Elliptic Curve Cryptography

Avi Bagchi

Mentor: Andrew Kwon

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

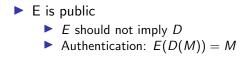
How do we send a secure message?

- Goal: Encrypt plaintext P into C
- Desired Properties
 - \blacktriangleright \exists encryption function *E*
 - \blacktriangleright \exists decryption function D

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

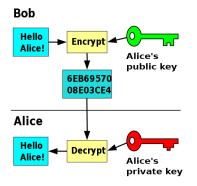
 $\blacktriangleright P = D(E(P))$

Public-Key Cryptography



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Public-Key Cryptography



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

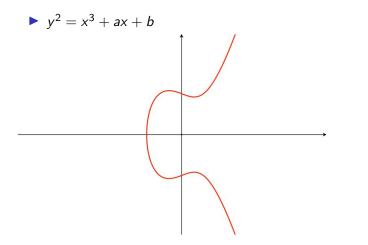
Elliptic Curve Cryptography

• Efficient alternative to RSA.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Bitcoin

Elliptic Curves



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

Group Structure

Elliptic curves naturally form group structure

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

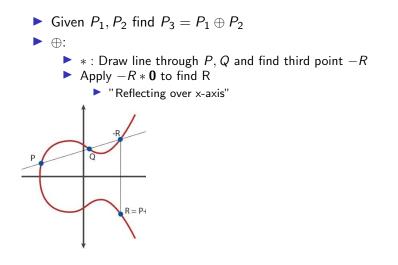
- Identity element
- Associative operation
- Every element has inverse

Identity Element

Point at infinity ${\boldsymbol{0}}$

イロト イロト イヨト イヨト 三日

Operation



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Discrete Log Problem

- Given points on elliptic curve P₁, P₂
- ▶ To find P_2 from P_1 , how many times do we apply \oplus ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Finding k such that $kP_1 = P_2$ is hard

Discrete Log Problem

- ▶ Base point P₁
- Public Key: $P_2 = kP_1$
- Private Key: Some $k \in Z$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Can the discrete log problem be solved efficiently?

Idea: Starting with two points, find two distinct paths that yield the same third point

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Formally, find c'P + d'Q = c''P + d''Q such that $c' \neq c'', d' \neq d''$

• If we find
$$c', c'', d', d''$$
, then:

•
$$(c' - c'')P = (d'' - d')Q = (d'' - d')kP$$

• $(c' - c'') = (d'' - d')k$
• $k = (c' - c'')(d'' - d')^{-1}$

How do we find c', c'', d', d''?

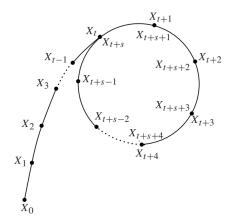
Naiive: Random generation, storing all past operations

Pollard's: Pseudo-random, space efficient

- Define f as the doubling operation
- If X = cP + dQ, we can get the next point X' = F(X) with new coefficients c', d'

•
$$f(X) = X + a_j P + b_j Q$$
 where $c' = c + a_j$ and $d' = d + b_j$

- Divide curve into subsets S_i...S_L where some subset S_j has associated coefficients a_i, a_j
- Find sequence $X_i = f(X_{i-1})$
- Eventually, there will be a cycle. Collision point found by Floyd's Cycle Finding algorithm.
- ▶ ∃ two distinct paths to the same point, so we can extract c', c'', d', d''



▲ロト▲御ト▲臣ト▲臣ト 臣 の父(で)

Proof of Correctness

- Define group G, continuously updating c', c'', d', d''
- Lemma: A cycle must exist
 - G is finite, but the sequence is infinite
 - By Pigeonhole, a cycle must exist
- ► Say the cycle is detected at X_t = X_{t+s} for some j
- $X_t \in S_x$ for some x with corresponding a_x, b_x
- $X_{t+s} \in S_y$ with corresponding a_y, b_y
- Without loss of generality consider c'.
- On iteration *i*, assume we can determine c' = c
- On iteration i + 1, $c' = a_x + c$
- Thus, we can extract c', c'', d', d'', and find $k = (c' - c'')(d'' - d')^{-1}$, solving the discrete log problem

• Runtime: Collision expected after $\sqrt{\frac{\pi n}{2}}$.

Post-Quantum Cryptography

- Fourier Transforms can also find these "cycles"
- Quantum computers compute Fourier Transforms extremely efficiently
- In a quantum world, Shor's Algorithm breaks elliptic curve cryptography

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ