassification vary. Figure C4 shows

that the differences in the posterior probability between the highest posterior probability and the

posterior probability of the true ideology are approximately uniformly distributed between 0 where

the classification is only a bit off and 1 where the classification is far off. This suggests that the mis-

24Estimated ideology is defined as the posterior mode.
2537.4% exact recovery is lower than the theoretical prediction, for several reasons. First, probability of exact

recovery approaches 1 only when network size approaches infinity. In this case, the network size is only 100, which
may be too small. Second, our model is not exactly the same as the model in Jog and Loh (2015) because we
include covariates in the edge formation probability, which is more complicated. Third, we do not use an exact MAP
estimator, which may also introduce approximation error.
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classification is likely to be caused by unusual realizations of the networks process rather than the

failure of our estimation algorithm. The randomness in the network formation renders the ideology

information unclear or even misleading for some vertices, though this occurs rarely. Additional

analysis of the posterior mean of other parameters are presented in Tables C3-C6. These tables

show that the algorithm recovers the true parameters effectively, except for the weight distribution

parameters hkl. We will show that these parameters will be estimated more precisely as the network

size gets larger in Monte Carlo simulations III (where n = 500) and IV (where n = 6000).

5.2 Monte Carlo II: 500 Networks with n = 100, CH Divergence Less Than 1

The specifications for the second set of Monte Carlo simulations are the same as those for

the first set except for the weight distributions hDem,Dem, hRep,Rep and hInd,Ind. Specifically, the

edge’s weight distributions are given by hDem,Dem = hRep,Rep = hInd,Ind = (0.2, 0.15, 0.35, 0.3),

and hDem,Rep = hDem,Ind = hRep,Ind = (0.4, 0.3, 0.2, 0.1). Again, 500 networks with size n = 100

are simulated and estimated. The implied CH divergence according to (21) and (22) decreases to

0.4719, which is now less than 1.

The total execution time for these simulations is 418,322 seconds (about 5 days). The speed of

convergence in terms of the number of iterations is relatively slow; Figure D1 depicts the histogram

of the number of iterations (including burn-in and posterior). Figure D2 and Table D1 summarize

the distribution of misclassification rates across the 500 simulations. Comparing with Monte Carlo

I, the misclassification rates are higher; for the worst case, the misclassification rate is as high as

24%. Only 2.8% of the simulations have 0 misclassification. This is consistent with the theoretical

prediction of Theorem 1 that a CH divergence lower than 1 is associated with low probability

of exact recovery. Table D2 provides a detailed tabulation of the estimated vs. true ideologies

in this set of Monte Carlo simulations. Figure D3 plots, for the correctly classified vertices, the

histogram of the difference in posterior probability between the highest posterior probability (i.e.,

the posterior for the true ideology) and the second highest posterior probability. It is shown to be

mostly concentrated at 1, though relative to Figure C3 for Monte Carlo I, the difference is somewhat

more likely to be less than 1 and is more spread out. This indicates that, when CH is less than

1, our categorizations are not as informative even though we obtained the correct classification.

Similarly, Figure D4 plots, for the misclassified vertices, the histogram of the difference in posterior

probability between the highest posterior probability and the posterior probability of the true

ideology. The difference is rather evenly distributed, which is similar to Figure C4 in Monte Carlo

I. Additional analysis of the posterior mean of other parameters are presented in Tables D3-D6.

These tables show that the algorithm recovers the true parameters effectively, except for the weight
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distribution parameters hkl.

5.3 Monte Carlo III: 500 Networks with n = 500, CH Divergence Exceeding 1

The specifications for the third set of Monte Carlo simulations are the same as those of Monte

Carlo II except for the network size. Now we simulate 500 networks, each with a network size of

n = 500. As a result of the increase in the network size, the implied CH divergence according to

(21) and (22) is now 1.7537, which is larger than 1.

The total execution time for these simulations is 31,974 seconds (about 9 hours). The speed of

convergence is fast in terms of the number of iterations (ranging from 600 to 900); Figure E1 depicts

the histogram of the number of iterations (including burn-in and posterior). The misclassification

rates in all 500 simulations are 0. Therefore, this set of simulations over-perform the previous

two in terms of both convergence speed and accuracy rate. Figure E2 plots the histogram of the

difference in posterior probability between the highest posterior probability (i.e., the posterior for

the true ideology) and the second highest posterior probability for the correctly classified vertices

(which are all vertices because of 0 misclassification rate). The difference is almost completely

concentrated at 1, indicating that our categorization based on posterior mode is very informative;

in fact, for 99.9976% of the correctly classified vertices, the posterior probability on the true ideology

is 1. Additional analysis of the posterior mean of other parameters are presented in Tables E1-E4.

These tables show that the algorithm recovers the true parameters effectively, including the weight

distribution parameters hkl (see Table E3).

5.4 Monte Carlo IV: 100 Networks with n = 6, 000, CH Divergence Exceeding 1

In the fourth set of Monte Carlo simulations, we make several important changes. First, we

increase the network size to n = 6000, which is comparable to the size of the political contribution

network in our data. Also importantly, we deviate from the symmetry in the within-community and

between-community link formation probabilities. Both changes are intended to assess the perfor-

mance of our estimation algorithm in an environment that resembles the actual data. We again sim-

ulate and estimate 100 networks. Specifically, the coefficient in the network formation probability is

given by βx = (−3, 1, 1, 0.7, 0.3, 0.3), and the edge’s weight distributions are given by hDem,Dem =

hRep,Rep = (0.1, 0.2, 0.2, 0.5), hInd,Ind = (0.25, 0.25, 0.25, 0.25), hDem,Rep = (0.5, 0.2, 0.2, 0.1), and

hDem,Ind = hRep,Ind = (0.3, 0.3, 0.3, 0.1). Using expressions (18) and (22) to evaluate pairwise

divergence between ideology communities, we have DL+(θ,W (Dem),W (Rep)) = 13.1003, and

DL+(θ,W (Dem),W (Ind)) = DL+(θ,W (Rep),W (Ind)) = 6.011, and thus the CH divergence

6.011 > 1.
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The total execution time for the fourth set of simulations is 930,673 seconds (about 11 days ). The

speed of convergence is fast in terms of the number of iterations (ranging from 600 to 900); Figure

F1 depicts the histogram of the number of iterations. Therefore, the long execution time is a result

of heavy computation in each iteration, not the number of iteration. Misclassification rates are 0 for

99 simulations, 0.0167% (i.e., 1 vertex is misclassified) for 1 simulation. For the correctly classified

vertices, the numerical posterior distributions of ideology are degenerate in the true ideology. For

the only vertex that is incorrectly classified in this set of simulations, the difference between the

highest posterior probability and the posterior probability of the true ideology is 0.13. These results

suggest that the simulated data exhibit strong information on the community structure, and that

our algorithm is efficient in identifying this structure. Additional analysis of the posterior mean

of other parameters are presented in Tables F1-F4. These tables show that the algorithm recovers

the true parameters effectively, including the weight distribution parameters hkl.

To summarize, our algorithm has excellent performance when the data is generated with CH

divergence greater than 1. It has reasonably good performance even when the data is generated

with CH divergence lower than 1. The results also suggest that a large network is not necessarily

undesirable. On the one hand, it brings in more computational burden and increases the runtime;

on the other hand, it also embodies more information and speeds up the convergence.

6 Empirical Implementation and Results

6.1 Empirical Implementation.

We empirically infer the ideologies of 5,806 PCs from the giant component in the campaign

finance network depicted in Figure 3. There are 3 categories of ideologies: Democratic, Republican,

and Independent. For the small number of PCs whose self-reported affiliations do not belong to

these categories, we treat them as if we do not observe their report. The set Vo contains PCs

with self-reported affiliations x̂i’s. We assume the following functional form for the edge formation
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probability:

γ(xi, xj , zi, zj)
′β = β1 + β21xi=xj=Dem + β31xi=xj=Rep + β41xi=xj=Ind

+β51(xi=Dem,xj=Ind)∨(xi=Ind,xj=Dem) + β61(xi=Rep,xj=Ind)∨(xi=Ind,xj=Rep)

+β71statei=statej + β81industryi=industryj
+ β91(housei=1)∨(housej=1)

+β101(senatei=1)∨(senatej=1) + β111(presidenti=1)∨(presidentj=1)

+β121(qualified PACi=1)∨(qualified PACj=1) + β131(qualified Partyi=1)∨(qualified Partyj=1)

+β141(nationali=1)∨(nationalj=1) + β151(authorizedi=1)∨(authorizedj=1)

+β161(fundraiseri=1)∨(fundraiserj=1) + β17 [ln bi + ln bj ] + β18

[
(ln bi)

2 + (ln bj)
2
]

+β19 ln bi ln bj , (36)

where the first term is a constant characterizing the baseline connection probability between Demo-

cratic and Republican PCs; the second to the sixth terms characterize the connection probabilities

for other ideology pairs; the seventh and the eighth terms capture the effect of the two PCs be-

longing to the same state or industry; the ninth to the sixteenth terms capture the effects of PCs’

institutional characteristics: whether one of them is a House campaign, a Senate campaign, a

Presidential campaign, a qualified PAC, a qualified Party, a national committee, authorized by a

candidate, or a joint fundraiser; and the seventeenth to the nineteenth terms capture the effect of

both PCs’ budgets on link formations probability, which is a restrictive form of that in (8) and

assumes that the effect of financial and institutional characteristics are the same across ideological

pairs. The main reason for this parsimonious specification is to reduce the computational inten-

sity. The estimation results do not seem to show signs of severe mis-specification. The transfer

amount Yij is discretized into multiples of $500, and can take values of {0, 1, 2, ..., 100} where 100

includes all the transfer higher than $50,000. The initial values in the Gibbs sampler are randomly

generated, and different sets of initial values are used.

6.2 Estimation Results: Posterior Mean and Standard Deviations.

Table 10 presents the posterior mean and standard deviation of β, the coefficients in edge for-

mation probability. The second to the sixth coefficients are all positive, indicating that Democratic

and Republican PCs (the baseline case) have the lowest connection probability. Additionally, the

Democratic PCs have stronger within party connection than the Republican PCs. Moreover, In-

dependent PCs have a higher probability of connecting with Democratic or Republican PCs than

other Independent PCs. It is also interesting to note that, everything else equal, pairs of Republican
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PCs are less likely to form a link than Republican/Independent or Democratic/Independent pairs

of PCs.

Tables 11 and 12 present the posterior mean and standard deviation of θ, the unconditional

probability of ideology; and ε, the measurement error. Tables 11 shows that in the population of all

PCs, 40.01% are Democratic, 42.74% are Republican, and 17.24% are Independent. The posterior

standard deviations of these estimates are small. Table 12 shows that the self-reported ideologies

of the PCs are likely to be erroneous with probability 7.37%.

Due to the large number of parameters in the weight distribution function, we present the

estimates of h in Figure 10, which shows the posterior means of all the values of (hkl,1, ..., hkl,100)

for all k, l ∈ {Dem, Rep, Ind} pairs graphically.

β Posterior Mean Posterior Standard Deviation

constant -7.4729 0.0166
1xi=xj=Dem 1.3301 0.0099
1xi=xj=Rep 0.8210 0.0130
1xi=xj=Ind 0.6405 0.0134

1(xi=Dem,xj=Ind)∨(xi=Ind,xj=Dem) 1.2909 0.0121

1(xi=Rep,xj=Ind)∨(xi=Ind,xj=Rep) 1.5797 0.0119

Same state 0.6399 0.0043
Same industry 0.2185 0.0117
One of them is a House campaign 0.5306 0.0034
One of them is a Senate campaign 0.3783 0.0035
One of them is a Presidential campaign 0.0212 0.0113
One of them is a qualified PAC 0.7006 0.0049
One of them is a qualified Party -0.5334 0.0066
One of them is a national committee 0.9421 0.0133
One of them is authorized by a candidate -0.4473 0.0090
One of them is a joint fundraiser -0.7623 0.0059
(ln bi + ln bj) -0.0442 0.0023
((ln bi)

2 + (ln bj)
2) 0.0162 0.00004

ln bi ln bj -0.0010 0.0002

Table 10: Posterior Distribution of β

θ Posterior Mean Posterior Standard Deviation

P(Dem) 0.4001 0.0045
P(Rep) 0.4274 0.0046
P(Ind) 0.1724 0.0036

Table 11: Posterior Distribution of θ
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ε Posterior Mean Posterior Standard Deviation

0.0737 0.0042

Table 12: Posterior Distribution of ε
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Figure 10: Posterior Mean of h
Note: Bin size is 500. Probability of transfer amount higher than $50,000 is plotted at $50,000.

Chernoff-Hellinger Divergence of the Estimated Model. Using the posterior mode of x,

and the posterior means of θ, β, h, we calculate the implied Chernoff-Hellinger divergence:

DL+(θ,W (Dem),W (Rep)) = 14.7760,

DL+(θ,W (Dem),W (Ind)) = 26.6116,

DL+(θ,W (Rep),W (Ind)) = 22.4425,

and thus the CH divergence is 14.7760 > 1. Therefore, the data generating process, corresponding

to our estimated parameters, satisfies the condition for exact recovery as stated in Theorem 1.
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6.3 Comparing Estimated and Self-Reported Ideologies for PCs that Self Re-

port Ideologies

Using the posterior mode as a point estimate of the ideology, Table 13 presents the cross tabula-

tion of all PCs according to self-reported and estimated ideology. Overall, 90.70% of our estimates

match the self reports: 94.36% for self-reported Democratic PCs, and 89.49% for self-reported

Republican PCs.

Estimated Dem Estimated Rep Estimated Ind

Self-Reported Dem 954 (94.36%) 43 (4.25%) 14 (1.38%)
Self-Reported Rep 46 (4.60%) 894 (89.49%) 59 (5.91%)
Self-Reported Ind 16 (29.09%) 14 (25.45%) 25 (45.45%)
No Reported Affiliation 748 (20.00%) 1,202 (32.13%) 1,791 (47.87%)

Table 13: Tabulation of Estimated vs. Self-Reported Ideology
Note: The percentages are calculated for each row.

6.4 Re-examining the Network Statistics Using Estimated Ideologies

In Section 3, we presented the network statistics based on self-reported ideologies for those

PCs that self reported their ideologies. Here we re-examine these statistics based on estimated

ideologies of all PCs. Conditional on the estimated ideologies, the empirical distribution of transfer

amount is shown in Figure 11, and the mean of each distribution is shown in Table 14. On average,

the transfer amount is the highest for Democratic PC pairs and Republican PC pairs, and this is

partially due to the heavy tail of the within-party contributions. The transfer amount is smaller

between Democratic and Republican PCs, and smallest when it involves Independent PCs. This

is consistent with the estimates on connection probability. Independent PCs have overall high

connection probability, but the associated transfer amount is small. Democratic and Republican

PCs have relatively lower within-party connection probability, but the associated transfer amount

is larger.

Dem, Dem Rep, Rep Ind, Ind Dem, Rep Dem, Ind Rep, Ind

26,311.03 22,165.53 8,144.17 18,507.13 3,206.26 3,769.65

Table 14: Mean of Transfer Amount Conditional on Estimated Ideology

Next, we compare the contribution patterns of the PCs according to their self-reported vs. es-

timated ideologies. For each PC i, let numDemi, numRepi, and numIndi denote its numbers of
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Figure 11: Empirical Distribution of Transfer Amount Conditional on Estimated Ideology
Note: Bin size is 500. Observations with transfer amount higher than $50,000 are plotted at $50,000.

connections with (estimated) Democratic, Republican, and Independent PCs respectively. In Fig-

ures 12-14, we plot the distributions of numDem (dark bar), numRep (white bar), and numInd

(gray bar) for different groups of PCs, focusing on the difference between self-reported and esti-

mated ideologies. The left panel in Figure 12 presents the distributions for PCs that self reported

to be Democratic, and the right panel for PCs that did not self report but are estimated to be

Democratic PCs. Figures 13 and 14 are similar, but for Republican and Independent PCs respec-

tively. Qualitatively, the degree distributions have similar patterns for self-reported and estimated

PCs with the same ideology. As a robustness check, we redo the analysis above, with each con-

nection weighted by transfer amount. Specifically, for each PC, we calculate its total amount of

transfer to and from (estimated) Democratic, Republican, and Independent PCs respectively, and

then plot the distributions of these numbers for different groups of PCs. The histograms are shown

in Figures 15, 16, and 17, respectively for Democratic, Republican and Independent PCs. Again,

the distributions are similar for self-reported and estimated PCs with the same ideology. These

results demonstrate that PCs without self-report, classified according to our estimation results,

behave similarly to PCs with the corresponding self reports of affiliations.
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Figure 12: Self-reported vs. Estimated Democratic PCs: Distributions of Number of Connections
Note: These figures only include observations with positive number of connections. Observations with more than 200

connections are plotted at 200.
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Figure 13: Self-reported vs. Estimated Republican PCs: Distributions of Number of Connections
Note: These figures only include observations with positive number of connections. Observations with more than 200

connections are plotted at 200.
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Figure 14: Self-reported vs. Estimated Independent PCs: Distributions of Number of Connections
Note: These figures only include observations with positive number of connections. Observations with more than 200

connections are plotted at 200.
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Figure 15: Self-reported vs. Estimated Democratic PCs: Distributions of Transfer Amount
Note: Bin size is 25,000. Observations with more than $500,000 transfer to and from one class of committees are

plotted at $500,000.
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Figure 16: Self-reported vs. Estimated Republican PCs: Distributions of Transfer Amount
Note: Bin size is 25,000. Observations with more than $500,000 transfer to and from one class of committees are

plotted at $500,000.
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Figure 17: Self-reported vs. Estimated Independent PCs: Distributions of Transfer Amount
Note: Bin size is 25,000. Observations with more than $500,000 transfer to and from one class of committees are

plotted at $500,000.
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6.5 Estimation Results: Analyzing the Posterior Distribution of PCs’ Political

Ideologies

Now we analyze the posterior distribution of political ideology. Figure 18 plots, for PCs whose

estimates are the same as the self reports (i.e., the reported ideology has the highest posterior

probability), the distribution of the differences between the highest and the second highest posterior

probability. These differences concentrate around 1, meaning the posterior probabilities concentrate

on the self-reported affiliation. This confirms that we do not obtain these classifications by luck. We
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Figure 18: Distribution of Difference in the Posterior Probability of Ideology
Note: Horizontal axis is the difference between the highest posterior probability (i.e., the posterior probability of the

self-reported ideology) and the second highest posterior probability. Bin size is 0.025.

do a similar analysis in Figure 19, for PCs whose estimates differ from the self reports, by plotting

the distributions of the differences between the highest posterior probability and the posterior

probability of the reported ideology. These distributions have larger spread, but still a mass around

1. This indicates that these are not “near misses”: our estimate strongly favors an ideology different

from the PC’s self-reported ideology.

Diagnostics of the Discrepancy. We further investigate the reason for the discrepancy between

our estimates and the self reports by comparing PCs with different estimated ideology but the same

self reported affiliation.

First of all, their financial conditions are different. Table 15 shows that self-reported Democratic

PCs that are estimated as Republican are mostly PCs with high budget, and self-reported Demo-

cratic PCs that are estimated as Independent are mostly PCs with low budget. Similarly, among

self-reported Republican PCs, the ones estimated to be Democratic or Independent are mostly PCs

with lower budget.

Second, their contribution patterns are different. For each PC i, we define DemSharei as its
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Figure 19: Distribution of Difference in the Posterior Probability of Ideology
Note: Horizontal axis is the difference between the highest posterior probability and the posterior probability of the

self-reported ideology. Bin size is 0.025.

Estimated Dem Estimated Rep Estimated Ind

Self-Reported Dem 32.26 206.52 3.50
Self-Reported Rep 10.00 77.96 6.77
Self-Reported Ind 31.00 3.00 46.00

Table 15: Median Budget (in $1,000)
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share of connections with (estimated) Democratic PCs DemSharei = numDemi
numDemi+numRepi+numIndi

,

and similarly for RepSharei and IndSharei. In Table 16, we compare the means of DemShare,

RepShare, and IndShare for different groups of PCs. As a robustness check, we also calculate the

shares in terms of transfer amount and present the results in the same table. The table supports

our categorization of some PCs as Republican (Democratic) whose self-reports are Democratic

(Republican) because they have significantly higher shares of connections with the Republican

(Democratic) PCs, a pattern exhibited by all estimated Republican (Democratic) PCs.

Number of Connection Transfer Amount
Dem Share Rep Share Ind Share Dem Share Rep Share Ind Share

Reported Dem, Estimated Rep 8.71% 19.65% 71.64% 28.36% 20.51% 51.13%
All PCs Estimated as Dem 72.58% 4.40% 23.02% 78.24% 4.15% 17.62%
Reported Rep, Estimated Dem 49.99% 13.44% 36.58% 54.56% 21.20% 24.24%
All PCs Estimated as Rep 6.69% 52.98% 40.33% 6.01% 55.77% 38.22%

Table 16: Mean of DemShare, RepShare, and IndShare

Next, we will discuss the discrepancy in more detail case by case. The discrepancies will fall

into one of six cases, as shown in the panel label of Figure 20. Figure 20 depicts the distribution

of the number of connections with PCs with different ideologies according to our estimates.

In the first case, some self-reported Democratic PCs are estimated to be Republican. In the data,

these PCs have a small number of connections with PCs that self reported affiliations, most of which

are Democratic. However, they are mostly connected with PCs without self reported affiliations,

most of which are Independent by our estimates. As our estimate β suggests, Republican PCs have

the highest connection probability with Independent PCs. Therefore, although they self reported

to be Democratic and are connected with few self-reported Republican or Independent PCs, their

overall contribution patterns are close to that of the Republican PCs. In the degree distribution

presented in Figure 20 for this case, it can be seen that the tail distribution is very close to that of

the self-reported Republican PCs in Figure 13.

In the second case, some self-reported Democratic PCs are estimated as Independent. Only one

of these PCs has one connection with another Independent PC, and the rest have no connection with

Independent PCs. According to estimate β, classifying them as Independent, rather than Demo-

cratic, better rationalize this pattern because Independent-Independent connection probability is

lower than Democratic-Independent connection probability.

In the third case, some self-reported Republican PCs are estimated as Democratic. These PCs

have similar number of connections to all three classes of PCs, with slightly more Democratic

connections. Their number of connections to the Republican and the Independent PCs are not

52



jointly high enough to be estimated as Republican.

In the fourth case, some self-reported Republican PCs are estimated as Independent. These PCs

have more connections with Republican than Democratic PCs, but not large enough connections

with Independent PCs to be estimated as Republican. In other words, they do not exhibit the heavy

tail on connection with Independent PCs which is observed for other self-reported Republican PCs.

In the fifth case, some self-reported Independent PCs are estimated as Democratic. These PCs’

numbers of connections with Democratic PCs significantly outweigh that with the Republican and

Independent PCs. There are not large enough connections with Republican PCs to be estimated

as Independent.

In the sixth case, some self-reported Independent PCs are estimated as Republican. These PCs

do not have large enough connections with Democratic PCs to be estimated as Independent.

Discussion. Here we present and analyze the discrepancy between our estimate and the self-

report, in an attempt to better understand the implications of our model and algorithm. We are

not making a claim that these PCs strategically misreported their party affiliations. We show that

under our model, their contribution patterns to other PCs are different from the majority of the

PCs self reporting the same affiliation as they did. Simplifications in our model are also potential

reasons for the discrepancy. For example, our model does not capture all aspects of the incentives in

political contribution between PCs. Additionally, we only study the contributions among PCs, and

do leave out other campaign activities such as collection of individual contribution and independent

expenditures. In Appendix G we list the PCs that self reported to be Democratic (Republican),

but are estimated to be Republican (Democratic).

7 Conclusion

About two thirds of the political committees registered with the Federal Election Commission do

not self identify their party affiliations. In this paper we propose and implement a novel Bayesian

approach to infer about the ideological affiliations of political committees based on the network

of the financial contributions among them. In Monte Carlo simulations, we demonstrate that our

estimation algorithm achieves very high accuracy in recovering their latent ideological affiliations

when the pairwise difference in ideology groups’ connection patterns satisfy a condition known

as the Chernoff-Hellinger divergence criterion. We illustrate our approach using the campaign

finance record in 2003-2004 election cycle. Using the posterior mode to categorize the ideological

affiliations of the political committees, our estimates match the self reported ideology for 94.36%

of those committees who self reported to be Democratic and 89.49% of those committees who self
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Figure 20: Distributions of Number of Connections with Different Committees
Note: Observations with more than 200 connections are plotted at 200.
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reported to be Republican.

Since PCs are required to report to the FEC the financial contributions among each other, our

proposed methods to infer the ideological affiliations of political committees via financial contribu-

tions network can be implemented readily. To the extent that the estimated ideologies for the PCs

are close to their true latent ideologies, our estimated PC ideology can fill the missing “ideologies”

problem for researchers who are interested in studying individuals’ political contribution patterns

using FEC’s “Contributions by Individuals” data. Moreover, since our estimation methods can be

implemented using data from only one election cycle, we can estimate the ideological affiliations of

the same PCs using data from different election cycles. This would allow us to study the possible

evolutions of ideological affiliations of PCs over time. We can also exploit the permanent presence

of the national committees such as Democratic National Committee (DNC) and Republican Na-

tional Committee (RNC) and use their network links as a vehicle to study the possible changes of

party platforms that are not necessarily reflected in official documents. These are exciting areas

for future research.
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Appendix A Construction of Variable industry∗

We construct PCs’ characteristic “industry∗” using the industrial breakdown information from

OpenSecrets.org. Their breakdown has three nested levels - from coarse to fine - “sector”, “in-

dustry”, and “category”. 26 We define variable industry∗ to be the sector for PCs in sectors that

are relatively homogeneous such as agricultural business. We define industry∗ to be a finer level,

industry or category, for PCs in sectors that are relatively heterogeneous such as miscellaneous

business. The reason is that we use interaction term “same industry∗” in our analysis; and we

want, within each industry∗, similar level of heterogeneity. A detailed description of the construc-

tion of the variable industry∗ is given below, and the corresponding codebook is given in Table

A1.

1. industry∗=sector if:

A PC belongs to one of the following sectors: Agribusiness, Communications/Electronics,

Construction, Defense, Energy & Natural Resources, Finance, Insurance & Real Estate,

Health, Labor, Lawyers & Lobbyists, Transportation.

2. industry∗=industry if:

(a) A PC belongs to the Miscellaneous Business sector.

(b) A PC belongs to the Other sector, but not in the Other industry.

(c) A PC belongs to the Ideological/Single-Issue sector, but not in one of the following in-

dustries: Misc Issues, Republican/Conservative, Democratic/Liberal, Leadership PACs,

Candidate Committee.

3. industry∗=category if:

(a) A PC belongs to the Other industry in the Other sector, but not in the Other category.

(b) A PC belongs to the Misc Issues industry in the Ideological/Single-Issue sector.

4. industry∗=NA if:27

(a) A PC belongs to one of the following sectors: Unknown, Joint Candidate Committee,

Party Committee, Candidate, Non-contribution.

(b) A PC belongs to one of the following industries in the Ideological/Single-Issue sector:

Republican/Conservative, Democratic/Liberal, Leadership PACs, Candidate Commit-

tee.

(c) A PC’s sector, industry and category are all Other.

26The codebook is available at https://www.opensecrets.org/downloads/crp/CRP_Categories.txt.
27We define the interaction term “same industry∗” to be 0 if one or both PCs’ industry∗s are NAs.

A1
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Code Description

A Agribusiness
B Communic/Electronics
C Construction
D Defense
E Energy/Nat Resource
F Finance/Insur/RealEst
H Health
H6000 Welfare & Social Work
J1300 Third-party committees
J3000 Consumer groups
J4000 Fiscal & tax policy
J7200 Elderly issues/Social Security
J7600 Animal Rights
J8000 Labor, anti-union
J9000 Other single-issue or ideological groups
K Lawyers & Lobbyists
M Transportation
N00 Business Associations
N01 Food & Beverage
N02 Beer, Wine & Liquor
N03 Retail Sales
N04 Misc Services
N05 Business Services
N06 Recreation/Live Entertainment
N07 Casinos/Gambling
N08 Lodging/Tourism
N12 Misc Business
N13 Chemical & Related Manufacturing
N14 Steel Production
N15 Misc Manufacturing & Distributing
N16 Textiles
NA Not Available
P Labor
Q04 Foreign & Defense Policy
Q05 Pro-Israel
Q08 Women’s Issues
Q09 Human Rights
Q11 Environment
Q12 Gun Control
Q13 Gun Rights
Q14 Abortion Policy/Anti-Abortion
Q15 Abortion Policy/Pro-Abortion Rights
W02 Non-Profit Institutions
W03 Civil Servants/Public Officials
W04 Education
X5000 Military

Table A1: Codebook for Variable industry∗
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Appendix B Contribution Limit

Contribution limits for the 2003-2004 Election Cycle are given in Table B1.28 They differ by the

identity of the contributor and that of the recipient. As a contributor, individual, national party

committee, non-national party committee, multicandidate PAC, and non-multicandidate PAC have

different contribution limits. As a recipient, candidate or candidate committee, national party

committee, non-national party committee, and other PC have different contribution limits. As

shown in the table, there is no limit for contribution between party committees, national or local.

For the rest of the contributions between PCs, the limits range from $2,000 to $25,000, most of

which are set at $5,000.

28Source: http://www.fec.gov/pages/brochures/ContributionLimits2003-2004.htm.
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Appendix C Figures and Tables: Monte Carlo I
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Figure C1: Histogram of Number of Iterations
Note: Bin size is 1000.

Average Standard Deviation Minimum Maximum

0.011020 0.011637 0.000000 0.080000

Table C1: Summary Statistics on Misclassification Rates
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Figure C2: Histogram of Misclassification Rate
Note: Bin size is 0.01.

Estimated Dem Estimated Rep Estimated Ind

True Dem 32.7520% 0.1820% 0.1540%
True Rep 0.1700% 32.7440% 0.2000%
True Ind 0.1840% 0.2120% 33.4020%

Table C2: Tabulation of Estimated vs. True Ideology
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Figure C3: Histogram of Difference in Posterior Probability for Correctly Classified Vertices
Note: Each observation is a vertex. Horizontal axis is the difference between the highest posterior probability(i.e.,

the posterior probability of the true ideology) and the second highest posterior probability. Bin size is 0.025.
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Figure C4: Histogram of Difference in Posterior Probability for Misclassified Vertices
Note: Each observation is a vertex. Horizontal axis is the difference between the highest posterior probability and

the posterior probability of the true ideology. Bin size is 0.025.
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β Bias Standard Deviation

constant -0.020032 0.306216
1xi=xj=Dem 0.014907 0.075353
1xi=xj=Rep 0.008465 0.075682
1xi=xj=Ind 0.017410 0.078703

1(xi=Dem,xj=Ind)∨(xi=Ind,xj=Dem) 0.001838 0.064869

1(xi=Rep,xj=Ind)∨(xi=Ind,xj=Rep) -0.001370 0.064845

Same state 0.001803 0.043134
Same industry 0.002705 0.044662
One of them is a House campaign -0.001016 0.046084
One of them is a Senate campaign -0.004365 0.046909
One of them is a Presidential campaign -0.001202 0.046442
One of them is a qualified PAC 0.000268 0.044655
One of them is a qualified Party 0.001389 0.042022
One of them is a national committee 0.001199 0.050153
One of them is authorized by a candidate 0.001038 0.046411
One of them is a joint fundraiser -0.001212 0.051018
(ln bi + ln bj) 0.004666 0.103812
((ln bi)

2 + (ln bj)
2) -0.000569 0.013868

ln bi ln bj -0.000553 0.025041

Table C3: Parameters Governing Edge Formation Probabilities β
Note: Bias is defined as the difference between the average of posterior means across simulations and the true

parameter value. Standard Deviation is defined as the standard deviation of posterior means across simulations.

θ Bias Standard Deviation

P(Dem) -0.000223 0.004705
P(Rep) -0.000224 0.004567
P(Ind) 0.000447 0.004620

Table C4: Parameters Governing the Fraction of Ideologies θ
Notes: Bias is defined as the difference between the average of posterior means across simulations and the true

parameter value. Standard Deviation is defined as the standard deviation of posterior means across simulations.
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hDem,Dem Bias Standard Deviation

0.136574 0.014174
0.101386 0.011487
-0.102415 0.014947
-0.135545 0.017527

hRep,Rep Bias Standard Deviation

0.136643 0.014089
0.102114 0.012182
-0.102477 0.014942
-0.136280 0.017799

hInd,Ind Bias Standard Deviation

0.134438 0.014390
0.100568 0.011735
-0.101278 0.014835
-0.133727 0.017879

hDem,Rep Bias Standard Deviation

-0.097963 0.013732
-0.033662 0.011047
0.032859 0.009625
0.098766 0.010588

hDem, Ind Bias Standard Deviation

-0.096669 0.013237
-0.032747 0.011223
0.032331 0.009789
0.097085 0.009931

hRep, Ind Bias Standard Deviation

-0.097534 0.013724
-0.032846 0.011521
0.032789 0.009901
0.097592 0.010524

Table C5: Parameters Governing the Weight Distribution h
Notes: Bias is defined as the difference between the average of posterior means across simulations and the true

parameter value. Standard Deviation is defined as the standard deviation of posterior means across simulations.

ε Bias Standard Deviation

-0.002427 0.000660

Table C6: Parameter Governing Measurement Error ε
Notes: Bias is defined as the difference between the average of posterior means across simulations and the true

parameter value. Standard Deviation is defined as the standard deviation of posterior means across simulations.
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Appendix D Figures and Tables: Monte Carlo II
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Figure D1: Histogram of Number of Iterations
Note: Bin size is 1000.

Average Standard Deviation Minimum Maximum

0.056800 0.033604 0.000000 0.240000

Table D1: Summary Statistics on Misclassification Rates
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Figure D2: Histogram of Misclassification Rate
Note: Bin size is 0.01.

Estimated Dem Estimated Rep Estimated Ind

True Dem 31.5080% 0.9440% 0.8760%
True Rep 1.0740% 31.3140% 0.8820%
True Ind 0.8940% 1.0100% 31.4980%

Table D2: Tabulation of Estimated vs. True Ideology
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Figure D3: Histogram of Difference in Posterior Probability for Correctly Classified Vertices
Note: Each observation is a vertex. Horizontal axis is the difference between the highest posterior probability(i.e.,

the posterior probability of the true ideology) and the second highest posterior probability. Bin size is 0.025.
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Figure D4: Histogram of Difference in Posterior Probability for Misclassified Vertices
Note: Each observation is a vertex. Horizontal axis is the difference between the highest posterior probability and

the posterior probability of the true ideology. Bin size is 0.025.
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β Bias Standard Deviation

constant -0.053234 0.278777
1xi=xj=Dem 0.004676 0.088396
1xi=xj=Rep 0.005889 0.085760
1xi=xj=Ind 0.008628 0.090062

1(xi=Dem,xj=Ind)∨(xi=Ind,xj=Dem) -0.005467 0.069264

1(xi=Rep,xj=Ind)∨(xi=Ind,xj=Rep) 0.000659 0.071066

Same state 0.004227 0.043947
Same industry 0.002177 0.043028
One of them is a House campaign 0.001558 0.046981
One of them is a Senate campaign 0.000138 0.051027
One of them is a Presidential campaign 0.001651 0.046874
One of them is a qualified PAC 0.002929 0.048328
One of them is a qualified Party 0.002520 0.043062
One of them is a national committee 0.001504 0.048683
One of them is authorized by a candidate 0.005082 0.047008
One of them is a joint fundraiser 0.007028 0.049847
(ln bi + ln bj) 0.013339 0.095571
((ln bi)

2 + (ln bj)
2) -0.001264 0.013323

ln bi ln bj -0.002407 0.023131

Table D3: Parameters Governing Edge Formation Probabilities β
Note: Bias is defined as the difference between the average of posterior means across simulations and the true

parameter value. Standard Deviation is defined as the standard deviation of posterior means across simulations.

θ Bias Standard Deviation

P(Dem) 0.000043 0.004747
P(Rep) -0.000114 0.004533
P(Ind) 0.000071 0.004761

Table D4: Parameters Governing the Fraction of Ideologies θ
Note: Bias is defined as the difference between the average of posterior means across simulations and the true

parameter value. Standard Deviation is defined as the standard deviation of posterior means across simulations.
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hDem,Dem Bias Standard Deviation

0.039407 0.010862
0.070890 0.011031
-0.070779 0.012694
-0.039519 0.011386

hRep,Rep Bias Standard Deviation

0.038909 0.010678
0.072241 0.011493
-0.071994 0.012912
-0.039157 0.012040

hInd,Ind Bias Standard Deviation

0.039131 0.011047
0.071208 0.011610
-0.070468 0.013130
-0.039871 0.012104

hDem,Rep Bias Standard Deviation

-0.100952 0.014387
-0.036391 0.011860
0.036400 0.011109
0.100943 0.010614

hDem,Ind Bias Standard Deviation

-0.100720 0.013911
-0.035439 0.011370
0.035755 0.009990
0.100404 0.010030

hRep,Ind Bias Standard Deviation

-0.101129 0.014001
-0.036941 0.011595
0.036431 0.010460
0.101638 0.010507

Table D5: Parameters Governing the Weight Distribution h
Note: Bias is defined as the difference between the average of posterior means across simulations and the true

parameter value. Standard Deviation is defined as the standard deviation of posterior means across simulations.

ε Bias Standard Deviation

-0.002484 0.000581

Table D6: Parameter Governing Measurement Error ε
Note: Bias is defined as the difference between the average of posterior means across simulations and the true

parameter value. Standard Deviation is defined as the standard deviation of posterior means across simulations.
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Appendix E Figures and Tables: Monte Carlo III
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Figure E1: Histogram of Number of Iterations
Note: Bin size is 1000.
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Figure E2: Histogram of Difference in Posterior Probability for Correctly Classified Vertices
Note: Each observation is a vertex. Horizontal axis is the difference between the highest posterior probability(i.e.,

the posterior probability of the true ideology) and the second highest posterior probability. Bin size is 0.025.

β Bias Standard Deviation

constant -0.000600 0.045500
1xi=xj=Dem 0.000375 0.013841
1xi=xj=Rep 0.001279 0.014102
1xi=xj=Ind 0.000725 0.014023

1(xi=Dem,xj=Ind)∨(xi=Ind,xj=Dem) 0.001145 0.012192

1(xi=Rep,xj=Ind)∨(xi=Ind,xj=Rep) 0.000070 0.011883

Same state -0.000222 0.008429
Same industry -0.000045 0.008724
One of them is a House campaign -0.000023 0.009036
One of them is a Senate campaign -0.000173 0.009085
One of them is a Presidential campaign -0.000214 0.009082
One of them is a qualified PAC -0.000737 0.008557
One of them is a qualified Party -0.000620 0.008545
One of them is a national committee 0.000057 0.009115
One of them is authorized by a candidate -0.000122 0.009020
One of them is a joint fundraiser 0.000534 0.009923
(ln bi + ln bj) 0.000375 0.015589
((ln bi)

2 + (ln bj)
2) -0.000113 0.002002

ln bi ln bj 0.000054 0.004421

Table E1: Parameters Governing Edge Formation Probabilities β
Note: Bias is defined as the difference between the average of posterior means across simulations and the true

parameter value. Standard Deviation is defined as the standard deviation of posterior means across simulations.
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θ Bias Standard Deviation

P(Dem) 0.000469 0.007948
P(Rep) -0.000514 0.007469
P(Ind) 0.000046 0.007534

Table E2: Parameters Governing the Fraction of Ideologies θ
Note: Bias is defined as the difference between the average of posterior means across simulations and the true

parameter value. Standard Deviation is defined as the standard deviation of posterior means across simulations.

hDem,Dem Bias Standard Deviation

0.003591 0.005047
0.007005 0.004737
-0.006713 0.006200
-0.003883 0.006027

hRep,Rep Bias Standard Deviation

0.003633 0.005297
0.007228 0.004696
-0.007282 0.006413
-0.003580 0.005937

hInd,Ind Bias Standard Deviation

0.003769 0.005023
0.007100 0.004713
-0.007326 0.005899
-0.003543 0.005966

hDem, Rep Bias Standard Deviation

-0.009173 0.006111
-0.003547 0.005576
0.002779 0.004879
0.009941 0.003743

hDem,Ind Bias Standard Deviation

-0.009563 0.005808
-0.003075 0.005394
0.003214 0.004920
0.009424 0.003579

hRep, Ind Bias Standard Deviation

-0.009567 0.005856
-0.003141 0.005524
0.003000 0.004760
0.009708 0.003814

Table E3: Parameters Governing the Weight Distribution h
Note: Bias is defined as the difference between the average of posterior means across simulations and the true

parameter value. Standard Deviation is defined as the standard deviation of posterior means across simulations.

ε Bias Standard Deviation

-0.002183 0.001299

Table E4: Parameter Governing Measurement Error ε
Note: Bias is defined as the difference between the average of posterior means across simulations and the true

parameter value. Standard Deviation is defined as the standard deviation of posterior means across simulations.
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Appendix F Figures and Tables: Monte Carlo IV
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Figure F1: Histogram of Number of Iterations
Note: Bin size is 1000.
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β Bias Standard Deviation

constant -0.000099 0.003286
1xi=xj=Dem 0.000333 0.002225
1xi=xj=Rep 0.000288 0.002065
1xi=xj=Ind 0.000045 0.002128

1(xi=Dem,xj=Ind)∨(xi=Ind,xj=Dem) 0.000012 0.002087

1(xi=Rep,xj=Ind)∨(xi=Ind,xj=Rep) 0.000441 0.002084

Same state 0.000135 0.001168
Same industry -0.000033 0.001090
One of them is a House campaign -0.000167 0.001289
One of them is a Senate campaign -0.000063 0.001331
One of them is a Presidential campaign -0.000026 0.001187
One of them is a qualified PAC 0.000091 0.001104
One of them is a qualified Party 0.000060 0.001147
One of them is a national committee 0.000015 0.001267
One of them is authorized by a candidate -0.000166 0.001376
One of them is a joint fundraiser 0.000039 0.001281
(ln bi + ln bj) -0.000084 0.000527
((ln bi)

2 + (ln bj)
2) 0.000005 0.000216

ln bi ln bj 0.000030 0.000583

Table F1: Parameters Governing Edge Formation Probabilities β
Note: Bias is defined as the difference between the average of posterior means across simulations and the true

parameter value. Standard Deviation is defined as the standard deviation of posterior means across simulations.

θ Bias Standard Deviation

P(Dem) -0.000759 0.006007
P(Rep) 0.000469 0.004874
P(Ind) 0.000289 0.005318

Table F2: Parameters Governing the Fraction of Ideologies θ
Note: Bias is defined as the difference between the average of posterior means across simulations and the true

parameter value. Standard Deviation is defined as the standard deviation of posterior means across simulations.
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hDem,Dem Bias Standard Deviation

0.000352 0.000592
0.000110 0.000951
0.000025 0.000896
-0.000488 0.001082

hRep,Rep Bias Standard Deviation

0.000309 0.000557
-0.000051 0.000850
0.000283 0.000831
-0.000542 0.001025

hInd,Ind Bias Standard Deviation

-0.000002 0.001127
0.000030 0.001127
0.000158 0.001154
-0.000186 0.001181

hDem,Rep Bias Standard Deviation

-0.001770 0.001944
0.000260 0.001699
0.000455 0.001516
0.001056 0.001108

hDem,Ind Bias Standard Deviation

-0.000148 0.001221
-0.000079 0.001344
-0.000163 0.001343
0.000389 0.000966

hRep,Ind Bias Standard Deviation

-0.000176 0.001315
-0.000162 0.001176
-0.000244 0.001361
0.000581 0.000852

Table F3: Parameters Governing the Weight Distribution h
Note: Bias is defined as the difference between the average of posterior means across simulations and the true

parameter value. Standard Deviation is defined as the standard deviation of posterior means across simulations.

ε Bias Standard Deviation

-0.001132 0.002546

Table F4: Parameter Governing Measurement Error ε
Note: Bias is defined as the difference between the average of posterior means across simulations and the true

parameter value. Standard Deviation is defined as the standard deviation of posterior means across simulations.
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Appendix G List of PCs with Estimated Ideology Different from

Self Report

FEC ID Committee Name

C00113662 NEW MEXICANS FOR BILL RICHARDSON
C00165753 LEADERSHIP ’02 (FKA FRIENDS OF ALBERT GORE JR INC)
C00247734 COMMITTEE TO ELECT WILLIAM J JEFFERSON TO THE UNITED STATES CONGRESS
C00401364 FRIENDS OF JOHN SWEENEY
C00178418 BOUCHER FOR CONGRESS COMMITTEE
C00387829 DEMOCRAT GRAYSON FOR THE HOUSE
C00396101 JON PORTER FOR CONGRESS COMMITTEE
C00316596 CHRIS JOHN FOR CONGRESS
C00316141 RE-ELECT HAROLD FORD
C00220145 GENE TAYLOR FOR CONGRESS COMMITTEE
C00223230 FRIENDS OF JOHN TANNER
C00366401 MARK PRYOR FOR US SENATE
C00315176 FEINSTEIN FOR SENATE
C00347310 FRIENDS OF CHRIS DODD 2004
C00386292 NORTH DAKOTA 2004
C00143438 FRIENDS OF BYRON DORGAN
C00305110 A LOT OF PEOPLE WHO SUPPORT JEFF BINGAMAN
C00364364 DANIEL K INOUYE IN 2004
C00280917 DANIEL K INOUYE IN 98
C00396044 JOHN KENNEDY FOR US SENATE INC
C00391110 VICTORY 2004
C00389957 COBLE FOR US SENATE
C00224972 FRIENDS OF SENATOR ROCKEFELLER
C00215830 JOHN BREAUX COMMITTEE
C00391862 LOUISIANA SENATE 2003
C00325126 FRIENDS OF MARY LANDRIEU INC
C00317214 MARY LANDRIEU FOR SENATE COMMITTEE INC
C00202754 FRIENDS OF KENT CONRAD
C00368209 NELSON 2006
C00306712 NELSON 2000
C00385013 NEVADA SENATE 2004
C00204370 FRIENDS FOR HARRY REID
C00387449 MONTANA NEVADA VICTORY FUND
C00308676 WYDEN FOR SENATE
C00201533 TIM JOHNSON FOR SOUTH DAKOTA INC
C00402008 MONTANA ARKANSAS VICTORY FUND
C00255463 FRIENDS OF BLANCHE LINCOLN
C00385633 ARKANSAS SENATE 2004
C00349217 CARPER FOR SENATE
C00344051 BILL NELSON FOR U S SENATE
C00306860 EVAN BAYH COMMITTEE
C00383497 BAUCUS VICTORY FUND
C00328211 FRIENDS OF MAX BAUCUS 2002

Table G1: PCs that Self Reported to be Democratic, but are Estimated to be Republican
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FEC ID Committee Name

C00400598 ILLINOIS US SENATE VICTORY COMMITTEE
C00387001 OHIO VICTORY COMMITTEE
C00406322 REPUBLICAN PARTY OF KENDALL COUNTY
C00188078 SEVENTH CONGRESSIONAL DISTRICT REPUBLICAN PARTY OF WISCONSIN
C00350496 BRADY FOR CONGRESS
C00371443 DANNY DAVIS FOR CONGRESS
C00400531 KY 04 CONGRESSIONAL VICTORY COMMITTEE
C00376749 RODNEY ALEXANDER FOR CONGRESS INC.
C00272211 PETE KING FOR CONGRESS COMMITTEE
C00272153 COMMITTEE TO ELECT MCHUGH
C00378158 ZARELLI FOR CONGRESS
C00396523 ROSELYN FOR CONGRESS
C00401703 FRIENDS OF ALJANICH
C00385542 PHELPS FOR CONGRESS
C00388884 HOOSIERS FOR HARDY
C00400556 LA 03 CONGRESSIONAL VICTORY COMMITTEE
C00400507 LA 07 CONGRESSIONAL VICTORY COMMITTEE
C00190637 TIERNEY FOR CONGRESS COMMITTEE
C00386060 DEROSSETT FOR CONGRESS
C00399675 FRIENDS OF STEVE MORROW
C00392860 BRAUNER FOR CONGRESS
C00398776 HUFFMAN FOR CONGRESS
C00403642 PAUL RODRIGUEZ FOR CONGRESS
C00386078 BELL FOR CONGRESS COMMITTEE
C00388991 RICCARDI FOR CONGRESS
C00399295 MATT MUEDA FOR CONGRESS
C00395061 JANE ESHAGPOOR FOR CONGESS
C00398834 ASAY FOR CONGRESS COMMITTEE
C00331108 REP DON YOUNG CONSTITUTIONAL DEFENSE FUND
C00320168 ASA HUTCHINSON FOR CONGRESS COMMITTEE
C00395731 TERESA DOGGETT TAYLOR FOR CONGRESS
C00333294 DOUG OSE FOR CONGRESS ’98
C00219204 PORTER GOSS RE-ELECTION TEAM
C00335190 CONNELLY FOR CONGRESS
C00300699 NODLER FOR CONGRESS COMMITTEE
C00096412 COMMITTEE TO REELECT CONGRESSMAN CHRIS SMITH
C00091298 THE COMMITTEE TO RE-ELECT CONGRESSWOMAN MARGE ROUKEMA
C00334334 DON SHERWOOD FOR CONGRESS
C00397075 SANTA CRUZ ACTION COMMITTEE
C00394346 BUSH ADMINISTRATION RETIREMENT FUND PAC (BARF PAC)
C00405688 DUMP BUSH MISSOULA
C00374652 DIANE ALLEN FOR US SENATE
C00389692 DR KATHURIA FOR US SENATE
C00349795 GORMLEY FOR SENATE PRIMARY ELECTION FUND
C00366237 CHAFEE FOR SENATE
C00325571 SENATOR JOHN WARNER COMMITTEE

Table G2: PCs that Self Reported to be Republican, but are Estimated to be Democratic
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Appendix H Alternative Model: No Measurement Error, but with

Hold Out Sample

In this alternative model, we randomly select 200 PCs in Vo to be the holdout sample. Addi-

tionally, we assume no measurement error, i.e., ε = 0 and xi = x̂i when x̂i is available. We estimate

this model pretending x̂i is not available for the holdout sample. In order to assess our estimates,

we compare the estimated posterior distribution and the self report for the holdout sample.

Posterior distributions of β, θ, h are summarized in Table H1, H2, and Figure H1.

β Posterior Mean Posterior Standard Deviation

constant -72.9487 1.1780
1xi=xj=Dem 47.9304 0.4056
1xi=xj=Rep 47.8478 0.4027
1xi=xj=Ind 47.8889 0.3907

1(xi=Dem,xj=Ind)∨(xi=Ind,xj=Dem) 48.3420 0.4055

1(xi=Rep,xj=Ind)∨(xi=Ind,xj=Rep) 48.4466 0.4062

Same state 0.7792 0.0114
Same industry 0.5151 0.0272
One of them is a House campaign 0.5315 0.0082
One of them is a Senate campaign 0.2261 0.0044
One of them is a Presidential campaign -0.2852 0.0169
One of them is a qualified PAC 0.3990 0.0051
One of them is a qualified Party -0.7151 0.0133
One of them is a national committee 0.7163 0.0116
One of them is authorized by a candidate -0.4360 0.0071
One of them is a joint fundraiser -0.8477 0.0102
(ln bi + ln bj) 1.4648 0.0579
((ln bi)

2 + (ln bj)
2) 0.0056 0.0003

ln bi ln bj -0.1017 0.0038

Table H1: Posterior Distribution of β

θ Posterior Mean Posterior Standard Deviation

P(Dem) 0.3839 0.0045
P(Rep) 0.3913 0.0045
P(Ind) 0.2248 0.0038

Table H2: Posterior Distribution of θ

In the following part, we focus on the holdout sample. Table H3 cross tabulates PCs in the

holdout sample according to self-reported and estimated ideology. Our estimated ideology matches

the self report for 87.76% of those who reported to be Democratic and 79.17% of those who reported
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Figure H1: Posterior Mean of h
Note: Probability of transfer amount higher than $50,000 is plotted at $50,000.

to be Republican.

In this part, we analyze the posterior distribution of political ideology. Figure H2 plots, for

PCs whose estimates are the same as the self-reports (i.e., the reported ideology has the highest

posterior probability), the distribution of the differences between the highest and the second highest

posterior probability. These differences concentrate around 1, meaning the posterior probabilities

concentrate on the self-reported affiliation. This confirms that we do not obtain these classifications

by luck.

We do a similar analysis in Figure H3, for PCs whose estimates differ from the self-reports,

by plotting the distributions of the differences between the highest posterior probability and the

posterior probability of the self-reported ideology. The distributions for PCs which self reported

to be Democratic (Republican) but are estimated as Republican (Democratic) are concentrated

around 0, indicating that these are “near misses”.

Finally, Table H4 and H5 list the PCs that self reported to be Democratic (Republican), but

are estimated to be Republican (Democratic).
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Estimated Dem Estimated Rep Estimated Ind

Self-Reported Dem 86 (87.76%) 9 (9.18%) 3 (3.06%)
Self-Reported Rep 10 (10.42%) 76 (79.17%) 10 (10.42%)
Self-Reported Ind 1 (16.67%) 3 (50.00%) 2 (33.33%)

Table H3: Tabulation of Estimated vs. Self-Reported Ideology
Note: The percentages are calculated for each row.
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Figure H2: Distribution of Difference in the Posterior Probability of Ideology
Note: Horizontal axis is the difference between the highest posterior probability (i.e., the posterior probability of the

self-reported ideology) and the second highest posterior probability. Bin size is 0.025.

FEC ID Committee Name

C00327403 FRIENDS OF JONATHAN MILLER
C00367060 JOHN MILKOVICH FOR CONGRESS
C00381350 MARK BUDETICH
C00388454 JOHNSON FOR US SENATE
C00390245 REYES FOR CONGRESS
C00394858 VICTORY 04
C00399097 JOHN SALAZAR AND KEN SALAZAR JOINT COMMITTEE
C00399154 BURKS FOR US SENATE CAMPAIGN COMMITTEE
C00402149 FRIENDS TO ELECT JEFF MILLER

Table H4: PCs that Self Reported to be Democratic, but are Estimated to be Republican

FEC ID Committee Name

C00188078 SEVENTH CONGRESSIONAL DISTRICT REPUBLICAN PARTY OF WISCONSIN
C00349795 GORMLEY FOR SENATE PRIMARY ELECTION FUND
C00367839 SALAZAR FOR CONGRESS
C00371443 DANNY DAVIS FOR CONGRESS
C00375485 RUSTY GLOVER FOR CONGRESS
C00386078 BELL FOR CONGRESS COMMITTEE
C00387571 STARK FOR CONGRESS
C00389130 FRIENDS OF JOE NEGRON
C00390203 RISLEY FOR CONGRESS
C00404772 RANDY EASTWOOD FOR CONGRESS

Table H5: PCs that Self Reported to be Republican, but are Estimated to be Democratic
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Figure H3: Distribution of Difference in the Posterior Probability of Ideology
Note: Horizontal axis is the difference between the highest posterior probability and the posterior probability of the

self-reported ideology. Bin size is 0.025.
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