Elliptic Curve Cryptography

Avi Bagchi

Mentor: Andrew Kwon

How do we send a secure message?

- Goal: Encrypt plaintext P into C
- Desired Properties
- \exists encryption function E
- \exists decryption function D
- $P=D(E(P))$

Public-Key Cryptography

- E is public
- E should not imply D
- Authentication: $E(D(M))=M$

Public-Key Cryptography

Bob

Elliptic Curve Cryptography

- Efficient alternative to RSA.
- Bitcoin

Elliptic Curves

- $y^{2}=x^{3}+a x+b$

Group Structure

Elliptic curves naturally form group structure

- Identity element
- Associative operation
- Every element has inverse

Identity Element

Point at infinity $\mathbf{0}$

- $P \oplus \mathbf{0}=P$

Operation

- Given P_{1}, P_{2} find $P_{3}=P_{1} \oplus P_{2}$
- \oplus :
- * : Draw line through P, Q and find third point $-R$
- Apply $-R * \mathbf{0}$ to find R
- "Reflecting over x-axis"

Discrete Log Problem

- Given points on elliptic curve P_{1}, P_{2}
- To find P_{2} from P_{1}, how many times do we apply \oplus ?
- Finding k such that $k P_{1}=P_{2}$ is hard

Discrete Log Problem

- Base point P_{1}
- Public Key: $P_{2}=k P_{1}$
- Private Key: Some $k \in Z$

Attacks

Can the discrete log problem be solved efficiently?

Pollard's Rho Algorithm

- Idea: Starting with two points, find two distinct paths that yield the same third point
- Formally, find $c^{\prime} P+d^{\prime} Q=c^{\prime \prime} P+d^{\prime \prime} Q$ such that $c^{\prime} \neq c^{\prime \prime}, d^{\prime} \neq d^{\prime \prime}$
- If we find $c^{\prime}, c^{\prime \prime}, d^{\prime}, d^{\prime \prime}$, then:
- $\left(c^{\prime}-c^{\prime \prime}\right) P=\left(d^{\prime \prime}-d^{\prime}\right) Q=\left(d^{\prime \prime}-d^{\prime}\right) k P$
- $\left(c-c^{\prime \prime}\right)=\left(d^{\prime \prime}-d^{\prime}\right) k$
- $k=\left(c^{\prime}-c^{\prime \prime}\right)\left(d^{\prime \prime}-d^{\prime}\right)^{-1}$

Pollard's Rho Algorithm

How do we find $c^{\prime}, c^{\prime \prime}, d^{\prime}, d^{\prime \prime}$?

- Naiive: Random generation, storing all past operations
- Pollard's: Pseudo-random, space efficient

Pollard's Rho Algorithm

- Define f as the doubling operation
- If $X=c P+d Q$, we can get the next point $X^{\prime}=F(X)$ with new coefficients c^{\prime}, d^{\prime}
- $f(X)=X+a_{j} P+b_{j} Q$ where $c^{\prime}=c+a_{j}$ and $d^{\prime}=d+b_{j}$
- Divide curve into subsets $S_{i} \ldots S_{L}$ where some subset S_{j} has associated coefficients a_{i}, a_{j}
- Find sequence $X_{i}=f\left(X_{i-1}\right)$
- Eventually, there will be a cycle. Collision point found by Floyd's Cycle Finding algorithm.
- \exists two distinct paths to the same point, so we can extract $c^{\prime}, c^{\prime \prime}, d^{\prime}, d^{\prime \prime}$

Pollard's Rho Algorithm

Proof of Correctness

- Define group G, continuously updating $c^{\prime}, c^{\prime \prime}, d^{\prime}, d^{\prime \prime}$
- Lemma: A cycle must exist
- G is finite, but the sequence is infinite
- By Pigeonhole, a cycle must exist
- Say the cycle is detected at $X_{t}=X_{t+s}$ for some j
- $X_{t} \in S_{x}$ for some x with corresponding a_{x}, b_{x}
- $X_{t+s} \in S_{y}$ with corresponding a_{y}, b_{y}
- Without loss of generality consider c^{\prime}.
- On iteration i, assume we can determine $c^{\prime}=c$
- On iteration $i+1, c^{\prime}=a_{x}+c$
- Thus, we can extract $c^{\prime}, c^{\prime \prime}, d^{\prime}, d^{\prime \prime}$, and find $k=\left(c^{\prime}-c^{\prime \prime}\right)\left(d^{\prime \prime}-d^{\prime}\right)^{-1}$, solving the discrete log problem
- Runtime: Collision expected after $\sqrt{\frac{\pi \pi}{2}}$.

Post-Quantum Cryptography

- Fourier Transforms can also find these "cycles"
- Quantum computers compute Fourier Transforms extremely efficiently
- In a quantum world, Shor's Algorithm breaks elliptic curve cryptography

