Introduction to Algebraic Geometry

Molly Bradley

University of Pennsylvania Directed Reading Program Fall 2023

December 13, 2023

Overview

Algebraic Geometry

Study of geometric structures defined by polynomials

Our Talk

We will explore this relationship through learning about affine algebraic sets, affine varieties, and the coordinate ring.

Affine Algebraic Sets

A Simple Equation

$$
y=x^{2}
$$

Affine Algebraic Sets

A New Perspective

In the polynomial ring $\mathbb{R}[x, y]$, we write $f(x, y)=y-x^{2}$
Given a set of polynomials $S \subset \mathbb{R}[x, y]$, an affine algebraic set is a set of points $(x, y) \in \mathbb{R}^{2}$ such that $f(x, y)=0$ for all $f \in S$.

Affine Algebraic Sets

A New Example

If $S=\left\{y-x^{2}, y-x-2\right\}$, then $V(S)=\{(-1,1),(2,4)\}$

Definition

A variety is an irreducible algebraic set $(V(S)$ is not a variety)

Affine Varieties and Prime Ideals

Important Notation

- k : algebraically closed field
- I: ideal in the ring of polynomials $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$
- V : affine variety in affine n-space \mathbb{A}^{n} (we view this as k^{n})

Important Constructions

- If $I=(S)$ is the ideal generated by S, then $V(S)=V(I)$.
- $I(V)=\left\{f \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]: f(x)=0\right.$ for all $\left.x \in V\right\}$
- THM: An affine set V is a variety if and only if $I(V)$ is prime.

Coordinate Ring

Definition

Given variety V , we define the coordinate ring $K[V]=k\left[x_{1}, \ldots, x_{n}\right] / I(V)$.
Building Intuition: An Example
We consider $k=\mathbb{C}$ and view the real part of $V\left(x^{2}+y^{2}-1\right)$

Question

What are the different polynomial functions from $V\left(x^{2}+y^{2}-1\right)$ to \mathbb{C} ?

More on the Coordinate Ring

```
Polynomial Functions }\mathbb{C}[x,y]->\mathbb{C
We consider \(f(x, y)=x^{2}+y^{2}\) and \(f(x, y)=1\)
```


Observation

Restricting our attention to $V\left(x^{2}+y^{2}-1\right)$, these functions are the same!

More on the Coordinate Ring

Example

We recall the coordinate ring $K[V]=k\left[x_{1}, \ldots, x_{n}\right] / I(V)$.
In this case, $I(V)=\left(x^{2}+y^{2}-1\right)$, so $K[V]=k\left[x_{1}, \ldots, x_{n}\right] /\left(x^{2}+y^{2}-1\right)$
$x^{2}+y^{2}+\left(x^{2}+y^{2}-1\right)=1+\left(x^{2}+y^{2}-1\right)$

Construction

Two functions f and g are equivalent on V if $f(x)=g(x)$ for all $x \in V$
$f(x)-g(x)=0 \Longrightarrow(f-g)(x)=0 \Longrightarrow f-g \in I(V) \Longrightarrow$
$f+I(V)=g+I(V)$.

Algebra Meets Geometry

Theorem

There is a natural bijection between polynomial maps between varieties $\varphi: V \rightarrow W$ and homomorphisms $\hat{\varphi}: K[W] \rightarrow K[V]$

Example

We consider $V=V\left(y-x^{2}-1\right)$ and $W=V\left(x-y^{2}-1\right)$.

Algebra Meets Geometry

Example Continued

We consider $V=V\left(y-x^{2}-1\right)$ and $W=V\left(x-y^{2}-1\right)$.
We define $\varphi: V \rightarrow W$ by $(x, y) \mapsto(y, x)$.
We see that $\hat{\varphi}=f \circ \varphi$, so $\hat{\varphi}: K[W] \rightarrow K[V]$ by $f(x, y) \mapsto f(y, x)$.

Foundations of Modern Algebraic Geometry

Alexander Grothendieck

All commutative rings can be viewed as functions on some geometric space
Basis of scheme theory!

Acknowledgements

Thank you to my two mentors, Oualid Merzouga and Alvaro Pintado!
Source: Algebraic Curves: An Introduction to Algebraic Geometry by William Fulton.

