Probability and the Infinite Monkey Theorem

Dylan Marchlinski

December 12, 2023

イロト イヨト イヨト イヨト

2

Dylan Marchlinski

Infinite Monkey Theorem

"Let a monkey type random keys on a typewriter for an infinite amount of time; eventually, it will write Shakespeare."

Infinite Monkey Theorem

- "Let a monkey type random keys on a typewriter for an infinite amount of time; eventually, it will write Shakespeare."
- Feels true

Infinite Monkey Theorem

"Let a monkey type random keys on a typewriter for an infinite amount of time; eventually, it will write Shakespeare."

Feels true

イロト イヨト イヨト イ

Dylan Marchlinski

• A probability space (Ω, \mathcal{F}, P) consists of

(日)

A probability space (Ω, F, P) consists of
A set Ω called the sample space

イロト イヨト イヨト イヨト

Ξ.

• A probability space (Ω, \mathcal{F}, P) consists of

- **1** A set Ω called the sample space
- 2 A σ -algebra \mathcal{F} of subsets of Ω , meaning $\Omega \in \mathcal{F}$ and \mathcal{F} is closed under complements and countable unions

- 4 同 ト 4 三 ト 4

• A probability space (Ω, \mathcal{F}, P) consists of

- **1** A set Ω called the sample space
- 2 A σ -algebra \mathcal{F} of subsets of Ω , meaning $\Omega \in \mathcal{F}$ and \mathcal{F} is closed under complements and countable unions
- **3** A probability measure $P : \mathcal{F} \rightarrow [0,1]$ that satisfies
 - $1 P(\emptyset) = 0$
 - $P(\Omega) = 1$
 - **3** For pairwise disjoint $A_1, A_2, A_3, \ldots \in \mathcal{F}$, we have

$$P\left(\bigcup_{n=1}^{\infty}A_n\right)=\sum_{n=1}^{\infty}P(A_n)$$

イロト イポト イヨト イヨト

Dylan Marchlinski

Basic Results

Need two basic properties of probability spaces for this proof

イロト イヨト イヨト イヨト

Ξ.

Basic Results

Need two basic properties of probability spaces for this proof
Subadditivity: if A ⊆ ∪_{n=1}[∞] A_n, then P(A) ≤ ∑_{n=1}[∞] P(A_n)

イロト イヨト イヨト イヨト

Ξ.

Basic Results

Need two basic properties of probability spaces for this proof
Subadditivity: if A ⊆ ∪_{n=1}[∞] A_n, then P(A) ≤ ∑_{n=1}[∞] P(A_n)
Continuity from above: if A₁ ⊃ A₂ ⊃ ··· with ∩_{n=1}[∞] A_n = A, then lim_{n→∞} P(A_n) = P(A)

Dylan Marchlinski

Borel-Cantelli: Let $\{A_n\}$ be a sequence of independent events. If $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P(\limsup_{n \to \infty} A_n) = 0$.

イロン イロン イヨン イヨン

∃ 𝒫𝔄𝔄

- Borel-Cantelli: Let $\{A_n\}$ be a sequence of independent events. If $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P(\limsup_{n \to \infty} A_n) = 0$.
- In other words, if the sum of the probabilities is finite, then the probability of an infinite number of these events occuring is 0.

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

Borel-Cantelli Proof

Proof:Observe

$$\bigcup_{n=1}^{\infty} A_n \supseteq \bigcup_{n=2}^{\infty} A_n \supseteq \cdots \supseteq \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \limsup_{n \to \infty} A_n$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Dylan Marchlinski

Borel-Cantelli Proof

Proof:Observe

$$\bigcup_{n=1}^{\infty} A_n \supseteq \bigcup_{n=2}^{\infty} A_n \supseteq \cdots \supseteq \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \limsup_{n \to \infty} A_n$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Dylan Marchlinski

Borel-Cantelli Proof

- Proof:
 - Observe

$$\bigcup_{n=1}^{\infty} A_n \supseteq \bigcup_{n=2}^{\infty} A_n \supseteq \cdots \supseteq \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \limsup_{n \to \infty} A_n$$

Continuity from above

$$P\left(\limsup_{n\to\infty}A_n\right) = \lim_{N\to\infty}P\left(\bigcup_{n=N}^{\infty}A_n\right)$$

イロト イヨト イヨト イヨト

∃ 990

Dylan Marchlinski

Borel-Cantelli Proof (Contd.)

Proof:

Subadditivity

$$P\left(\bigcup_{n=N}^{\infty}A_n\right)\leq\sum_{n=N}^{\infty}P(A_n)<\infty$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 20ペ

Borel-Cantelli Proof (Contd.)

Proof:

Subadditivity

$$P\left(\bigcup_{n=N}^{\infty}A_n\right)\leq\sum_{n=N}^{\infty}P(A_n)<\infty$$

• Since
$$\sum_{n=1}^{\infty} P(A_n) < \infty$$

$$\lim_{N\to\infty}\sum_{n=N}^{\infty}P(A_n)=0$$

$$\implies P(\limsup_{n\to\infty} A_n) = \lim_{N\to\infty} P\left(\bigcup_{n=N}^{\infty} A_n\right) \le \lim_{N\to\infty} \sum_{n=N}^{\infty} P(A_n) = 0$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Dylan Marchlinski

Let's use this lemma to prove the Infinite Monkey Theorem.

▲ロト▲御ト★臣ト★臣ト 臣 のへの

- Let's use this lemma to prove the Infinite Monkey Theorem.
- Consider an infinite sequence of independent events A₁, A₂, A₃,..., where A_i is the event that the monkey has not typed a given *n*-character long text correctly after the *i*th trial.

$$\underbrace{a_1^1 a_1^2 \cdots a_1^n}_{\text{1st trial}} \underbrace{a_2^1 a_2^2 \cdots a_2^n}_{\text{2nd trial}} \cdots \underbrace{a_i^1 a_i^2 \cdots a_i^n}_{i \text{th trial}} \cdots$$

Dylan Marchlinski

- Let's use this lemma to prove the Infinite Monkey Theorem.
- Consider an infinite sequence of independent events A₁, A₂, A₃,..., where A_i is the event that the monkey has not typed a given *n*-character long text correctly after the *i*th trial.

$$\underbrace{a_1^1 a_1^2 \cdots a_n^n}_{1 \text{ st trial }} \underbrace{a_2^1 a_2^2 \cdots a_2^n}_{2 \text{ nd trial }} \cdots \underbrace{a_i^1 a_i^2 \cdots a_i^n}_{i \text{ th trial }} \cdots$$

• Let *B* be the event that the monkey never types the text correctly. Note, $B = \bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} A_j = \limsup_{i \to \infty} A_i$.

Dylan Marchlinski

- Let's use this lemma to prove the Infinite Monkey Theorem.
- Consider an infinite sequence of independent events A₁, A₂, A₃,..., where A_i is the event that the monkey has not typed a given *n*-character long text correctly after the *i*th trial.

$$\underbrace{a_1^1 a_1^2 \cdots a_1^n}_{1 \text{ st trial }} \underbrace{a_2^1 a_2^2 \cdots a_2^n}_{2 \text{ nd trial }} \cdots \underbrace{a_i^1 a_i^2 \cdots a_i^n}_{i \text{ th trial }} \cdots$$

- Let *B* be the event that the monkey never types the text correctly. Note, $B = \bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} A_j = \limsup_{i \to \infty} A_i$.
- The probability of typing a given text correctly at any trial is greater than zero, say $p = \left(\frac{1}{k}\right)^n$ where k is the number of characters on the typewriter and n is the length of the text.

- Let's use this lemma to prove the Infinite Monkey Theorem.
- Consider an infinite sequence of independent events A₁, A₂, A₃,..., where A_i is the event that the monkey has not typed a given *n*-character long text correctly after the *i*th trial.

$$\underbrace{a_1^1 a_1^2 \cdots a_1^n}_{1 \text{ st trial }} \underbrace{a_2^1 a_2^2 \cdots a_2^n}_{2 \text{ nd trial }} \cdots \underbrace{a_i^1 a_i^2 \cdots a_i^n}_{i \text{ th trial }} \cdots$$

- Let *B* be the event that the monkey never types the text correctly. Note, $B = \bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} A_j = \limsup_{i \to \infty} A_i$.
- The probability of typing a given text correctly at any trial is greater than zero, say $p = \left(\frac{1}{k}\right)^n$ where k is the number of characters on the typewriter and n is the length of the text.
- Therefore, $P(A_i) = (1 p)^i$ since the trials are independent.

• We want to show that P(B) = 0

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 20ペ

- We want to show that P(B) = 0
- Borel-Cantelli states that if $\sum_{i=1}^{\infty} P(A_i) < \infty$, then P(B) = 0.

- We want to show that P(B) = 0
- Borel-Cantelli states that if $\sum_{i=1}^{\infty} P(A_i) < \infty$, then P(B) = 0.

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ● ●

• Calculate the sum: $\sum_{i=1}^{\infty} P(A_i) = \sum_{i=1}^{\infty} (1-p)^i$.

- We want to show that P(B) = 0
- Borel-Cantelli states that if $\sum_{i=1}^{\infty} P(A_i) < \infty$, then P(B) = 0.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Calculate the sum: $\sum_{i=1}^{\infty} P(A_i) = \sum_{i=1}^{\infty} (1-p)^i$.
- This is a geometric series, and its sum is $\frac{1-p}{1-(1-p)} = \frac{1-p}{p}$.

- We want to show that P(B) = 0
- Borel-Cantelli states that if $\sum_{i=1}^{\infty} P(A_i) < \infty$, then P(B) = 0.
- Calculate the sum: $\sum_{i=1}^{\infty} P(A_i) = \sum_{i=1}^{\infty} (1-p)^i$.
- This is a geometric series, and its sum is $\frac{1-p}{1-(1-p)} = \frac{1-p}{p}$.
- Since $\frac{1}{p} < \infty$, the Borel-Cantelli Lemma implies P(B) = 0.

- We want to show that P(B) = 0
- Borel-Cantelli states that if $\sum_{i=1}^{\infty} P(A_i) < \infty$, then P(B) = 0.
- Calculate the sum: $\sum_{i=1}^{\infty} P(A_i) = \sum_{i=1}^{\infty} (1-p)^i$.
- This is a geometric series, and its sum is $\frac{1-p}{1-(1-p)} = \frac{1-p}{p}$.
- Since $\frac{1}{p} < \infty$, the Borel-Cantelli Lemma implies P(B) = 0.
- Therefore, the probability that the monkey never types any given text correctly is zero, i.e., the probability that they do type the text is 1.

- We want to show that P(B) = 0
- Borel-Cantelli states that if $\sum_{i=1}^{\infty} P(A_i) < \infty$, then P(B) = 0.
- Calculate the sum: $\sum_{i=1}^{\infty} P(A_i) = \sum_{i=1}^{\infty} (1-p)^i$.
- This is a geometric series, and its sum is $\frac{1-p}{1-(1-p)} = \frac{1-p}{p}$.
- Since $\frac{1}{p} < \infty$, the Borel-Cantelli Lemma implies P(B) = 0.
- Therefore, the probability that the monkey never types any given text correctly is zero, i.e., the probability that they do type the text is 1.
- We say an event occurs almost surely if the probability of that event happening is 1.

Dylan Marchlinski

- We want to show that P(B) = 0
- Borel-Cantelli states that if $\sum_{i=1}^{\infty} P(A_i) < \infty$, then P(B) = 0.
- Calculate the sum: $\sum_{i=1}^{\infty} P(A_i) = \sum_{i=1}^{\infty} (1-p)^i$.
- This is a geometric series, and its sum is $\frac{1-p}{1-(1-p)} = \frac{1-p}{p}$.
- Since $\frac{1}{p} < \infty$, the Borel-Cantelli Lemma implies P(B) = 0.
- Therefore, the probability that the monkey never types any given text correctly is zero, i.e., the probability that they do type the text is 1.
- We say an event occurs almost surely if the probability of that event happening is 1.
- Hence, the monkey will almost surely type the text at some point, proving the Infinite Monkey Theorem.

э

Dylan Marchlinski

So could this really happen?

▲ロ▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のの()

So could this really happen?

 Take Hamlet, approx. 130,000 letters (excluding spaces, punctuation, capitalization, etc.)

イロト イヨト イヨト イヨト

2

So could this really happen?

- Take Hamlet, approx. 130,000 letters (excluding spaces, punctuation, capitalization, etc.)
- Assuming the typewriter has 26 keys and the monkey has an equal chance of pressing any particular key, that gives a 1 in

```
26^{130,000} = 10^{130,000 \cdot \text{ln}(26)} \approx 10^{183,946.535} \approx 3.43 \times 10^{183,946}
```

chance of writing Hamlet.

- So could this really happen?
- Take Hamlet, approx. 130,000 letters (excluding spaces, punctuation, capitalization, etc.)
- Assuming the typewriter has 26 keys and the monkey has an equal chance of pressing any particular key, that gives a 1 in

 $26^{130,000} = 10^{130,000 \cdot \text{ln}(26)} \approx 10^{183,946.535} \approx 3.43 \times 10^{183,946}$

chance of writing Hamlet.

 In other words, it would take on average 3.43 × 10^{183,946} trials before the monkey starts typing *Hamlet*.

Dylan Marchlinski

• For scale, there are "only" $\approx 10^{80}$ atoms in the universe and $\approx 10^{38}$ years in the lifetime of the universe.

A (1) > A (2) > A

문어 문

- For scale, there are "only" $\approx 10^{80}$ atoms in the universe and $\approx 10^{38}$ years in the lifetime of the universe.
- Suppose every atom were a "monkey" typing at 2000 characters per minute, which translates to a billion characters in a year. Chances increase to only 1 in

 $3.43 \times 10^{183,946} / (10^{80} \cdot 10^{20} \cdot 10^9) = 3.43 \times 10^{183,819}$

A B > 4
B > 4
B
B > 4
B
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

æ

So could this really happen?

- So could this really happen?
- No

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = ∽0.000

- So could this really happen?
- No
- This theorem, while captivating, is more of a thought experiment than a practical reality

- So could this really happen?
- No
- This theorem, while captivating, is more of a thought experiment than a practical reality
- Interesting to explore the limits of probability and the boundaries of possibility.

References

Durrett, R. (2019). Probability: Theory and Examples (5th ed.). Cambridge University Press.

イロト イヨト イヨト イヨト

Ξ.

Thank you!

Dylan Marchlinski Probability and the Infinite Monkey Theorem ▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで