Check out our new paper on pattern formation on curved shells!

Many thanks to my co-authors, Octavio Albarran, Desi Todorova and Lucas Goehring

You can find the full text on the Arxiv  arXiv:1806.03718

Shells, when confined, can deform in a broad assortment of shapes and patterns, often quite dissimilar to what is produced by their flat counterparts (plates). In this work we discuss the morphological landscape of shells deposited on a fluid substrate. Floating shells spontaneously buckle to accommodate the natural excess of projected area and, depending on their intrinsic properties, structured wrinkling configurations emerge. We examine the mechanics of these instabilities and provide a theoretical framework to link the geometry of the shell with a space-dependent confinement. Finally, we discuss the potential of harnessing geometry and intrinsic curvature as new tools for controlled fabrication of patterns on thin surfaces.

Sumitted: The limits of multifunctionality in tunable networks

Kudos to Jason and Henrik for all the hard work!

Nature is rife with networks that are functionally optimized to propagate inputs in order to perform specific tasks. Whether via genetic evolution or dynamic adaptation, many networks create functionality by locally tuning interactions between nodes. Here we explore this behavior in two contexts: strain propagation in mechanical networks and pressure redistribution in flow networks. By adding and removing links, we are able to optimize both types of networks to perform specific functions. We define a single function as a tuned response of a single “target” link when another, predetermined part of the network is activated. Using network structures generated via such optimization, we investigate how many simultaneous functions such networks can be programmed to fulfill. We find that both flow and mechanical networks display qualitatively similar phase transitions in the number of targets that can be tuned, along with the same robust finite-size scaling behavior. We discuss how these properties can be understood in the context of a new class of constraint-satisfaction problems.

We are on the cover of PRL

Congratulations to my post-doc Henrik Ronellenfitsch!

Highly optimized complex transport networks serve crucial functions in many man-made and natural systems such as power grids and plant or animal vasculature. Often, the relevant optimization functional is nonconvex and characterized by many local extrema. In general, finding the global, or nearly global optimum is difficult. In biological systems, it is believed that such an optimal state is slowly achieved through natural selection. However, general coarse grained models for flow networks with local positive feedback rules for the vessel conductivity typically get trapped in low efficiency, local minima. In this work we show how the growth of the underlying tissue, coupled to the dynamical equations for network development, can drive the system to a dramatically improved optimal state. This general model provides a surprisingly simple explanation for the appearance of highly optimized transport networks in biology such as leaf and animal vasculature.

Read more.

Cover of PRL