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Abstract

Both the discrete and real Fourier transforms have many applications, drawing from a rich theory. In
this write-up, we will discuss a generalization of the Fourier transform onto locally compact abelian groups,
introducing techniques in abstract harmonic analysis. We begin by talking about what it means to integrate
over a group before introducing the Haar measure. We will touch on Pontryagin duality and finish by
discussing some consequences of this result.
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1 LCA Groups

We say a group is topological group if both the group operation x · y → xy and inverse map x → x−1 are
continuous maps. Furthermore, we say G is locally compact, if for every point x ∈ G, there exists a compact
neighborhood containing G and G is Hausdorff. We will mostly be dealing with locally-compact abelian groups,
which we shorten as LCA groups. Being a LCA group already gives us a few basic properties following directly
from the aforementioned continuity.

Proposition 1. Let G be a topological group. Then,

(a) If U ⊂ G is open, then xU , Ux, and U−1 is also open for any x ∈ G. We define xU = {xy | y ∈ U} and
U−1 = {y−1 | y ∈ U}.

(b) If H is a subgroup of G, the closure of H is a subgroup.

(c) If H is a open subgroup of G, then H is closed.

(d) If A,B are compact (or open) sets in G, then AB = {xy | x ∈ A, y ∈ B} is compact (or open).

(e) A set U ⊂ G is compact (or open) if and only if there exists some x ∈ U and compact (or open) set E
containing the group identity e, such that xE = U .

For our future discussion on the Fourier transform, we need to define a suitable notion of integration on LCA
groups. While the normal Riemann integral is usually defined in terms of upper and lower Riemann sums, we
present an alternative interpretation. Define for each n ∈ N, 1n(x) = χ[− 1

2n , 1
2n ](x), an indicator function on the

interval [− 1
2n ,

1
2n ]. Then, we can define

(f : 1n) := inf{
m∑
i=1

ci | ci, . . . , cm > 0,∃x1, . . . , xm ∈ R s.t. f(x) ≤
m∑
i=1

ci1n(xi + x)}

Intuitively, the above definition is redefining the partition as a sequence xi are left and right translations the
indicator functions, while the ci approximate the value on each partition. As n → ∞, we are considering the
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linear combination on a finer partition. There is a 1
n factor that appears due to the length of the interval. Thus,

the Riemann integral can be written as∫ ∞

−∞
f(x) dx = lim

n→∞

(f : 1n)

n
= lim

n→∞

(f : 1n)

(χ[0,1] : 1n)

For a general LCA group G, we can redefine this using neighborhoods. Since our space is locally compact, fix
a compact neighborhood K of e ∈ G and let f0 ≥ 0 be any function not identically zero. Then, let∫

G

f(x) dx = lim
K→{e}

(f : 1U )

(f0 : 1U )

Again, we see the same idea of approximation by step functions, where x1, . . . , xm now attempt to translate U
on the left to cover K. It is dependent on the choice of function f0 and compact set K (if there are multiple)
to get an exact value. This integral is actually called the Haar integral. In the construction above, the last step
is to prove that the limit actually exists.

It is worth noting that normally in measure theory, one constructs a measure first to then induce an integral.
If one were to do that in this case, they could consider for A,K,U ⊆ G, where K compact and U open,

µ(A) = lim
U→{e}

inf{n | ∃x1, . . . , xm s.t. A ⊆ ∪n
i=1xiU}

inf{n | ∃x1, . . . , xm s.t. K ⊆ ∪n
i=1xiU}

In practice, this expression is more difficult to work with, so our proof will investigate the linear functional to
get the existence of the Haar measure using the Riesz representation theorem.

2 Haar Measure

Let X be a set and Σ a σ-algebra over X. We call a function µ from Σ → [0,∞) a measure if it satisfies two
properties

1. µ(∅) = 0.

2. For all E ∈ Σ, µ(E) ≥ 0.

3. µ(∪∞
i=1Ei) =

∑∞
i=1 µ(Ei), where Ei are all disjoint

Roughly speaking, a measure assigns a notion of size to subsets of a set. The reader may be familiar with the
Lebesgue measure on (R,+) as a topological group, which remains invariant under left translation (µ([a, b]) =
µ([a + c, b + c])). A left Haar measure can be viewed as an analogue of this which preserves the size under a
left group action (µ([a, b]) = µ([ca, cb])). For our purposes, it suffices to have our Σ be the Borel σ-algebra
generated by countable unions and intersections of closed and open sets of our LCA group G.

Definition 1. A Radon measure µ : Σ → [0,∞) is a measure on a Borel σ-algebra Σ, such that:

1. (inner regular) µ(E) = sup{µ(K) | K compact ,K ⊂ E}

2. (outer regular) µ(E) = inf{µ(U) | U open , E ⊂ U}

3. (finite on compact sets) µ(K) < ∞ for any compact K ∈ Σ

Definition 2. A Haar measure refers to any Radon measure such that µ(gE) = µ(E) for all g ∈ G and E ∈ Σ.

Theorem 2.1 (Existence and Uniqueness of Haar measure). Let G be any LCA group. Then, G admits
a Haar measure µ. Furthermore, µ is unique up to scaling by some real positive number.

Proof. As aforementioned, we want to construct a linear functional L on Cc(G) (continuous functions of compact
support on G), which will then induce a measure via Riesz representation. This linear functional is precisely
L1U

(f) = (f : 1U ), where 1U is just an indicator function on U . It is not hard to check that L1U
is:

(a) left-invariant ((f(x) : 1U ) = (f(x+ g) : 1U ) for any g ∈ G)

(b) subadditive ((f1 + f2 : 1U ) ≤ (f1 : 1U ) + (f2 : 1U ))

(c) monotone (f1 ≤ f2 =⇒ (f1 : 1U ) ≤ (f2 : 1U ))

(d) constants factor out ((cf : 1U ) = c(f : 1U ))

The issue is that we need the subadditivity to be additivity. Fortunately, this is not far from the truth. We
need to prove the following lemma.
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Lemma 1. If f1, f2 ∈ Cc(G), then for any ϵ > 0, there is a neighborhood V containing the identity, such that
(f1 : 1U ) + (f2 : 1U ) ≤ (f1 + f2 : 1U ) + ϵ so long as supp(1U ) ⊂ V .

For full details on existence, check Theorem 2.10 in Folland.

Due to the uniqueness up to scaling, we can choose normalize the measure, such that µ(G) = 1; thus, we can
speak of the Haar measure for LCA groups.

As an aside, there is a completely analogous story for right Haar measures, which we will not cover. Although,
in general, the left and right Haar measures are not the same, they do coincide in the case of abelian groups.

3 Dual Groups

For any abelian group A, we define a character χ to be a homomorphism from G to T = {x ∈ C | ||x|| = 1},
the multiplicative group of complex numbers. We define the set Â to contain all characters on A.

Proposition 2. The pointwise product of characters turns Â into an abelian group.

Proof. For any two characters χ, ν ∈ Â and a, b ∈ A, we have

χν(ab) = χ(ab)ν(ab) = χ(a)χ(b)ν(a)ν(b) = χ(a)ν(a)χ(b)ν(b) = χν(a)χν(b)

It is clear to see that the pointwise product is abelian. Next, the identity element is the trivial map 1 sending
all elements to 1 ∈ T. For a, b ∈ A,

1(ab) = 1

1(a)b = 1 · 1 = 1

This means 1 ∈ Â. Additionally,
χ1(a) = χ(a)1(a) = χ(a)1 = χ(a)

Finally, we need to check that we have the necessary inverses. For χ ∈ Â, define χ−1(a) = 1
χ(a) . Then, we need

to check χ−1(a) ∈ Â.

χ−1(ab) =
1

χ(ab)
=

1

χ(a)χ(b)
= χ−1(a)χ−1(b)

Additionally,

χ(a)χ−1(a) =
χ(a)

χ(a)
= 1 = 1(a)

Thus, we’ve verified that Â is an abelian group.

We call this Â the dual group, or Pontryagin dual, of A. It is clear that Â is a subset of all continuous functions
from G to T. We can equip Â with the topology of uniform convergence on compact sets, or compact-open
topology. For any compact K ⊆ A and open U ∈⊆ T, define the set V (K,U) to contain continuous maps

f : A → T, such that f(K) ⊆ U . This forms a basis for the compact-open topology. Surprisingly, Â remains a
LCA group.

Theorem 3.1. If A is a LCA group, then Â is also a LCA group with the compact-open topology.

Proof. To check that groups operations (written additively) is continuous, it is enough to check that the map
ϕ : Â× Â → Â sending ϕ(χ, ν) = ν − χ is continuous (by fixing ν = 1, we’d get continuity of the inverse map;
then, the product map is just a composition of ϕ and the inverse map). Fix some ϵ > 0. We already know that
χ, ν are continuous having belonged to Â. Suppose that there are sequences of characters {χi}∞i=1, {νi}∞i=1 that
converge to χ, ν respectively. We need to show that {νi − χi}∞i=1 → ν − χ. From continuity, we can establish
for sufficiently large n,

|χ− χi| <
ϵ

2
and |−ν + νi| <

ϵ

2
Using the triangle inequality,

|χ− χi − (ν − νi)| < |χ− χi|+ |ν − νi| < ϵ

Now, we need to check that the dual group is locally compact. We only present a sketch. Folland proves this in
Theorem 4.2 by showing Â is exactly the spectrum of L1(A). Afterwards, since Â is a subset of L∞(A) equipped

with the weak∗ topology, the compact open and weak∗ topologies coincide. Under the latter topology, Â lies
on the closed unit ball in L∞(A). By Alaoglu’s theorem, this ball is compact, so we can conclude Â is locally
compact.
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4 Duality Theorems

Now, that we’ve set up much of the definition, we can look at two strong results about the structure of LCA
groups.

Theorem 4.1 (Pontryagin Duality). Let G denote a LCA group. Then, there is an isomorphism ϕ between

G and
̂̂
G given by

ϕ(g) = δg

, where δg(χ) = χ(g), so it is the evaluation map.

Proof. The complete proof is too long to include in entirety. It is suggested to look at Theorem 4.31 in Folland.
We will sketch very briefly some details.

It is relatively clear that ϕ is a homomorphism. For all a, b ∈ G and χ ∈ Ĝ,

ϕ(ab)(χ) = δab(χ) = χ(ab) = χ(a)χ(b) = δa(χ)δb(χ) = [ϕ(a)(χ)][ϕ(b)(χ)]

The fact that ϕ is injective follows from the Gelfand-Raikov theorem that states characters separate points.
More precisely, for any a, b, there exists a character ν, such that ν(a) ̸= ν(b). If ϕ(a) = ϕ(b), this relationship

must suggest χ(a) = χ(b) for all χ ∈ Â. Via the aforementioned Gelfand-Raikov theorem, this means a = b.

To prove surjectivity between topological groups, it suffices to show that the image of the homomorphism is

dense and closed. In our case, we want to show that ϕ(G) is dense and closed in
̂̂
G. To verify that the map

is dense, suppose for the sake of contradiction there is some subset U ⊂ ̂̂
G that does not intersect the image.

Then, one can construct a non-zero function f , whose support lies in U , alongside a sequence of functions fn,
such that f̂n → f . By Fourier inversion, we can get that fn → f̂ . By construction, fn = 0 on ϕ(G). However,

this is a contradiction as fn → f̂ means f = 0, when we explicitly said it was non-zero.

For closed, we can instead show that ϕ is a proper map (preimages of compact sets are compact), which,
combined with the fact it is continuous, would mean it is closed. Details are omitted.

While a LCA group is not isomorphic to its dual in general, it is always isomorphic to the double dual. This
theorem should remind the reader of a similar result in the case of vector spaces. For finite dimensional vectors

spaces V , there is a canonical isomorphism into
̂̂
A, the double dual of V . Thus, we can view the locally

compact conditions as a similar ”finite-ness” restriction. With the double dual isomorphic to the original group,
properties from one space can be used to conclude properties of the dual. A topological group is compact if
every open cover admits a finite subcover. A topological group is discrete if every single element set is open.

Theorem 4.2. If a LCA group G is compact, then Ĝ is discrete. If G is discrete, then Ĝ is compact.

Proof. Recall for topological groups, being open is preserved under left translations, so it suffices to check at
the identity. If G is compact, then the set Hom(G,S) of homomorphisms from G into any open subset S of T
is itself an open set in Ĝ. However, the image of a homomorphism in Hom(G,S) must be a subgroup of T. But
the only proper subgroup of T is the trivial group. Thus, the trivial character in Hom(G,S) must be open as a

singleton set, so Ĝ is discrete.

If G is discrete, then consider the indicator function of the identity e ∈ G

χ1(x) =

®
1 x = e

0 otherwise

Then, χ1(x) is continuous from the discrete topology, so we know that χ1(x) belongs to L1(G). In particular,
this means that L1(G) has a multiplicative identity element. It is a result from functional analysis that this
implies the spectrum of L1(G) is compact. From the same association as the proof of Theorem 3.1, the spectrum

of L1(G) is Ĝ, so we are done.

5 Applications

The duality theorems suggest some very strong structures, the beginnings of abstract harmonic analysis. In
particular, Pontryagin duality show many properties of the Fourier transform on R are due to it being a
LCA group, rather than specifically R. For example, both Plancherel’s theorem and Fourier Inversion are
consequences. Before stating the theorems, first, we remind ourselves of some definitions.
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Definition 3 (Fourier Transform). Given a LCA group G and a Haar measure µ on G, the Fourier transform

of a function f : G → C is f̂ : Ĝ → C, where

f̂(χ) =

∫
G

Fχdµ

Above, χ is denoting the complex conjugate.

Note that R̂ = R and the characters of R are complex exponentials e2πinx for some n ∈ N, so we can recover

the familiar Fourier transform f̂(n) =
∫∞
−∞ e−2πinxf(x) dx. For more examples, we note that Ẑ/nZ = Z/nZ

and Ẑ = T.

Denote the space Lp(G) as the space of continuous p-integrable functions on G, such that
∫
G
|f |p dµ < ∞,

where dµ is a Haar measure. By convention, the case p = 2 is called the space of square integrable functions
on G. We equip Lp(G) with the standard p-norm.

Theorem 5.1 (Plancherel’s Theorem). There is a unique Haar measure given LCA group G, such that for
any f ∈ L1(G),

||f ||2 =
∣∣∣∣∣∣f̂ ∣∣∣∣∣∣

2

, meaning its Fourier transform f̂ ∈ L2(Ĝ). In fact, this means the Fourier transform as a map from L1(G) to

L2(Ĝ) extends to an isomorphism of the completions L2(G) to L2(Ĝ).

Above is the statement in full generality, but in the case of G = R, we can see that it is the more familiar result
that, assuming both f, f̂ are continuous and improperly Riemann integrable,∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞

∣∣∣f̂(x)∣∣∣2 dx

For another example,

Theorem 5.2 (Fourier Inversion). For any f ∈ L1(G),

f(a) =
̂̂
f(δa−1)

This means that the original function f can be recovered from its Fourier transform.

In the case of G = R, we have that f(a) =
∫∞
−∞ f̂(x)e2πiax dx, as a−1 = −a in this case.

As a final example, with a bit of a categorical argument, one can use the observations above to prove a structure
theorem to attempt to classify LCA groups.

Theorem 5.3 (Principal Structure Theorem for LCA groups). If G is a LCA group, then G has an
open subgroup H, such that H ∼= Rn ×K, where n is finite and K is a compact abelian group. Furthermore, if
G is connected, then G ∼= Rn ×K, where n is finite and K a connected, compact abelian group.

For the sake os space, a few of the proofs in this write-up were abbreviated. The interested reader is encouraged
to check out any of the references for further details, applications, and perspectives.
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