
Elliptic Curve Cryptography

Avi Bagchi

Mentor: Andrew Kwon



How do we send a secure message?

▶ Goal: Encrypt plaintext P into C
▶ Desired Properties

▶ ∃ encryption function E
▶ ∃ decryption function D
▶ P = D(E (P))



Public-Key Cryptography

▶ E is public
▶ E should not imply D
▶ Authentication: E (D(M)) = M



Public-Key Cryptography



Elliptic Curve Cryptography

▶ Efficient alternative to RSA.

▶ Bitcoin



Elliptic Curves

▶ y2 = x3 + ax + b



Group Structure

Elliptic curves naturally form group structure

▶ Identity element

▶ Associative operation

▶ Every element has inverse



Identity Element

Point at infinity 0

▶ P ⊕ 0 = P



Operation

▶ Given P1,P2 find P3 = P1 ⊕ P2

▶ ⊕:
▶ ∗ : Draw line through P,Q and find third point −R
▶ Apply −R ∗ 0 to find R

▶ ”Reflecting over x-axis”



Discrete Log Problem

▶ Given points on elliptic curve P1,P2

▶ To find P2 from P1, how many times do we apply ⊕?

▶ Finding k such that kP1 = P2 is hard



Discrete Log Problem

▶ Base point P1

▶ Public Key: P2 = kP1

▶ Private Key: Some k ∈ Z



Attacks

Can the discrete log problem be solved efficiently?



Pollard’s Rho Algorithm

▶ Idea: Starting with two points, find two distinct paths that
yield the same third point

▶ Formally, find c
′
P + d

′
Q = c

′′
P + d

′′
Q such that

c
′ ̸= c

′′
, d

′ ̸= d
′′

▶ If we find c
′
, c

′′
, d

′
, d

′′
, then:

▶ (c
′ − c

′′
)P = (d

′′ − d
′
)Q = (d

′′ − d
′
)kP

▶ (c
′ − c

′′
) = (d

′′ − d
′
)k

▶ k = (c
′ − c

′′
)(d

′′ − d
′
)−1



Pollard’s Rho Algorithm

How do we find c
′
, c

′′
, d

′
, d

′′
?

▶ Naiive: Random generation, storing all past operations

▶ Pollard’s: Pseudo-random, space efficient



Pollard’s Rho Algorithm

▶ Define f as the doubling operation

▶ If X = cP + dQ, we can get the next point X
′
= F (X ) with

new coefficients c
′
, d

′

▶ f (X ) = X + ajP + bjQ where c
′
= c + aj and d

′
= d + bj

▶ Divide curve into subsets Si ...SL where some subset Sj has
associated coefficients ai , aj

▶ Find sequence Xi = f (Xi−1)

▶ Eventually, there will be a cycle. Collision point found by
Floyd’s Cycle Finding algorithm.

▶ ∃ two distinct paths to the same point, so we can extract
c
′
, c

′′
, d

′
, d

′′



Pollard’s Rho Algorithm



Proof of Correctness

▶ Define group G , continuously updating c
′
, c

′′
, d

′
, d

′′

▶ Lemma: A cycle must exist
▶ G is finite, but the sequence is infinite
▶ By Pigeonhole, a cycle must exist

▶ Say the cycle is detected at Xt = Xt+s for some j

▶ Xt ∈ Sx for some x with corresponding ax , bx
▶ Xt+s ∈ Sy with corresponding ay , by
▶ Without loss of generality consider c

′
.

▶ On iteration i , assume we can determine c
′
= c

▶ On iteration i + 1, c
′
= ax + c

▶ Thus, we can extract c
′
, c

′′
, d

′
, d

′′
, and find

k = (c
′ − c

′′
)(d

′′ − d
′
)−1, solving the discrete log problem

▶ Runtime: Collision expected after
√

πn
2 .



Post-Quantum Cryptography

▶ Fourier Transforms can also find these ”cycles”

▶ Quantum computers compute Fourier Transforms extremely
efficiently

▶ In a quantum world, Shor’s Algorithm breaks elliptic curve
cryptography


