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1 Introduction

Contest is a widely adopted mechanism that mobilizes focused efforts to achieve stated

goals. In a contest, the organizer sets a limited number of prizes and invites entries; con-

tenders sink costly and nonrefundable efforts, and only the frontrunners are rewarded. Gov-

ernments, firms, nonprofit organizations, and even wealthy individuals often sponsor R&D

contests to solicit novel technological solutions, procure innovative products, or encourage

scientific breakthroughs (Taylor, 1995; Fullerton and McAfee, 1999; Che and Gale, 2003).1

The U.S. Department of Defense (DoD) famously operates the Small Business Innovation

Research program, which promotes private R&D efforts on military technology, and awards

procurement contracts to outstanding innovators (Bhattacharya, 2021). The internal labor

markets inside firms provide another analogy (Lazear and Rosen, 1981; Green and Stokey,

1983; Nalebuff and Stiglitz, 1983; Rosen, 1986). Firms induce workers’ efforts by scarcely

supplied bonus packages, promotions, and opportunities for career advancement, as well as

the threat of layoffs. In 2013, 30% of Fortune 500 companies were estimated to reward or

punish their employees based on ranking systems inspired by Jack Welch’s practice of the

“vitality curve.”

The ubiquity of contest-like competitive activities has sparked extensive and continuous

efforts, in both practice and academic research, to identify feasible and efficient means of

administering such mechanisms (see, e.g., Fu and Wu, 2019, 2020; Fang, Noe, and Strack,

2020; Lemus and Marshall, 2021; Hofstetter, Dahl, Aryobsei, and Herrmann, 2021). Two

phenomena are broadly observed that inspire contest design.

First, discriminatory measures are often adopted to manipulate the competitive balance

of a competition, which either handicap or favor certain contenders. For instance, favorite

horses can be requested to carry extra weights in horse racing (Chowdhury, Esteve-González,

and Mukherjee, 2023). In firms’ succession selection processes, incumbent CEOs and board

members may deliberately devote their efforts to grooming preferred candidates, with the

celebrated examples of GE and IdeaXerox (Fu and Wu, 2022). Governments in OECD

countries strive to support small and medium-sized enterprises (SMEs) through preferential

access to public procurement opportunities (OECD, 2018).2

Second, contestants can be subject to uncertainty surrounding the nature and environ-

1Similarly, in Singapore, the Ministry of Defence (MINDEF) and Singapore Armed Forces sponsor the
annual Defense Innovation Challenge, which provides winners with grants and the opportunity to co-develop
their solutions with MINDEF. The European Innovation Council administers European Social Innovation
Competition schemes to incentivize entrepreneurial solutions that enhance societal well-being, and the Ari-
zona State University Innovation Open encourages student-led ventures to undertake hard-tech R&D.

2The reader is referred to OECD (2018), SMEs in Public Procurement: Practices and
Strategies for Shared Benefits, OECD Public Governance Reviews, OECD Publishing, Paris,
https://doi.org/10.1787/9789264307476-en.
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ment of the contest—e.g., the exact value of the prize. Imagine the following scenarios.

(i) Private military contractors, when investing in their prototypes to compete for DoD’s

procurement contract, may not be fully informed of the exact costs to be incurred

when executing the delivery contract—e.g., the efforts to fine-tune and manufacture

the product in compliance with DoD’s regulations and provisions—which causes un-

certainty about the eventual profitability of the contract.

(ii) Workers inside a firm, when competing for a vacancy, are often unaware of the nature

and challenge of the new post—e.g., the scope of duties and the resources, and support

available from senior management—and its implications for future career advancement.

(iii) The Arizona State University Innovation Open encourages student-led ventures to

undertake hard-tech R&D. It awards the winner not only cash prizes but also access to

the university’s incubator and accelerator program and opportunity to collaborate with

the sponsoring companies, which are established firms in relevant areas. However, the

option values of these nonmonetary rewards cannot be ascertained without sufficient

details—e.g., the resources available from the incubator and the extent of involvement

and commitment of the sponsoring companies.

These phenomena spark natural questions for contest design. First, how should a contest

designer optimally set biases in contests for efficient incentive provision—i.e., which contes-

tants are to be treated preferentially, and to what extent? Second, how should the designer

distribute her information—i.e., should she disclose her information and, if so, to whom?

This paper explores optimal contest design to address the above questions. In contrast

to the vast majority of previous studies of contest design, we allow the contest designer

to deploy two instruments and choose an optimal combination: (i) a potentially selective

information disclosure scheme that may disclose information to one player while concealing

it from the other and (ii) a scoring bias that can either discount or inflate a contestant’s

perceived output in the evaluation process relative to others.

A Snapshot of the Model We consider a contest in which two potentially asymmetric

players compete for a prize of a common value. The prize value is unknown and can be

either high or low, with a publicly known distribution. Players simultaneously commit to

their efforts to vie for the prize—e.g., private military contractors’ efforts to develop their

prototypes—while the effort incurs a constant marginal cost. The winner is selected through

an all-pay auction (see, e.g., Hillman and Riley, 1989; Baye, Kovenock, and De Vries, 1993,

1996; Che and Gale, 1998). The designer evaluates players’ entries; each player’s effort is

converted into a score, and the higher scorer wins. The asymmetry of the players is such
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that player 1 bears a weakly higher marginal effort cost c1 than player 2—i.e., c1 ≥ c2—so

the latter is the favorite in the contest.

The designer conducts an investigation and acquires an informative binary signal about

the underlying prize value, which enables a more precise posterior through Bayesian updat-

ing. Prior to the competition, the designer commits to the contest rule, which consists of

two elements. First, a disclosure scheme specifies whether the signal is to be disclosed and

which player is to receive it. The disclosure scheme is asymmetric when the designer conveys

the signal to only one player while concealing it from the other, in which case the recipient

is awarded information favoritism. For instance, the organizer of a business pitching com-

petition may brief preferred entrepreneurs more elaborately on the funding opportunities

available to winning projects. Second, a coefficient is imposed on each player’s effort to

generate his score. We normalize the coefficient for the underdog—i.e., player 1—to one and

that for player 2 to δ > 0, which is called a scoring bias. The bias can be interpreted as a

nominal judging rule, as well as measures that elevate or discount one’s (perceived) output.

For instance, the leading candidate for corporate succession is often appointed the president

or COO, which endows them access to additional corporate resources and improves their

visibility to the board.

We consider two objectives for contest design. The first is the usual maximization of

expected total effort (see, e.g., Moldovanu and Sela, 2001; Moldovanu, Sela, and Shi, 2007).

For instance, the government or a nonprofit organization may use an R&D challenge to

fuel the public’s interest in a certain area of scientific or technological research; e.g., clean

energy. The second is the maximization of the expected winner ’s effort, which has attracted

increasing interest in recent literature (see, e.g., Moldovanu and Sela, 2006; Fu and Wu,

2022). Consider, for instance, a contest sponsored by a pharmaceutical company to procure

an innovative ingredient. Only the quality of the winning solution accrues to the benefit of

the sponsor. As we show below, the optimal contest design crucially depends on whether the

designer aims to maximize the expected total effort or the expected winner’s. Intuitively, the

difference is driven partly by the fact that the expected total effort is the sum of the means,

while the expected winner’s effort is the modified first-order statistic, of the (random) effort

variables by the two players.3

Summary of Results and Implications The contest game can be viewed as an all-pay

auction with interdependent valuations and discrete signal spaces. Siegel (2014) provided

the technique for the case with a neutral scoring rule δ = 1. We extend the analysis to

characterize the mixed-strategy equilibrium, while allowing for a biased scoring rule δ 6= 1,

3It is noteworthy that in our context, the expected winner’s effort is not the simple highest effort except
for the case of δ = 1. Under a biased scoring rule (δ 6= 1), the winner may not be the one who exerts the
highest effort. We thus call the expected winner’s effort a modified first-order statistic to reflect the nuance.

4



which paves the way for the optimal contest design.

Results for the maximization of expected total effort affirm the conventional wisdom that

a level playing field fuels competition. The optimum is achieved by an ex post symmetric

contest, which sets the scoring bias to δ = c2/c1, together with a symmetric disclosure scheme

(full disclosure or full concealment). Neither player is awarded information favoritism. The

bias δ = c2/c1, called the fair bias of the contest, precisely offsets the initial advantage of

player 2 in terms of the marginal cost of effort.

The optimal contest design departs from the conventional wisdom when the designer aims

to maximize the expected winner’s effort. In a complete-information all-pay auction, the fair

bias maximizes the expected total effort and the expected winner’s effort simultaneously (see,

e.g., Fu, 2006). In our context, the designer may prefer a tilting-and-releveling contest, which

creates ex post bilateral asymmetry between players. Specifically, the designer may award

one player information favoritism—i.e., disclosing her signal exclusively—while releveling the

playing field by letting the scoring bias deviate from the fair level to favor the other. Three

observations are noteworthy.

(i) The tilting-and-releveling contest can be optimal even if players are ex ante symmetric.

(ii) When players are ex ante asymmetric, the tilting-and-releveling contest, whenever

optimal, awards the underdog, player 1, information favoritism.

(iii) The two instruments—i.e., disclosure scheme and scoring bias—are complementary

to each other: Asymmetry never emerges in the optimum in a single dimension; the

optimal contest is either ex post symmetric (symmetric disclosure together with fair

bias) or ex post asymmetric in terms of both information disclosure and scoring rule.

A tilting-and-releveling contest could enable an upward shift of the winner’s effort distri-

bution under certain circumstances. We elaborate on the logic of our results in this simple

but counterintuitive case with symmetric players. Specifically, we compare a bilaterally

asymmetric contest—which discloses the signal to player 1 and sets a favorable scoring bias

δ > 1 for player 2—with a symmetric one, in which the signal is concealed from both players

and δ = 1.

Assume a unity marginal effort cost. In the symmetric contest, it is straightforward to

infer that their efforts are bounded from above the common expected prize value. We now

let the designer “tilt” the contest by disclosing the signal to player 1—which allows him

to update his belief about the prize value—while maintaining the neutral scoring rule. It is

crucial to note that player 1’s mixed strategy would be type-dependent: The bidding supports

for low and high types—i.e., player 1 when receiving low and high signals, respectively—

do not overlap. Player 2 is the uninformed, so he continues to bid according to the prior,
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although he takes into account the fact that player 1 receives a signal. The expected winner’s

effort in this contest falls short of the initially symmetric one. The low type is discouraged by

his low valuation. Despite the high valuation, the high type, who is now an ex post favorite

relative to the uninformed player 2, has no incentive to raise his maximum effort—i.e., the

upper support of his bidding strategy—since his opponent’s efforts continue to be bounded

by the prior.

Now we let the designer “relevel” the contest by lifting δ above 1. The scoring rule

favors player 2, which affects the low and high types of player 1 differently. The bias further

squeezes the low type, while diminishing the advantage of the high type. The latter is thus

forced to step up his effort. As a result, the high type’s bidding support is stretched upward.

There exists a unique scoring bias—called the releveling bias—under which (i) the low type

remains inactive with probability one, (ii) both the high type and the uninformed player

2 remain active with probability one, and (iii) the high type’s maximum effort rises to his

updated prize valuation.

In summary, the tilting-and-releveling contest may outperform the symmetric one when a

high signal is realized, in which case the high-type player 1 may contribute a higher winner’s

effort that is otherwise impossible. The former contest underperforms the latter when a

low signal appears, because the low type would exit the competition. However, the loss

is partly made up for by player 2: He bids actively regardless of the realized signal. We

identify a condition that summarizes the trade-off and determines the optimum. The same

trade-off governs the contest design with asymmetric players and explains the allocation of

information favoritism and favorable scoring bias between the weak and strong contenders.

Section 3.2.2 delves into the logic in depth.

We extend our model to three alternative settings. In the first, the designer decides

whether to provide players with relevant information, and players can acquire interdependent

signals from the information (Milgrom and Weber, 1982). The second allows the designer to

choose the information structure of her investigation, which corresponds to the concept of

the Bayesian persuasion approach pioneered by Kamenica and Gentzkow (2011). The third

extension requires that the weaker player win with a minimum probability, which mirrors

the practice of affirmative action (Coate and Loury, 1993). We show that our main results

are qualitatively robust to these modeling variations with additional insights.

Related Literature In this paper, we consider the optimal design of a contest modeled

as an all-pay auction. The contest model can be viewed as a variant of the family of all-pay

auctions with interdependent valuations, including those of Krishna and Morgan (1997);

Lizzeri and Persico (2000); Siegel (2014); Rentschler and Turocy (2016); Lu and Parreiras

(2017); and Chi, Murto, and Välimäki (2019). Our study is primarily linked to two strands
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of the literature on contest design: (i) (identity-dependent) differential treatments and (ii)

information disclosure. To the best of our knowledge, we are the first to allow the designer

to fine-tune the two instruments simultaneously and choose their optimal combination.

An enormous amount of scholarly effort has been expended on the optimal way to bias a

contest by imposing differentiated treatments (Mealem and Nitzan, 2016). The literature has

conventionally espoused the merits of a level playing field for fueling competition and sug-

gested handicapping the favorite to offset initial asymmetry between players—e.g., Epstein,

Mealem, and Nitzan (2011); Franke, Kanzow, Leininger, and Schwartz (2013, 2014); Franke,

Leininger, and Wasser (2018). A handful of recent studies—e.g., Drugov and Ryvkin (2017);

Fu and Wu (2020); Barbieri and Serena (2022); Wasser and Zhang (2023); Echenique and Li

(2022)—identify the contexts in which the optimal contest might instead require upsetting

the initial balance of the playing field. However, this strand of studies mainly focuses on

the optimal construction of identity-dependent treatments and does not involve information

disclosure.

The literature has increasingly recognized information disclosure as a valuable addition

to a contest designer’s toolkit, e.g., Halac, Kartik, and Liu (2017) and Ely, Georgiadis,

Khorasani, and Rayo (2022).4 Lu, Ma, and Wang (2018) and Serena (2022) explore optimal

disclosure in contests with contestants of independent and private types. These studies

require symmetric disclosure rules, such that the signal from the designer must be public.

Wärneryd (2012) considers a common-value contest and allows only a portion of the players

to know the prize value. He shows that selectively informing players of the prize value is

suboptimal when the designer maximizes total effort. The Bayesian persuasion approach has

been applied in a handful of studies to explore optimal information disclosure in contests;

e.g., Zhang and Zhou (2016); Chen and Chen (2022); Melo Ponce (2021); and Antsygina and

Teteryatnikova (2022). However, these studies focus exclusively on information disclosure in

contests.

The rest of the paper proceeds as follows. Section 2 sets up the model and Section 3 carries

out the analysis. Section 4 presents three extensions and Section 5 concludes. Appendix

A collects the analytical results for Section 4.1. Proofs of our main results are collected in

Appendix B.

2 The Model

Two risk-neutral players, indexed by i ∈ N ≡ {1, 2}, compete for a prize of a common

value v ∈ {vH , vL}, with vH > vL > 0. The high value vH is realized with a probability

4Both studies focus on information disclosure in the course of dynamic contests. This strand of literature
also includes Yildirim (2005); Aoyagi (2010); Ederer (2010); and Goltsman and Mukherjee (2011).
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Pr(v = vH) =: µ ∈ (0, 1), with the low value vL to be realized with the complementary

probability. Players are initially uninformed about the prize value, while its distribution is

common knowledge. They simultaneously exert their efforts xi ≥ 0 to win the prize. One

player’s effort incurs a constant marginal effort cost ci > 0. Without loss of generality, we

assume that player 2 is the stronger contender; i.e., c1 ≥ c2.

Winner-selection Mechanism and Scoring Bias The contest designer imposes a scor-

ing bias δi > 0 on each player i’s effort entry xi, which generates his score δixi. We normalize

δ1 to 1 and set δ2 = δ > 0. Fixing a set of effort entries x := (x1, x2) ∈ R2
+, player 1’s prob-

ability of winning the contest—i.e., the contest success function (CSF)—is given by

p1(x1, x2) =


1, if x1 > δx2,

1
2
, if x1 = δx2,

0, if x1 < δx2,

and player 2 wins with a probability p2(x1, x2) = 1 − p1(x1, x2). That is, a player wins

the contest with certainty if his score exceeds that of his opponent. The winner is picked

randomly in the event of a tie in scores.

Disclosure Schemes The designer conducts an investigation and obtains a verifiable noisy

signal s ∈ {H,L} regarding the prize value v. Specifically, we assume that the signal is drawn

as follows:

Pr
(
s = H

∣∣ v = vH

)
= Pr

(
s = L

∣∣ v = vL

)
= q, (1)

where q ∈
(

1
2
, 1
]

indicates the quality or precision of the signal.5 In the extreme case with

q = 1, the signal perfectly reveals the prize value; with q = 1/2, the signal is completely

uninformative.

The designer commits to her disclosure scheme—i.e., whether and with whom the result

of her investigation is to be disclosed to or concealed from. The pure-strategy disclosure

scheme can formally be described by γ ∈ {CC,CD,DC,DD}, where C and D indicate

“concealment” and “disclosure,”respectively. With γ = CC(DD), the realized signal s is

conveyed to neither (both) of the players. With γ = CD, the designer conceals the signal

from player 1 while disclosing it to player 2, which awards player 2 information favoritism;

γ = DC is similarly defined, such that player 1 receives the signal privately.

5Note that q is exogenous in the baseline model. We will generalize the model and endogenize the infor-
mation structure using a Bayesian persuasion approach (e.g., Kamenica and Gentzkow, 2011) in Section 4.2.
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Contest Design Prior to the contest, the designer chooses the scoring bias δ > 0 in con-

junction with her disclosure scheme γ ∈ {CC,CD,DC,DD}. The design choice can serve

two possible design objectives: The designer may maximize either (i) the expected total effort

of the contest or (ii) the expected winner’s effort in the contest. The former has conven-

tionally been adopted in the vast majority of the contest literature, which resembles revenue

maximization in the auction literature. The latter, however, is relevant in a broad array

of competitive activities—e.g., architecture competitions, procurement tournaments, R&D

competitions, and large public firms’ succession horse races—and has attracted increasing

attention in recent studies.6

3 Analysis

We first characterize the equilibrium under an arbitrary contest scheme (γ, δ), with γ ∈
{CC,CD,DC,DD} and δ > 0. We then derive the optimal contest scheme for each design

objective.

3.1 Equilibrium Results

It is well known that an all-pay auction with complete information or a discrete signal

structure, in general, does not possess pure-strategy equilibria (see, e.g., Hillman and Riley,

1989; Baye, Kovenock, and De Vries, 1996; Siegel, 2009, 2010, 2014). Siegel (2014) provides

the technique for constructing the unique equilibrium of the contest under a neutral scoring

rule; i.e., δ = 1. We adapt his result to our context, which allows for an arbitrary scoring

bias δ > 0.

It can be formally verified that for a given contest scheme (γ, δ) and fixed signal quality

q, each player’s equilibrium strategy in the interim stage contains at most one atom and

it must be placed at zero. We describe by a function bis(x; γ, δ, q) the equilibrium bidding

strategy of a player i of type s; i.e., when receiving a signal s ∈ {H,L}: bis(0; γ, δ, q) gives

the probability that player i chooses zero effort—i.e., x = 0—and remains inactive, while

bis(x; γ, δ, q) provides the probability density of exerting effort x > 0. We omit the subscript

s and the argument q if a player i ∈ {1, 2} is not granted access to the signal s, so his

equilibrium bidding strategy is given by bi(x; γ, δ).

We introduce several notations before characterizing the equilibrium. We define v̄ :=

µvH + (1 − µ)vL, which denotes the ex ante expected prize value. Upon receiving a signal

6See, e.g., Moldovanu and Sela, 2006; Barbieri and Serena, 2021; Fu and Wu, 2022; and Wasser and
Zhang, 2023).
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s = H, a player’s expected prize value is updated to

v̂H(q) :=
µqvH + (1− µ)(1− q)vL
µq + (1− µ)(1− q)

.

Similarly, the posterior upon receiving s = L is

v̂L(q) :=
µ(1− q)vH + (1− µ)qvL
µ(1− q) + (1− µ)q

.

A signal s = H is realized with an ex ante probability µ̂(q) := µq + (1− µ)(1− q).

3.1.1 Symmetric Disclosure Schemes

We first characterize the equilibrium under a symmetric information disclosure scheme,

i.e., γ ∈ {CC,DD}, in which case neither player possesses information favoritism.

Proposition 1 (Equilibrium Characterization under Symmetric Disclosure) Un-

der γ = DD, the contest game generates a unique equilibrium, which can be characterized

as follows:

(i) If δ < c2
c1

, then

b1s(x;DD, δ, q) =

 c2
δv̂s(q)

, if 0 < x ≤ δv̂s(q)
c2

,

0, otherwise,

b2s(x;DD, δ, q) =


1− δc1

c2
, if x = 0,

δc1
v̂s(q)

, if 0 < x ≤ v̂s(q)
c2
,

0, otherwise.

(ii) If δ ≥ c2
c1

, then

b1s(x;DD, δ, q) =


1− c2

δc1
, if x = 0,

c2
δv̂s(q)

, if 0 < x ≤ v̂s(q)
c1
,

0, otherwise,

b2s(x;DD, δ, q) =

 δc1
v̂s(q)

, if 0 < x ≤ v̂s(q)
δc1

,

0, otherwise.

(iii) The equilibrium bidding strategy under γ = CC, denoted by bi(x;CC, δ), can be ob-

tained by replacing v̂s(q) with v̄ ≡ µvH + (1− µ)vL in bis(x;DD, δ, q).
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(a) δ = 1. (b) δ > 1.

Figure 1: Equilibrium Strategies with Symmetric Players: γ = DD.

The equilibrium under a symmetric disclosure scheme with discrete signal spaces resem-

bles that in a standard complete-information all-pay auction à la Hillman and Riley (1989)

and Baye, Kovenock, and De Vries (1996), and the conventional wisdom in the contest lit-

erature remains valid. The scoring bias δ tilts the balance of the playing field and reshapes

players’ equilibrium bidding strategies. First, one player would remain inactive with a posi-

tive probability in the equilibrium unless δ = c2/c1 ≤ 1. We call c2/c1 the fair bias, as this

perfectly offsets player 2’s initial cost advantage. Player 1, as the ex ante weaker contender,

would remain inactive with a positive probability whenever δ exceeds the cutoff (Case ii),

since player 2’s advantage remains. In contrast, when δ falls below the cutoff (Case i), the

favorite, player 2, is excessively handicapped, which discourages him from active bidding.

Second, the scoring bias determines players’ maximum efforts. Consider, for instance,

the case with γ = DD and suppose that δ ≥ c2/c1. Player 1’s effort is bounded by v̂s(q)/c1;

as a result, player 2 has a sure win if he bids v̂s(q)/(δc1), which sets the upper support of

his bidding strategy.

We visualize the equilibrium in Figure 1 in a simple case of symmetric players—with

c1 = c2 =: c—and a disclosure scheme γ = DD. A neutral scoring rule—i.e., δ = 1—

corresponds to the fair bias c2/c1 in Proposition 1, in which case both players’ efforts are

uniformly distributed over the interval [0, v̂s/c], as Figure 1(a) illustrates. Suppose instead

that the designer biases the contest in favor of player 2 by setting δ > 1. Favored player 2

is allowed to slack off, so his maximum effort drops to v̂s/(δc), as Figure 1(b) depicts.

3.1.2 Asymmetric Disclosure Schemes

We now consider the equilibrium under each asymmetric disclosure scheme, i.e., γ = CD

or DC, in which case one player receives the signal privately.

Proposition 2 (Equilibrium Characterization under Asymmetric Disclosure)

Under γ = DC, the contest game generates a unique equilibrium, which can be characterized

as follows:
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(i) If δ < c2
c1

, then

b1L(x;DC, δ, q) =

 c2
δ[1−µ̂(q)]v̂L(q)

, if 0 < x ≤ δ[1−µ̂(q)]v̂L(q)
c2

,

0, otherwise,

b1H(x;DC, δ, q) =

 c2
δµ̂(q)v̂H(q)

, if δ[1−µ̂(q)]v̂L(q)
c2

< x ≤ δv̄
c2
,

0, otherwise,

b2(x;DC, δ) =



1− δc1
c2
, if x = 0,

δc1
v̂L(q)

, if 0 < x ≤ [1−µ̂(q)]v̂L(q)
c2

,

δc1
v̂H(q)

, if [1−µ̂(q)]v̂L(q)
c2

< x ≤ v̄
c2
,

0, otherwise.

(ii) If c2
c1
≤ δ ≤ c2

µ̂(q)c1
, then

b1L(x;DC, δ, q) =


1

1−µ̂(q)

(
1− c2

δc1

)
, if x = 0,

c2
δ[1−µ̂(q)]v̂L(q)

, if 0 < x ≤
[
1− µ̂(q) δc1

c2

]
v̂L(q)
c1

,

0, otherwise,

b1H(x;DC, δ, q) =


c2

δµ̂(q)v̂H(q)
, if

[
1− µ̂(q) δc1

c2

]
v̂L(q)
c1

< x ≤ v̂L(q)
c1

+ δµ̂(q)[v̂H(q)−v̂L(q)]
c2

,

0, otherwise,

b2(x;DC, δ) =


δc1
v̂L(q)

, if 0 < x ≤
[
1− µ̂(q) δc1

c2

]
v̂L(q)
δc1

,

δc1
v̂H(q)

, if
[
1− µ̂(q) δc1

c2

]
v̂L(q)
δc1

< x ≤ v̂L(q)
δc1

+ µ̂(q)[v̂H(q)−v̂L(q)]
c2

,

0, otherwise.

(iii) If δ > c2
µ̂(q)c1

, then

b1L(x;DC, δ, q) =

1, if x = 0,

0, otherwise,

b1H(x;DC, δ, q) =


1− c2

δc1µ̂(q)
, if x = 0,

c2
δµ̂(q)v̂H(q)

, if 0 < x ≤ v̂H(q)
c1

,

0, otherwise,
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(a) δ = 1. (b) δ = 1/µ̂(q).

Figure 2: Equilibrium Strategies with Symmetric Players: γ = DC.

b2(x;DC, δ) =

 δc1
v̂H(q)

, if 0 < x ≤ v̂H(q)
δc1

,

0, otherwise.

The equilibrium under (CD, δ) can be obtained similarly.

Asymmetric disclosure fundamentally changes the nature of the equilibrium. We now

elaborate on the nuances in the case with disclosure scheme γ = DC. Player 1 is informed

because of the signal s, and his equilibrium bidding strategy is thus type-dependent. The

equilibrium is monotonic, in the sense that the support of the high-type player 1H—i.e.,

player 1 when receiving s = H—does not overlap with that of his low-type counterpart.

With δ < c2/c1, for instance, the efforts of player 1L are uniformly distributed on the support[
0, δ[1− µ̂(q)]v̂L(q)/c2

]
, as Proposition 2 shows, while those of player 1H are distributed on[

δ[1− µ̂(q)]v̂L(q)/c2, δv̄/c2

]
.

Two critical values for δ, the aforementioned fair bias c2/c1 and c2/[µ̂(q)c1], are notewor-

thy under γ = DC. As in the case with symmetric disclosure, some player remains inactive

with a positive probability unless the contest sets a scoring bias at the level of δ = c2/c1. For

instance, a scoring bias δ < c2/c1 excessively handicaps player 2, such that player 2 remains

inactive with a positive probability (Case i in Proposition 2).

The balance of the playing field is tilted toward player 2 as δ rises. Note that δ differently

affects the strategies of low and high types of player 1. Player 1L has a lower updated prize

valuation and bears a higher cost, so he is effectively a weaker player compared with player

2 whenever δ exceeds c2/c1. A further rise in δ forces him to concede: He is more likely

to exert zero effort, and his maximum effort—i.e., the upper bound of his effort support—

decreases. In contrast, for δ in the range of
[
c2/c1, c2/[µ̂(q)c1]

]
, player 1H is effectively a

stronger player due to his higher updated prize valuation. A larger δ—which implies a less

favorable scoring rule—compels him to step up his effort: His maximum bid, v̂L(q)/c1 +

δµ̂(q)[v̂H(q)− v̂L(q)]/c2, would increase accordingly.
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The contest effectively “unravels” itself once δ reaches the cutoff c2/[µ̂(q)c1]. The low

type of player 1 drops out completely—i.e., bidding zero with probability one; the high type’s

maximum bid reaches v̂H(q)/c1, which ensures his win but fully extracts his surplus. Player

2 expects only the high-type opponent whenever the competition continues; he maximally

bids [µ̂(q)v̂H(q)]/c2, which, given the scoring bias δ = c2/[µ̂(q)c1], matches the maximum bid

of player 1H. A scoring bias δ > c2/[µ̂(q)c1], however, would discourage even the high-type

player 1 and motivate him to remain inactive with a positive probability.

We call δ = c2/[µ̂(q)c1] the releveling bias of the contest under γ = DC. With a high

signal and a disclosure scheme γ = DC, players 1 and 2 bid actively with probability one and

win with equal probability if and only if the scoring bias is set at this level. The releveling bias

eliminates the information rent awarded to player 1 by the asymmetric disclosure scheme.

We again illustrate the equilibrium in the simple case of symmetric players—i.e., c1 =

c2 =: c—and a disclosure scheme γ = DC. Figure 2(a) demonstrates the scenario of a

neutral scoring bias δ = 1, which corresponds to the fair bias c2/c1 in the general case.

As predicted by Proposition 2, the efforts of the informed low type (player 1L) and those

of the high type (1H) are uniformly distributed on the support
[
0, [1 − µ̂(q)]v̂L/c

]
and[

[1 − µ̂(q)]v̂L/c, v̄/c
]
, respectively. In Figure 2(b), the designer sets δ = 1/µ̂(q), which

corresponds to the releveling bias c2/[µ̂(q)c1] in the general case. The bias removes the low-

type player 1 from the competition, which causes the contest to unravel. The upper support

of high-type player 1’s bidding strategy increases accordingly to v̂H/c.

3.1.3 Expected Total Effort and the Expected Winner’s Effort

The equilibrium characterization allows us to derive the optimal contest. Consider a

contest with an arbitrary profile of players’ marginal effort costs (c1, c2), with c1, c2 > 0.

Denote by TE(γ, δ; c1, c2) and WE(γ, δ; c1, c2), respectively, the expected total effort and

the expected winner ’s effort under a contest scheme (γ, δ). Propositions 1 and 2 lead to the

following.

Lemma 1 (Expected Total Effort under Different Contest Schemes) Fixing a con-

test scheme (δ, γ) and a profile of marginal effort costs (c1, c2), the contest generates an

equilibrium expected total effort

TE(CC, δ; c1, c2) = TE(DD, δ; c1, c2) =


δv̄(c1+c2)

2c22
, if δ < c2

c1
,

v̄(c1+c2)

2δc21
, if δ ≥ c2

c1

(2)

for symmetric disclosure schemes.7 Under asymmetric disclosure schemes, the equilibrium

7With a symmetric disclosure scheme, the expected total effort in (2) and the expected winner’s effort in
(4) are independent of the quality of the signal q and we drop q in TE(·) and WE(·) for γ ∈ {CC,DD}.
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expected total effort of the contest can be obtained as

TE(DC, δ, q; c1, c2) = TE(CD, 1/δ, q; c2, c1)

=


δ(c1+c2)(v̂L(q)+µ̂(q)2v̂H(q)−µ̂(q)2v̂L(q))

2c22 , if δ < c2
c1
,

c1+c2
2c1c2

[
c2
δc1
v̂L(q) + δc1

c2
µ̂(q)2(v̂H(q)− v̂L(q))

]
, if c2

c1
≤ δ ≤ c2

µ̂(q)c1
,

(c1+c2)v̂H(q)

2δc21
, if δ > c2

µ̂(q)c1
.

(3)

Further, we derive the equilibrium expected winner’s efforts. The following ensues.

Lemma 2 (Expected Winner’s Effort under Different Contest Schemes) Fixing

a contest scheme (δ, γ) and a profile of marginal effort costs (c1, c2), the equilibrium expected

winner’s effort from the contest game is

WE(CC, δ; c1, c2) = WE(DD, δ; c1, c2) =


δv̄(2c1+3c2−c1δ)

6c22 , if δ < c2
c1
,

v̄(3c1δ−c2+2c2δ)
6c12δ2 , if δ ≥ c2

c1
,

(4)

and

WE(DC, δ, q; c1, c2) =


v̂L(q)
6c1c2
W1

(
µ̂(q), v̂H(q)−v̂L(q)

v̂L(q)
, δc1
c2

; c1, c2

)
, if δ < c2

c1
,

v̂L(q)
6c1c2
W2

(
µ̂(q), v̂H(q)−v̂L(q)

v̂L(q)
, δc1
c2

; c1, c2

)
, if c2

c1
≤ δ ≤ c2

µ̂(q)c1
,

v̂H(q)
6c1c2
W3

(
δc1
c2

; c1, c2

)
, if δ > c2

µ̂(q)c1
,

(5)

where W1(·, ·, ·), W2(·, ·, ·), and W3(·) are defined as follows:

W1(u, z, d; c1, c2) : = −c2

(
u3z + 1

)
d2 +

{
u2z

[
3(c1 + c2)− c1u

]
+ 2c1 + 3c2

}
d,

W2(u, z, d; c1, c2) : =
d3
(
−u2

)
z
[
u(c1 + c2d)− 3(c1 + c2)

]
+ 3c1d− c1 + 2c2d

d2
,

W3(d; c1, c2) : =
c1(3d− 1) + 2c2d

d2
.

Moreover, we have that WE(CD, δ, q; c1, c2) = WE(DC, 1/δ, q; c2, c1).

Lemmas 1 and 2 pave the way for our analysis of the optimal contest design.

3.2 Optimal Contest

We first derive the optimum for symmetric players—i.e., the case with c1 = c2 > 0. An

in-depth discussion of the symmetric case elucidates the main logic of our analysis, which
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lays a foundation for the general results of optimal contest design with asymmetric players.

3.2.1 Optimal Contest with Symmetric Players

We are now ready to derive the optimal contest with symmetric players.

Theorem 1 (Optimal Contest with Symmetric Players) Fix q ∈ (1/2, 1] and sup-

pose that c1 = c2 = c > 0. The following statements hold.

(i) If the designer aims to maximize expected total effort, then both (γ∗TE, δ
∗
TE) = (CC, 1)

and (γ∗TE, δ
∗
TE) = (DD, 1) are an optimal contest scheme.

(ii) If the designer aims to maximize the expected winner’s effort, then in the case with

µ̂(q)v̂H(q) > 4v̂L(q), the optimal contest scheme is (γ∗WE, δ
∗
WE) =

(
DC, 1/µ̂(q)

)
or

(γ∗WE, δ
∗
WE) =

(
CD, µ̂(q)

)
; in the case with µ̂(q)v̂H(q) ≤ 4v̂L(q), both (γ∗WE, δ

∗
WE) =

(CC, 1) and (γ∗WE, δ
∗
WE) = (DD, 1) are an optimal contest scheme.

Theorem 1 shows that the optima may diverge when varying the design objectives. The-

orem 1(i) is intuitive and echoes the conventional wisdom of the contest literature: A level

playing field creates competition and fuels effort supply. To maximize expected total effort,

the optimal contest maintains the symmetry: A fair bias δ = c2/c1 = 1, together with a

symmetric disclosure—i.e., γ ∈ {CC,DD}.
In contrast, Theorem 1(ii) shows that the designer may deliberately create ex post bi-

lateral asymmetry between players with an optimal mixture of asymmetric information dis-

closure and a bias that deviates from the fair level. That is, the designer tilts the playing

field by awarding information favoritism to one player, while releveling the playing field by

biasing the contest in favor of the other. As shown in Theorem 1(ii), when the condition

µ̂(q)v̂H(q) > 4v̂L(q) is met, it is optimal for the designer to disclose the signal to player 1 and

inflates player 2’s score by the releveling bias δ = 1/µ̂(q). We call the scheme (DC, 1/µ̂(q))

a tilting-and-releveling contest.

A fully symmetric contest, (CC, 1) or (DD, 1), enables maximized participation by play-

ers and fully extracts their surplus, which achieves the first-best outcome for the maximiza-

tion of expected total effort. In the tilting-and-releveling contest, however, the low-type

player 1 gives up when a low signal is realized, which causes forgone efforts for the designer

and is thus suboptimal. The same may not hold when maximizing the expected winner’s

effort, in which case only the winner’s contribution accrues to the designer’s benefit. The

tilting-and-releveling contest precludes the low type from the competition, but could more

effectively incentivize active players and shift upward the probability mass of their efforts.

To unveil the logic, it is useful to compare the tilting-and-releveling contest
(
DC, 1/µ̂(q)

)
with the fully symmetric scheme (CC, 1). In the latter, neither player is informed, so they
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maintain their prior throughout, with an expected prize value v̄. Players’ efforts are uniformly

distributed over the support [0, v̄/c], which generates an expected winner’s effort (2v̄)/(3c).

We then consider the contest
(
DC, 1/µ̂(q)

)
. When a low signal s = L is realized, player 1

gives up. However, the loss is partly compensated for by the contribution of the uninformed

player 2, who bids actively regardless. By Proposition 2 and Figure 2(b), player 2’s efforts are

uniformly distributed over
[
0, [µ̂(q)v̂H(q)]/c

]
; she wins with probability one, so the expected

winner’s effort boils down to her average, [µ̂(q)v̂H(q)]/(2c). Hence, the contest underperforms

(CC, 1) in the event of a low signal. Now imagine that a high signal s = H is realized. Player

2 is privileged by the scoring rule δ = 1/µ̂(q), so he bids less aggressively than he does in

(CC, 1): An effort of [µ̂(q)v̂H(q)]/c ensures a win, which is less than the upper support v̄/c in

(CC, 1). However, recall that player 1H is an ex post favorite due to his higher updated prize

valuation. The unfavorable scoring rule compels him to step up his effort. His maximum

effort rises to v̂H(q)/c; this cannot be achieved in the symmetric contest (CC, 1), in which

case players’ efforts are capped by v̄/c. The tilting-and-releveling contest may thus prevail.

A trade-off between
(
DC, 1/µ̂(q)

)
and (CC, 1) depends on µ̂(q), v̂H(q), and v̂L(q). The

former yields a gain when a high signal is realized, which occurs with a probability of

µ̂(q): Hence,
(
DC, 1/µ̂(q)

)
is more likely to outperform (CC, 1) with a large µ̂(q). The

gain is more significant compared with the loss when the signal prompts substantial upward

revision in prize valuation—i.e., from v̄ to v̂H(q)—which requires larger v̂H(q) relative to

v̂L(q). Summing these up gives rise to the condition µ̂(q)v̂H(q) > 4v̂L(q), and the tilting-

and-releveling contest maximizes the expected winner’s effort when this requirement is met.

It is worth noting that the two instruments, information favoritism and scoring bias, play

complementary roles. That is, the optimum is either a fully symmetric contest or a tilting-

and-releveling contest that embraces bilateral asymmetry. We highlight the complementarity

in the following remark. Suppose that the designer can flexibly deploy only one instrument:

She can either manipulate the disclosure scheme while maintaining a neutral scoring rule, or

bias the scoring while being limited to symmetric disclosure. The following is obtained.

Remark 1 (Unidimensional Contest Design with Symmetric Players) Fix q ∈
(1/2, 1] and suppose that c1 = c2. The following statements hold:

(i) Fix δ = 1. A symmetric disclosure scheme—i.e., γ ∈ {CC,DD}—maximizes both

expected total effort and the expected winner’s effort simultaneously.

(ii) Fix γ ∈ {CC,DD}. The neutral scoring bias—i.e., δ = 1—maximizes both expected

total effort and the expected winner’s effort simultaneously.

With a neutral scoring rule δ = 1, an asymmetric disclosure scheme cannot force the high-

type player 1 to raise his maximum effort above v̄/c, as Figure 2(a) illustrates. Similarly, with
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a symmetric disclosure scheme in place, biasing the scoring rule only reduces competition

and allows the favored player to ensure a win with lower maximum effort, as Figure 1(b)

shows.

3.2.2 Optimal Contest with Asymmetric Players

We now consider the general case of asymmetric players. In the symmetric case, we

show that the designer may devise a tilting-and-releveling contest scheme, such that one

player receives information favoritism while the other is favored by the scoring rule. With

heterogeneous players, the natural questions would be (i) whether a tilting-and-releveling

contest would continue to emerge, and (ii) if it does, which player—the underdog or the

favorite—should be the recipient of information favoritism or preferential scoring bias. We

obtain the following.

Theorem 2 (Optimal Contest with Asymmetric Players) Fix q ∈ (1/2, 1] and sup-

pose that c1 > c2. The following statements hold.

(i) If the designer aims to maximize expected total effort, then both (γ∗TE, δ
∗
TE) = (CC, c2/c1)

and (γ∗TE, δ
∗
TE) = (DD, c2/c1) are an optimal contest scheme.

(ii) If the designer aims to maximize the expected winner’s effort, then in the case with

µ̂(q)v̂H(q) >
(

2 c2
c1

+ 2
)
v̂L(q), the optimal scheme is (γ∗WE, δ

∗
WE) =

(
DC, c2

µ̂(q)c1

)
; in the

case with µ̂(q)v̂H(q) ≤
(

2 c2
c1

+ 2
)
v̂L(q), both (γ∗WE, δ

∗
WE) = (CC, c2/c1) and (γ∗WE, δ

∗
WE) =

(DD, c2/c1) are an optimal contest scheme.

Theorem 2(i), again, affirms the conventional wisdom of leveling the playing field in

the contest literature. The fair bias δ = c2/c1 perfectly offsets the ex ante asymmetry in

the bidders’ marginal costs of effort, which, together, with a symmetric disclosure scheme,

leads to an ex post symmetric contest. By Proposition 1, the fair bias δ = c2/c1 uniquely

maximizes players’ participation, and any deviation will cause one player to remain inactive

with a positive probability. This fully extracts players’ surplus and maximizes expected total

effort.

Again, as Theorem 2(ii) shows, a tilting-and-releveling contest could emerge in the opti-

mum for maximization of the expected winner’s effort, in which case the underdog, player 1,

is provided information favoritism. Recall by the discussion following Proposition 2 that the

releveling bias δ = c2/[µ̂(q)c1] precludes the low-type player 1 from the competition, while

rebalancing the competition between player 2 and the high-type player 1.

The same trade-off for the designer looms large in this context, as in the previously

discussed case with symmetric players. Players’ efforts evenly accrue to the designer’s benefit
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(a) (γ, δ) =
(
DC, c2

µ̂(q)c1

)
. (b) (γ, δ) =

(
CD, µ̂(q)c2c1

)
.

Figure 3: Equilibrium Strategies under Asymmetric Information Disclosure: c1 > c2.

when she maximizes expected total effort, while only the winner’s effort (i.e., the modified

first-order statistic) matters when she is instead concerned about the expected winner’s

effort. The tilting-and-releveling contest “gives up” the low-type informed player; the loss is

compensated for by his better-incentivized high-type counterpart.

Three remarks are in order. First, to understand why information favoritism is given

to the weaker player 1, recall that the tilting-and-releveling approach generates a loss com-

pared with (CC, c2/c1) when the low signal is realized. Giving up the low-type underdog

minimizes the loss, since his higher marginal cost limits the forgone efforts. Despite the exit

of the low-type informed player with s = L, the uninformed player continues to bid actively

and his contribution provides insurance for contest performance, since it mitigates the loss.

In a tilting-and-releveling contest, the uninformed player i ∈ {1, 2} randomizes his effort

over the interval
[
0, [µ̂(q)v̂H ]/ci

]
. Picking the favorite—i.e., player 2—obviously maximizes

the insurance. Figure 3(a) illustrates the equilibrium in the optimal tilting-and-releveling

contest
(
DC, c2/[µ̂(q)c1]

)
, while Figure 3(b) illustrates its counterpart

(
CD, [µ̂(q)c2]/c1

)
and

demonstrates the difference. Note that when the designer’s objective is to maximize the win-

ner’s effort, the larger the dispersion of the bidders’ effort distribution, the better off the

designer.

Further, the tilting-and-releveling approach creates a gain compared with (CC, c2/c1)

when the high signal is realized. The optimal tilting-and-releveling contest
(
DC, c2/[µ̂(q)c1]

)
forces the high-type player 1 to bid up to the limit v̂H/c1—which underperforms the high-

type player 2 in the contest
(
CD, [µ̂(q)c2]/c1

)
, who can maximally bid v̂H/c2. However,

as stated above, the uninformed player bids up to
[
µ̂(q)v̂H

]
/c1 in

(
DC, c2/[µ̂(q)c1]

)
, which

is more than his counterpart in
(
CD, [µ̂(q)c2]/c1

)
. Moreover,

(
DC, c2/[µ̂(q)c1]

)
creates a

closer race between the high-type informed player and the uninformed, which also elevates

the expected winner’s effort.

Second, the trade-off between
(
DC, c2/[µ̂(q)c1]

)
and (CC, c2/c1) depends on the com-

parison between µ̂v̂H and v̂L—as in the case with symmetric players—while it can also be
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moderated by players’ asymmetry. Imagine a scenario in which player 1 is substantially

weaker than player 2—i.e., when c1 is substantially larger than c2. By the rationale laid out

above, the loss incurred in the event of low signal is negligible: the forgone efforts of low-type

player 1 are limited by his high cost, while the insurance from the uninformed player 2 is

amplified because of his low cost. A titling-and-releveling contest thus gains in its appeal.

These effects sum up to the condition of µ̂(q)v̂H(q) > [2(c2/c1) + 2]v̂L(q) in Theorem 2:

Obviously, the more asymmetric the two players—i.e., a smaller c2/c1—the more likely the

tilting-and-releveling contest to emerge as the optimum.

Third, it is worth noting that the releveling bias c2/[µ̂(q)c1] in Theorem 2(ii) is not

necessarily greater than one; the high-type player 1 may remain an underdog in the presence

of excessive player asymmetry. However, the releveling bias favors the uninformed relative

to the fair bias c2/c1; it perfectly relevels the playing field between the high-type player 1

and the uninformed player 2.

4 Extensions

In this section, we discuss three extended settings. In the first, the information disclosed

to players generates affiliated signals about the prize value. In the second, the designer can

flexibly design the signal structure. Finally, we consider a setting in which the designer is

mandated to comply with an affirmative action policy.

4.1 Affiliated Signals

In the baseline model, the designer receives a verifiable signal from her investigation, de-

cides whether/how to disclose it, and the signals the two players observe are thus perfectly

correlated with γ = DD. We now assume that the designer possesses relevant information

about the prize value and decides whether to feed her information to the players; players

acquire their own signals from the information provided by the designer, and the signals are

affiliated. For an analogy, the organizer of a business-pitching competition may offer a brief-

ing to competing entrepreneurs about the opportunities for collaborating with sponsoring

companies, which provides an informative reference for contenders’ judgment of the value of

the event. Denote by γ = D̂D̂ the scenario in which the designer provides her information

to both players. They each receive a conditionally independent private signal si as specified

in (1) for a given realization of the prize value v ∈ {vH , vL}. This scenario differs fundamen-

tally from that under γ = DD: Under the latter, the designer conveys a given signal s to

both players; in contrast, players acquire their own signals si under γ = D̂D̂, and thus their

signals may diverge. Consider the analogy laid out above: Each is given access to the same
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Figure 4: Equilibrium under Full Disclosure with Affiliated Signals: δ < 1.

valuable information, but they may interpret it differently.

With slight abuse of notation, we continue to use γ = CC, DC, and CD, respectively,

to denote the scenarios in which neither of the two players, only player 1, and only player

2 has access to the designer’s information. The equilibrium characterization of the cases of

γ ∈ {CC,DC,CD} is the same as that for their counterparts in the baseline model.

Equilibrium under Full Disclosure with Affiliated Signals We now explore the equi-

librium under full disclosure, i.e., γ = D̂D̂. Define ψs′s := Pr(s′|s)E[v|s′, s], where Pr(s′|s)
is the probability that player j 6= i receives a signal s′ ∈ {H,L} conditional on player i

receiving a signal s ∈ {H,L}, and E[v|s′, s] is the expected prize value conditional on a

profile of realized signals (s′, s). Specifically, we have that

ψHH :=
µq2vH + (1− µ)(1− q)2vL

µq + (1− µ)(1− q)
,

ψLH :=
q(1− q)v̄

µq + (1− µ)(1− q)
,

ψHL :=
q(1− q)v̄

µ(1− q) + (1− µ)q
,

ψLL :=
µ(1− q)2vH + (1− µ)q2vL

µ(1− q) + (1− µ)q
.

Simple algebra would verify that ψHs + ψLs = E[v|s] for s ∈ {H,L}.
Assuming a neutral scoring bias δ = 1, Siegel (2014) provides a sufficient condition—i.e.,

the weaker monotonicity condition (WM condition, henceforth)—that ensures the existence

and uniqueness of a monotonic equilibrium. The condition boils down to ψLH ≥ ψLL—

or equivalently, q ≤ vH
vH+vL

—in our context. When the WM condition fails—i.e., when

q > vH
vH+vL

—Rentschler and Turocy (2016) show in their Example 3(a) that the equilibrium

is no longer monotonic; they further characterize the unique equilibrium for the case of δ = 1.

We extend their analysis to the general case of arbitrary scoring bias δ > 0 and characterize

the equilibrium.
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Three remarks are in order, which lay a foundation for our equilibrium analysis. First, it

can be verified that each player’s equilibrium strategy in the interim stage contains at most

one atom and it must be placed at zero. Second, each player bids uniformly over at most

three intervals with different densities. Finally, given the linearity of the scoring rule, the

bidding intervals for player 1 can be obtained through scaling up (or down) those for player 2

by δ. Figure 4 illustrates the structure of the two players’ equilibrium bidding strategies. A

player i’s equilibrium bidding strategy upon receiving a signal si is fully characterized by the

combination of (i) the probability of remaining inactive, disi0 , (ii) the length of each bidding

interval, (`a, `b, `c), and (iii) the associated densities on each interval, (disia , d
isi
b , d

isi
c ). More

formally, the signal-dependent strategy, denoted by b]isi
(
x; D̂D̂, δ, q

)
, can take the form of

b]isi

(
x; D̂D̂, δ, q

)
=



disi0 , if x = 0,

disia , if 0 < x ≤ (δ1{i=1} + 1{i=2})`a,

disib , if (δ1{i=1} + 1{i=2})`a < x ≤ (δ1{i=1} + 1{i=2})(`a + `b),

disic , if (δ1{i=1} + 1{i=2})(`a + `b) ≤ (δ1{i=1} + 1{i=2})(`a + `b + `c),

0, otherwise.

The following result fully characterizes the unique equilibrium under full disclosure with

affiliated signals.

Proposition 3 (Equilibrium under Full Disclosure with Affiliated Signals) Fix

(c1, c2) and δ > 0. Consider the scenario of γ = D̂D̂ under which the designer provides both

players with her information and each receives a conditionally independent private signal

of the prize value. If ψLH < ψLL—or equivalently, if q > vH/(vH + vL)—the equilibrium

is nonmonotonic and is given by Table A1 in Appendix A; otherwise, the equilibrium is

monotonic and is given by Table A2 in Appendix A.

Optimal Contest We first consider the optimal scoring bias with γ = D̂D̂.

Lemma 3 (Optimal Scoring Bias under Full Disclosure with Affiliated Signals)

Fix q ∈ (1/2, 1] and (c1, c2) and γ = D̂D̂. The fair bias δ = c2/c1 maximizes both the

expected total effort and the expected winner’s effort.

Lemma 3 is largely consistent with the observations of Remark 1. With evenly distributed

information under D̂D̂, the designer has no incentive to upset the competitive balance re-

gardless of her objective, so she adopts the fair bias—i.e., setting δ = c2/c1—to achieve ex

post symmetry. Figures 5(a) and 5(b) depict the respective equilibria under the scoring bias

δ = c2/c1 when the WM condition is satisfied and is violated.
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(a) Nonmonotonic Equilibrium: ψLH < ψLL. (b) Monotonic Equilibrium: ψLH ≥ ψLL.

Figure 5: Equilibrium Strategies under Full Disclosure with Affiliated Signals: c1 > c2 and
δ = c2/c1.

We now explore the optimal contest when the designer decides on both (i) information

favoritism and (ii) scoring bias. Combining Lemmas 1 to 3 yields the following:

Theorem 3 (Optimal Contest with Affiliated Signals) Fix q ∈ (1/2, 1]. The follow-

ing statements hold.

(i) If the designer aims to maximize expected total effort, then in the case in which q <

vH/vL, the optimal scheme is (γ∗TE, δ
∗
TE) = (CC, c2/c1); in the case in which q ≥

vH/(vH+vL), both (γ∗TE, δ
∗
TE) = (CC, c2/c1) and (γ∗TE, δ

∗
TE) = (D̂D̂, c2/c1) are optimal.

(ii) If the designer aims to maximize the expected winner’s effort, then one of the following

schemes is optimal: (γ∗WE, δ
∗
WE) =

(
DC, c2/[µ̂(q)c1]

)
, (γ∗WE, δ

∗
WE) = (CC, c2/c1) or

(γ∗WE, δ
∗
WE) = (D̂D̂, c2/c1).

Theorem 3(i) demonstrates the robustness of Theorem 2(i): The designer always prefers

an ex post symmetric contest—i.e., symmetrically distributed information and a fair bias

(δ = c2/c1)—when she aims to maximize the expected total effort.

In the baseline model, full concealment (CC) and full disclosure (DD) generate the same

amount of expected total effort. Such (revenue) equivalence may dissolve in the current

case with independent investigation. It is important to note that each player receives a

conditionally independent private signal under D̂D̂, which gives rise to a common-value all-

pay auction. The usual winner’s curse ensues in a monotonic equilibrium and disincentivizes

the players. As a result, CC may outperform D̂D̂ because players are immune to the

winner’s curse under CC. The dominance of CC requires q ≥ vH/(vH + vL), in which case

a monotonic equilibrium emerges. Otherwise, however, the equivalence still holds. In this

case, the equilibrium is nonmonotonic, in the sense that players’ equilibrium strategies have

overlapping bidding supports when they receive diverging signals. As a result, a player with
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(a) Symmetric Players: (c1, c2, q) = (1, 1, 0.95) (b) Asymmetric Players: (c1, c2, q) = (1, 0.1, 0.95)

Figure 6: Winner’s Effort-maximizing Contest Scheme.

a low signal may still win the contest in the case in which his opponent receives a high signal,

(see Figure 5(a)), which attenuates the winner’s curse.

Theorem 3(ii) demonstrates the robustness of Theorem 2(ii). To maximize the expected

winner’s effort, the designer may adopt the tilting-and-rebalancing contest scheme; as in Sec-

tion 3.2, the underdog—i.e., player 1—is awarded information favoritism, while the releveling

bias c2/[µ̂(q)c1] is imposed on player 2.

Figures 6(a) and 6(b) illustrate the optimum in the (µ, vL/vH) space for the maximiza-

tion of the expected winner’s effort. Again, it is noteworthy that the two ex post symmetric

contests—i.e., contests
(
CC, c2/[µ̂(q)c1]

)
and

(
D̂D̂, c2/[µ̂(q)c1]

)
—are not equivalent, in con-

trast to that in the baseline model. As shown in Figures 6(a) and 6(b),
(
CC, c2/[µ̂(q)c1]

)
outperforms

(
D̂D̂, c2/[µ̂(q)c1]

)
and emerges in the optimum when q < vH/(vH + vL)—or

equivalently, vL/vH < q/(1 − q)—and µ is large. The former condition leads to monotonic

equilibrium under D̂D̂, such that the winner’s curse looms large. The latter condition en-

sures that the disincentive caused by the winner’s curse is sufficiently strong: A player’s ex

post belief about the prize value drops more significantly when his opponent receives a low

signal if his initial prior is more optimistic—i.e., with a larger µ.

4.2 Endogenous Information Structure

We now let the designer flexibly design and precommit to the information structure of

her investigation. She is endowed with full control over the amount of information to be

revealed through the investigation and the form of the signal to be disclosed to players. This

corresponds to the concept of the Bayesian persuasion approach in the literature pioneered
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by Kamenica and Gentzkow (2011).

An information structure consists of a signal space S and a pair of likelihood distributions{
π(·|vH), π(·|vL)

}
over S. For instance, the information structure depicted in Section 2

involves a binary signal space S = {H,L} and a conditional likelihood distribution for each

underlying state—i.e., vH or vL—parameterized by a variable q [see Equation (1)].

More formally, the designer sets the scoring bias δ > 0, the information disclosure policy

γ ∈ {CC,CD,DC,DD}, and the information structure
{
π(·|vH), π(·|vL)

}
of the signal to be

communicated to players, to maximize expected total effort or the expected winner’s effort.

We can show that it is without loss of generality to consider a binary signal space in our

setting, i.e., S = {H,L}.8 Fixing an information structure
{
π(·|vH), π(·|vL)

}
, denote the

expected prize value conditional on s—i.e., E(v|s)—by vπs . Without loss of generality, we

assume that realization of high signal s = H gives rise to a higher expected prize value, i.e.,

vπH ≥ vπL. In addition, define µπ := Pr(s = H).

The equilibrium characterization in this setting is similar to that in the baseline case.

Specifically, the equilibrium characterization, as well as the expressions of the expected total

effort and the expected winner’s effort in the equilibrium, can be obtained from Propositions 1

and 2 and Lemmas 1 and 2 by replacing v̂H(q), v̂L(q), and µ̂(q) with vπH , vπL, and µπ,

respectively.

To identify the optimum, we first find the optimal scoring bias δ under given arbitrary

information structure
{
π(·|vH), π(·|vL)

}
and disclosure policy γ. Next, we solve for the opti-

mal information structure holding fixed the disclosure scheme γ and then compare different

disclosure schemes to obtain the optimum. It is straightforward to verify that designing the

information structure
{
π(·|vH), π(·|vL)

}
is equivalent to choosing the tuple (vπH , v

π
L, µ

π) that

satisfies the following constraint:9

vH ≥ vπH > v̄ > vπL ≥ vL, and µπvπH + (1− µπ)vπL = v̄. (6)

The above condition is identical to the one in Kamenica and Gentzkow (2011) and is com-

monly referred to as the Bayes-plausibility constraint. Therefore, to search for the optimal

information structure, we simply express the designer’s objective—either maximization of

the expected total effort or that of the expected winner’s effort—as a function of (vπH , v
π
L, µ

π)

and optimize over (vπH , v
π
L, µ

π) subject to constraint (6). The following result ensues.

Theorem 4 (Optimal Contest with Endogenous Information Structure) Suppose

that c1 ≥ c2. Consider the joint design of scoring bias δ > 0, disclosure scheme γ, and

8Details are available from the authors upon request.
9We require that π(s|v) not be completely uninformative—i.e., vπH > vπL. If a completely uninformative

information structure is desirable—i.e., vπH = vπL—the designer can simply choose γ = CC to conceal the
signal from both players.
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(a) Symmetric Players: (c1, c2) = (1, 1) (b) Asymmetric Players: (c1, c2) = (1, 0.1)

Figure 7: Winner’s Effort-maximizing Contest Scheme with Endogenous Information Struc-
ture.

information structure
{
π(·|vH), π(·|vL)

}
. The following statements hold.

(i) If the designer aims to maximize expected total effort, then both (γ∗TE, δ
∗
TE) = (CC, c2/c1)

and (γ∗TE, δ
∗
TE) = (DD, c2/c1) with any information structure

{
π(·|vH), π(·|vL)

}
are an

optimal contest scheme.

(ii) If the designer aims to maximize the expected winner’s effort, then

(a) in the case in which v̄/vL > 2c2/c1 + 2, the optimal contest scheme consists of

(γ∗WE, δ
∗
WE) =

(
DC, c2/(µ

πc1)
)

and

π
(
H|vH

)
= 1, π

(
H|vL

)
=

0, if v̄
vL
≥ 4− 2µ+ 2 c2

c1
,

4−2µ+2
c2
c1
− v̄
vL

2(1−µ)
, if 2 c2

c1
+ 2 < v̄

vL
< 4− 2µ+ 2 c2

c1
;

(b) in the case in which v̄/vL ≤ 2c2/c1 + 2, both (γ∗WE, δ
∗
WE) = (CC, c2/c1) and

(γ∗WE, δ
∗
WE) = (DD, c2/c1) with an arbitrary information structure

{
π(·|vH), π(·|vL)

}
are an optimal contest scheme.

Our main predictions in the baseline model are qualitatively robust to endogenizing the

information structure. Theorem 4(i) states that when maximizing expected total effort, the

optimal contest requires symmetric distribution of information and can accommodate any

information structure. The designer does not benefit from the freedom to set the information

structure.
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By Theorem 4(ii), the designer may, again, resort to a tilting-and-releveling contest

when maximizing the expected winner’s effort. In contrast to maximization of the expected

total effort, the prevailing information structure does affect the resultant performance of the

contest when the condition v̄/vL > 2c2/c1 + 2 is met, in which case a particular information

structure emerges in the optimum. When the ratio v̄/vL is sufficiently large—i.e., v̄/vL ≥ 4−
2µ+2c2/c1—the optimum requires that the signal be perfectly informative—i.e., π(H|vH) =

π(L|vL) = 1 (perfect revelation); as in the baseline model, the weaker contender, player 1,

exclusively receives the signal. When the ratio falls in the intermediate range—i.e., v̄/vL ∈
(2c2/c1+2, 4−2µ+2c2/c1)—a noisy investigation emerges as the optimum (partial revelation).

Theorem 4(ii) can similarly be interpreted in light of the rationale outlined in the baseline

setting. Asymmetric disclosure is optimal when the probability of realizing a high signal is

high and a signal triggers substantial revision of expected prize value, which requires large

µπ and vπH/v
π
L. Therefore, a closer look at (6) indicates that the designer should perfectly

reveal the state vL—i.e., set vπL = vL—as predicted in Theorem 4(ii). Further, rearranging

the Bayes-plausibility constraint (6) yields

vπH
vπL

=
vπH
vL

= 1 +
v̄ − vL
vL

× 1

µπ
,

which unveils the designer’s trade-off of increasing µπ versus increasing vπH/v
π
L. When the

term (v̄−vL)/vL—or the term v̄/vL—is large, an increase in µπ would lead to a large decrease

in vπH/v
π
L. This compels the designer to increase vπH/v

π
L, which implies a perfectly informative

high signal for the optimum—i.e., vπH = vH—and perfect revelation in the optimum. The

trade-off leads to partial revelation for a moderate value of v̄/vL, as in Theorem 4(ii). Figure 7

illustrates the optimum in the (µ, vL/vH) space for maximization of the expected winner’s

effort.

4.3 Affirmative Action Policy

Next, we extend the model to incorporate an affirmative action policy.10 Suppose that

the two players are heterogeneous, i.e., c1 > c2. The affirmative action policy is interpreted

as a mandate that requires the underdog—i.e., player 1—to win with a probability no less

than a certain threshold η ∈ [0, 1/2]. The requirement can be interpreted, for instance,

as (employment) quotas that aim to maintain diverse and inclusive workforce (Coate and

Loury, 1993; Chan and Eyster, 2003; Fryer and Loury, 2013; Bodoh-Creed and Hickman,

10For studies of affirmative action and discrimination within tournament/contest settings, see Schotter and
Weigelt (1992); Cornell and Welch (1996); Fryer and Loury (2005); Fu (2006); Franke (2012); Bodoh-Creed
and Hickman (2018); Estevan, Gall, and Morin (2019); Echenique and Li (2022).
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2018).11 As a result, the contest design is rendered a constrained optimization problem. Our

baseline analysis in Section 3 corresponds to the case of η = 0 such that the constraint does

not bind. A closer look at the equilibria characterized in Propositions 1 and 2 yields the

following:

Lemma 4 (Expected Equilibrium Winning Probabilities) Absent the affirmative ac-

tion policy, player 1’s expected equilibrium winning probability is

WP1(δ) =

1− δc1
2c2
, if δ < c2

c1
,

c2
2δc1

, if δ ≥ c2
c1
,

irrespective of the prevailing disclosure policy γ ∈ {CC,CD,DC,DD}; player 2’s expected

equilibrium winning probability is WP2(δ) = 1−WP1(δ).

By Lemma 4, players’ ex ante winning probabilities are independent of the disclosure

scheme γ in the equilibrium and depend only on the prevailing scoring bias δ. The quota

constraint can then be formally expressed as WP1(δ) ≥ η. The following result ensues.

Theorem 5 (Optimal Contest under an Affirmative Action Policy) Suppose that

the affirmative action policy requires that the winning probability of the underdog—i.e., player

1—be no less than η ∈ [0, 1/2]. The following statements hold.

(i) If the designer aims to maximize expected total effort, then the optimal contest with af-

firmative action coincides with the unconstrained optimum. That is, both (γ∗TE, δ
∗
TE) =

(CC, c2/c1) and (γ∗TE, δ
∗
TE) = (DD, c2/c1) are an optimal contest scheme under the

affirmative action constraint.

(ii) If the designer aims to maximize the expected winner’s effort, then

(a) in the case in which µ̂(q)v̂H(q) >
(
2 c1
c2

+ 2
)
v̂L(q), the optimal contest scheme is

(γ∗WE, δ
∗
WE) =


(DC, c2

µ̂(q)c1
), if 0 ≤ η ≤ µ̂(q)

2
,

(DC, δ†), if µ̂(q)
2
< η ≤ c2

2δ†c1
,(

CD, µ̂(q)c2
c1

)
, if c2

2δ†c1
< η ≤ 1

2
,

where δ† ∈
[
c2
c1
, c2
µ̂(q)c1

]
uniquely solves WE

(
DC, δ, q; c1, c2

)
= WE

(
CD, µ̂(q)c2

c1
, q; c1, c2

)
;

11See Fang and Moro (2011) and Onuchic (2022) for comprehensive surveys of theoretical studies of
statistical discrimination and affirmative action.
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(b) in the case in which
(
2 c2
c1

+ 2
)
v̂L(q) < µ̂(q)v̂H(q) ≤

(
2 c1
c2

+ 2
)
v̂L(q), the optimal

contest scheme is

(γ∗WE, δ
∗
WE) =


(DC, c2

µ̂(q)c1
), if 0 ≤ η ≤ µ̂(q)

2
,

(DC, δ‡), if µ̂(q)
2
< η ≤ c2

2δ‡c1
,(

CC, c2
c1

)
or
(
DD, c2

c1

)
, if c2

2δ‡c1
< η ≤ 1

2
,

where δ‡ ∈
[
c2
c1
, c2
µ̂(q)c1

]
uniquely solves WE

(
DC, δ, q; c1, c2

)
= WE

(
CC, c2

c1
; c1, c2

)
;

(c) in the case in which µ̂(q)v̂H(q) ≤
(
2 c2
c1

+2
)
v̂L(q), both (γ∗WE, δ

∗
WE) =

(
CC, c2

c1

)
and

(γ∗WE, δ
∗
WE) =

(
DD, c2

c1

)
are an optimal contest scheme.

Theorem 5(i) is intuitive. Absent the affirmative action policy, the ex post symmetric

contest—which consists of a fair bias δ = c2/c1 and a symmetric disclosure scheme γ ∈
{CC,DD}—maximizes expected total effort. The contest perfectly levels the playing field

in the sense that players have equal chance to win (see Lemma 4). Imposing an affirmative

action policy does not affect the resultant optimum because the constraint WP1(δ) ≥ η does

not bind.

Theorem 5(ii) shows that a tilting-and-releveling contest may still maximize the expected

winner’s effort. In case (a) of Theorem 5(ii), the optimum involves a disclosure scheme

γ = DC and the favorite, player 2, receives the signal privately. The rationale laid out

in Section 3.2 continues to shed light on the trade-off in this alternative setting between

a tilting-and-releveling contest and an ex post symmetric contest. Theorem 5 delineates

conditions for the optimality of tilting-and-releveling contests similar to Theorem 2.

However, it is noteworthy that the opposite may emerge in the optimum when an affirma-

tive action policy is imposed. When the condition µ̂(q)v̂H(q) ≥
(
2c1/c2 + 2

)
v̂L(q) is met, the

constrained optimum can be achieved by a tilting-and-releveling contest
(
CD, [µ̂(q)c2]/c1

)
.

To see the logic, note that the contest
(
DC, c2/[µ̂(q)c1]

)
may violate the affirmative action

quota constraint, whereas
(
CD, [µ̂(q)c2]/c1

)
does not. By Lemma 4, player 1 wins with a

probability of µ̂(q)/2 < 1/2 under the former and with a probability of 1 − µ̂(q)/2 > 1/2

under the latter. When η is small—i.e., η ≤ µ̂(q)/2—the quota constraint does not bind

in the contest
(
DC, c2/[µ̂(q)c1]

)
, so it continues to be optimal, as predicted in Theorem 2.

When η is in an intermediate range, the designer is required to lower the scoring bias from

c2/[µ̂(q)c1] to δ†, which squeezes the favorite to satisfy the constraint. A large η, however,

would cripple the reoptimization under γ = DC. The designer will turn to the quota-proof

disclosure scheme CD and award information favoritism to the favorite instead.
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5 Concluding Remarks

This paper studies the optimal design of a contest in which two potentially asymmet-

ric players compete for a common-valued prize. We allow the contest designer to choose a

combination of two instruments—an information disclosure scheme and a scoring bias—to

advance her interests. We show that the optimum depends on the design objective. When

she aims to maximize expected total effort, the optimum embraces the conventional wisdom

of leveling the playing field: Information is symmetrically distributed, and a fair scoring bias

offsets the initial asymmetry between players. However, the contest that maximizes the ex-

pected winner’s effort can create bilateral asymmetry: The designer discloses an informative

signal to one player privately, while compensating the other by a relatively favorable scoring

rule, which we call a tilting-and-releveling contest. She may do so even if players are ex ante

symmetric. We further show that the results are qualitatively robust to extensions to (i) af-

filiated signals and (ii) endogenous information structure. Finally, we show that information

favoritism can play a useful role in addressing affirmative action policy objectives.

Our paper is one of the first in the contest literature to examine the optimal combination

of multiple design instruments. It is noteworthy that the two instruments demonstrate

complementarity, in that the optimal contest requires either ex post full symmetry or bilateral

asymmetry. Our results generate novel implications for contest design. Optimal bilateral

asymmetry would not arise in the conventional settings of unidimensional contest design

and sheds fresh light on the debate regarding the relationship between (a) symmetry and

the performance of a contest.
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Appendix A Equilibrium Characterization Under Full

Disclosure with Affiliated Signals

is di0 dia dib dic `a `b `c

Case 1(a): ψLH < ψLL and δc1
c2
≤ 1

1H 0 0 c2(ψLL−ψLH)
δ(ψHHψLL−ψHLψLH)

c2
δψHH

0 ψHHψLL−ψHLψLH
c2(ψHH−ψHL)

ψHH
c2
× ψHH+ψLH−ψHL−ψLL

ψHH−ψHL
1L 0 0 c2(ψHH−ψHL)

δ(ψHHψLL−ψHLψLH)
0

2H 1− δc1
c2

0 δc1(ψLL−ψLH)
ψHHψLL−ψHLψLH

δc1
ψHH

2L 1− δc1
c2

0 δc1(ψHH−ψHL)
ψHHψLL−ψHLψLH

0

Case 1(b): ψLH < ψLL and δc1
c2
> 1

1H 1− c2
δc1

0 c2(ψLL−ψLH)
δ(ψHHψLL−ψHLψLH)

c2
δψHH

0 ψHHψLL−ψHLψLH
δc1(ψHH−ψHL)

ψHH
δc1
× ψHH+ψLH−ψHL−ψLL

ψHH−ψHL
1L 1− c2

δc1
0 c2(ψHH−ψHL)

δ(ψHHψLL−ψHLψLH)
0

2H 0 0 δc1(ψLL−ψLH)
ψHHψLL−ψHLψLH

δc1
ψHH

2L 0 0 δc1(ψHH−ψHL)
ψHHψLL−ψHLψLH

0

Table A1: Nonmonotonic Equilibrium: ψLH < ψLL.
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is di0 dia dib dic `a `b `c

Case 2(a): ψLH ≥ ψLL and δc1
c2
≤ ψHL

ψHL+ψLH

1H 0 0 0 c2
δψHH

0 ψLH
c2

ψHH
c2

1L 0 0 c2
δψLH

0

2H 1− ψHL+ψLH
ψHL

δc1
c2

0 δc1
ψHL

δc1
ψHH

2L 1 0 0 0

Case 2(b): ψLH ≥ ψLL and 1 ≥ δc1
c2
> ψHL

ψHL+ψLH

1H 0 0 0 c2
δψHH

ψLL
c2

(
1− c2−δc1

δc1

ψHL
ψLH

)
ψHL
δc1

(
1− δc1

c2

)
ψHH
c2

1L 0 c2
δψLL

c2
δψLH

0

2H 0 0 δc1
ψHL

δc1
ψHH

2L
(

1− δc1
c2

)
ψHL+ψLH

ψLH

δc1
ψLL

0 0

Case 2(c): ψLH ≥ ψLL and ψHL+ψLH
ψHL

≥ δc1
c2
> 1

1H 0 0 c2
δψHL

c2
δψHH

ψLL
δc1

(
1− δc1−c2

c2

ψHL
ψLH

)
ψHL
c2

(
1− c2

δc1

)
ψHH
δc1

1L δc1−c2
δc1

ψHL+ψLH
ψLH

c2
δψLL

0 0

2H 0 0 0 δc1
ψHH

2L 0 δc1
ψLL

δc1
ψLH

0

Case 2(d): ψLH ≥ ψLL and δc1
c2
> ψHL+ψLH

ψHL

1H 1− c2
δc1

ψHL+ψLH
ψHL

0 c2
δψHL

c2
δψHH

0 ψLH
δc1

ψHH
δc1

1L 1 0 0 0
2H 0 0 0 δc1

ψHH

2L 0 0 δc1
ψLH

0

Table A2: Monotonic Equilibrium: ψLH ≥ ψLL.
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Appendix B Proofs

Proofs of Propositions 1 and 2 and Lemmas 1 and 2

Proof. It can be verified that the strategy profiles provided in Propositions 1 and 2 constitute

an equilibrium under γ ∈ {CC,DD} and γ ∈ {DC,CD}, respectively. The equilibrium

uniqueness in Proposition 1 follows from Hillman and Riley (1989) and Baye, Kovenock,

and De Vries (1996), and that in Proposition 2 follows from Siegel (2014). Lemmas 1 and 2

follow immediately the equilibrium characterizations in Propositions 1 and 2.

Proof of Theorem 1

Proof. See the proof of Theorem 2.

Proof of Theorem 2

Proof. We first prove part (i) of the theorem. From (2), it is straightforward to verify

that δ = c2
c1

maximizes TE(CC, δ; c1, c2) and TE(DD, δ; c1, c2), and the maximum expected

total effort is (c1+c2)v̄
2c1c2

. Similarly, from (3), it can be verified that either δ = c2
c1

or δ = c2
µ̂(q)c1

maximizes TE(DC, δ, q; c1, c2). Moreover, we have that

TE

(
DC,

c2

c1

, q; c1, c2

)
=

(c1 + c2)
{
µ̂2(q)v̂H(q) +

[
1− µ̂2(q)

]
v̂L(q)

}
2c1c2

<
(c1 + c2)

{
µ̂(q)v̂H(q) +

[
1− µ̂(q)

]
v̂L(q)

}
2c1c2

=
(c1 + c2)v̄

2c1c2

= TE

(
CC,

c2

c1

; c1, c2

)
,

and

TE

(
DC,

c2

µ̂(q)c1

, q; c1, c2

)
=

(c1 + c2)µ̂(q)v̂H(q)

2c1c2

<
(c1 + c2)

{
µ̂(q)v̂H(q) +

[
1− µ̂(q)

]
v̂L(q)

}
2c1c2

=
(c1 + c2)v̄

2c1c2

= TE

(
CC,

c2

c1

; c1, c2

)
.

Therefore, choosing γ ∈ {CC,DD} with δ = c2
c1

generates strictly more expected total ef-

fort to the designer than choosing γ = DC with any δ > 0. Recall TE(DC, δ, q; c1, c2) =

TE(CD, 1/δ, q; c2, c1) from Lemma 1. This immediately implies that choosing γ ∈ {CC,DD}
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with δ = c2
c1

generates strictly more expected total effort for the designer than choosing

γ = CD with any δ > 0.

Next, we prove part (ii). It is useful to prove an intermediate result.

Lemma 5 Fix q ∈ (1/2, 1]. WE(DC, δ, q; c1, c2) is maximized at δ = c2
c1

or δ = c2
µ̂(q)c1

.

Proof. Fix u ∈ (0, 1) and z ∈ R++. First, for d ∈ (0, 1), we have that

∂W1(u, z, d; c1, c2)

∂d
= u2z

[
(3− u)c1 + (3− 2u)c2

]
+ (2c1 + c2) + 2

(
c2u

3z + c2

)
(1− d) > 0.

Therefore, W1(u, z, d; c1, c2) is increasing in d for d ∈ (0, 1).

Next, we show thatW2(u, z, d; c1, c2), with d ∈ [1, 1/µ], is maximized at d = 1 or d = 1/u.

Simple algebra would verify that

∂W2(u, z, d; c1, c2)

∂d
=

[
zu2W4(u, d; c1, c2)− 1

]
(3c1d+ 2c2d− 2c1)

d3
,

where W4(u, d; c1, c2) := 3(c1+c2)−u(c1+2c2d)
3c1d+2c2d−2c1

d3. Note that

∂W4(u, d; c1, c2)

∂d
=

6d2W5(u, d; c1, c2)[
c1(3d− 2) + 2c2d

]2 ,
whereW5(u, d; c1, c2) := −c2u(3c1+2c2)d2+

[
c2

1(3− u) + c1c2(2u+ 5) + 2c2
2

]
d+c1

[
c1u− 3(c1 + c2)

]
.

Note that W5(u, d; c1, c2) is concave in d, which implies that

W5(u, d; c1, c2) ≥ min
{
W5(u, 1; c1, c2),W5(u, 1/u; c1, c2)

}
, for d ∈ [1, 1/µ];

together with W5(u, 1; c1, c2) = 2c2(c1 + c2) − c2u(c1 + 2c2) > 0 and W5(u, 1/u; c1, c2) =
c1(c1(3−u)(1−u)+c2(2−u))

u
> 0, we can conclude thatW5(u, d; c1, c2) > 0. As a result, ∂W4(u,d;c1,c2)

∂d
>

0 and thus W4(u, d; c1, c2) is increasing in d for d ∈ [1, 1/u], which in turn implies that

∂W2(u, z, d; c1, c2)

∂d
≷ 0⇔ zu2W4(u, d; c1, c2) ≷ 1.

Therefore, W2(u, z, d; c1, c2) is either monotonic or U-shaped in d ∈ [1, 1/u]. This implies

that W2(u, z, d; c1, c2) is maximized at d = 1 or d = 1/u.

Finally, for d > 1, we have that

∂W3(d; c1, c2)

∂d
= −3c1d− 2c1 + 2c2d

d3
< 0,

which implies that W3(d; c1, c2) is decreasing in d for d > 1.

A4



In summary, (i) W1(u, z, d; c1, c2) is increasing in d for d ∈ (0, 1); (ii) W2(u, z, d; c1, c2)

is maximized at d = 1 or d = 1/u; and (iii) W3(d; c1, c2) is decreasing in d for d > 1. All

together, these facts imply that WE(DC, δ, q; c1, c2) is maximized at δ = c2
c1

or δ = c2
µ̂(q)c1

,

which concludes the proof.

For γ ∈ {CC,DD}, we have that

∂WE(CC, δ; c1, c2)

∂δ
=
∂WE(DD, δ; c1, c2)

∂δ
=


(3c2−2c1δ+2c1)v̄

6c22
> 0, if δ < c2

c1
;

− (3c1δ−2c2+2c2δ)v̄

6c21δ
3 < 0, if δ ≥ c2

c1
.

Therefore, WE(CC, δ; c1, c2) and WE(DD, δ; c1, c2) are both maximized at δ = c2
c1

. The

maximum expected winner’s effort is (c1+c2)v̄
3c1c2

.

Further, fixing q ∈ (1/2, 1], it follows from Lemma 5 that WE(DC, δ, q; c1, c2) is maxi-

mized at δ = c2
c1

or δ = c2
µ̂(q)c1

. Carrying out the algebra, we can obtain that

WE

(
DC,

c2

c1

, q; c1, c2

)
=

(c1 + c2)
{

2v̄ −
[
2− µ̂(q)

] [
1− µ̂(q)

]
µ̂(q)

[
v̂H(q)− v̂L(q)

]}
6c1c2

<
(c1 + c2)v̄

3c1c2

= WE

(
CC,

c2

c1

; c1, c2

)
,

and

WE

(
DC,

c2

µ̂(q)c1

, q; c1, c2

)
=
µ̂(q)v̂H(q)

{
2c2 + c1

[
3− µ̂(q)

]}
6c1c2

.

Further, by Lemma 2, we have that WE(CD, δ, q; c1, c2) = WE(DC, 1/δ, q; c2, c1); to-

gether with the above analysis, we can conclude that WE(CD, δ, q; c1, c2) is maximized at

δ = c2
c1

or δ = µ̂(q)c2
c1

. Moreover, we have that

WE

(
CD,

c2

c1

, q; c1, c2

)
= WE

(
DC,

c1

c2

, q; c2, c1

)
= WE

(
DC,

c2

c1

, q; c1, c2

)
< WE

(
CC,

c2

c1

; c1, c2

)
,

and

WE

(
CD,

µ̂(q)c2

c1

, q; c1, c2

)
=
µ̂(q)v̂H(q)

{
2c1 + c2

[
3− µ̂(q)

]}
6c1c2

<
µ̂(q)v̂H(q)

{
2c2 + c1

[
3− µ̂(q)

]}
6c1c2

= WE

(
DC,

c2

µ̂(q)c1

, q; c1, c2

)
,
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where the strict inequality follows from c1 ≥ c2 and 3− µ̂(q) > 2. As a result, γ = CD would

not arise in the optimum.

In summary, fixing q ∈ (1/2, 1], the expected winner’s effort from the contest is maximized

by either (γ, δ) =
(
CC or DD, c2

c1

)
or (γ, δ) =

(
DC, c2

µ̂(q)c1

)
. Carrying out the algebra, we

have that

WE

(
CC,

c2

c1

; c1, c2

)
−WE

(
DC,

c2

µ̂(q)c1

, q; c1, c2

)
=

[
1− µ̂(q)

]
×
[
2(c1 + c2)v̂L(q)− c1µ̂(q)v̂H(q)

]
6c1c2

.

It can be verified thatWE
(
CC, c2

c1
; c1, c2

)
> WE

(
DC, c2

µ̂(q)c1
, q; c1, c2

)
is equivalent to µ̂(q)v̂H(q) <(

2 c2
c1

+ 2
)
v̂L(q), which concludes the proof.

Proofs of Proposition 3

Proof. It can be verified that the strategy profile provided in Proposition 3 constitutes an

equilibrium under γ = D̂D̂. The equilibrium uniqueness for the case of ψLH < ψLL follows

from Rentschler and Turocy (2016) and that for the case of ψLH ≥ ψLL follows from Siegel

(2014).

Proof of Lemma 3

Proof. From the equilibrium characterization in Proposition 3, we can derive the ex-

pected total effort and the expected winner’s effort with γ = D̂D̂—which we denote by

TE](D̂D̂, δ, q; c1, c2) and WE](D̂D̂, δ, q; c1, c2), respectively—as the following:

TE](D̂D̂, δ, q; c1, c2) =



TE1(a), if q > vH
vH+vL

and δ ≤ c2
c1
,

TE1(b), if q > vH
vH+vL

and δ > c2
c1
,

TE2(a), if q ≤ vH
vH+vL

and δ ≤ c2
c1
× ψHL

ψHL+ψLH
,

TE2(b), if q ≤ vH
vH+vL

and c2
c1
× ψHL

ψHL+ψLH
< δ ≤ c2

c1
,

TE2(c), if q ≤ vH
vH+vL

and c2
c1
< δ ≤ c2

c1
× ψHL+ψLH

ψHL
,

TE2(d), if q ≤ vH
vH+vL

and δ > c2
c1
× ψHL+ψLH

ψHL
,

(7)
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and

WE](D̂D̂, δ, q; c1, c2) =



WE1(a), if q > vH
vH+vL

and δ ≤ c2
c1
,

WE1(b), if q > vH
vH+vL

and δ > c2
c1
,

WE2(a), if q ≤ vH
vH+vL

and δ ≤ c2
c1
× ψHL

ψHL+ψLH
,

WE2(b), if q ≤ vH
vH+vL

and c2
c1
× ψHL

ψHL+ψLH
< δ ≤ c2

c1
,

WE2(c), if q ≤ vH
vH+vL

and c2
c1
< δ ≤ c2

c1
× ψHL+ψLH

ψHL
,

WE2(d), if q ≤ vH
vH+vL

and δ > c2
c1
× ψHL+ψLH

ψHL
,

(8)

where

TE1(a) : =
δv̄(c1 + c2)

2c2
2

,

TE1(b) : =
v̄(c1 + c2)

2δc2
1

,

TE2(a) : =
δ(c1 + c2)

{
µqvH

[
µq + (2− µ)(1− q)

]
+ (1− µ)(1− q)vL(1− µ+ 2µq)

}
2c2

2

[
µq + (1− µ)(1− q)

] ,

TE2(b) : =
(c1 + c2)

(
c2

1δ
2D + c2

2E
)

2c2
1c

2
2δ(−2µq + q + µ)2

, with

D : = µvH
[
1− q(2− 2q + 2µq − µ)(1 + q + µ− 2µq)

]
+ (1− µ)vL

[
q2 − (1− q)(2q − 1)µ(q + µ− 2µq)

]
,

E : = (2q − 1)(1− µ)µ(2µq − q − µ+ 1)
[
(1− q)vH − qvL

]
,

TE2(c) : =
(c1 + c2)

(
c2

1δ
2E + c2

2D
)

2c2
1c

2
2δ (−2µq + q + µ)2 ,

TE2(d) : =
(c1 + c2)

{
µqvH

[
µq + (2− µ)(1− q)

]
+ (1− µ)(1− q)vL(1− µ+ 2µq)

}
2δc2

1

[
µq + (1− µ)(1− q)

] ;

WE1(a), WE1(b), WE2(a), WE2(b), WE2(c), and WE2(d) will be provided later in the proof.

Expected Total Effort Maximization. The analysis is trivial for the case of q > vH
vH+vL

from the expressions of TE1(a) and TE1(b), and it remains to consider the case of q ≤ vH
vH+vL

.

It is straightforward to verify that TE2(a) increases with δ. Next, recall TE2(b) =
(c1+c2)(c21δ

2D+c22E)

2c21c
2
2δ(−2µq+q+µ)2 . It can be verified that D > 0 for all (q, µ) ∈ (1/2, 1] × (0, 1), which

implies that TE2(b) is either increasing in δ (E ≥ 0) or U-shaped in δ (E < 0). Further, we

can show that TE2(b)

(
δ = c2

c1

)
> TE2(b)

(
δ = c2

c1
× ψHL

ψHL+ψLH

)
. These facts together imply that

δ = c2
c1

maximizes TE](D̂D̂, δ, q; c1, c2) for δ ∈
(
0, c2

c1

]
.
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Next, note that fixing δ̃ ∈ (0,∞), TE]
(
D̂D̂, c2

c1
δ̃, q; c1, c2

)
= TE]

(
D̂D̂, c2

c1
1
δ̃
, q; c1, c2

)
.

Therefore, δ = c2
c1

maximizes TE](D̂D̂, δ, q; c1, c2) in (7) for δ ∈
(
0,∞).

Expected Winner’s Effort Maximization. We consider the following two cases de-

pending on q relative to vH
vH+vL

.

Case I: q > vH

vH+vL
. WE1(a) in expression (8) is given by

WE1(a) =
δ (c1δJ +K)

6c2
2 (1− q − µ+ 2µq)

[
qvH − (1− q)vL

]2 ,
where

J :=−
{

(1− q − µ+ 2µq)
[
(2q − 1)2v3

L + (2q − 1)
[
2q + µ(2q − 1)

]
v2
L(vH − vL)

+ q
[
q + 2µ(2q − 1)

]
vL(vH − vL)2

]
+ µq

[
(1− q)2 + (2q − 1)µ

]
(vH − vL)3

}
,

K :=c1K1 + c2K2, with

K1 :=− qv2
HvL

[(
2q2 + q − 1

)
µ2 + (5− 8q)µq + 2(q − 1)q + µ

]
+ (q − 1)vHv

2
L

{
2q2
[
µ(µ+ 2)− 2

]
− q

(
5µ2 + µ− 4

)
+ 2(µ− 1)µ

}
+ µqv3

H

{
q
[
q(6µ− 4)− 5µ+ 5

]
+ µ− 1

}
− (q − 1)(µ− 1)v3

L

{[
q(6q − 7) + 2

]
µ− 2(q − 1)2

}
,

K2 :=3
[
q(2µ− 1)− µ+ 1

] [
vL − q(vH + vL)

]2 [
µ(vH − vL) + vL

]
.

We first show that WE1(a) is increasing in δ for δ ≤ c2
c1

. Note that WE1(a) is quadratic

in δ and it can be verified that J < 0. Therefore, it suffices to show that K
−2c1J > c2

c1
,

which is equivalent to 2c2J +K > 0. Carrying out the algebra, we have that

2c2J +K =(2c1 + c2)(1− q − µ+ 2µq)vL ×


(2q − 1)2v2

L

+(2q − 1)
[
2q + µ(2q − 1)

]
vL(vH − vL)

+q
[
q + 2µ(2q − 1)

]
(vH − vL)2


+ µq(vH − vL)3 (c1R1 + c2R2) ,

where

R1 :=q
[
q(6µ− 4)− 5µ+ 5

]
+ µ− 1,

R2 :=q
[
q(6µ− 5)− 7µ+ 7

]
+ 2(µ− 1).
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It can be verified thatR1 > 0 andR2 > 0, from which we can conclude that 2c2J+K >

0 and thus WE1(a) is increasing in δ for 0 < δ < c2
c1

.

WE1(b) in expression (8) is given by

WE1(b) =
c2J + δ (c1K2 + c2K1)

6c2
1δ

2 (1− q − µ+ 2µq)
[
qvH − (1− q)vL

]2 .
Next, we show that WE1(b) is decreasing in δ for δc1

c2
> 1. For notational convenience,

let δ̂ := δc1
c2

. We can rewrite WE1(a) and WE1(b) as the following:

WE1(a) = S
(
c1, c2, δ̂

)
:=

δ̂
(
c2δ̂J +K1c1 +K2c2

)
6c1c2 (1− q − µ+ 2µq)

[
qvH − (1− q)vL

]2 , (9)

WE1(b) =
c1J + δ̂ (c1K2 + c2K1)

6c1c2δ̂2 (1− q − µ+ 2µq)
[
qvH − (1− q)vL

]2 = S
(
c2, c1, 1/δ̂

)
. (10)

We have shown that S(c1, c2, δ̂) increases with δ̂ ∈ (0, 1); together with (9) and (10), we

can conclude that S(c2, c1, 1/δ̂) increases in 1/δ̂ for 1/δ̂ ∈ (0, 1), which in turn implies

that WE1(b) decreases in δ̂ ∈ (1,∞).

In summary, WE](D̂D̂, δ, q; c1, c2) is maximized at δ = c2
c1

for q > vH
vH+vL

.

Case II: q ≤ vH

vH+vL
. It suffices to show that (i) WE2(a) is strictly increasing in δ for δ ∈(

0, c2
c1
× ψHL

ψHL+ψLH

]
; (ii) WE2(b) is maximized at δ = c2

c1
for δ ∈

(
c2
c1
× ψHL

ψHL+ψLH
, c2
c1

]
; (iii)

WE2(c) is maximized at δ = c2
c1

for δ ∈
[
c2
c1
, c2
c1
× ψHL+ψLH

ψHL

]
; and (iv) WE2(d) strictly

decreases with δ for δ ∈
(
c2
c1
× ψHL+ψLH

ψHL
,∞
)
.

WE2(a) in expression (8) is given by

WE2(a) =
δ
[
FvL + GvH + c1δ(M1vL +M2vH)

]
6(c2)2 (1− µ− q + 2µq)2 ,

where

F : = µq ×

{
(2q − 1)(q − 1)µ

[
c1(q − 6)− 9c2

]
−(µ− 2µq)2

[
c1q − 3(c1 + c2)

]
+ (q − 1)2

[
c1(2q + 3) + 6c2

] } ,
G : = (1− µ)(1− q)×

{
−(2q − 1)µ

[
c1(3q2 + q − 4) + 3c2(q − 2)

]
+(µ− 2µq)2

[
c1(q + 2) + 3c2

]
− (q − 1)(2c1 + 3c2)

}
,

M1 : = µq
{

(1− 2q)2(2q − 3)µ2 + q
[
(27− 10q)q − 23

]
µ+ q

[
q(2q − 7) + 8

]
+ 6µ− 3

}
,

M2 : = −(1− q)(1− µ)
{

(1− 2q)2(2q + 1)µ2 + q
[
(5− 6q)q + 3

]
µ− q − 2µ+ 1

}
.
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We first show that WE2(a) is increasing in δ for δ ≤ c2
c1
× ψHL

ψHL+ψLH
. Note that WE2(a)

is quadratic in δ and it can be verified thatM1 < 0 andM2 < 0. Therefore, it suffices

to show that

− FvL + GvH
2c1(M1vL +M2vH)

>
c2

c1

,

which is equivalent to

H(vL, vH) : = 2c2 (M1vL +M2vH) + FvL + GvH
= µqvH (M3c1 +M4c2) + (1− µ)(1− q)vL (M5c1 +M6c2) > 0,

where

M3 : = (q − 6)(2q − 1)(q − 1)µ+ (3− q)(µ− 2µq)2 + (2q + 3)(q − 1)2,

M4 : = (3− 10q)(2q − 1)(q − 1)µ+ (4q − 3)(µ− 2µq)2 + 4q(q − 1)2,

M5 : = (1− 2q)
(
3q2 + q − 4

)
µ+ (q + 2)(µ− 2µq)2 − 2q + 2,

M6 : = 4q3(3− 4µ)µ+ 4q2µ(5µ− 4) + q
[
(9− 8µ)µ− 1

]
+ (µ− 1)2.

It can be verified that M3 > 0, M4 > 0, µqM3 + (1 − µ)(1 − q)M5 > 0, and

µqM4 + (1− µ)(1− q)M6 > 0. Therefore,

H(vL, vH) = µqvH (M3c1 +M4c2) + (1− µ)(1− q)vL (M5c1 +M6c2)

> µqvL (M3c1 +M4c2) + (1− µ)(1− q)vL (M5c1 +M6c2)

> c1vL
[
µqM3 + (1− µ)(1− q)M5

]
+ c2vL

[
µqM4 + (1− µ)(1− q)M6

]
> 0,

which in turn implies that WE2(a) is increasing in δ for δ ∈
(
0, c2

c1
× ψHL

ψHL+ψLH

]
.

Next, recall δ̂ ≡ δc1
c2

. WE2(b) in expression (8) is given by

WE2(b) =Q−

(1− δ̂)

 µ(vH − vL)
[
c1(M7δ̂

2 +M8δ̂ +M9) + δ̂c2(M10δ̂
2 +M11δ̂ +M12)

]
+vL

[
c1(M13δ̂

2 +M14δ̂ +M15) + δ̂c2(M16δ̂
2 +M17δ̂ +M18)

] 
6c1c2δ̂2(q + µ− 2µq)4(1− q − µ+ 2µq)

,

(11)
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where

Q :=

(c1 + c2)


µvH


[
q(q + 2)− 1

]
(µ− 2µq)2

−q
[
q(2q − 3)(4q + 7) + 17

]
µ

+q
{

2q
[
q(2q − 1)− 4

]
+ 9
}

+ (4µ− 3)


−(µ− 1)vL

[ [
(q − 4)q + 2

]
(µ− 2µq)2

+(q − 2)(2q − 1)(3q − 1)µ+ 2(q − 1)q

]


6c1c2

[
q(2µ− 1)− µ

] [
q(2µ− 1)− µ+ 1

] ,

M7 :=− (2q − 1)3
{
q
[
q(4q2 − 26q − 5) + 21

]
− 6
}
µ3

+ (2q − 1)
{
q
[
q(5q4 + 7q3 − 22q + 11) + 3

]
− 2
}
µ

+
[
(4q − 15)q2 + 3

]
(µ− 2µq)4 − (q − 1)q2

(
2q4 + 3q3 − 4q + 2

)
− (q − 3)q(2q − 1)5µ5 − (2q5 + 20q4 + 8q3 − 38q2 + 17q − 1)(µ− 2µq)2,

M8 :=(1− q)2(2q − 1)(1− µ)
[
q2 + 2(1− 2q)2µ2 + (7q − 6q2 − 2)µ

]
×
[
q(2µ− 1)− µ− 2

] [
q(2µ− 1)− µ+ 1

]
,

M9 :=(1− q)2(2q − 1)(1− µ)
{
q2 + 2(1− 2q)2µ2 +

[
(7− 6q)q − 2

]
µ
} [
q(2µ− 1)− µ+ 1

]2
,

M10 :=(2q − 1)
[
(11q4 − 23q3 + 23q − 13)q2 + 1

]
µ−

[
(11q − 18)q2 + 3

]
(µ− 2µq)4

− (q − 1)2q2
[
(q − 1)q(2q + 1) + 1

]
+ q(2q − 3)(2q − 1)5µ5

+ (2q − 1)3
[
(q − 1)q(23q2 − 17q − 21)− 6

]
µ3

−
[
q(q + 1)(23q3 − 66q2 + 59q − 19) + 2

]
(µ− 2µq)2

M11 :=− (q − 1)q2
(
2q4 + 3q3 − 4q + 2

)
+ (2q − 1)5(2q2 − 3q + 3)µ5

+ (2q − 1)3(23q4 − 37q3 + 47q2 − 24q + 3)µ3 − (11q3 − 18q2 + 21q − 6)(µ− 2µq)4

+ (q − 1)q(22q5 − 5q4 + 15q3 − 11q2 − 3q + 10)µ

− (23q5 − 31q4 + 38q3 − 26q2 + 2q + 2)(µ− 2µq)2 + 2µ

M12 :=(q − 1)(2q − 1)(µ− 1)
[
q(2µ− 1)− µ+ 1

]2
×
[
−(q + 2)q2 + (1− 2q)2(q − 4)µ2 + (14q − 9)µq + µ

]
,

M13 :=− 2q2(2q − 1)
[
(2q2 + q − 6)q2 + 2

]
µ+ (10q3 + 18q2 − 3q − 4)(µ− 2µq)4

+ (14q5 + 8q4 − 18q3 − 6q2 + q + 2)(µ− 2µq)2 − 2(q − 1)q4

+ 2(1− 2q)6µ6 − (2q − 1)5(2q2 + 10q − 1)µ5

− (2q − 1)3(18q4 + 16q3 − 10q2 − 10q + 1)µ3,

M14 :=(1− 2q)2(µ− 1)µ
[
(q − 1)q2 + 2(1− 2q)2µ2 − (2q − 1)(q2 + 3q − 2)µ

]
×
[
q(2µ− 1)− µ− 2

] [
q(2µ− 1)− µ+ 1

]
,

M15 :=(2q − 1)2(1− µ)µ(−2µq + q + µ− 1)2
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×
[
−(q − 1)q2 − 2(1− 2q)2µ2 + (q − 1)(2q + 7)µq + 2µ

]
,

M16 :=q2(2q − 1)
[
(2q2 + q − 6)q2 + 2

]
µ+ (q − 1)q4 − (1− 2q)6µ6

+ (2q − 1)5(q2 + 5q + 1)µ5 + (2q − 1)3(9q4 + 8q3 + 7q2 − 14q + 2)µ3

− (5q3 + 9q2 + 6q − 5)(µ− 2µq)4 −
[
q3(q + 1)(7q − 3)− 9q2 + 2q + 1

]
(µ− 2µq)2,

M17 :=(2q − 1)3(9q4 − 4q3 − 2q2 + q + 2)µ3 + q2
[
(4q2 − 12q + 17)q3 − 11q + 4

]
µ

− 2(q − 1)q4 − (1− 2q)6µ6 + (2q − 1)5(q2 + 5q − 2)µ5

− (5q3 + 6q2 − 6q + 1)(µ− 2µq)4 − (7q5 − 11q4 + 6q3 + 3q2 + 2q − 2)(µ− 2µq)2,

M18 :=(1− 2q)2(µ− 1)µ
[
−(2q + 1)q2 − 4(1− 2q)2µ2 + 2(2q2 + 5q − 4)µq + µ

]
×
[
q(2µ− 1)− µ+ 1

]2
.

Note that Q is independent of δ and thus δ̂, and it can be verified that WE2(b)

(
δ =

c2
c1

)
= Q. It remains to show that Q > WE2(b) for all δ ∈

(
c2
c1
× ψHL

ψHL+ψLH
, c2
c1

)
, or

equivalently, for δ̂ ∈
(

ψHL
ψHL+ψLH

, 1
)
. Note that ψHL

ψHL+ψLH
= µq + (1− µ)(1− q) ≡ µ̂(q).

Fix δ̂ ∈
(
µ̂(q), 1

)
. The following can be verified:

(a) M7 > 0 and (M8)2 − 4M7M9 < 0, which implies that M7δ̂
2 +M8δ̂ +M9 > 0.

(b) M10 < 0, M10

[
µ̂(q)

]2
+M11

[
µ̂(q)

]
+M12 > 0, and M10 +M11 +M12 > 0,

which implies that M10δ̂
2 +M11δ̂ +M12 > 0.

(c) M13 > 0 andM2
14−4M13M15 < 0, which implies thatM13δ̂

2+M14δ̂+M15 > 0.

(d) M16 < 0, M16

[
µ̂(q)

]2
+M17

[
µ̂(q)

]
+M18 > 0, and M16 +M17 +M18 > 0,

which implies that M16δ̂
2 +M17δ̂ +M18 > 0.

The above conditions, together with (11), imply that Q > WE2(b) for all δ̂ ∈
(
µ̂(q), 1

)
.

WE2(c) in expression (8) is given by

WE2(c) =Q+

(δ̂ − 1)

 µ(vH − vL)
[
c1(M19δ̂

2 +M20δ̂ +M21) + δ̂c2(M22δ̂
2 +M23δ̂ +M24)

]
+vL

[
c1(M25δ̂

2 +M26δ̂ +M27) + δ̂c2(M28δ̂
2 +M29δ̂ +M30)

] 
6c1c2δ̂2(q + µ− 2µq)4(1− q − µ+ 2µq)

,

where

M19 :=(1− q)(2q − 1)(1− µ)
[
−(q + 2)q2 + (1− 2q)2(q − 4)µ2 + (14q − 9)µq + µ

]
×
[
q(2µ− 1)− µ+ 1

]2
,

M20 :=(1− q)q2(2q4 + 3q3 − 4q + 2) + (2q − 1)5(2q2 − 3q + 3)µ5

+ (2q − 1)3(23q4 − 37q3 + 47q2 − 24q + 3)µ3
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+ (q − 1)q(22q5 − 5q4 + 15q3 − 11q2 − 3q + 10)µ

− (11q3 − 18q2 + 21q − 6)(µ− 2µq)4

− (23q5 − 31q4 + 38q3 − 26q2 + 2q + 2)(µ− 2µq)2 + 2µ,

M21 :=(2q − 1)
(
11q6 − 23q5 + 23q3 − 13q2 + 1

)
µ

− (11q3 − 18q2 + 3)(µ− 2µq)4 − (q − 1)2q2
[
(q − 1)q(2q + 1) + 1

]
+ q(2q − 3)(2q − 1)5µ5 + (2q − 1)3

[
(q − 1)q(23q2 − 17q − 21)− 6

]
µ3

−
[
q(q + 1)(23q3 − 66q2 + 59q − 19) + 2

]
(µ− 2µq)2,

M22 :=(1− q)2(2q − 1)(1− µ)
[
q2 + 2(1− 2q)2µ2 + (7− 6q)µq − 2µ

] [
q(2µ− 1)− µ+ 1

]2
,

M23 :=(1− q)2(2q − 1)(1− µ)
[
q2 + 2(1− 2q)2µ2 + (7q − 6q2 − 2)µ

]
×
[
q(2µ− 1)− µ− 2

] [
q(2µ− 1)− µ+ 1

]
,

M24 :=− (2q − 1)3
{
q
[
q(4q2 − 26q − 5) + 21

]
− 6
}
µ3

+ (2q − 1)
{
q
[
q(5q4 + 7q3 − 22q + 11) + 3

]
− 2
}
µ

+
[
(4q − 15)q2 + 3

]
(µ− 2µq)4 − (q − 1)q2

(
2q4 + 3q3 − 4q + 2

)
− (q − 3)q(2q − 1)5µ5 − (2q5 + 20q4 + 8q3 − 38q2 + 17q − 1)(µ− 2µq)2,

M25 :=(1− 2q)2(µ− 1)µ
[
−(2q + 1)q2 − 4(1− 2q)2µ2 + 2(2q2 + 5q − 4)µq + µ

]
×
[
q(2µ− 1)− µ+ 1

]2
,

M26 :=(2q − 1)3(9q4 − 4q3 − 2q2 + q + 2)µ3 + q2(2q − 1)(2q4 − 5q3 + 6q2 + 3q − 4)µ

− 2(q − 1)q4 − (1− 2q)6µ6 + (2q − 1)5(q2 + 5q − 2)µ5 − q(5q2 + 6q − 6)(µ− 2µq)4

− (µ− 2µq)4 + (2− 7q5 − 11q4 + 6q3 + 3q2 + 2q)(µ− 2µq)2,

M27 :=q2(2q − 1)(2q4 + q3 − 6q2 + 2)µ+ (q − 1)q4 − (1− 2q)6µ6

+ (2q − 1)5(q2 + 5q + 1)µ5 + (2q − 1)3(9q4 + 8q3 + 7q2 − 14q + 2)µ3

− (5q3 + 9q2 + 6q − 5)(µ− 2µq)4 −
[
q3(q + 1)(7q − 3)− 9q2 + 2q + 1

]
(µ− 2µq)2,

M28 :=(2q − 1)2(1− µ)µ
[
−(q − 1)q2 − 2(1− 2q)2µ2 + (q − 1)(2q + 7)µq + 2µ

]
×
[
q(2µ− 1)− µ+ 1

]2
,

M29 :=(1− 2q)2(µ− 1)µ
[
(q − 1)q2 + 2(1− 2q)2µ2 − (2q − 1)(q2 + 3q − 2)µ

]
×
[
q(2µ− 1)− µ− 2

] [
q(2µ− 1)− µ+ 1

]
,

M30 :=− 2q2(2q − 1)(2q4 + q3 − 6q2 + 2)µ+ (10q3 + 18q2 − 3q − 4)(µ− 2µq)4

+ (14q5 + 8q4 − 18q3 − 6q2 + q + 2)(µ− 2µq)2 − 2(q − 1)q4 + 2(1− 2q)6µ6

− (2q − 1)5(2q2 + 10q − 1)µ5 − (2q − 1)3(18q4 + 16q3 − 10q2 − 10q + 1)µ3.
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WE2(d) in expression (8) is given by

WE2(d) =
c1 (vHM31 + vLM32) +M33δ̂

6c1c2δ̂2 (1− µ− q + 2µq)2
,

where

M31 :=µq
{

(1− 2q)2(2q − 3)µ2 + q
[
(27− 10q)q − 23

]
µ+ q

[
q(2q − 7) + 8

]
+ 6µ− 3

}
,

M32 :=(1− µ)(1− q)
[
−(1− 2q)2(2q + 1)µ2 + (q − 1)(2q − 1)(3q + 2)µ+ q − 1

]
,

M33 :=3c1

[
q(2µ− 1)− µ+ 1

] {
µqvH

[
2q(µ− 1)− µ+ 2

]
+ (q − 1)(µ− 1)vL((2q − 1)µ+ 1)

}
+ c2(q − 1)(µ− 1)vL

[
(−6q3 + q2 + 9q − 4)µ+ (1− 2q)2(q + 2)µ2 − 2q + 2

]
− c2µqvH

[
(1− 2q)2(q − 3)µ2 − (q − 6)(2q − 1)(q − 1)µ− (2q + 3)(q − 1)2

]
.

Similarly, we can show that Q−WE2(c) > 0 for all δ ∈
(
c2
c1
, c2
c1
× ψHL+ψLH

ψHL

]
and WE2(d)

strictly decreases with δ for δ ∈
(
c2
c1
× ψHL+ψLH

ψHL
,∞
)
. This concludes the proof.

Proof of Theorem 3

Proof. We first prove part (i) of the theorem. From the proof of Theorem 2, (γ, δ) = (CC, c2
c1

)

maximizes expected total effort over (γ, δ) ∈ {DC,CD,CC} × R++ and the corresponding

maximum value is (c1+c2)v̄
2c1c2

.

Suppose q ≥ vH
vH+vL

. By Lemma 3, TE](D̂D̂, δ, q; c1, c2) is maximized by δ = c2/c1 and the

corresponding maximum value is (c1+c2)v̄
2c1c2

. Therefore, both (CC, c2
c1

) and (D̂D̂, c2
c1

) maximize

expected total effort from the contest.

Suppose q < vH
vH+vL

. Again, by Lemma 3, TE](D̂D̂, δ, q; c1, c2) is maximized by δ = c2/c1.

Carrying out the algebra, we can obtain that

(c1 + c2)v̄

2c1c2

− TE]

(
DD,

c2

c1

, q; c1, c2

)
=

(c1 + c2)

c1c2

×
(2q − 1)(1− µ)µ

[
vH − q(vH + vL)

]
q + µ− 2µq

> 0.

Therefore, (CC, c2
c1

) maximizes expected total effort from the contest.

Next, we prove part (ii). By Theorem 2, (CC, c2
c1

) or (DC, c2
[c1µ̂(q)]

) maximizes the expected

winner’s effort over (γ, δ) ∈ {DC,CD,CC}×R++. Further, by Lemma 3, WE](D̂D̂, δ, q) is

maximized at δ = c2
c1

. These facts together conclude the proof.

Proof of Theorem 4
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Proof. The proof of part (i) of the theorem closely follows that of Theorem 2(i) and it

remains to prove part (ii). It is useful to prove an intermediate result.

Lemma 6 Suppose that γ = DC. Fix an arbitrary tuple (vπH , v
π
L, µ

π) that satisfies (6) and

let the designer set the scoring bias δ > 0. Then the expected winner’s effort from the contest

is maximized at δ = c2
c1

or δ = c2
µπc1

.

Proof. The proof closely follows that of Lemma 5 and is omitted for brevity.

Following the same steps in the proof of Theorem 2, we can show that for an arbitrary

tuple (vπH , v
π
L, µ

π) that satisfies (6), the expected winner’s effort from the contest is maximized

by (δ, γ) = (c2/c1, CC), (δ, γ) = (c2/c1, DD), or (δ, γ) =
(

c2
µπc1

, DC
)
. The first two contest

schemes generate an expected winner’s effort of c1+c2
3c1c2

v̄, while the third one generates an

expected winner’s effort of
µπvπH(2c2+3c1−c1µπ)

6c1c2
. The optimization problem thus boils down to

max
{vπL,v

π
H ,µ

π}
WEπ := max

{
c1 + c2

3c1c2

v̄,
µπvπH(2c2 + 3c1 − c1µ

π)

6c1c2

}
s.t. (6).

It is straightforward to verify that
µπvπH(2c2+3c1−c1µπ)

6c1c2
is increasing in µπ ∈ (0, 1). By (6), we

can obtain that

µπ =
v̄ − vπL
vπH − vπL

= 1− vπH − v̄
vπH − vπL

,

which implies that µπ is decreasing in vπL. Therefore, vπL = vL in the optimum. Plugging

vπL = vL into (6) yields that vπH = vL+ v̄−vL
µπ

. Replacing (vπL, v
π
H) with (vL, vL+ v̄−vL

µπ
) in WEπ,

the above maximization problem can be further simplified as

max
µπ∈[µ,1)

max

{
c1 + c2

3c1c2

v̄,V(µπ)

}
,

where

V(µπ) :=
−c1vL(µπ)2 +

[
(4c1 + 2c2)vL − c1v̄

]
µπ + (3c1 + 2c2)(v̄ − vL)

6c1c2

,

and the constraint µπ ≥ µ is due to the constraint vπH = vL + v̄−vL
µπ
≤ vH imposed in (6).

Note that V(1) = c1+c2
3c1c2

v̄ and V(µπ) is quadratic and inverted U-shaped in µπ. Therefore,

maxµπ∈[µ,1) V(µπ) > c1+c2
3c1c2

v̄ if and only if

(4c1 + 2c2)vL − c1v̄

2c1vL
< 1 ⇐⇒ v̄

vL
> 2 + 2

c2

c1

.

In this case, µπ = max
{
µ, (4c1+2c2)vL−c1v̄

2c1vL

}
in the optimum.

In summary, if v̄
vL

> 2 + 2 c2
c1

, the expected winner’s effort is maximized by a contest
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scheme with (δ, γ) =
(

c2
µπc1

, DC
)

and

π
(
H|vH

)
= 1, π

(
H|vL

)
=

0, if v̄
vL
≥ 4− 2µ+ 2 c2

c1
,

4−2µ+2
c2
c1
− v̄
vL

2(1−µ)
, if 2 + 2 c2

c1
< v̄

vL
< 4− 2µ+ 2 c2

c1
;

otherwise, it is maximized by (δ, γ) = (c2/c1, CC) or (δ, γ) = (c2/c1, DD) with an arbitrary

information structure
{
π(·|vH), π(·|vL)

}
. This concludes the proof.

Proof of Lemma 4

Proof. The lemma follows immediately from the equilibrium characterizations established

in Propositions 1 and 2, and is omitted for brevity.

Proof of Theorem 5

Proof. We first prove part (i) of the theorem. By Lemma 4, the quota constraint WP1(δ) ≥
η, with η ∈ (0, 1/2], can be simplified as δ ≤ δ̄ := c2/(2ηc1) ∈ [c2/c1,∞). Recall that

absent the affirmative action policy, the optimal contest scheme (γ, δ) = (CC, c2/c1) or

(γ, δ) = (DD, c2/c1) maximizes expected total effort. It is straightforward to verify that

δ̄ ≥ c2/c1, (γ, δ) = (CC, c2/c1) and (γ, δ) = (DD, c2/c1), and thus the quota constraint is

satisfied.

Next, we prove part (ii). Consider the following three cases:

Case I: µ̂(q)v̂H(q) ≥
(
2c1
c2

+ 2
)
v̂L(q). From the proof of Theorem 2, we have that

WE

(
DC,

c2

c1

, q; c1, c2

)
< WE

(
CC,

c2

c1

; c1, c2

)
≤ WE

(
DC,

c2

µ̂(q)c1

, q; c1, c2

)
. (12)

Moreover, from the proof of Lemma 5, we know that (i) WE (DC, δ, q; c1, c2) is in-

creasing in δ ∈ (0, c2/c1); (ii) WE (DC, δ, q; c1, c2) is either monotonic or U-shaped in

δ for δ ∈
(
c2/c1, c2/[µ̂(q)c1]

)
; and (iii) WE (DC, δ, q; c1, c2) decreases with δ for δ ∈(

c2/[µ̂(q)c1],∞
)
. Together with (12), we can further conclude thatWE (DC, δ, q; c1, c2)

is either increasing or U-shaped in δ ∈
(
c2/c1, c2/[µ̂(q)c1]

)
.

Similarly, from the proofs of Theorem 2 and Lemma 5, we can establish that

WE

(
CD,

c2

c1

, q; c1, c2

)
< WE

(
CC,

c2

c1

; c1, c2

)
≤ WE

(
CD,

µ̂(q)c2

c1

, q; c1, c2

)
. (13)

Moreover, we know that (i) WE(CD, δ, q; c1, c2) is increasing in δ for δ ∈ (0, µ̂(q)c2/c1);

(ii) WE(CD, δ, q; c1, c2) is decreasing or U-shaped in δ for δ ∈
(
µ̂(q)c2/c1, c2/c1

)
; and

(iii) WE(CD, δ, q; c1, c2) is decreasing in δ for ∈ (c2/c1,∞).
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By (12), (13), and the monotonicity of WE (DC, δ, q; c1, c2) and WE (CD, δ, q; c1, c2),

we can pin down the optimal contest scheme as stated in case (a) of Theorem 5(ii).

Case II:
(
2c2
c1

+ 2
)
v̂L(q) ≤ µ̂(q)v̂H(q) <

(
2c1
c2

+ 2
)
v̂L(q). The analysis ofWE(DC, δ, q; c1, c2)

for this case is the same as that for Case I. For WE(CD, δ, q; c1, c2), it is straightforward

to verify that

max

{
WE

(
CD,

c2

c1

, q; c1, c2

)
,WE

(
CD,

µ̂(q)c2

c1

, q; c1, c2

)}
< WE

(
CC,

c2

c1

; c1, c2

)
.

Further, it follows from the proof of Theorem 2 that WE(CD, δ, q; c1, c2) is maximized

at δ = c2
c1

or δ = µ̂(q)c2
c1

. Therefore, (γ, δ) = (CC, c2/c1) dominates γ = CD with any

δ > 0 in terms of the expected winner’s effort.

From the above analysis, we only need to compare the expected winner’s effort under

(γ, δ) = (CC, c2/c1) and the maximum expected winner’s effort that can be achieved

under γ = DC in the presence of the quota constraint δ ≤ δ̄. By (12) and the

monotonicity of WE(DC, δ, q; c1, c2), we can pin down the optimal contest scheme as

stated in case (b) of Theorem 5(ii).

Case III: µ̂(q)v̂H(q) <
(
2c2
c1

+ 2
)
v̂L(q). From the proof of Theorem 2, (γ, δ) = (CC, c2/c1)

dominates γ = DC and γ = CD with any δ in WE maximization. Further, the quota

constraint under (γ, δ) = (CC, c2/c1) is satisfied. Therefore, the optimal contest scheme

with an affirmative action policy is (γ, δ) = (CC, c2/c1) or (γ, δ) = (DD, c2/c1).
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