Probability and the Infinite Monkey Theorem

Dylan Marchlinski

December 12, 2023

Infinite Monkey Theorem

■ "Let a monkey type random keys on a typewriter for an infinite amount of time; eventually, it will write Shakespeare."

Infinite Monkey Theorem

■ "Let a monkey type random keys on a typewriter for an infinite amount of time; eventually, it will write Shakespeare."

- Feels true

Infinite Monkey Theorem

- "Let a monkey type random keys on a typewriter for an infinite amount of time; eventually, it will write Shakespeare."
- Feels true

■ How can we be sure?

Probability Space

- A probability space (Ω, \mathcal{F}, P) consists of

Probability Space

- A probability space (Ω, \mathcal{F}, P) consists of 1 A set Ω called the sample space

Probability Space

- A probability space (Ω, \mathcal{F}, P) consists of

1 A set Ω called the sample space
2 A σ-algebra \mathcal{F} of subsets of Ω, meaning $\Omega \in \mathcal{F}$ and \mathcal{F} is closed under complements and countable unions

Probability Space

- A probability space (Ω, \mathcal{F}, P) consists of

1 A set Ω called the sample space
2 A σ-algebra \mathcal{F} of subsets of Ω, meaning $\Omega \in \mathcal{F}$ and \mathcal{F} is closed under complements and countable unions
3 A probability measure $P: \mathcal{F} \rightarrow[0,1]$ that satisfies
$1 \quad P(\emptyset)=0$
$2 \quad P(\Omega)=1$
3 For pairwise disjoint $A_{1}, A_{2}, A_{3}, \ldots \in \mathcal{F}$, we have

$$
P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right)
$$

Basic Results

■ Need two basic properties of probability spaces for this proof

Basic Results

■ Need two basic properties of probability spaces for this proof
1 Subadditivity: if $A \subseteq \cup_{n=1}^{\infty} A_{n}$, then $P(A) \leq \sum_{n=1}^{\infty} P\left(A_{n}\right)$

Basic Results

■ Need two basic properties of probability spaces for this proof
1 Subadditivity: if $A \subseteq \cup_{n=1}^{\infty} A_{n}$, then $P(A) \leq \sum_{n=1}^{\infty} P\left(A_{n}\right)$
2 Continuity from above: if $A_{1} \supset A_{2} \supset \cdots$ with $\bigcap_{n=1}^{\infty} A_{n}=A$, then $\lim _{n \rightarrow \infty} P\left(A_{n}\right)=P(A)$

Borel-Cantelli Lemma

■ Borel-Cantelli: Let $\left\{A_{n}\right\}$ be a sequence of independent events. If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$, then $P\left(\lim \sup _{n \rightarrow \infty} A_{n}\right)=0$.

Borel-Cantelli Lemma

■ Borel-Cantelli: Let $\left\{A_{n}\right\}$ be a sequence of independent events. If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$, then $P\left(\lim \sup _{n \rightarrow \infty} A_{n}\right)=0$.

- In other words, if the sum of the probabilities is finite, then the probability of an infinite number of these events occuring is 0 .

Borel-Cantelli Proof

- Proof:

■ Observe

$$
\bigcup_{n=1}^{\infty} A_{n} \supseteq \bigcup_{n=2}^{\infty} A_{n} \supseteq \cdots \supseteq \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}=\limsup _{n \rightarrow \infty} A_{n}
$$

Borel-Cantelli Proof

- Proof:

■ Observe

$$
\bigcup_{n=1}^{\infty} A_{n} \supseteq \bigcup_{n=2}^{\infty} A_{n} \supseteq \cdots \supseteq \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}=\limsup _{n \rightarrow \infty} A_{n}
$$

Borel-Cantelli Proof

- Proof:

■ Observe

$$
\bigcup_{n=1}^{\infty} A_{n} \supseteq \bigcup_{n=2}^{\infty} A_{n} \supseteq \cdots \supseteq \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}=\limsup _{n \rightarrow \infty} A_{n}
$$

- Continuity from above

$$
P\left(\limsup _{n \rightarrow \infty} A_{n}\right)=\lim _{N \rightarrow \infty} P\left(\bigcup_{n=N}^{\infty} A_{n}\right)
$$

Borel-Cantelli Proof (Contd.)

- Proof:
- Subadditivity

$$
P\left(\bigcup_{n=N}^{\infty} A_{n}\right) \leq \sum_{n=N}^{\infty} P\left(A_{n}\right)<\infty
$$

Borel-Cantelli Proof (Contd.)

■ Proof:

- Subadditivity

$$
P\left(\bigcup_{n=N}^{\infty} A_{n}\right) \leq \sum_{n=N}^{\infty} P\left(A_{n}\right)<\infty
$$

- Since $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \sum_{n=N}^{\infty} P\left(A_{n}\right)=0 \\
\Longrightarrow P\left(\limsup _{n \rightarrow \infty} A_{n}\right)=\lim _{N \rightarrow \infty} P\left(\bigcup_{n=N}^{\infty} A_{n}\right) \leq \lim _{N \rightarrow \infty} \sum_{n=N}^{\infty} P\left(A_{n}\right)=0
\end{gathered}
$$

Infinite Monkey Theorem: A Proof

■ Let's use this lemma to prove the Infinite Monkey Theorem.

Infinite Monkey Theorem: A Proof

■ Let's use this lemma to prove the Infinite Monkey Theorem.

- Consider an infinite sequence of independent events $A_{1}, A_{2}, A_{3}, \ldots$, where A_{i} is the event that the monkey has not typed a given n-character long text correctly after the i th trial.

$$
\underbrace{a_{1}^{1} a_{1}^{2} \cdots a_{1}^{n}}_{1 \text { st trial }} \underbrace{a_{2}^{1} a_{2}^{2} \cdots a_{2}^{n}}_{2 \text { nd trial }} \cdots \underbrace{a_{i}^{1} a_{i}^{2} \cdots a_{i}^{n}}_{i \text { th trial }} \cdots
$$

Infinite Monkey Theorem: A Proof

■ Let's use this lemma to prove the Infinite Monkey Theorem.

- Consider an infinite sequence of independent events $A_{1}, A_{2}, A_{3}, \ldots$, where A_{i} is the event that the monkey has not typed a given n-character long text correctly after the i th trial.

$$
\underbrace{a_{1}^{1} a_{1}^{2} \cdots a_{1}^{n}}_{1 \text { st trial }} \underbrace{a_{2}^{1} a_{2}^{2} \cdots a_{2}^{n}}_{2 \text { nd trial }} \cdots \underbrace{a_{i}^{1} a_{i}^{2} \cdots a_{i}^{n}}_{i \text { th trial }} \cdots
$$

■ Let B be the event that the monkey never types the text correctly. Note, $B=\bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} A_{j}=\lim \sup _{i \rightarrow \infty} A_{i}$.

Infinite Monkey Theorem: A Proof

■ Let's use this lemma to prove the Infinite Monkey Theorem.

- Consider an infinite sequence of independent events $A_{1}, A_{2}, A_{3}, \ldots$, where A_{i} is the event that the monkey has not typed a given n-character long text correctly after the i th trial.

$$
\underbrace{a_{1}^{1} a_{1}^{2} \cdots a_{1}^{n}}_{1 \text { st trial }} \underbrace{a_{2}^{1} a_{2}^{2} \cdots a_{2}^{n}}_{2 \text { nd trial }} \cdots \underbrace{a_{i}^{1} a_{i}^{2} \cdots a_{i}^{n}}_{i \text { th trial }} \cdots
$$

- Let B be the event that the monkey never types the text correctly. Note, $B=\bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} A_{j}=\lim \sup _{i \rightarrow \infty} A_{i}$.
- The probability of typing a given text correctly at any trial is greater than zero, say $p=\left(\frac{1}{k}\right)^{n}$ where k is the number of characters on the typewriter and n is the length of the text.

Infinite Monkey Theorem: A Proof

■ Let's use this lemma to prove the Infinite Monkey Theorem.

- Consider an infinite sequence of independent events $A_{1}, A_{2}, A_{3}, \ldots$, where A_{i} is the event that the monkey has not typed a given n-character long text correctly after the i th trial.

$$
\underbrace{a_{1}^{1} a_{1}^{2} \cdots a_{1}^{n}}_{1 \text { st trial }} \underbrace{a_{2}^{1} a_{2}^{2} \cdots a_{2}^{n}}_{2 \text { nd trial }} \cdots \underbrace{a_{i}^{1} a_{i}^{2} \cdots a_{i}^{n}}_{\text {ith trial }} \cdots
$$

- Let B be the event that the monkey never types the text correctly. Note, $B=\bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} A_{j}=\lim \sup _{i \rightarrow \infty} A_{i}$.
- The probability of typing a given text correctly at any trial is greater than zero, say $p=\left(\frac{1}{k}\right)^{n}$ where k is the number of characters on the typewriter and n is the length of the text.
- Therefore, $P\left(A_{i}\right)=(1-p)^{i}$ since the trials are independent.

Infinite Monkey Theorem: A Proof (Contd.)

■ We want to show that $P(B)=0$

Infinite Monkey Theorem: A Proof (Contd.)

- We want to show that $P(B)=0$
- Borel-Cantelli states that if $\sum_{i=1}^{\infty} P\left(A_{i}\right)<\infty$, then $P(B)=0$.

Infinite Monkey Theorem: A Proof (Contd.)

■ We want to show that $P(B)=0$

- Borel-Cantelli states that if $\sum_{i=1}^{\infty} P\left(A_{i}\right)<\infty$, then $P(B)=0$.

■ Calculate the sum: $\sum_{i=1}^{\infty} P\left(A_{i}\right)=\sum_{i=1}^{\infty}(1-p)^{i}$.

Infinite Monkey Theorem: A Proof (Contd.)

■ We want to show that $P(B)=0$

- Borel-Cantelli states that if $\sum_{i=1}^{\infty} P\left(A_{i}\right)<\infty$, then $P(B)=0$.
- Calculate the sum: $\sum_{i=1}^{\infty} P\left(A_{i}\right)=\sum_{i=1}^{\infty}(1-p)^{i}$.
- This is a geometric series, and its sum is $\frac{1-p}{1-(1-p)}=\frac{1-p}{p}$.

Infinite Monkey Theorem: A Proof (Contd.)

■ We want to show that $P(B)=0$

- Borel-Cantelli states that if $\sum_{i=1}^{\infty} P\left(A_{i}\right)<\infty$, then $P(B)=0$.
- Calculate the sum: $\sum_{i=1}^{\infty} P\left(A_{i}\right)=\sum_{i=1}^{\infty}(1-p)^{i}$.
- This is a geometric series, and its sum is $\frac{1-p}{1-(1-p)}=\frac{1-p}{p}$.

■ Since $\frac{1}{p}<\infty$, the Borel-Cantelli Lemma implies $P(B)=0$.

Infinite Monkey Theorem: A Proof (Contd.)

■ We want to show that $P(B)=0$

- Borel-Cantelli states that if $\sum_{i=1}^{\infty} P\left(A_{i}\right)<\infty$, then $P(B)=0$.
- Calculate the sum: $\sum_{i=1}^{\infty} P\left(A_{i}\right)=\sum_{i=1}^{\infty}(1-p)^{i}$.
- This is a geometric series, and its sum is $\frac{1-p}{1-(1-p)}=\frac{1-p}{p}$.
- Since $\frac{1}{p}<\infty$, the Borel-Cantelli Lemma implies $P(B)=0$.
- Therefore, the probability that the monkey never types any given text correctly is zero, i.e., the probability that they do type the text is 1 .

Infinite Monkey Theorem: A Proof (Contd.)

■ We want to show that $P(B)=0$

- Borel-Cantelli states that if $\sum_{i=1}^{\infty} P\left(A_{i}\right)<\infty$, then $P(B)=0$.
- Calculate the sum: $\sum_{i=1}^{\infty} P\left(A_{i}\right)=\sum_{i=1}^{\infty}(1-p)^{i}$.
- This is a geometric series, and its sum is $\frac{1-p}{1-(1-p)}=\frac{1-p}{p}$.
- Since $\frac{1}{p}<\infty$, the Borel-Cantelli Lemma implies $P(B)=0$.
- Therefore, the probability that the monkey never types any given text correctly is zero, i.e., the probability that they do type the text is 1 .
- We say an event occurs almost surely if the probability of that event happening is 1 .

Infinite Monkey Theorem: A Proof (Contd.)

■ We want to show that $P(B)=0$

- Borel-Cantelli states that if $\sum_{i=1}^{\infty} P\left(A_{i}\right)<\infty$, then $P(B)=0$.

■ Calculate the sum: $\sum_{i=1}^{\infty} P\left(A_{i}\right)=\sum_{i=1}^{\infty}(1-p)^{i}$.

- This is a geometric series, and its sum is $\frac{1-p}{1-(1-p)}=\frac{1-p}{p}$.
- Since $\frac{1}{p}<\infty$, the Borel-Cantelli Lemma implies $P(B)=0$.
- Therefore, the probability that the monkey never types any given text correctly is zero, i.e., the probability that they do type the text is 1 .
- We say an event occurs almost surely if the probability of that event happening is 1 .
- Hence, the monkey will almost surely type the text at some point, proving the Infinite Monkey Theorem.

A Realistic Probability?

■ So could this really happen?

A Realistic Probability?

■ So could this really happen?
■ Take Hamlet, approx. 130,000 letters (excluding spaces, punctuation, capitalization, etc.)

A Realistic Probability?

■ So could this really happen?
■ Take Hamlet, approx. 130,000 letters (excluding spaces, punctuation, capitalization, etc.)
■ Assuming the typewriter has 26 keys and the monkey has an equal chance of pressing any particular key, that gives a 1 in

$$
26^{130,000}=10^{130,000 \cdot \ln (26)} \approx 10^{183,946.535} \approx 3.43 \times 10^{183,946}
$$

chance of writing Hamlet.

A Realistic Probability?

■ So could this really happen?
■ Take Hamlet, approx. 130,000 letters (excluding spaces, punctuation, capitalization, etc.)
■ Assuming the typewriter has 26 keys and the monkey has an equal chance of pressing any particular key, that gives a 1 in

$$
26^{130,000}=10^{130,000 \cdot \ln (26)} \approx 10^{183,946.535} \approx 3.43 \times 10^{183,946}
$$

chance of writing Hamlet.
■ In other words, it would take on average $3.43 \times 10^{183,946}$ trials before the monkey starts typing Hamlet.

A Realistic Probability?

■ For scale, there are "only" $\approx 10^{80}$ atoms in the universe and $\approx 10^{38}$ years in the lifetime of the universe.

A Realistic Probability?

■ For scale, there are "only" $\approx 10^{80}$ atoms in the universe and $\approx 10^{38}$ years in the lifetime of the universe.
■ Suppose every atom were a "monkey" typing at 2000 characters per minute, which translates to a billion characters in a year. Chances increase to only 1 in

$$
3.43 \times 10^{183,946} /\left(10^{80} \cdot 10^{20} \cdot 10^{9}\right)=3.43 \times 10^{183,819}
$$

A Realistic Probability?

■ So could this really happen?

A Realistic Probability?

■ So could this really happen?
■ No

A Realistic Probability?

- So could this really happen?
- No

■ This theorem, while captivating, is more of a thought experiment than a practical reality

A Realistic Probability?

- So could this really happen?

■ No
■ This theorem, while captivating, is more of a thought experiment than a practical reality

- Interesting to explore the limits of probability and the boundaries of possibility.

References

■ Durrett, R. (2019). Probability: Theory and Examples (5th ed.). Cambridge University Press.

Thank you!

