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What is Model Theory?

• A branch of mathematical logic

• One step more abstract than abstract algebra (the rationalsÑ a
fieldÑ a model)...

• And yet has found applications in combinatorics, algebra,
analysis, and more!

• This is a talk in applied model theory—I’ll talk about a
connection between model theory and functional analysis!
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First, the Discrete Case...

Discrete Logic
• Truth values t0, 1u

• Equality “ : U2 Ñ t0, 1u
• Connectives
␣,^ : t0, 1un Ñ t0, 1u

• Functions Un Ñ U
• Predicates Un Ñ t0, 1u
• Quantifiers @, D
• Algebraic structures (groups,
fields, pre-Hilbert spaces,
etc.)
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What Can Model Theory Tell Us?

Theorem
Let ϕ be a statement about fields. The following are equivalent:

1. ϕ is true in every algebraically closed field of characteristic zero
(one added to itself is never zero).

2. ϕ is true in some algebraically closed field of characteristic p
(one added to itself p times is zero) for arbitrarily large p.

Essence of the Proof
“Having zero characteristic” is not expressible as a single first-order
statement!
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The Ultraproduct!

!

Fp
)

C

Fundamental Theorem of the Ultraproduct (Łoś)
For any discrete first-order sentence ϕ,

ϕ true in most of the
!

Fp
)

ô ϕ true in C
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But Not So Good For Complete Metric Structures...

tRu ˚R

Failure of Discrete First-order Logic
˚R is not complete!

5



A Walk Through Time

• 1955: Łoś proves the fundamental theorem.
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• 1968: Ax proves the Ax–Grothendieck Theorem using model
theoretic methods.
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A Walk Through Time

• 1954: Wright describes what is now called the ultraproduct in
functional analysis!

• 1955: Łoś proves the fundamental theorem.
• 1968: Ax proves the Ax–Grothendieck Theorem using model
theoretic methods.

• 2008: The de facto standard “Model Theory For Metric
Structures” (Ben Yaacov, Berenstein, Henson, and Usvyatsov) for
continuous logic is published, uniting the two ultraproducts.
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The Jump to Continuous Logic

Discrete Logic
• Truth values t0, 1u
• Equality “ : U2 Ñ t0, 1u
• Connectives
␣,^ : t0, 1un Ñ t0, 1u

• Functions Un Ñ U
• Predicates Un Ñ t0, 1u
• Quantifiers @, D
• Algebraic structures (groups,
fields, pre-Hilbert spaces,
etc.)

Continuous Logic

• Truth values r0, 1s
• Distance d : U2 Ñ r0, 1s
• Cts connectives
1
2ˆ,´, ¨ ¨ ¨ : r0, 1sn Ñ r0, 1s

• Cts functions Un Ñ U
• Cts predicates Un Ñ r0, 1s
• Quantifiers sup, inf
• Complete metric spaces
(Hilbert spaces, probability
spaces, C*-algebras, etc.)
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And all the results carry over! (Compactness, Löwenheim–Skolem,
omitting types, elimination of imaginaries, stability theory, etc.)
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Big Question

The Connes Embedding Problem
Big open conjecture for a long time that was recently solved: Can I
always embed a certain type of “operator algebra” into a certain
ultrapower?

Equivalent to a number of different problems from all different fields
across math and computer science:

• C*-algebras
• Quantum information theory
• Quantum complexity theory

And continuous logic forms the bridge!
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