
Proof Theory of Continuous Logic
A search for Gentzen-style proof system

Jin Wei

University of Pennsylvania

FSLS at Fudan, May 12, 2023

Wei, Jin Proof Theory of Continuous Logic FSLS 1 / 35



Table of Contents

1 History and Motivation

2 Syntax of Continuous Logic

3 Attempts Joint with Eben Blaisdell

4 The Solution And ...

Wei, Jin Proof Theory of Continuous Logic FSLS 2 / 35



History and Motivation

Wei, Jin Proof Theory of Continuous Logic FSLS 3 / 35



Failure of Regular Ultraproducts

Ultraproduct, despite its extreme usefulness, has it limit. Ultraproducts
preserve first-order properties by  Los’s theorem, but almost always
violate other properties by saturation.

Examples

The reals R is a complete metric space, but the hyperreals ˚R is not.
Take the subset of all infinitesimals and it clearly has no least upper bound.

Note: it is a natural and interesting question to ask what size the
Dedekind completion of ˚R has.

Spoiler alert: it may not be what you think it should be.
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Special Ultraproducts for Complete Metric Spaces

It is a bad news to operator algebraists for obvious reasons. Nevertheless,
they manage to construct an exotic ”ultraproduct” that works for their
purpose. In doing so, they assume a logic of positive bounded formulas
with an approximate semantics.

Itäı Ben Yaacov et al. then did a reverse engineering to extract a logic
called first-order continuous logic for metric structures, which has great
model theoretic properties. They call themselves continuous model
theorists.

Remark

Continuous logic is actually not new. Keisler and Chang wrote a book in
1966 called Continuous Model Theory. Their theory, however, is far too
general to work with.
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Introducing Continuous Logic

In continuous logic, we are replacing the truth values t0, 1u with r0, 1s.

Remark

We consider 0 as truth, instead of 1. It might look strange but is a very
natural choice, which will be clear in a few lines.

A model of continuous logic is pM, dq where d : M ˆM Ñ r0, 1s is a
complete metric. Here are the interpretation of symbols:

The equality in our model is just d . In particular, two elements are
equal if the equality predicate is evaluated at 0.

A n-ary relation R is an uniformly continuous function
RM : Mn Ñ r0, 1s (uniformliness is needed in order to have a unique
syntax, i.e., model-independence).

A n-ary function f is an uniformly continuous function
f M : Mn Ñ M.
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Continuous Logic Continued

We inductively build formulas of higher complexity:

KM :“ 1

pAÑ BqM :“ BM ´ AM

JM : pK Ñ KqM “ 0

p␣AqM :“ pAÑ KqM “ 1 ´ AM

pA^ BqM :“ maxpAM,BMq

pA_ BqM :“ minpAM,BMq

p@x ApxqqM :“ supxPM AMpxq

pDx ApxqqM :“ infxPM AMpxq

Definition

We say M |ù φ if φM “ 0.
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Approximation of Truth

It turns out our regular set of logic connectives tK,J,Ñ,^,_,@, Du are
insufficient. Any uniformly continuous function r0, 1sn Ñ r0, 1s is in a way
a legitimate logic connective and there are continuum many such. We
naturally add a new modal operator 1

2 :

p1
2Aq

M :“ 1
2A

M

We obtain a finite set of connectives dense in all logic connectives. Now
we need to relax the notion of entailment to complete our logic:

Definition

We say M |ù φ iff φM ă 1
n for all n, or equivalently φM converges to 0.

We say Γ |ù φ iff for all M, if every formula in Γ converges to zero in M,
then φM converges to zero.

Notice it is incorporated well with approximated version of entailment
since we demand all logic symbols to be uniformly continuous.
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Internalize That Special Ultraproduct

Recall the first-order ultraproduct MU where two elements x “ pxi qiPI and
y “ pyi qiPI in M I are equivalent iff

ti P I | xi “ yiu P U

In continuous logic, it becomes

ti P I | dpxi , yi q “ 0u P U

By approximation, we relax the condition into

For all n, ti P I | dpxi , yi q ă
1

n
u P U
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Correct Logic for Metric Structures

This notion of ultraproduct recovers the exact ultraprodcut invented by
operator algraists eariler. In particular, continuous logic preserves
completeness of metric structures.

Theorem

If M is a complete bounded metric space, then MU under the new
definition is still a complete bounded metric space.

Furthermore, you can axiomatize Hilbert spaces, C˚-algebras, probability
spaces, and various metric structures in continuous logic. To some extent,
it is the correct logic to study metric structures.
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What a Nice Logic

Quote From Yaacov and Pedersen

“...continuous first-order logic satisfies suitably phrased forms of the
compactness theorem, the Löwenheim-Skolem theorems, the diagram
arguments, Craig’s interpolation theorem, Beth’s definability theorem,
characterizations of quantifier elimination and model completeness, the
existence of saturated and homogeneous models results, the omitting types
theorem, fundamental results of stability theory, and nearly all other results
of elementary model theory.”

For its famous application to the Connes Embedding problem, you can
check on Isaac Goldbring’s website.
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Syntax of Continuous Logic
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A Demand for Proof System

Continuous logic was reinvented according to semantic needs. It is natural
to ask for a syntactic counterpart, i.e., a proof system such that is sound
and complete with respect to the semantics. There is one based on
 Lukasiewicz (propositional) logic.

Remark

 Lukasiewicz logic is the strongest among fuzzy logics and it is sound and
complete with respect to MV-algebras on r0, 1s or any linearly ordered
MV-algbras.
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A Hilbert-Style Proof System

As usual, we has modus ponens as the only inference rule:

A A Ñ B
B

Together with three groups of axiom schemata.

 Lukasiewicz axioms

( L1): AÑ pB Ñ Aq

( L2 ): pAÑ Bq Ñ ppB Ñ C q Ñ pAÑ C qq

( L3): ppAÑ Bq Ñ Bq Ñ ppB Ñ Aq Ñ Aq

( L4): p␣B Ñ ␣Aq Ñ pAÑ Bq

Continuous axioms

(A5): 1
2AÑ p1

2AÑ Aq

(A6 ): p1
2AÑ Aq Ñ 1

2A
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Proof System Continued

Qualifier axioms

(A7): @xpAÑ Bq Ñ p@x AÑ @x Bq

(A8): @x AÑ Art{xs

(A8): AÑ @x A

Metric Structure Axioms for Given Relation R and Function f

d is a metric

R is uniformly continuous

f is uniformly continuous

Theorem

The proof system $ L induced from above is sound and complete with
respect to to the semantics |ù.
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Defining More Connectives

Notice that we only axiomatize three connectives tÑ,K, 1
2u and define

others accordingly:

A_ B :“ pAÑ Bq Ñ B (weak disjunction) is semantically minpA,Bq

A^B :“ ␣p␣A_␣Bq (weak conjunction) is semantically maxpA,Bq.

Ad B :“ ␣AÑ B (strong disjunction) is semantically
maxpA` B ´ 1, 0q.

A‘ B :“ ␣pAÑ ␣Bq (strong conjunction) is semantically
minpA` B, 1q.

Remark

Strong/weak naming unfortunately does not match their semantics well.
For instance, weak disjunction is stronger than strong disjunction:

A_␣A is never true while Ad␣A is provably true
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Hilbert System Is the Worst

The above proof system works. You cannot do, however, much proof
theory because it is a Hilbert system and everyone knows Hilbert-style
systems are terrible. We want a Gentzen-style one. Unfortunately,
 Lukasiewicz logic, the one continuous logic is based on, is famously known
to not have good sequent calculi.

Failure of the Deduction Theorem

P,P Ñ pP Ñ Qq $ L Q by applying modus ponens twice.

P Ñ pP Ñ Qq & L pP Ñ Qq. Evaluate P at 1
2 and Q at 1. We have

the premise P Ñ pP Ñ Qq to be zero, i.e., true; but the the
conclusion pP Ñ Qq is 1

2 and not true.
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Attempts Joint with Eben Blaisdell
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Affine Logic Approach

Even though the deduction theorem fails, a weaker form still holds:

Theorem

Γ,A $ L B ðñ Γ $ L pAÑ pAÑ ¨ ¨ ¨ pAÑ Bqqq for some copies of A

This indicates a lack of contraction rule in its sequent calculus, if it exists.

Γ,A,A $ B
C

Γ,A $ B

Weakening, however, is still present in Axiom  L1.

Γ $ B
WK

Γ,A $ B

These features exactly point towards an affine logic setting.
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Real Valued Logic Approach

Affine logic alone is not strong enough to prove Axiom  L3, nor an
important consequence: pAÑ Bq _ pB Ñ Aq (linearity of truth value).

We later got inspiration from a paper by D. Diaconescu et al. on real
valued modal logic. We start to consider a logic allowing mutliple formulas
on both sides but interpreted conjunctively on both sides.

In particular, we hope to have the following simple Ñ introduction rules,
which are natural in R-truth value:

Γ,B $ A; ∆

Γ,B ´ A $ ∆

Γ,A $ B; ∆

Γ $ B ´ A; ∆

They do not make sense in r0, 1s-truth values, but not far. We view our
AÑ B as pB ´Aq ^ 0 in disguise where ´ is the arrow in real valued logic
and ^ is additive.
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r0, 1s-Valued Sequent Calculus

Identity
A $ A

Ex Falso
K $ A

Γ $ ∆
WK

Γ,A $ ∆
Γ0 $ ∆0 Γ1 $ ∆1

MIX
Γ0, Γ1 $ ∆0; ∆1

Γ,B $ A; ∆
LÑ

Γ,AÑ B $ ∆

Γ,A $ B; ∆ Γ $ ∆
RÑ

Γ $ AÑ B; ∆

Γ0,A $ ∆0 Γ1 $ A; ∆1
CUT

Γ0, Γ1 $ ∆0; ∆1

(The above Γ and ∆ are assumed to be multisets and the intended
meaning of Γ $ ∆ is that

ř

Γ ě
ř

∆)
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Soundness and Completeness

We denote this provability relation as $r0,1s. We then have soundness and
completeness over |ù, with language restricted to tK,Ñu, over tautologies:

Soundess and Completeness over Tautologies

$r0,1s A if and only if |ù A

We can extend the result to sequents modulo some conversion between
sets and multisets. Say Γ is a multiset and we use Γ1 to denote its
extracted set in the obvious way.

Soundness

If Γ $r0,1s A, then Γ1 |ù A.

Completeness

If Γ |ù A, then there exists some mutliset ∆ with ∆ $r0,1s A and ∆1 “ Γ.

Wei, Jin Proof Theory of Continuous Logic FSLS 22 / 35



Soundness and Completeness

We denote this provability relation as $r0,1s. We then have soundness and
completeness over |ù, with language restricted to tK,Ñu, over tautologies:

Soundess and Completeness over Tautologies

$r0,1s A if and only if |ù A

We can extend the result to sequents modulo some conversion between
sets and multisets. Say Γ is a multiset and we use Γ1 to denote its
extracted set in the obvious way.

Soundness

If Γ $r0,1s A, then Γ1 |ù A.

Completeness

If Γ |ù A, then there exists some mutliset ∆ with ∆ $r0,1s A and ∆1 “ Γ.

Wei, Jin Proof Theory of Continuous Logic FSLS 22 / 35



Soundness and Completeness

We denote this provability relation as $r0,1s. We then have soundness and
completeness over |ù, with language restricted to tK,Ñu, over tautologies:

Soundess and Completeness over Tautologies

$r0,1s A if and only if |ù A

We can extend the result to sequents modulo some conversion between
sets and multisets. Say Γ is a multiset and we use Γ1 to denote its
extracted set in the obvious way.

Soundness

If Γ $r0,1s A, then Γ1 |ù A.

Completeness

If Γ |ù A, then there exists some mutliset ∆ with ∆ $r0,1s A and ∆1 “ Γ.

Wei, Jin Proof Theory of Continuous Logic FSLS 22 / 35



Proof of Soundness and Completeness

Proof.

Soundness is clear. For completeness, we make use of the Hilbert system
and derive all its axioms. For instance, here is the derivation of ( L3):

B Ñ A,A $ A

A $ pB Ñ Aq Ñ A

B,A $ B; pB Ñ Aq Ñ A

A,B $ A;B

B,B Ñ A $ A

B $ pB Ñ Aq Ñ A

B $ AÑ B; pB Ñ Aq Ñ A

pAÑ Bq Ñ B $ pB Ñ Aq Ñ A

$ ppAÑ Bq Ñ Bq Ñ ppB Ñ Aq Ñ Aq

Notice that we need the CUT rule to admit modus ponens, which is
standard.
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Example

This sequent calculus is very interesting and fun to play with. It makes
doing syntactic proofs much much easier. For instance, we have an elegant
and straightforward proof of linearity while the same proof the in Hilbert
system takes pages and is a pain.

Examples

B Ñ A,B,A $ B,A

A,B $ A,B

B Ñ A,B $ A

B Ñ A,B $ AÑ B,A

pAÑ Bq Ñ pB Ñ Aq,B $ A

$ ppAÑ Bq Ñ pB Ñ Aqq Ñ pB Ñ Aq

$ pAÑ Bq _ pB Ñ Aq

This sequent calculus also extends naturally to first order continuous logic
by adding rules for 1

2 and quantifiers.
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CUT Elimination

It is far from perfect yet. We need to eliminate the CUT rule, in other
words, to show the CUT rule is admissible.

Γ0,A $ ∆0 Γ1 $ A; ∆1
CUT

Γ0, Γ1 $ ∆0,∆1

A cut-free Gentzen system is the most ideal proof system: we will have the
subformula property, which allows proof searching, and syntactic proof
of unprovability and so on. Here is a quote from Andre Scedrov, a
professor at Penn:

“If you don’t have a cut-free proof system, you don’t have a proof
system.”
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Trouble in Proving CUT Elimination

Our simple Ñ introduction rules cause trouble for us to perform the
standard CUT elimination procedure, where you recursively reduce
complexity of CUT formulas. In the following case:

Γ0,B $ A; ∆0

Γ0,AÑ B $ ∆0

Γ1,A $ B; ∆1 Γ1 $ ∆1

Γ1 $ AÑ B; ∆1

Γ0, Γ1 $ ∆0; ∆1

You can perform a lower-degree CUT:

Γ0,B $ A; ∆0 Γ1,A $ B; ∆1

Γ0, Γ1,A $ A; ∆0; ∆1

But then you will never be able to CUT off A.
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CAN Elimination

This suggests us to consider an alternative rule:

Γ,A $ A; ∆
CAN

Γ $ ∆

CAN is equivalent to CUT but more natural in this setting.

To eliminate CAN, however, we have to give up the idea of a local-scale
elimination. Instead, we take an instance of CAN, trace all the way back
to atomic levels, and cancel all its subformulas there. In doing so, we
realize an absent rule:

Γ, Γ $ ∆; ∆
RED

Γ $ ∆
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Trouble in Proving CAN Elimination

There is another trouble due to local-irreversibility of left Ñ:

Examples

We have a proof of
A,AÑ B $ B;B Ñ A

but neither A,B $ A;B;B Ñ A nor A $ B;B Ñ A is provable.

In the worst scenario, the proof tree splits into two structually
non-equivalent subtrees for every left Ñ rules, which makes the analysis
grows exponentially.

We also tried to work in real valued logic instead, which has an easy CUT
elimination proof. We interpret r0, 1s-provability in R-provability and prove
a conservativity result. However, we need to add additive _ and ^ to real
valued logic, which causes its own problem in CUT elimination.
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The Solution And ...

Wei, Jin Proof Theory of Continuous Logic FSLS 29 / 35



Hypersequent Approach

Encouraged by my advisor Henry Townser, we consider a hypersequent
calculus setting, which is very natural due to disparity between the left and
right Ñ rules. Two premises are needed to introduce Ñ on the right:

Γ,A $ B; ∆ Γ $ ∆
RÑ

Γ $ AÑ B; ∆

and there are two ways to introduce Ñ on the left:

Γ,B $ A; ∆
LÑ

Γ,AÑ B $ ∆
Γ $ ∆

WK
Γ,AÑ B $ ∆

It suggests the following left Ñ rule in a hypersequent seting:

Γ,B $ A; ∆ | Γ $ ∆

Γ,AÑ B $ ∆

Wei, Jin Proof Theory of Continuous Logic FSLS 30 / 35



r0, 1s-Hypersequent Calculus

Hypersequents are of the form Γ0 $ ∆0 | ¨ ¨ ¨ | Γn $ ∆n. The intended
meaning is that a hypersequent is true if one of the component Γi $ ∆i is
true. We use G ,H to denote hypersequents.

Identity
A $ A

Ex Falso
K $ A

G | Γ0 $ ∆0
EW

G | Γ0 $ ∆0 | Γ1 $ ∆1

G | Γ $ ∆ | Γ $ ∆
EC

G | Γ $ ∆

G | Γ0, Γ1 $ ∆0; ∆1
SEP

G | Γ0 $ ∆0 | Γ1 $ ∆1

G | Γ0 $ ∆0 G | Γ1 $ ∆1
MIX

G | Γ0, Γ1 $ ∆0; ∆1

G | Γ,B $ A; ∆ | Γ $ ∆
LÑ

G | Γ,AÑ B $ ∆

G | Γ,A $ B; ∆ G | Γ $ ∆
RÑ

G | Γ $ AÑ B; ∆

G | Γ,A $ A; ∆
CAN

G | Γ $ ∆
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CAN Elimination but then...

This hypersequent calculus is an extension of the sequent calculus.
Furthermore, it is CAN-free!

What is tragic is that we soon found out that our logic system is not new.
In a paper in 2005, George Metcalfe et al. construct exactly the same
hypersequent calculus for  Lukasiewicz logic. All discoveries we have so far
constitute exactly the main content of this paper.

Moral of This Story

Check the literature carefully before you work on a problem!
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Wrapping Up

For certain reasons, I believe the original sequent calculus is actually
CAN-free; or I would very love to see a counterexample to that. There are
also many other projects left for proof theory of continuous logic, such as
incorporating 1

2 and quantifiers into this system, another approach to
hypersequent calculus as an extension of finitely multi-valued logics, and
eventually proof mining. But that will be the story for the future I guess,
hopefully.
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The End

Thank you all for having me!
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