
Minimal Surfaces and Plateau’s Problem

Arjun Shah

December 2023

1 Introduction

Plateau’s problem is not a single specific problem, but instead a set of problems
that are aimed at solving boundary value minimal surface problems. A basic
example of plateau’s problem is the following: Given a boundary in R3, what is
the minimal surface that corresponds to that boundary? There are numerous
generalizations to this problem, such as ones in higher dimensional spaces as
well as boundary problems where the boundary isn’t even fixed. There are
also generalizations that deal with minimal sets and graphs. The historical
motivation for this problem deals with soap films where a wire boundary was
dipped into a soapy solution and when removed slowly, would form a surface in
the boundary.

2 Minimal Surfaces

A minimal surface in R3 is a surface that is locally area minimizing at each
point on the surface with given boundary. More specifically, let Σ be a minimal
surface in R3. Then Σ is minimal if every point in Σ has an ϵ -neighborhood U
which has least area among all surfaces S ⊂ R3 with boundary ∂U . One thing
to notice is that minimal surfaces need not have the smallest area amonst all
surfaces with that boundary. For example, if we have a boundary which is two
discs on top of one another by a fixed distance, we get two minimal surfaces
depending where we decide to start the surface. For example, our minimal sur-
face can fill out both of our disks and both disks won’t be connect. Another
minimal surface is when the disks aren’t filled, but a surface connects the two
disks.

For low dimensions, like R2, it is simple to come up with a minimal surface
equation (an equation the minimizes our surface along our boundary). For
example, in R2, our minimal surface equation is

div
∇(f)

(1 + |∇f |2) 1
2

= 0

.
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Theorem 2.1 (Bernstein’s Theorem) Any solution to the minimal surface
equation above on R2 is linear.

Theorem 2.2 (Simons) Bernstein’s theorem above holds for minimal graphs
where dimension n ≤ 7.

3 Orientable Generalized Surfaces

To generalize from simple examples of wireframes and soap films, one must ask
whether topological type matters when calculating minimal surfaces. So far, all
calculations require us to take genus of the surface into account. One way to
perform this generalization is through the lense of integral currents.

Definition 3.1 (Current) A current is a linear functional on a smooth dif-
ferential form Ωm

c (M) is the space of smooth m-forms on a smooth manifold.
Our current would be the map:

T : Ωm
c (M) → R

In a sense, currents act as integration on submanifolds, which is useful since we
are trying to minimize some sort of area/volume in Plateau’s problem.

Definition 3.2 (Integral Current) A linear functional on the space of com-
pactly supported differential forms that satisfies linearity, additivity, and gener-
alized Stoke’s.

Integral currents generalize currents to nicer surfaces. For example, these sur-
faces end up being orientable, finite area and have an oriented boundary. An-
other important fact is that there exists an integral current with minimal mass
among all integral currents with the same boundary. One can also look at inte-
gral currents as a generalization of Euler-Lagrange equations which are used to
find local extrema in calculus of variation problems.

When finding minimal surfaces, it is important to note that ”weird” behav-
ior can occur with our given minimal surface. For example, we can run into
a singularity on our surface which is simply a point on the minimal surface
where we fail to be smooth or exhibit odd behavior such as an infinite conver-
gence to a point that never reaches the point. One question that arises from
this is the following: is it possible to admit interior singularities for our min-
imized surfaces? Simons answers this through his finding of the Simons cone:
x2
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8. This object has an interior singularity at
the origin. Consequently, this object was also used in the Simons proof above.

4 Variable Boundaries

The past examples of Plateau’s problem has dealt with strict boundaries and
their surface areas. We can introduce another factor into this equation by
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looking at variable boundaries. Specifically, imagine our boundaries to be like
fishing line: boundaries can’t be stretched or shrunk but are still flexible. Vari-
able boundary Plateau problems are specifically called Euler-Plateau problems
and have significant applications in physics like capillary flow and lightning con-
struction.

One crucial idea in solving Euler-Plateau problems is the Euler-Plateau energy.

Definition 4.1 (Euler-Plateau Energy) The energy is defined by the follow-
ing equations for a given surface M .

F [M ] = σ

∫
M

dA+

∮
∂M

ds(ακ2 + β)

where

• M is our surface

• σ is our surface tension

• 2α is our surface rigidity

• β is our lagrange multiplier for line tension (enforces our boundary inex-
tensibility L =

∮
∂M

ds)

One way to intuitively understand energy is that it acts as a measure of how
curvy a surface is (we see that Gaussian curvature is in the formula). If a surface
is more curvy, we can expect it to have a larger and more complex minimizing
surface. By minimizing our energy, we can find surfaces that adhere to our
flexible boundary while still minimizing the surface area of our minimal surface.
The physical interpretation of this can be directly linked to the physical shape
of water droplets, where physical forces like surface tension and gravity both
act together to give the water its shape.

5 Approachable Open Problems

During my research, I found a set of open ended problems that still have not
been proven related to Plateau’s problem. One that caught my eye was the
following since it seemed to be understandable from my current background in
analysis and geometry.

Conjecture 5.1 Convex Curve Conjecture, Meeks Two convex jordan curves
in parallel planes cannot bound a compact minimal surface of positive genus.

This problem seems intuitive at first but is quite difficult to prove, which reminds
me of the Jordan Curve Theorem when I first approached it. So far, we know
that this conjecture holds for when our Jordan curves are extremal (i.e. on the
boundary of their convex hull).
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